

The International Journal on Advances in Security is published by IARIA.

ISSN: 1942-2636

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Security, issn 1942-2636

vol. 18, no. 3&4, year 2025, http://www.iariajournals.org/security/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Security, issn 1942-2636

vol. 18, no. 3&4, year 2025, <start page>:<end page> , http://www.iariajournals.org/security/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2025 IARIA

International Journal on Advances in Security

Volume 18, Number 3&4, 2025

Editors-in-Chief

Hans-Joachim Hof,
- Full Professor at Technische Hochschule Ingolstadt, Germany
- Lecturer at Munich University of Applied Sciences
- Group leader MuSe - Munich IT Security Research Group
- Group leader INSicherheit - Ingolstädter Forschungsgruppe angewandte IT-Sicherheit
- Chairman German Chapter of the ACM

Editorial Board

Oum-El-Kheir Aktouf, Univ. Grenoble Alpes | Grenoble INP, France

Eric Amankwa, Presbyterian University, Ghana

Ilija Basicevic, University of Novi Sad, Serbia

Cătălin Bîrjoveanu, "Al.I.Cuza" University of Iasi, Romania

Steve Chan, Decision Engineering Analysis Laboratory, USA

Abdullah S. Al-Alaj, Virginia Wesleyan University, USA

El-Sayed M. El-Alfy, King Fahd University of Petroleum and Minerals, Saudi Arabia

Rainer Falk, Siemens Technology, Germany

Steffen Fries, Siemens AG, Germany

Damjan Fujs, University of Ljubljana, Slovenia

Hans-Joachim Hof, Technische Hochschule Ingolstadt, Germany

Gahangir Hossain, University of North Texas, Denton, USA

Fu-Hau Hsu, National Central University, Taiwan

Sokratis Katsikas, Norwegian University of Science and Technology - NTNU, Norway

Hyunsung Kim, Kyungil University, Korea

Dragana Krstic, University of Nis, Serbia

Yosra Lakhdhar, Digital Research Center of Sfax (CRNS) / CN&S Research Lab at SUP'COM, Tunisia

Petra Leimich, Edinburgh Napier University, UK

Shimin Li, Winona State University, USA

Yi Liu, University of Massachusetts Dartmouth, USA

Giuseppe Loseto, LUM "Giuseppe Degennaro" University, Italy

Mohammadreza Mehrabian, South Dakota School of Mines and Technology, USA

Carla Merkle Westphall, Federal University of Santa Catarina (UFSC), Brazil

Aleksandra Mileva, Goce Delcev University, Republic of N. Macedonia

Vasudevan Nagendra, Sekyurity AI, USA

Brajendra Panda, University of Arkansas, USA

Paweł Rajba, University of Wroclaw, Poland

Danda B. Rawat, Howard University, USA

Claus-Peter Rückemann, Universität Münster / DIMF / Leibniz Universität Hannover, Germany

Antonio Ruiz Martínez, University of Murcia, Spain

Rocky Slavin, University of Texas at San Antonio, USA

Pedro Sousa, University of Minho, Braga, Portugal

Miroslav Velev, Aries Design Automation, USA

Cong-Cong Xing, Nicholls State University, USA

International Journal on Advances in Security

Volume 18, Numbers 3&4, 2025

CONTENTS

pages: 123 - 136
Extending SDN-ACL Automation with User Groups, Authentication Events, and Intrusion Detection System
Integration
Florian Grießer, School of Computation, Information and Technology, Technical University Munich, Chair of
Security in Information Technology, Germany
Hirokazu Hasegawa, Center for Strategic Cyber Resilience R&D, National Institute of Informatics, Japan
Hajime Shimada, Information Technology Center, Nagoya University, Japan

pages: 137 - 149
Security-risk-mitigation Measures for Service Oriented Vehicle Diagnostics SOVD
Masaaki Miyashita, Nissan Motor Corporation, Japan
Djafer Yahia M Benchadi, Nissan Motor Corporation, Japan
Hiroki Takakura, National Institute of Informatics, Japan

pages: 150 - 159
Algorithmic Attraction: Detecting Content Traps in YouTube’s Recommendation Graph via Network Resilience
and Topical Cohesion
Monoarul Bhuiyan, COSMOS Research Center, UA-Little Rock, USA
Nitin Agarwal, COSMOS Research Center, UA-Little Rock; ICSI, University of California-Berkeley, USA

pages: 160 - 170
Developing Domain-Specific Threat Models for Greater Software Security
Aspen Olmsted, Wentworth Institute of Technology, United States

pages: 171 - 191
From Principles to Practice: An End-to-End Approach for Trustworthy ML in Critical Systems
Afef Awadid, IRT SystemX, France
Lucas Mattioli, IRT SystemX, France
Karla Quintero, IRT SystemX, France
Juliette Mattioli, Thales, France

123International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Extending SDN-ACL Automation with User Groups, Authentication Events,
and Intrusion Detection System Integration

Florian Grießer∗ , Hirokazu Hasegawa‡ , Hajime Shimada§
∗School of Computation, Information and Technology, Technical University Munich,

Chair of Security in Information Technology, Germany
‡Center for Strategic Cyber Resilience R&D, National Institute of Informatics, Japan

§Information Technology Center, Nagoya University, Japan
florian.griesser@tum.de, hasegawa@nii.ac.jp, shimada@itc.nagoya-u.ac.jp

Abstract—As cyberattacks become more common and ad-
vanced, traditional networks fall behind because they depend
on static settings and manual adjustments. Software-Defined
Networking (SDN) provides more flexibility and can be used
to solve these problems. In this work, we present a system that
automatically creates Access Control Lists (ACLs) in SDN envi-
ronments. The system links access control to the User Database
and generates rules automatically, which reduces the effort for
administrators. With Port Access Control, only authenticated
devices are allowed to use network resources. In addition, the
system integrates an Intrusion Detection System (IDS): suspicious
clients are first monitored through mirrored traffic, and if
violations go beyond a threshold, their traffic is redirected
for inline inspection. We tested the system in three use cases:
connecting new clients, adapting dynamically to authentication
events, and redirecting malicious hosts through the IDS. The
results show that our approach not only reduces manual work
but also enforces role-based security and prevents IDS overload
by escalating only persistent or severe attacks.

Keywords-Software-Defined Networking; Authentication; Access
Control Lists; Intrusion Detection Systems

I. INTRODUCTION

This article is an extended version of our previous work
presented at the International Conference on Networks (ICN)
[1], where we introduced a system for automatically gener-
ating Access Control Lists (ACLs) within Software-Defined
Networking (SDN) environments. While the conference paper
focused on the system architecture and initial evaluation, this
extended version expands the analysis in several directions.
In particular, we introduce a more comprehensive Formal
Security Model and Threat Analysis (Section V) and extend
the system with an Intrusion Detection System (IDS) for dy-
namic policy adaptation. We further examine how identity and
authentication events can drive the automated creation of fine-
grained access control rules in SDN environments and how
such mechanisms adapt to user behavior while maintaining
scalability, security, and low administrative overhead. The core
challenge we address is how to integrate authentication-driven,
identity-aware access control into SDN in a way that adapts
dynamically to user behavior while preserving scalability and
security. The primary aim of this work is to demonstrate the
feasibility and practical applicability of the proposed system in
realistic scenarios, with a focus on validating the architectural
concept and its security properties rather than conducting an
exhaustive performance study.

Digital transformation has exponentially increased the com-
plexity of network architectures, presenting significant chal-
lenges in maintaining robust security frameworks [2]. In this
ever-evolving digital landscape, cybersecurity threats have
become more sophisticated, leveraging the linkage of modern
infrastructures to exploit vulnerabilities at an alarming rate.
Traditional network security mechanisms, which mainly rely
on static configurations and manual oversight, are increas-
ingly proving inadequate against this backdrop of dynamic
and evolving threats [2]. The inherent limitations of these
conventional approaches, characterized by their inflexibility
and slow response times, underline the urgent need for more
adaptable, responsive security measures.

Software-Defined Networking (SDN) is a paradigm that
promises to redefine network management and security [3].
At its core, SDN separates the network’s control logic from
the underlying hardware, facilitating a centralized and pro-
grammable framework that transcends traditional hardware
limitations [4]. This separation enhances network flexibility
and management and introduces agility and adaptability that
were unachievable with conventional network architectures
until now. According to a report by Global Market Insights,
the SDN market, valued at USD 28.2 billion in 2023, is
expected to experience significant growth, with a projected
expansion rate exceeding 17% annually from 2024 to 2032
[5]. Through SDN’s capabilities, networks gain the flexibility
to adapt swiftly to evolving security demands. This flexibility
enables the immediate implementation of tailored security
measures and configurations to counter new threats effectively,
as illustrated in the study by Ali et al. [6].

Furthermore, our contribution is complemented by the work
of Yakasai et al. in FlowIdentity, which advances virtualized
network access control within SDN through a role-based
firewall [7]. We also build on the architectural insights of
Casado et al. in Ethane, demonstrating the power of centralized
policy enforcement [8], and the approach of Mattos et al.
in AuthFlow, focusing on authentication and access control
mechanisms in SDN environments [9].

Additionally, this approach was refined by incorporating
a structured analysis of authentication logs, drawing upon
the work of Xing et al. in SnortFlow, which explores an
OpenFlow-based intrusion prevention system in cloud envi-
ronments [10], and the study by An Le et al. on a flexible

124International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

network-based intrusion detection and prevention system on
Software-Defined Networks [11].

The paper progresses from reviewing related SDN security
work in Section II to foundational concepts in Section III.
Section IV describes our system for automating ACLs, fol-
lowed by Section V, which presents the formal security model
and analyzes potential threats. Section VI details the imple-
mentation, Section VII evaluates the system’s performance
and demonstrates the benefits of the IDS integration, and
Section VIII encapsulates concluding thoughts and future
directions.

II. RELATED WORK

Network security and access control advancements are cru-
cial in the evolving landscape of SDN. The following studies
demonstrate that emerging technologies and frameworks are
pivotal in addressing these challenges.

A. Intrusion Detection with Authentication Events

In the study by Chu et al. [12], “ALERT-ID,” an intrusion
detection system for large-scale network infrastructures, is pre-
sented. The system distinguishes between normal operations
and potential security threats through real-time analysis of
authentication, authorization, and accounting (AAA) system
logs. It employs behavioral models built on historical access
patterns and user profiles, efficiently identifying potential
intrusions and misuse. Notably, ALERT-ID balances the need
for thorough security monitoring with a manageable false
alarm rate, demonstrating the importance of dynamic security
measures in complex network environments.

Building on this, Janabi et al. provide a comprehensive
survey of intrusion detection systems in Software-Defined
Networking [13]. Their work categorizes existing approaches
into anomaly-based, signature-based, and hybrid detection
mechanisms, and highlights key challenges such as scalability,
controller bottlenecks, and false alarm reduction. This survey
underscores the urgency of developing IDS solutions that are
tailored to the dynamic characteristics of SDN environments.

A more specialized perspective is given by Susilo et al.,
who present an SDN-based intrusion detection system that
leverages deep learning techniques [14]. By training models
on traffic data, they achieve high detection rates for a variety of
attack types, demonstrating the potential of machine learning
to significantly enhance IDS performance in SDN settings.

In a related direction, Wang et al. propose an AI-powered
network threat detection system [15]. Their approach inte-
grates artificial intelligence methods such as Random Forests
and neural networks into SDN Controllers to enable real-
time threat detection. The study highlights the effectiveness
of AI in reducing false positives and improving scalability,
though it also raises concerns regarding explainability and
computational overhead.

B. Dynamic Access Control in SDN

Transitioning to dynamic access control, the work by Nayak
et al. introduces “Resonance: Dynamic Access Control for

Enterprise Networks” [16]. Resonance implements dynamic
security policies with a registration phase, complemented by
real-time monitoring and inference mechanisms specified by
administrator rules.

A more recent study by Shah and Yadav integrates
IEEE 802.1X authentication into SDN to control port-level
access [17]. Their approach provides admission control based
on authentication status, yet it does not support dynamic ACL
updates or identity-based rule generation. This gap is central
to our contribution, which leverages authentication events and
user group information to automatically derive and update fine-
grained, identity-aware ACLs.

Further extending the concept of network security, the study
by Martins et al. [18] introduces an access control architecture
for SDN leveraging the ITU X.812 standard. This framework
incorporates Role-Based Access Control (RBAC) with traffic
prioritization rules, advancing towards more granular access
control based on predefined role mappings. While powerful,
this approach depends on extensive manual configuration
efforts to establish complete rule sets, limiting its ability to
adapt dynamically to user behavior or evolving authentication
contexts.

C. Formal Security Models & Threat Modeling in SDN

Beyond practical implementations, several works emphasize
the necessity of formal reasoning in SDN security. Sharma and
Tyagi present a structured threat model for SDN environments,
covering controller protection, inter-controller communication,
and malicious switch scenarios [19]. Their taxonomy illus-
trates how different layers of the SDN stack are exposed to
unique attack vectors, motivating the need for systematic threat
analysis.

Pradeep et al. propose EnsureS, an SDN security model
that validates service paths based on efficient hashing and
tag verification mechanisms [20]. Their design provides both
efficiency and security guarantees, reducing the risk of path
manipulation and enhancing packet integrity.

Finally, Meng et al. introduce a policy model transformation
and verification framework [21]. By automatically converting
high-level security policies into flow-level configurations and
applying formal verification techniques, they ensure consis-
tency between intended policies and deployed rules. This
approach demonstrates the potential of combining formal
methods with SDN programmability to achieve provable se-
curity properties.

D. Policy Conflict Detection and Resolution in SDN

In parallel with dynamic access control, substantial work
has addressed the challenge of policy conflict detection and
resolution in SDN environments. Systems like FortNOX [22]
and FlowGuard [23] provide real-time enforcement mecha-
nisms that prevent new flow rules from violating established
security policies by checking for conflicts during rule insertion.
Verification tools such as VeriFlow [24] and NetPlumber [25]
take a verification-oriented approach, intercepting flow updates
to ensure they do not violate global invariants such as isolation

125International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

or reachability. More recent frameworks, including PGA [26]
and Brew [27], focus on composing and reconciling policies
from different modules or tenants, producing a consistent,
conflict-free rule set. These efforts highlight the importance of
handling interactions between dynamic ACLs, legacy firewall
configurations, and other network policies, which is particu-
larly relevant in hybrid and large-scale deployments.

These studies illustrate a significant progression in SDN
security research, ranging from intrusion detection systems to
dynamic access control and formal threat modeling. Building
on these developments, our work reduces administrative bur-
den while enabling adaptive, security-driven policy updates.

III. PRELIMINARY CONCEPTS

This section introduces foundational concepts relevant
to network management and security, including OpenFlow
switches in SDN, 802.1X Port-Based Network Access Control,
access management with Active Directory and LDAP-based
directory services, and the Extensible Authentication Protocol
over LAN (EAPOL).

A. The Role of OpenFlow Switches in SDN

Software-Defined Networking (SDN) represents a paradigm
shift in network management by decoupling the control plane
from the data plane. OpenFlow, one of the earliest and
most widely adopted SDN protocols, provides a standardized
interface for communication between the centralized controller
and the network devices. Within this architecture, OpenFlow
switches serve as the essential data plane components, respon-
sible for forwarding packets based on flow rules received from
the controller [28].

These programmable switches enable dynamic network con-
trol, granular traffic engineering, and the implementation of
advanced security policies. Because the control logic resides in
a centralized controller, network behavior can be reconfigured
on the fly without the need for manual reprogramming of
individual devices. This centralized programmability simplifies
policy enforcement and enables rapid adaptation to changing
security requirements.

While OpenFlow switches provide strong flexibility, they
also introduce security challenges. Because switches rely on
the controller for all flow decisions, a compromised controller
could install malicious rules or bypass policies. In addition,
limited flow-table capacity makes them vulnerable to exhaus-
tion attacks such as flow flooding [29].

The communication channel between switches and the con-
troller, typically protected by TLS, can also be a point of
failure if improperly configured [3]. Authentication, certificate
management, and key distribution therefore become crucial
aspects of securing the SDN infrastructure. Finally, the lack of
default policies or fallbacks in many OpenFlow implementa-
tions can result in a denial-of-service condition if the controller
becomes unreachable [29].

To address these issues, several countermeasures have been
proposed. These include distributed controller architectures
to eliminate a single point of failure, flow aggregation to

reduce table pressure, and anomaly detection systems to iden-
tify malicious flow behaviors [3, 4]. Proper integration with
access control mechanisms, such as 802.1X and centralized
identity management, can further enhance the trustworthiness
of OpenFlow-based networks [30, 31, 32].

In summary, OpenFlow switches provide the flexibility
and programmability needed for next-generation networks but
must be deployed with careful attention to security design,
controller hardening, and flow policy management.

B. Port-Based Authentication with IEEE 802.1X

IEEE 802.1X Port-Based Network Access Control signifi-
cantly strengthens network security by implementing stringent
access control at the physical port level. As a foundational
component of network admission control, 802.1X ensures
that only authenticated devices and users gain access to the
network, thereby maintaining integrity and reducing the risk
of unauthorized intrusion [30].

The 802.1X framework operates with three core entities:
the supplicant (client device), the authenticator (typically a
switch or wireless access point), and the authentication server
(commonly a Remote Authentication Dial-In User Service
(RADIUS) server). When a device connects to a network
port, it is initially placed into an unauthorized state. The au-
thenticator acts as an intermediary, forwarding authentication
messages between the supplicant and the server using the
Extensible Authentication Protocol over LAN (EAPOL) [33].

The authentication sequence involves an initial access re-
quest, followed by a secure exchange of identity and creden-
tials, and concludes with the authentication server evaluating
the credentials and instructing the authenticator whether to
grant or deny access. This structured process prevents unau-
thorized devices from entering the network and defends against
threats such as MAC spoofing, rogue clients, and replay
attacks. Mutual authentication using Extensible Authentica-
tion Protocol – Transport Layer Security (EAP-TLS) further
enhances security by preventing credential interception and
significantly reducing the risk of man-in-the-middle attacks.

Advanced deployments of 802.1X often integrate dynamic
network configurations, such as VLAN assignment and ACL
enforcement, based on the identity of the authenticated entity.
This enables granular policy control and flexible segmenta-
tion of network resources. For example, guests, employees,
and devices can be placed in separate VLANs with tailored
permissions, immediately upon authentication.

While 802.1X offers robust security, its implementation
can be complex. Challenges include managing certificates
for mutual authentication, ensuring client compatibility, and
avoiding service disruptions due to misconfiguration [30, 33].
Nonetheless, when properly deployed and integrated with di-
rectory services like Active Directory, 802.1X forms a critical
layer of defense in modern enterprise networks.

In conclusion, IEEE 802.1X is an essential mechanism for
enforcing authenticated, role-based access at the network edge.
It combines strong identity verification with flexible policy

126International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application, forming a resilient barrier against unauthorized
access and internal threats.

C. Centralized Access Management via Active Directory and
LDAP Authentication

Access control is a foundational building block of network
security, ensuring that only authorized users can access critical
systems and resources. Two widely used technologies for
implementing centralized access management are Microsoft’s
Active Directory (AD) [31] and the Lightweight Directory
Access Protocol (LDAP) [32]. Both systems facilitate authen-
tication, authorization, and user management across a range
of services and devices, albeit with different implementations
and scopes.

Active Directory (AD) is a directory service developed by
Microsoft for Windows domain networks. It acts as a central-
ized repository of user credentials, group memberships, and
security policies. AD enables administrators to enforce Role-
Based Access Control (RBAC) through Group Policy Objects
(GPOs), automate login scripts, and manage user rights at
scale. It also supports Kerberos-based authentication, which
enhances security through ticket-based access mechanisms.

LDAP, on the other hand, is an open and vendor-neutral
protocol used to access and manage distributed directory
information services. While AD itself supports LDAP as
one of its interfaces, LDAP can also be implemented in a
platform-agnostic manner using solutions such as OpenLDAP
or Apache Directory. LDAP directories typically organize
information in a hierarchical structure and are used for cen-
tralizing authentication across services such as email servers,
intranet portals, VPNs, and UNIX systems.

In enterprise environments, a centralized identity and access
management (IAM) system is often built around AD, which
integrates seamlessly with LDAP-aware services. This central-
ization facilitates consistent enforcement of security policies,
simplifies user onboarding and offboarding, and reduces the
administrative burden associated with managing multiple local
accounts. It also enables Single Sign-On (SSO), allowing users
to authenticate once and gain access to a variety of authorized
services without repeated logins.

Moreover, integration with federated identity systems and
multi-factor authentication (MFA) further strengthens the se-
curity posture. AD and LDAP are often combined with other
authentication frameworks, such as Security Assertion Markup
Language (SAML) and OAuth (Open Authorization), espe-
cially in hybrid environments that span both on-premises and
cloud infrastructures.

Overall, the use of Active Directory and LDAP for access
management supports scalability, interoperability, and a high
level of control, making them indispensable components of
modern enterprise security architectures.

IV. PROPOSED SYSTEM

This section presents a comprehensive overview of our
proposed system, designed to significantly enhance network
security and efficiency through advanced ACL management
and authentication mechanisms.

A. Previous Works: Problem and Approach

Building on our established framework for automating ACL
generation through statistical analysis of communication pat-
terns, this work seeks to further leverage and enhance the
existing infrastructure. Our initial efforts in [34] laid the foun-
dational groundwork for this approach, which saw significant
development and refinement in subsequent studies, such as
[35]. A primary challenge identified in our exploration was
addressing the need for authentication proof for IP addresses.

We have refined our approach to take advantage of a typical
user database, like Active Directory [31], a standard part
of a company network. This centralized database offers a
significant advantage because user and group management and
their corresponding resource access permissions are already
handled there. We aim to leverage this existing infrastructure
to streamline the process and eliminate redundant tasks for
administrators.

B. Architecture of the Proposed System

In the proposed system, we enhance network security
through Port Access Control, which limits network port access
exclusively to authenticated users. This approach is grounded
in a security model where each port is individually secured
and requires authentication before granting access. As a result,
each user undergoes an authentication process, enhancing
the network’s overall security posture. The process for user
connection is designed with precision to ensure a secure and
efficient authentication mechanism and can be found in Figure
1.

Initially, the system is configured to allow only EAPOL
messages, which are then directed to an authenticator compo-
nent. This step ensures that there is no communication before
the client authenticates.

The SDN Controller checks its internal state for pre-
configured users based on MAC and IP addresses. This in-
formation is crucial for comparing against new data received
during authentication. Authentication messages for EAPOL
are forwarded to a RADIUS server, which validates the cre-
dentials against a common user database, typically an Active
Directory.

Upon successful authentication, the system assigns an IP
address to the specific MAC address by inserting a record
in a DHCP server. This procedure ensures that the assigned
IP address corresponds to a specific MAC address and is
associated with a specific port. The system then generates
User-Specific Access Control Lists tied to a particular port
by requesting user groups for the specific username from the
Active Directory via LDAP. The fundamental idea is that users
in the same group as a specific server should also have access
to that server. For instance, if the user Ben is a member of the
Mail group, to which our Mailserver also belongs, the system
creates ACLs permitting this specific traffic. Consequently, a
whitelist is established to allow this connection while blocking
all other traffic.

The system can identify users labeled as servers, which
differ from standard clients, through a unique identifier group

127International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Client PC OpenFlow Switch

Access Request

SDN Controller

ACL Based on
User Groups

& State Network

Assign IP
to MAC

Radius

User Authenticated?

Active Directory

Forward Access Request

Result Authentication

Forward Auth Result
Forward Auth Result

Apply ACL

Actor

Connect

Request User Groups

User Groups

Check Internal Status

LDAP Authentication

Result Authentication

Figure 1. Dynamic ACL Adaptation based on Authentication Events

assigned explicitly to servers. The same concept could also
be implemented using specific roles depending on existing
usage in a company network, but in our case, we focused
on groups. Thus, any user belonging to this shared group
is able to establish a connection with the designated server.
A port scan is conducted for servers to identify open ports
and protocols. This information is linked to the user group of
the server. For clients, the system constructs ACLs based on
user groups and existing database information about servers,
ensuring only communication between the user’s MAC and IP
address and the server’s IP address and port. Since only the
port is required for enforcing ACLs, the mechanism naturally
extends to multiple SDN switches, as the ACL is bound to a
port on a switch rather than a specific device.

Administrators can create templates for specific scenarios,
such as restricting SSH access to administrators only. For
example, port 22 can be explicitly bound to the Administrator
group. These templates are scanned before actual ACL gen-
eration, with higher priority than user roles and dynamically
discovered ports. Templates are also essential for managing
Internet traffic, with administrators defining routing rules that
cannot be derived automatically from database information.

Since updates of active users and checks for new ports on
servers occur periodically (once a day by default, configurable
by administrators), the system maintains a minimal ACL set
and removes unused entries if a host is no longer connected,
thereby improving efficiency [36].

C. Dynamic Authentication Events and IDS Integration

In addition to static ACL generation, the system accounts
for dynamic authentication events. An LDAP proxy contin-
uously monitors authentication activities to detect suspicious
behavior, such as repeated failed login attempts for a particular
service. Inspired by ALERT-ID [12], our approach extends the
concept by directly adapting the network configuration when
malicious behavior is observed.

Suspicious traffic is identified based on configurable thresh-
olds. For example, an alarm is triggered when more than fifty
packets are sent to invalid IP addresses, when communication
attempts are made with five or more distinct blocked IPs (a
common indicator of scanning activity), or when repeated
connection attempts target sensitive ports such as SSH or non-
standard high ports. When such conditions are met, the SDN
Controller modifies OpenFlow rules to redirect all traffic from
the suspicious user through the integrated Intrusion Detection
System (IDS). This redirection applies to both internal and
external flows, enabling centralized inspection of potentially
malicious activity.

The IDS, implemented with Snort [37] in our prototype,
evaluates the forwarded traffic and raises alarms that are
logged in a structured JSON format. Depending on the severity
of the alarm, different mitigation strategies are applied. For
high- and medium-priority alarms, the system immediately
updates ACLs to block the offending traffic and sends an alert
to the administrator. For low-priority alarms, ACLs remain
unchanged, but the administrator is notified so that the event
can be investigated further.

This integration of threshold-based detection, real-time rule
updates, and IDS alarms provides a layered defense mecha-
nism. It ensures that suspicious activity is promptly identified
and that the system can react adaptively, either by isolating
malicious traffic or by escalating alerts to administrators.

D. Quantitative Analysis of Access Control Lists

We rely on a quantitative understanding of ACLs to evaluate
the system’s complexity. Using ACL counts as a metric is
consistent with prior SDN research, where the number of
ACL policies is directly linked to controller processing delay
and scalability [36]. The ACL count is determined based on
user, group, and port configurations, providing insights into
the scale and complexity of the access control mechanisms.

128International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Number of ACLs per User (Nu): This metric quantifies
the number of ACL entries associated with each user. It
is calculated by summing the ports across all groups a
user belongs to, given by

Nui =

Gi∑
g=1

Pgi (1)

where Pgi is the number of ports for group g for user i
and Gi is the total number of groups for user i.

• Global Number of ACLs (Nglobal): The total number of
ACLs across the network reflects the overall complexity
of access control. It is computed as

Nglobal =

U∑
i=1

Nui (2)

where U represents the total number of users, and Nui

is the number of ACLs for user i.

• Number of ACLs per Switch (Ns): Understanding the
ACL count for each switch helps in optimizing access
control at the local level. This metric is determined by

Ns =
∑
i∈S

Nui
(3)

where S is the set of users connected to the switch, and
Nui

represents the number of ACLs for user i in the set
S.

These metrics not only provide a clear measure of system
complexity but also form the basis for comparing different
security configurations in the subsequent evaluation.

The subsequent section introduces the formal security model
and threat analysis, establishing the assumptions and adversary
capabilities before moving to implementation details.

V. FORMAL SECURITY MODEL AND THREAT ANALYSIS

This section formalizes the security objectives, assumptions,
and threats addressed by the proposed system. We begin by
outlining the intended security goals and the structural system
model from a security standpoint. This is followed by trust
assumptions, a detailed adversary model, and a threat analysis.
We then extend the analysis to account for Intrusion Detection
System (IDS) integration, before reflecting on limitations and
directions for future work.

A. Security Objectives

The proposed system aims to strengthen network security
through several concrete objectives. First, authenticated net-
work access ensures that only verified users and devices may
participate in network communication. Second, fine-grained
access control is enforced via dynamically generated Access
Control Lists (ACLs) based on user group membership, which
are centrally managed through Active Directory. The system
introduces accountability by logging authentication attempts
and access control decisions, enabling forensic analysis. A key

focus lies in dynamic response to emerging threats: repeated
authentication failures trigger ACL updates, while only client
traffic that violates an ACL is redirected to the IDS. Adhering
to the principle of least privilege, clients are granted access
only to services required by their role. Finally, the system
ensures that security measures balance confidentiality and
integrity with availability, so that malicious clients can be
isolated without impairing legitimate traffic.

B. System Model

From a security perspective, the system model comprises
multiple entities and communication interfaces. Clients rep-
resent end-user devices that must authenticate before being
granted access to the network. Servers provide services such
as mail or GitLab and are associated with defined user groups.
The authenticator component is realized through an OpenFlow
switch that enforces port-based access control using IEEE
802.1X. The authentication backend consists of a RADIUS
server and an Active Directory instance that validates creden-
tials and provides group membership information. A logically
centralized SDN Controller orchestrates ACL generation and
enforcement, while an LDAP proxy monitors authentication
behavior. Suspicious traffic can be mirrored to a monitoring
application or redirected through an IDS for deeper inspection.

All communication between components is assumed to be
secured using encrypted and authenticated channels. EAPOL
messages are transmitted between clients and the authenticator,
TLS is used between the SDN Controller and the OpenFlow
switch, and LDAP traffic is protected when transiting to the
directory server. This design confines the trust boundary to a
minimal set of components.

An architectural overview of these entities and their inter-
actions is shown in Figure 2. While this section describes
the model from a security standpoint, the detailed technical
implementation is presented in Section VI.

C. Trust Assumptions

Several trust assumptions underpin the security guarantees
of the system. The SDN Controller is assumed to be secure
and uncompromised, as it orchestrates all access policies.
The authentication server is assumed to correctly validate
credentials and return accurate group memberships. The un-
derlying user database, such as Active Directory, is assumed to
provide accurate and up-to-date user and group information.
Communication channels are presumed to be encrypted and
authenticated to prevent interception or tampering. Switch
firmware and enforcement logic are assumed to function cor-
rectly and reliably execute ACL rules. IDS components such as
Snort are assumed to operate as specified, correctly classifying
traffic according to known signatures. Finally, administrator-
defined templates are considered trustworthy and free from
malicious intent.

D. Threat Model

The system accounts for both external and internal adver-
saries. External adversaries may attempt to gain unauthorized

129International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. Threats, Vulnerabilities, and Mitigations

Threat Vulnerability Impact Mitigation
Unauthorized access by unauthenticated de-
vice

Absence of port-level control High Port-based authentication with IEEE 802.1X

Brute-force or credential stuffing attacks No rate limiting on login attempts Medium LDAP proxy monitors failures; ACLs up-
dated dynamically

Privilege escalation by authenticated users No role-based access control High ACLs based on user groups and administrator
templates

MAC/IP spoofing Identities not bound to MAC/IP High IP bound to authenticated MAC and port
Controller compromise Centralized SDN control Critical Controller hardening, TLS restriction, redun-

dancy
ACL evasion or bypass Misconfigured or permissive rules Medium Automatically generated fine-grained ACLs
IDS overload Indiscriminate traffic mirroring Medium Two-stage detection: monitoring threshold

before IDS redirection

access without valid credentials or employ brute-force meth-
ods to compromise legitimate accounts. Internal adversaries
include compromised users seeking to escalate privileges or
move across the network.

Attackers are assumed capable of passively observing or
actively injecting traffic. They may attempt to impersonate
other users via spoofed MAC or IP addresses, perform cre-
dential stuffing, or exploit misconfigurations. Their primary
goals include bypassing authentication, accessing restricted
services, evading detection, and maintaining persistence. In
addition, adversaries may deliberately generate high volumes
of suspicious traffic to overwhelm the IDS or exploit delays
between detection and mitigation.

E. Threat Analysis and Mitigation

Table I summarizes key threats addressed by the system.
The classification follows established SDN threat taxonomies
that group attacks into spoofing, unauthorized access, con-
troller compromise, and policy manipulation, as discussed for
example by Sharma and Tyagi [19] and Farooq et al. [29]. Each
entry outlines the exploited vulnerability, its impact, and the
mitigation strategy implemented. The system integrates mul-
tiple layers of defense, ranging from preventive mechanisms
such as 802.1X-based port authentication to reactive measures
like dynamic ACL updates and IDS redirection. Together,
these mechanisms minimize attack surfaces, detect anomalous
behavior, and respond swiftly to emerging threats.

F. Unauthorized Network Access

Multiple attack scenarios fall under unauthorized access.
Privilege escalation occurs when users attempt to access ser-
vices beyond their roles, such as SSH to administrative servers.
ACL templates restrict such access to authorized groups.
Brute-force or credential stuffing attacks target services like
GitLab, attempting logins with common credentials. These
are detected by counting failed authentication events via the
LDAP Proxy and mitigated by blocking the offending client
or redirecting its traffic through the IDS. Spoofing is thwarted
by binding IP addresses to authenticated MAC addresses and
ports, preventing impersonation.

An additional concern is compromise of the authentication
backend, such as the LDAP server. While part of the trusted
computing base, a compromise could undermine group-based

ACL generation. Evasion attempts, such as behaving benignly
during authentication but launching attacks later, are addressed
by behavior-based detection. In such cases, traffic can be mir-
rored or redirected to the IDS for deeper inspection, ensuring
continuous protection.

G. Security Limitations

While the proposed system improves security and reduces
administrative overhead, certain limitations remain. First, the
architecture relies on a trusted and centralized controller,
which represents a single point of failure. The trust assump-
tions are static and do not verify runtime integrity, leaving
the system exposed if a core component is compromised.
Second, ACLs are restricted to header-based inspection. This
minimizes performance overhead but prevents detection of
application-layer threats. The IDS redirection strategy also
operates in a reactive, threshold-based manner, which may
delay detection of more adaptive attacks. A further limitation
concerns reliance on IEEE 802.1X. Many legacy or IoT de-
vices do not support this protocol and must be handled through
weaker fallback mechanisms such as VLAN isolation or MAC-
based controls, reducing the uniformity of the security model.
Moreover, the system inherently depends on the correctness
of the central user database. Incorrect group assignments or
outdated entries immediately affect ACL generation, as no
secondary validation layer is present. The current evaluation
also remains qualitative. Metrics such as detection latency,
mitigation time, or ACL update overhead have not been
quantified and should be explored in future work.

Finally, while the IDS integration demonstrates feasibility,
the accuracy of detection has not been evaluated. False pos-
itives or false negatives were not measured, and the overall
impact of IDS misclassification on network behavior remains
unexamined.

In summary, the formal model and threat analysis establish
the security guarantees and limitations of the proposed system.
Having defined these foundations, we now turn to the imple-
mentation, where the architecture is realized and integrated
into a working prototype.

VI. IMPLEMENTATION

Following the conceptual framework outlined in Section IV,
the practical implementation of the Port Access Control system

130International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

integrated various components. The goal was to create a work-
ing prototype that demonstrates the feasibility of fine-grained
access control and prepares the ground for the evaluation. The
design in Figure 2 presents how different parts work together.

LDAP
Proxy Faucet Gauge

Group to Rule
Converter

DPORT
ANALYSE

802.1X daemon

User Dashboard

Scan

SDN Switch(es)

Active Directory

Client(s) Server

Server

SDN Controller

DHCP Server

IDS

ACL IDS Forwarder

Figure 2. Architecture of the SDN Controller

We chose the Faucet SDN Controller [38] for our prototype,
which uses Ryu [39] in the backend and Gauge to view events
on the switch. It has the considerable advantage that the rules
are defined in YAML (YAML Ain’t Markup Language). One
significant advantage of this architecture is that these files
are human-readable and easy to understand. The initial setup
of the OpenFlow switch contains only port information and
requires authentication before connecting to the network. Fur-
thermore, specific default rules, such as special treatment for
the SDN Controller and the Active Directory, were specified
beforehand, as these settings are essential when configuring
a new network. We used the 802.1X daemon Chewie [38]
as a starting point, and then it was heavily adapted to obtain
user groups via a simple LDAP proxy. A second service called
Group to Rule applies the ACLs as discussed in Section IV. An
example rule can be found in Figure 3. It shows the resulting
rule with a defined protocol, port, source MAC and IP address,
and destination IP address. Since this is directly applied to the
port, no other traffic can pass the OpenFlow switch port.

A Python script that searches for UDP and TCP ports on the
server provides the open ports needed to craft the ACLs. It then
saves this information into a database with the corresponding
MAC address and IP address. One problem is that the server
does not directly have an IP address when we try to scan
it. We must wait until the IP address is handed over via the
DHCP server to start scanning. Therefore, for a server, the
ACLs can only be applied later on and not directly, which is

acls:
mac_whitelist_user_ben:

- rule:
dl_type: 0x800 # ipv4
nw_proto: 6 # tcp
tcp_dst: 80 # port
eth_src: 32:90:43:57:f2:01
ipv4_src: 192.168.0.1
ipv4_dst: 192.168.0.9
actions:

allow: True
- rule:

actions:
allow: False
mirror: 3

Figure 3. FAUCET ACL Configuration

not a problem since the default rules still block all access
to the network and only DHCP is then allowed to obtain
an IP address. A simple folder structure was defined for
the templates where an administrator can place templates for
groups and specific ports as well as initial network operations
such as DHCP and DNS.

The dynamic adaptation of ACLs depending on authentica-
tion data is realized via the LDAP Proxy. All servers in the
network attempt to authenticate their users via LDAP bind
requests to the proxy, which then forwards them to the Active
Directory. This setup allows us to track whether authentication
was successful. We implemented a counter for each user
with a configurable threshold (six failed attempts by default),
which resets after a timeout period, similar to the mechanism
described in ALERT-ID [12]. A lightweight monitoring script
parses the authentication logs and forwards suspicious events
to the SDN Controller.

For demonstration purposes, any traffic that would nor-
mally be blocked is mirrored to a dedicated port where a
simple Python counter application is connected. This service
maintains per-host violation counts (based on MAC and IP
addresses) and alerts the SDN Controller once a threshold is
exceeded. When thresholds are crossed, such as repeated at-
tempts to access non-standard ports, scanning activities against
multiple blocked IPs, or persistent connections to invalid des-
tinations, the controller updates the OpenFlow configuration
and enforces stricter handling of the suspicious host.

At this point, the IDS integration becomes active. In our
prototype we used Snort [37], which inspects all traffic from
hosts that exceeded the violation threshold. Critical alarms,
such as confirmed scanning or exploitation attempts, immedi-
ately trigger ACL updates that block the corresponding host
and alert the administrator. Medium-severity alarms also result
in blocking, but the administrator receives a detailed event
log for further analysis. Low-severity alarms are logged and
reported without enforcing automatic blocking, leaving the
final decision to the administrator.

This two-stage design ensures that the IDS is not overloaded
by benign or low-level violations. Faucet’s mirroring capability

131International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. ACL CONFIGURATION FOR FIVE CONNECTED CLIENTS

OpenFlow Port Source MAC Source IP Group Destination IP Destination Port Description
3 1C:69:7A:6D:C6:27 192.168.11.11 mail 192.168.11.101 25, 993, 995 Mailserver
3 1C:69:7A:6D:C6:27 192.168.11.11 gitlab 192.168.11.102 22, 80, 443 GitLab
4 1C:69:7A:43:7C:12 192.168.11.12 mail 192.168.11.101 25, 993, 995 Mailserver
5 1C:69:7A:6D:C8:B0 192.168.11.13 mail 192.168.11.101 25, 993, 995 Mailserver
5 1C:69:7A:6D:C8:B0 192.168.11.13 gitlab 192.168.11.102 22, 80, 443 GitLab
6 1C:69:7A:6D:C7:EE 192.168.11.14 mail 192.168.11.101 25, 993, 995 Mailserver
7 1C:69:7A:6D:C8:16 192.168.11.15 mail 192.168.11.101 25, 993, 995 Mailserver

enables efficient pre-filtering via the counter application, and
only persistent or severe violations cause full redirection
through the IDS. As a result, IDS integration is not a stand-
alone add-on but an embedded part of the access control
pipeline managed by the SDN Controller.

The implementation phase reaffirmed the proposed system’s
potential to enhance network security through fine-grained
access controls and adaptive IDS support. At the same time,
it highlighted the complexities of managing an extensive
rule set, especially in larger networks where automated rule
aggregation and optimization become critical.

VII. EVALUATION

In this evaluation chapter, we begin with a detailed exam-
ination of the technical aspects of our experimental setup,
laying the groundwork for a thorough assessment. We then
delve into the feasibility of the proposed system, followed by
a comparative analysis of its efficiency and complexity against
existing systems. This analysis sets the stage for a nuanced
discussion synthesizing our findings and their implications.

A. Experimental Conditions

Our experimental setup was designed to mirror a realistic
environment consisting of multiple physical PCs and servers
to simulate a conventional corporate network infrastructure.
The network configuration included five Windows clients. We
assigned the clients to different user groups in the Active
Directory. The configuration of each client and its connected
port can be found in Table III. In setting up our experiment,
we went with a mix that one would typically find in an office:
a mail server for emails and a GitLab instance for the devs
to collaborate on code. This way, we could see how different
roles, like developers needing GitLab and managers relying
on emails, would interact with the system. It is a practical
approach that helps us understand how our setup performs in
a real-world scenario.

TABLE III. CLIENTS IN THE NETWORK

Client Name Port Source MAC Groups
Client1 3 1C:69:7A:6D:C6:27 mail, gitlab
Client2 4 1C:69:7A:43:7C:12 mail
Client3 5 1C:69:7A:6D:C8:B0 mail, gitlab
Client4 6 1C:69:7A:6D:C7:EE mail
Client5 7 1C:69:7A:6D:C8:16 mail

At the core of our network was an Active Directory on
a Windows Server 2019, connected to a dedicated port at
the OpenFlow switch. This switch was a Linux PC running

Ubuntu 22.10, with an Intel(R) Core(TM) i7-8700 CPU sup-
porting OpenFlow protocol version 1.3.

This detailed setup provides a solid foundation for evaluat-
ing the system’s feasibility, performance, and complexity.

B. Feasibility

The project aimed to demonstrate the feasibility of such a
system and highlight its advantages. Therefore, we conducted
multiple experiments to verify the system’s operability to
achieve this. In our earlier conference paper [1], we presented
two experiments demonstrating feasibility: initial connection
and ACL enforcement, and failed login handling. In this
extended version, we add a third experiment that evaluates
the integration of an IDS for redirecting suspicious traffic.
Together, these three experiments provide a comprehensive
assessment of the system.

1) Experiment 1: Connection to the network: In our ini-
tial experiment, we aimed to verify the functionality of the
system’s initial configuration and the practical application of
Access Control Lists. We began by attempting to connect
a server to the network. Initially, all packets except EAP
packets were blocked, preventing any network connection
without proper authentication. To facilitate authentication, we
configured the server’s wpa supplicant with EAP after setting
up a dedicated user account in the Active Directory for the
server, marked by the ”server” group identifier, to distinguish
it as such. Additionally, the server was assigned to the ”mail”
group to define its access rights. The authentication process
utilized standard Username and Password credentials defined
within the Active Directory.

Upon initiating these configurations, we observed successful
authentication, followed by the server obtaining an IP address
via DHCP. The IP address assignment was managed by
the SDN Controller, ensuring the server’s connectivity post-
authentication. We then proceeded with a port scan, which
was feasible only after the OpenFlow switch recognized the
server’s IP, confirming that the server was operational. The
procedure was repeated for the second GitLab server.

Subsequently, we connected a client machine to the net-
work. Like the server setup, this client was denied network
access until authentication credentials were provided. After
authentication, the SDN Controller dynamically generated
ACLs based on the client’s group memberships.

For example, the first client, identified as a developer, was
granted access to both the mail server and GitLab, as reflected
in the applied ACLs (refer to Table II, lines 1 and 2). This

132International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

access control was strictly enforced, with all unauthorized traf-
fic being blocked at the port level based on the authenticated
source MAC address and specified port. In contrast, a client
identified as a manager, and thus only requiring access to the
mail server, demonstrated restricted network access in line
with their role (refer to Table II, line 3). Attempts to access
GitLab by this client were blocked, illustrating the ACLs’ role-
based access control. After connecting all clients, each client
and port results can be found in Table II.

Upon issuing a logoff command to the RADIUS server,
all associated ACLs were cleared, reverting the system to
its default state of blocking all traffic from the disconnected
client. Logging in with a different username on the same PC
triggered a reallocation of ACLs, aligning with the new user’s
access rights. This experiment demonstrated the feasibility of
initially creating and effectively applying ACLs within our
network environment.

2) Experiment 2: Failed Logins: In the second experiment,
we tested failed login attempts to evaluate the system’s re-
sponse mechanisms. This test simulated incorrect authentica-
tion attempts on the GitLab server to observe the system’s
reaction.

The experiment began with a series of failed login attempts,
with each unsuccessful attempt logged by the SDN Controller.
After the sixth failed attempt, the SDN Controller adjusted the
ACLs, cutting off the client’s access to the server and other
network components. An alert was automatically sent to the
network administrator, who could either restore the client’s
access after a successful re-authentication or suspend the client
for further investigation.

Additionally, we tested the network’s traffic mirroring
feature. In this part of the experiment, despite multiple
failed login attempts, the client was not disconnected from
the network. Instead, the client’s traffic was mirrored to a
specific port on an OpenFlow switch. This procedure was
verified using tcpdump to confirm that the traffic mirroring
was functioning as intended, without the integration of an
IDS, since this was not in the scope of the experiment.

3) Experiment 3: Redirecting Suspicious Traffic to IDS:
The third experiment evaluated the system’s ability to identify
suspicious clients and to enforce dynamic redirection through
the IDS. The scenario consisted of the following key steps:

1) Introduce a malicious host that violated predefined poli-
cies.

2) Detect repeated violations until defined thresholds are
exceeded.

3) Redirect all traffic from the host through the IDS.
4) Generate malicious traffic samples to trigger Snort rules.
5) Apply mitigation actions depending on alert severity.

To simulate malicious activity in detail, we introduced a host
that attempted to connect to non-standard ports, repeatedly ac-
cessed invalid IP addresses, and performed network scanning
across multiple targets. Each of these actions incremented the

violation counter maintained by the monitoring application,
which received mirrored traffic from the OpenFlow switch.

Once the violation thresholds were exceeded, the SDN Con-
troller updated the Faucet rules for the offending host. Instead
of simply dropping further packets, the rules were rewritten so
that all subsequent traffic from the host was forwarded through
the IDS. In our prototype, this redirection was achieved by
replacing the mirror action with an output action that
directed the traffic to the IDS ingress port.

To further assess the system’s responsiveness, we generated
malicious traffic using publicly available attack samples and
network scanning tools in order to trigger common Snort rules.
Snort [37], deployed as the IDS in our setup, successfully
identified the injected traffic and produced alarms. Depending
on the severity of the alert:

• Critical alerts caused the controller to immediately block
the host and notify the administrator.

• Medium alerts also resulted in blocking but generated
detailed logs for review.

• Low alerts were logged and reported without automatic
blocking.

Figure 4 shows the CPU usage of the Snort instance during
a 600-second evaluation run. The annotated timeline of events
is as follows:

• 0s: Start of experiment, baseline traffic only.
• 152s: First client exceeded thresholds and was redirected

to IDS.
• 307s: A second malicious client was added, increasing

IDS load.
• 531s: Snort raised a critical alert for the first client; the

SDN Controller blocked it, reducing IDS load.
This progression highlights how each additional client mea-

surably increased CPU usage on the IDS, while removing a
client reduced load again. CPU utilization is strongly corre-
lated with traffic volume, consistent with prior measurements
by Lukaseder et al. [40]. Although our test traffic was de-
liberately crafted to repeatedly trigger Snort rules (leading to
a higher per-client load than in production), the experiment
demonstrates that selective redirection scales with the number
of suspicious hosts while preventing the IDS from being
overwhelmed with benign traffic.

C. Complexity and Efficiency

To evaluate our system’s complexity and OpenFlow rule
management capability, we compared it against other SDN
security methods by examining the number of OpenFlow
rules in different scenarios. Our analysis included a baseline
scenario without ACLs, a basic ACL setup, and scenarios
involving VLANs. The scenario with Basic ACLs has only
rules for direct IP access. That means we only specify that
user X can access server Y without further defining which
ports or protocols. The VLAN example does not have any
specific ACLs. It splits the users into two groups, usually some
kind of department in a corporate network. This option has the
disadvantage of allowing clients from the same department to

133International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 50 100 150 200 250 300 350 400 450 500 550 600
0

2

4

6

8

10
First client added to IDS Second client added to IDS

Alert triggered
First client blocked

Time (s)

C
PU

U
sa

ge
(%

)

CPU usage

Figure 4. CPU usage over time with key IDS events highlighted.

communicate, which does not prevent malware from spread-
ing.

Table IV summarizes the OpenFlow rule count for each
scenario. As observed, the number of OpenFlow rules di-
rectly reflects the count of Faucet ACLs. As discussed in
Equation (2), the number of ACLs will increase linearly
with the number of users. The dynamic ACL configuration,
while more complex, demonstrates the system’s flexibility
and responsiveness to network changes without significantly
impacting performance.

TABLE IV. RULE COUNT COMPARISON

Scenario Faucet ACLs OpenFlow Rules
No ACLs 0 27
Basic ACLs 8 67
VLANs N/A 67
Dynamic ACLs 32 91

D. Discussion

In discussing the outcomes and implications of our ex-
periments, it is essential to consider both the implemented
system’s strengths and potential challenges. To offer a com-
prehensive understanding of our system’s enhanced perfor-
mance and its innovative approach to network security and
management, we performed an extensive comparison across
several key metrics, including security level, scalability, and
manageability. This comparison, detailed in Table V, is based
on empirical data from ACL number analytics, a comparative
analysis of system architectures, and their maintenance needs,
highlighting our proposed system’s superiority in terms of
security, scalability, and ease of management.

The introduction of automated, fine-grained whitelist ACLs
represents a significant step forward in network security man-
agement. The configuration process substantially decreases
administrative overhead and mitigates the risk of human er-
ror, which is prevalent in manual configurations. A crucial

advantage of this approach is the centralization of security de-
cisions, such as access rights, in a singular user database. This
consolidation ensures that modifications to access rights are
uniformly applied across the network and all services utilizing
this common user database, thereby enhancing consistency and
security within the system. As demonstrated in Experiment 1,
the automation of ACL configuration significantly reduced ad-
ministrative overhead since all needed restrictions are applied
individually for each client without the need for additional
adaptation by the administrator. In contrast, this centralized,
automated approach ensures that only authenticated users and
their associated MAC addresses are actively maintained in the
system, limiting access to authorized entities and inherently
reducing the risk of unauthorized access. Another significant
benefit of our approach is its scalability and ease of integration
across multiple switches without additional overhead. Since
ACLs and clients are bound to specific ports and not to
the physical switches themselves, our system can seamlessly
scale to accommodate an extensive network infrastructure with
multiple SDN switches. ACLs are applied uniquely to each
switch, as delineated in Equation (3), ensuring efficient and
tailored security measures are in place, irrespective of the size
or complexity of the network.

However, this automation and simplification come at the
cost of increased complexity due to the more significant
number of ACLs required to maintain fine-grained control
over network access. The number of ACLs does not directly
impact the system’s performance since it only inspects the
TCP header to minimize performance impact, compared to,
for example, complex rules that inspect the TCP payload.
According to Cabrera et al. [41], the time required to check
the payload is, on average, 4.5 times longer than that required
for header checks. Therefore, even with many ACL rules,
the focus on header information ensures minimal impact on
network throughput, as even a single ACL with a TCP header
rule necessitates the inspection of every packet. One drawback
is that we need to prepare the clients and the server to perform

134International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V. COMPARISON OF NETWORK SECURITY AND MANAGEMENT APPROACHES

Metric No ACLs Basic ACLs VLANs Resonance[16] ACL Based on X812[18] Proposed System
Security Level Low Medium Medium High Very High Very High
Port Security None None None None Full Full
Performance Impact Low Medium Medium Moderate Moderate Moderate
Scalability High Moderate Good Moderate Moderate Excellent
Manageability Easy Moderate Moderate Moderate Moderate Easy
Centralization None Low Low Medium Medium High
Flexibility Low Moderate Low Very High Very High High
Cost Efficiency High Moderate Moderate Low Moderate High
Integration Capability Seamless Moderate Challenging High High Low
Resilience Low Medium Medium High High High
Automation & Dynamic Response None None None Semi-Automated Semi-Automated Fully Automated
ACLs based on Authentication None None None None None Supported

an 802.1X authentication.
The experiments involving IDS redirection further con-

firmed the system’s scalability and efficiency. As shown in
Figure 4, the CPU usage of Snort increased proportionally
with the number of malicious clients redirected, but decreased
again once clients were blocked by the SDN Controller.
This demonstrates that the selective forwarding mechanism
ensures the IDS is only engaged for traffic that truly warrants
inspection, preventing overload and allowing for efficient
use of IDS resources. Such integration provides a stronger
security posture without sacrificing performance for benign
traffic, which continues to be handled exclusively by the ACL
framework.

One of the more critical considerations is the system’s
approach to handling failed login attempts, as demonstrated
in Experiment 2. Completely blocking access after a series of
incorrect credentials can safeguard against brute-force attacks
but also pose a risk to business continuity. For instance,
automated tools using outdated credentials could inadvertently
trigger these security measures, leading to unnecessary dis-
ruptions. This aspect of the system necessitates a careful
balance between maintaining robust security and ensuring
uninterrupted business operations.

Integrating traffic mirroring for suspicious hosts presents a
nuanced approach to enhancing security monitoring without
overloading the network or the IDS. By selectively mirroring
traffic from potentially compromised hosts, the system can
focus on analyzing and responding to genuine threats, improv-
ing overall security efficiency. This concept aligns with the
approach discussed in [42], which proposes a clustering-based
flow grouping scheme that assigns network flows to various
IDSs based on routing information and flow data rates, aiming
to optimize the load distribution among IDSs and enhance
attack detection capabilities.

VIII. CONCLUSION AND FUTURE WORK

In conclusion, the proposed system presents a straight-
forward yet powerful framework that significantly enhances
network security by enforcing fine-grained access control
rules. By leveraging a common user database, such as Active
Directory, and binding access controls to specific MAC ad-
dresses, the system ensures that only authenticated users can

access network ports, thereby establishing a robust security
posture.

A key contribution of this work is the integration of an
Intrusion Detection System into the access control framework.
Rather than deploying the IDS inline for all traffic, our
approach mirrors suspicious flows to a monitoring applica-
tion and selectively redirects offending hosts once violation
thresholds are reached. This two-stage mechanism ensures that
benign traffic is not subjected to costly IDS inspection, while
malicious clients are efficiently isolated and analyzed. As
demonstrated in our evaluation, this selective redirection pre-
vents IDS overload, allows scalable operation, and improves
the responsiveness of the SDN Controller to detected threats.

Although the results demonstrate the feasibility of the pro-
posed architecture, several limitations remain. The evaluation
was conducted in a controlled laboratory environment, which
restricts the generality of the findings. The approach relies
on a trusted and centralized SDN Controller as well as correct
group assignments in the user database, and these assumptions
may not hold in all deployments. IDS behavior was not
evaluated with respect to false positives or false negatives, and
performance under larger or more dynamic network conditions
remains open for further study.

Future work should extend the evaluation and broaden the
applicability of the system. A first step is a more detailed
performance study, including metrics such as ACL update
latency, controller processing times, IDS alert latency, and the
behavior of the system under higher client loads. The IDS in-
tegration should also be assessed in a more systematic way, for
example by measuring false-positive and false-negative rates
and by comparing different inspection strategies. Additional
experiments with larger deployments would help validate scal-
ability, while integration with advanced monitoring systems
such as Zeek [43] could widen the visibility of network flows
and enable deeper analyses. Another line of research concerns
the interaction between dynamically generated ACLs, existing
firewall rules, and higher-level network policies. Incorporating
policy conflict detection and resolution mechanisms from
related SDN research could further strengthen robustness
in hybrid environments. Finally, evaluating unknown attack
classes is orthogonal to the access-control-focused design of
this system but may complement future studies that investigate
more general SDN-based threat detection frameworks.

135International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

The authors would like to thank Prof. Hiroki Takakura for
useful advice. This work was partially supported by JSPS
KAKENHI Grant Number JP23K28086 and JP24K14959.

REFERENCES

[1] F. Grießer, A. Shinoda, H. Hasegawa, and H. Shimada,
“Automating SDN-ACLs with user groups and authenti-
cation events,” in Proceedings of the Thirteenth Interna-
tional Conference on Networks (ICN 2024). Barcelona,
Spain: IARIA, May 2024, pp. 5–12.

[2] H. Zhou, C. Wu, M. Jiang, B. Zhou, W. Gao, T. Pan,
and M. Huang, “Evolving defense mechanism for fu-
ture network security,” IEEE Communications Magazine,
vol. 53, no. 4, pp. 45–51, 2015.

[3] S. T. Ali, V. Sivaraman, A. Radford, and S. Jha, “A
survey of securing networks using software defined net-
working,” IEEE Transactions on Reliability, vol. 64,
no. 3, pp. 1086–1097, 2015.

[4] F. Bannour, S. Souihi, and A. Mellouk, “Distributed
SDN control: Survey, taxonomy, and challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 1, pp.
333–354, 2017.

[5] P. Wadhwani, “Software defined networking (sdn)
market report, 2024–2032,” Market Research
Report, Global Market Insights Inc., Report ID:
GMI2395, 2024, accessed: 2025-12-09. [Online]. Avail-
able: https://www.gminsights.com/industry-analysis/
software-defined-networking-sdn-market

[6] F. S. Ali, R. Amin, M. Majeed, and M. M. Iqbal, “Dy-
namic ACL Policy Implementation in Software Defined
Networks,” in 2022 International Conference on IT and
Industrial Technologies (ICIT), Oct 2022, pp. 01–07.

[7] S. T. Yakasai and C. G. Guy, “FlowIdentity: Software-
defined network access control,” in 2015 IEEE Confer-
ence on Network Function Virtualization and Software
Defined Network (NFV-SDN). IEEE, 2015, pp. 115–
120.

[8] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McK-
eown, and S. Shenker, “Ethane: taking control of the
enterprise,” in Proceedings of the 2007 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM ’07.
New York, NY, USA: Association for Computing Ma-
chinery, 2007, p. 1–12.

[9] D. M. Ferrazani Mattos and O. C. M. B. Duarte, “Auth-
Flow: authentication and access control mechanism for
software defined networking,” Annals of Telecommunica-
tions, vol. 71, pp. 607–615, 2016.

[10] T. Xing, D. Huang, L. Xu, C.-J. Chung, and P. Khatkar,
“SnortFlow: A OpenFlow-Based Intrusion Prevention
System in Cloud Environment,” in 2013 Second GENI
Research and Educational Experiment Workshop, March
2013, pp. 89–92.

[11] A. Le, P. Dinh, H. Le, and N. C. Tran, “Flexible
Network-Based Intrusion Detection and Prevention Sys-

tem on Software-Defined Networks,” in 2015 Interna-
tional Conference on Advanced Computing and Applica-
tions (ACOMP), Nov 2015, pp. 106–111.

[12] J. Chu, Z. Ge, R. Huber, P. Ji, J. Yates, and Y.-C. Yu,
“ALERT-ID: analyze logs of the network element in real
time for intrusion detection,” in Research in Attacks,
Intrusions, and Defenses: 15th International Symposium,
RAID 2012, Amsterdam, The Netherlands, September 12-
14, 2012. Proceedings 15. Springer, 2012, pp. 294–313.

[13] A. H. Janabi, T. Kanakis, and M. Johnson, “Survey: In-
trusion detection system in software-defined networking,”
IEEE Access, vol. 12, pp. 164 097–164 120, 2024.

[14] B. Susilo and R. F. Sari, “Intrusion detection in soft-
ware defined network using deep learning approach,” in
2021 IEEE 11th Annual Computing and Communication
Workshop and Conference (CCWC). IEEE, 2021, pp.
0807–0812.

[15] B.-X. Wang, J.-L. Chen, and C.-L. Yu, “An ai-powered
network threat detection system,” IEEE Access, vol. 10,
pp. 54 029–54 037, 2022.

[16] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark,
“Resonance: dynamic access control for enterprise net-
works,” in Proceedings of the 1st ACM Workshop on Re-
search on Enterprise Networking, ser. WREN ’09. New
York, NY, USA: Association for Computing Machinery,
2009, p. 11–18.

[17] V. Shah and P. Yadav, “An implementation of dot 1x for
secure network access in sdn,” in 2025 6th International
Conference on Intelligent Communication Technologies
and Virtual Mobile Networks (ICICV). IEEE, 2025, pp.
1264–1269.

[18] B. J. C. de A. Martins, D. M. Mattos, N. C. Fernandes,
D. Muchaluat-Saade, A. B. Vieira, and E. F. Silva,
“An Extensible Access Control Architecture for Software
Defined Networks based on X.812,” in 2019 IEEE Latin-
American Conference on Communications (LATINCOM),
2019, pp. 1–6.

[19] P. K. Sharma and S. Tyagi, “Security enhancement in
software defined networking (sdn): A threat model,”
International Journal of Advanced Computer Science and
Applications, vol. 12, no. 9, 2021.

[20] S. Pradeep, Y. K. Sharma, U. K. Lilhore, S. Simaiya,
A. Kumar, S. Ahuja, M. Margala, P. Chakrabarti, and
T. Chakrabarti, “Developing an sdn security model (en-
sures) based on lightweight service path validation with
batch hashing and tag verification,” Scientific Reports,
vol. 13, no. 1, p. 17381, 2023.

[21] Y. Meng, Z. Huang, G. Shen, and C. Ke, “A security
policy model transformation and verification approach
for software defined networking,” Computers & Security,
vol. 100, p. 102089, 2021.

[22] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson,
and G. Gu, “A security enforcement kernel for openflow
networks,” in Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, 2012, pp. 121–126.

[23] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “Flowguard:

136International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Building robust firewalls for software-defined networks,”
in Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, 2014, pp. 97–102.

[24] A. Khurshid, W. Zhou, M. Caesar, and P. B. God-
frey, “Veriflow: Verifying network-wide invariants in real
time,” in Proceedings of the First Workshop on Hot
Topics in Software Defined Networks, 2012, pp. 49–54.

[25] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKe-
own, and S. Whyte, “Real time network policy checking
using header space analysis,” in 10th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 13), 2013, pp. 99–111.

[26] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella,
S. Banerjee, C. Clark, Y. Ma, P. Sharma, and Y. Zhang,
“Pga: Using graphs to express and automatically rec-
oncile network policies,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 29–42, 2015.

[27] S. Pisharody, J. Natarajan, A. Chowdhary, A. Alsha-
lan, and D. Huang, “Brew: A security policy analy-
sis framework for distributed sdn-based cloud environ-
ments,” IEEE Transactions on Dependable and Secure
Computing, vol. 16, no. 6, pp. 1011–1025, 2017.

[28] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
Flow: enabling innovation in campus networks,” ACM
SIGCOMM Computer Communication Review, vol. 38,
no. 2, pp. 69–74, 2008.

[29] M. S. Farooq, S. Riaz, and A. Alvi, “Security and
Privacy Issues in Software-Defined Networking (SDN):
A Systematic Literature Review,” Electronics, vol. 12,
no. 14, 2023.

[30] “IEEE Standard for Local and Metropolitan Area
Networks–Port-Based Network Access Control,” IEEE
Std 802.1X-2020 (Revision of IEEE Std 802.1X-2010
Incorporating IEEE Std 802.1Xbx-2014 and IEEE Std
802.1Xck-2018), pp. 1–289, 2020.

[31] B. Desmond, J. Richards, R. Allen, and A. G. Lowe-
Norris, Active Directory: Designing, Deploying, and
Running Active Directory. ” O’Reilly Media, Inc.”,
2008.

[32] J. Sermersheim, “Lightweight Directory Access Protocol
(LDAP): The Protocol,” RFC 4511, Jun. 2006.

[33] J. Vollbrecht, J. D. Carlson, L. Blunk, D. B. D. Aboba,
and H. Levkowetz, “Extensible Authentication Protocol
(EAP),” RFC 3748, Jun. 2004.

[34] H. Hasegawa, Y. Sato, and H. Takakura, “Construction
of Secure Internal Network with Communication Clas-
sifying System Using Multiple Judgment Methods,” In-
ternational Journal on Advances in Telecommunications,
vol. 13, no. 3 & 4, 2020.

[35] Y. Sato, H. Hasegawa, and H. Takakura, “Construction
of Secure Internal Networks with Communication Clas-
sifying System,” in ICISSP, 2019, pp. 552–557.

[36] M. Ali, N. Shah, and M. A. Khan Khattak, “DAI: Dy-
namic ACL Policy Implementation for Software-Defined
Networking,” in 2020 IEEE 17th International Confer-

ence on Smart Communities: Improving Quality of Life
Using ICT, IoT and AI (HONET), Dec 2020, pp. 138–
142.

[37] M. Roesch, “Snort: Lightweight intrusion detection for
networks,” in Proceedings of the 13th USENIX Confer-
ence on System Administration (LISA ’99). USENIX
Association, 1999, pp. 229–238.

[38] FaucetSDN, “Faucet,” 2024, accessed: 2025-11-20.
[Online]. Available: https://github.com/faucetsdn/faucet

[39] Ryu SDN Framework Community, “Ryu sdn frame-
work,” https://ryu-sdn.org/, 2024, accessed: 2025-11-20.

[40] T. Lukaseder, J. Fiedler, and F. Kargl, “Performance
evaluation in high-speed networks by the example of
intrusion detection,” arXiv preprint arXiv:1805.11407,
2018.

[41] J. B. Cabrera, J. Gosar, W. Lee, and R. K. Mehra,
“On the statistical distribution of processing times in
network intrusion detection,” in 2004 43rd IEEE Con-
ference on Decision and Control (CDC)(IEEE Cat. No.
04CH37601), vol. 1. IEEE, 2004, pp. 75–80.

[42] T. Ha, S. Yoon, A. C. Risdianto, J. Kim, and H. Lim,
“Suspicious flow forwarding for multiple intrusion de-
tection systems on software-defined networks,” IEEE
Network, vol. 30, no. 6, pp. 22–27, 2016.

[43] T. Z. Project, “Zeek: Network security monitor,” https:
//github.com/zeek/zeek, 2024, accessed: 2025-11-27.

137International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Security-risk-mitigation Measures for Service Oriented Vehicle Diagnostics SOVD

Masaaki Miyashita
Cybersecurity Group, Connected Car Off-board

Development and Operation Department of Nissan Motor

Corporation

Kanagawa, Japan

e-mail: m-miyashita@mail.nissan.co.jp

Benchadi Djafer Yahia M
Cybersecurity Group, Connected Car Off-board

Development and Operation Department of Nissan Motor

Corporation
Kanagawa, Japan

e-mail: b-djafer@mail.nissan.co.jp

Hiroki Takakura

National Institute of Informatics

Tokyo, Japan

e-mail: takakura@nii.ac.jp

Abstract— A new vehicle diagnostic standard “Service

Oriented Vehicle Diagnostics (SOVD)” is expected to be used

for the next-generation vehicles known as Software Defined

Vehicles (SDV). SOVD supports various vehicle maintenance

demands, including remote diagnosis, by implementing web

server function into a high-performance in-vehicle component.

However, this architecture introduces additional security risks

to SDV, as this web server functionality becomes a new

cyberattack entry point into the vehicle. In this paper, we

present several security-risk-mitigation measures for such

systems, extending our previous work. Specifically, we propose

multi-layered defense measures including physical and logical

isolation (Zone Separation) of the web server software from

security-critical software modules and in-vehicle HMI-based

authorization for critical diagnostic privileges. We conclude

that these additional security measures significantly reduce the

feasibility of remote cyberattacks against SOVD-based remote

diagnostic systems.

Keywords-Automotive cybersecurity; Remote diagnosis; UDS;

SOVD.

I. INTRODUCTION

This work is a follow-up to our prior work “Security-
risk-mitigation Measures for Automotive Remote Diagnostic
Systems”, published in the proceedings of
SECUREWARE2024 [1]. As technology advances, the
electronic systems in automobiles are becoming more
intricate. These systems consist of numerous components
that are connected through in-vehicle communication
networks. Diagnostic systems specifically designed for
vehicles are required to pinpoint any malfunction. These
systems usually require a diagnostic tool to be directly
connected to a dedicated connector on the vehicle and must
be operated at a garage.

With wireless communication systems increasingly used
in vehicles, remote diagnosis systems have become more
prevalent. These services enable an operator to read
diagnostic trouble codes and data logs through wireless
communication. This prompts the driver to bring his/her
vehicle to a garage for repairs before the trouble becomes

more severe. Diagnostic communications are used not only
to read such data but also to write data to in-vehicle parts,
such as firmware updates and initial settings of replacement
parts.

Studies have indicated that cyberattacks targeting
vehicles through diagnostic communications can result in
significant damage. For example, it has been demonstrated
that some diagnostic Controller Area Network (CAN)
messages impacted major critical vehicle control systems,
such as the engine, brake, and steering systems [2]. Car theft
and privacy breaches are also potential risks of cyberattacks
through diagnostic communication [3].

On the other hand, European Union vehicle type approval
regulation EU 2018/858 [4] Annex X requires that
“Manufacturers shall provide to independent operators
unrestricted, standardised and non-discriminatory access to
vehicle OBD information, diagnostic and other equipment,
tools including the complete references, and available
downloads, of the applicable software and vehicle repair and
maintenance information. Information shall be presented in
an easily accessible manner in the form of machine-readable
and electronically processable datasets. Independent
operators shall have access to the remote diagnosis services
used by manufacturers and authorised dealers and repairers.”,
if a vehicle has the remote diagnostic system. This
requirement makes designing measures against unauthorized
access complex, because their network access routes and
credentials for user authentication become various.

In our previous work [1], we mainly focused on risk
mitigation for conventional remote diagnostic architectures
based on UDS communication. This extended study
introduces a new perspective by addressing the security
challenges of the emerging Service-Oriented Vehicle
Diagnostics (SOVD) framework. Building on this shift, we
present security-risk-mitigation measures specifically
adapted to the SOVD-based remote diagnostic systems.
These systems involve reading diagnostic trouble data and
remote firmware-update tasks that were previously only
executed at service stations. Our measures aim to reduce the
potential security risks associated with these systems.

138International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Diagnostic tools using PC/Tablet

SOVD Server

SOVD API

High-Performance

Computer

(HPC)

SOVD Client

SOVD API

VEHICLE

CDAVirtual

ECU 1

Remote
Diagnosis
Operator

UDS

SOVD

SOVD Client

In-Vehicle

SOVD API

Wireless Unit

OBD2

connector

Diagnosis Operator
in vehicle cabin

Touch

screen

display

SOVD Client

SOVD API
1st

option

2nd

option

3rd

option

Virtual

ECU 2

Old ECUs

New ECUs supporting SOVD

Figure 1. Example of SOVD vehicle architecture

The rest of the paper is structured as follows. In Section
II, we discuss automotive diagnostic communication. Section
III presents the current status and existing issues of remote
diagnosis. In Section IV, we propose our security-risk-
mitigation measures. In Section V, we show how to avoid
constraints when implementing proposed measures in
vehicle component. Section VI illustrates our prototype
simulation for evaluation. Finally, we conclude our work in
Section VII.

II. AUTOMOTIVE DIAGNOSTIC COMMUNICATION

The process of remote diagnosis involves the use of
wireless communication between a vehicle and a diagnostic
server located outside the vehicle. To diagnose the various
components implemented in the vehicle, the in-vehicle
wireless communication unit, which serves as the entry point
to the vehicle, must communicate with other components
through the in-vehicle communication network. To achieve
this, it is most reasonable from a system-implementation
standpoint to use the diagnostic communication protocol
typically used for wired-connected diagnostic tools. While
this protocol is effective for wired communication, there are
security concerns when using it for wireless communication.

With this in mind, we examined the characteristics and
issues of automotive diagnostic communications used in the
in-vehicle network.

A. Overview of Diagnostic Communication

In 1991, the California Air Resources Board mandated
the implementation of the On-Board Diagnostics (OBD)
connector to standardize vehicle diagnostic communications.
Today, the OBD2 connector is the industry standard
interface and can use several communication protocols. CAN
communication is prevalent in vehicle-embedded processors,
and there is a shift towards faster diagnostic communication
using Diagnostics over Internet Protocol (DoIP)-based
communication with an Ethernet physical layer [5]. To
address the need for faster communication and accommodate
the increased complexity of automotive software, ISO14229-
1 standardized the Unified Diagnostic Service (UDS)
Protocol, which is now used as a standard communication
protocol by many automotive companies. However, as
software complexity increases, so do security concerns, as
outlined in previous studies [6] and [7] on DoIP.

In 2022, ASAM (Association for Standardization of
Automation and Measuring Systems) released a new vehicle
diagnostic communication API (Application Programming
Interface) “ASAM SOVD v1.0.0” [8] targeting the new
generation vehicles with Software Defined Vehicle (SDV)
architecture. This SOVD requires the vehicle architecture
shown in Figure 1, because SDV requires High-Performance
Computer (HPC) to have some Virtual ECUs as software
components for easy upgradability of the vehicle functions.
HPC is a key component of this architecture, because it hosts
the SOVD server as a hub of diagnostic communication. It is
one of big difference from UDS that SOVD supports the
remote diagnosis as a native standard service. And SOVD
also consider reusing old vehicle Electronic Control Units
(ECU) with UDS protocol by CDA (Classic Diagnostic

Adapter) as a communication translator between SOVD API
and UDS. SOVD will be applied to many new generation
vehicles with SDV architecture because it will be a new
international standard ISO-17978 by the end of 2025.

B. Diagnostic Tool

Advancements in diagnostic-communication hardware
and software have brought about changes in diagnostic tools
used to identify failures in vehicles. Handheld terminals with
basic Liquid Crystal Displays (LCDs) had been commonly
used for diagnostic communication before the spread of
CAN communication. However, with the increasing number
of vehicles supporting diagnostic communication and the
complexity of systems due to the introduction of IP
communication, developing software for specialized
hardware has become inefficient. Thus, it is now common to
use a Personal Computer (PC) or tablet in Figure 2 as a
diagnostic tool and connect it to an OBD dongle through
USB, Bluetooth, wireless LAN, etc.

This approach has the additional benefit of enabling
developers of general diagnostic tools that support vehicles
from multiple automobile companies to easily acquire
diagnostic tool hardware. However, it also raises concerns

139International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Diagnostic
tool ECU

Request Seed

Seed data X

Generate Seed:
“X=a”

Response data Y

Unlock OK

Generate Response :
“Y=f(X, K)”

Confirm Key : “Y’=f(a, K)”
Compare Y and Y’:
if Y=Y’ →OK

X：Seed data
Y：Response data
K：Key data
a：Random data

Pre-shared key K Pre-shared key K

Figure 3. ECU unlock sequence by security access

that these devices, which are essentially PCs and tablets with
network connectivity as standard equipment, could be used
as gateways for attackers to intrude into vehicles. Since
diagnostic communication protocols are standardized and
diagnostic tools and software can be purchased
inexpensively, attackers can find vulnerabilities through
reverse engineering.

SOVD will also change the diagnostic tool. As Figure 1
shows, when a vehicle has a touch screen display in the
vehicle cabin, SOVD can provide first option, “In-vehicle
client” using the display to realize “Diagnostic tool-less”
operation. A diagnosis operator can use access through the
OBD2 connector as second option when the touch screen
display is unavailable. When an operator requires access
from a remote location, SOVD provides third option through
the wireless interfaces. In this second and third options, any
consumer devices (e.g., smartphones, tablets, personal
computers) can access in-vehicle SOVD server by various
web browsers, because the SOVD server uses REST
(Representational State Transfer) API over HTTPS
(Hypertext Transfer Protocol Secure) to communicate with
the clients instead of the UDS which was used by old
diagnostic tools. These options will give the diagnostic
operator better flexibility than using the diagnostic tools, but
requires stronger security measures, because implementing
web server-client systems into the vehicle must bring new
vulnerabilities as same as the information systems. In order
to mitigate risks from old diagnostic tools, SOVD enforces
vehicle-side authentication and authorization for all critical
services. Conventional diagnostic tools in UDS system store
ECU service information locally in the device and can be
reverse engineered by an attacker. With SOVD, this risk is
mitigated due to the diagnostic tool no longer contains
vehicle-specific data or applications. All service information
processes for ECU modification or software updates are
handled by the in-vehicle HPC unit via the HTTPS server.
This highly reduces the risk posed by traditional diagnostic
tools to compromise ECUs.

C. Security-critical Diagnostic Communication Services

In UDS diagnostic communication, the functionalities
offered by an ECU for using a diagnostic tool are referred to
as "services". These services include reading and writing
data to operate the ECU as well as diagnostic commands,
such as fault code retrieval. The conversation surrounding
automotive cybersecurity threats highlights the potential for
attacks via the OBD connector by exploiting these services.
Previous research [9] and [10] have demonstrated that the
following UDS have been susceptible to exploitation.

• Input/Output Control Service: This service controls
the input and output signals that are connected to the
specified ECU from the diagnostic tool. Its primary
function is to identify the failure point. For instance,
if the wipers do not operate even after turning on the
wiper switch, this service can be used to forcibly
drive the wiper motor, and if the wipers start
operating, it proves that the motor and its wiring
have no problem. This approach helps in efficiently
narrowing down the failure point. However, this

service can lead to generating hazardous vehicle
behavior that the driver did not intend.

• Write Data by Local ID Service: This service is
designed for configuring the initial settings and
adjusting the parameters of installed components. It
can, for example, be used to write the dynamic
radius value of a tire to the ECU to calibrate the
speedometer or enable/disable optional parts.
However, if this service is abused, users may
experience adverse effects, such as inaccurate
information display or suspension of certain
functions.

• Reprogramming Service: This service is for
rewriting ECU firmware installed in sold vehicles,
usually to correct quality defects in the firmware.
However, if this service is abused, it could result in
various issues. For instance, the rewritten ECU may
behave improperly or even spoof other ECUs,
leading to more significant problems, such as
sending malicious communication data to other
ECUs. Therefore, it is crucial to use this service only
for its intended purpose and avoid any abuse.

These services are locked by default as privileged

operations within many UDS ECUs. To grant access to
locked services, a process known as "security access (service
ID27)" is typically used to verify the legitimacy of the user
or diagnostic tool. New ECUs supporting SOVD will also
have similar privileged services, and such services will be
locked by SOVD server in HPC.

D. Authentication by Service ID27 "Security Access”

In diagnostic communication by using UDS, security
access communication was generally executed using the
following procedure (refer to Figure 3) with a pre-shared
symmetric key K.

1. The diagnostic tool to be authenticated sends a seed
request (request seed) to the ECU to be unlocked.

2. Upon receiving the request, the ECU sends back
seed data X, including random numbers, to the
diagnostic tool to avoid the risk of replay attacks.

3. The diagnostic tool processes the obtained X using
the key data K and computes the response data Y.

4. The diagnostic tool sends Y to the ECU. ECU
calculates Y' from the K & X sent by ECU itself.

140International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On-board
ECU

Wireless
communication unit

Diagnostic Server on Off-board

In-vehicle communication line, e.g., CAN

D
ia

g
n
o
s
is

re
s
u
lt

Notice for repairment
or service promotion

Diagnosis
request

Figure 4. Example of remote diagnostic system

5. If Y' and Y are the same value, the authentication is
successful, and the ECU unlocks the locked critical
services.

If a symmetric key is used for authentication in security
access executed by such procedures, an attacker may be able
to obtain the key information through reverse analysis of the
ECU or diagnostic tools. Therefore, the following solutions
have been devised.

• To minimize the risk of reverse key analysis, it is
essential to safeguard the private key in asymmetric
key authentication. The private key should not be
stored in the diagnostic tool. It instead should be
kept in the Hardware Security Module (HSM),
which is located on the authentication server or in a
secure location with restricted access outside the tool.
This requires the diagnostic tool to be connected to
the authentication server with the HSM. To achieve
this, infrastructure development and maintenance are
necessary, such as installing a network environment
at the garage and managing accounts that enable the
diagnostic tool to log into the authentication server.

• Service ID27 does not provide security functions,
such as user-privilege management or session key
exchange with authentication, requiring each auto
manufacturer to develop its own customizations. To
remedy these issues, ISO 14229-1 has been updated,
and a new UDS service, Authentication (Service ID
29), began in 2020.

E. Authentication by Service ID 29 "Authentication”

This new authentication service has the following
advantages in terms of security compared with the
previously used security access.

• Support for Public Key Infrastructure (PKI)-based
authentication mechanisms.

• Support for session key exchange during
authentication.

• User-privilege management support.
This service is expected to spread and be implemented

into in-vehicle basic software, such as AUTOSAR
(AUTomotive Open System ARchitecture). This will make it
easier for vehicle manufacturers and component suppliers to
implement higher security measures than ever before.

Some automotive ECUs, however, use processors with
low processing power, such as 16-bit microprocessors. PKI-
based authentication requires certificate parsing, hash
calculation, and processing of asymmetric key cryptography,
which cannot be afforded by such processors.

To introduce user-privilege management, it is necessary
to properly construct and operate a system outside the
vehicle that manages the privilege settings for each user and
their expiration dates. For example, there is a need for
special diagnostic communication during the vehicle-
development phase and vehicle-production processes, and
the introduction of Service ID 29 will not be effective unless
account management for users and production facilities with
such special privileges is properly implemented. Therefore, it
is necessary to improve not only technical measures, such as
the development of ECUs and privilege-management

systems, but also the management and operation of the user
management process at the same time.

F. Authentication of SOVD

SOVD solves the problem of low processing power
ECUs by its centralized in-vehicle network architecture
shown in Figure 1. SOVD server in HPC can authenticate the
clients as a representative for all in-vehicle ECUs, because
all diagnostic communication requests come in the SOVD
server.

ASAM API specification [8] does not have a single
standardized authentication method but has an informative
specification using a Token base authentication and
authorization.

III. CURRENT STATUS AND ISSUES OF REMOTE

DIAGNOSIS

A. What is Remote Diagnostics?

Section II described wired diagnostic communication.
Remote diagnosis refers to diagnostic communication using
a wireless communication unit installed in the vehicle,
enabling remote diagnosis from a location away from the
vehicle. Figure 4 shows a typical configuration for remote
diagnosis.

In remote diagnosis, the wireless communication unit in the
vehicle requests the onboard ECU to self-diagnose if any
failures occur. The onboard ECU sends back the diagnosis
results, which the wireless communication unit forwards to
the remote diagnosis server, enabling the diagnosis results to
be obtained without entering the vehicle.

If a malfunction occurs, the diagnostic server notifies the
user and urges them to repair or go to a garage, preventing
the malfunction from becoming a serious problem.

While it is technically possible for the wireless
communication unit to transmit requests, such as program
rewriting and Input-Output (IO) control, these requests are
designed for use under the control of a mechanic only when
the vehicle is stopped for maintenance or repair. If operated
remotely and unintentionally by the driver while the vehicle
is running, they may cause safety-related problems.

In a previous study [11], security measures for remote
diagnostic systems were proposed. These measures are based
on the assumption that the wireless communication unit

141International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On-board ECU

Wireless

Communication Unit

Diagnostic Server on Off-board

Gateway

Diagnostic tool

OBD

port

(3) High risk service requests are available through OBD port only after Gateway unlock

Key

Management

Server

(4) Never store the

unlock secret key

into Diagnostic

tool/Gateway

(1) Service requests

with low risk

(2) Block high risk

service requests

(5) Only uploading result to server

(No function to receive any on-

demands diagnostic request from

Server)

Figure 5. Example of conventional risk-mitigation measures

(called the telematics module) is correctly installed in the
vehicle and properly works. However, the vulnerability of
the wireless communication unit can be exploited, making it
an entry point for man-in-the-middle attacks through
hijacking. This should be assumed as one of the major
threats in recent automotive security risk analysis.

With current remote diagnostics, it is assumed that the
wireless communication unit can be hijacked, thus the
following risk mitigation measures were introduced as
illustrated in Figure 5.

(1) The gateway is responsible for forwarding only
low-risk service requests when the requests come
from the Wireless Communication Unit, such as the
reading of trouble codes and error log data. These
available requests are registered in Gateway’s static
whitelist of authorized requests to prevent change it
dynamically by any privilege escalation attack.

(2) If any high-risk service requests come from the
Wireless Communication Unit, the gateway always
blocks such requests because such requests are not
in the whitelist.

(3) High-risk diagnostic service requests are available
only by wired access through the OBD port after
unlocking the Gateway’s security protection. The
in-vehicle network ports of Gateway for OBD port
and Wireless Communication Units must be
physically separated to identify the source of the
service requests by the Gateway.

(4) The secret key required to unlock the Gateway
protection are not stored in the diagnostic tool nor
gateway to which the attacker can obtain physical
access by purchasing them.

(5) The Wireless Communication Unit is not equipped
with a function to receive arbitrary diagnostic
requests on demands from an off-vehicle server but
only uploads the diagnostic results. The Wireless
Communication Unit should be able to transmit
only predefined low-risk service requests to On-
board ECU through Gateway, such as reading
trouble codes.

B. Service Expansion Requirements for Remote Diagnosis

Contrary to the limitations imposed by the risk-mitigation
measures described in Section III.A, the following use cases
are required for remote diagnosis.

Use case 1: Remote use of critical commands (e.g., IO
control services listed in Section II.C) required for pre-
diagnosis to identify parts to bring to a repair place of a
vehicle that is stopped on the road due to a malfunction.
Use case 2: Remote identification and handling of failure
causes by senior mechanics (use case similar to
telemedicine).
Use case 3: Remote diagnosis of whether a vehicle that has a
trouble can be driven to a repair shop or whether it can be
made drivable with simple road service assistance.
Use case 4: Understanding the status of a cyberattack
(related to Section V.B.9).

C. Security Risks from Expansion of Remote Diagnostic

Services

When responding to the need for service expansion as
described above, the abuse of critical diagnostic services
increases the risk that safety will not be maintained, and fatal
incidents will occur.
Risk 1: Expanding the impact of incident occurrence: The
impact of abusing critical diagnostic services becomes
significant because such services can manipulate or illegally
modify safety-related vehicle components, for example, the
braking or steering system.
Risk 2: Failure to confirm the vehicle owner's consent and
safe vehicle conditions: Conventionally, the owner's consent
could be indirectly obtained by receiving the vehicle key to
physically access the OBD connector inside the vehicle. The
repair operator had to ensure that the vehicle was in a safe
condition, such as by locking the wheels. By allowing work
to be done remotely, the above measures cannot be used.
Risk 3: Risk of abusing remote operation authority:
Conventionally, the OBD connector cannot be accessed
unless the vehicle is physically in the hands of the mechanic,
so there is no need to worry about workers to whom the
owner has entrusted repairs in the past without the owner's
permission. Remote operations do not have these restrictions,
increasing the risk of insider attack by privilege holders.

To address these risks, the following countermeasures
will be necessary:
Countermeasure against risk 1): To prevent the unlocking of
critical commands through external communication only, a
special in-vehicle operation for enabling remote diagnostics
must be required as proof of the vehicle owner's consent.
Countermeasure against risk 2): In addition to electronically
authenticating permission from the vehicle owner, the
vehicle receiving the remote diagnostic command also
checks the physical condition, indicating that the vehicle is
not running but awaiting servicing as one of the conditions
for conducting remote diagnosis.
Countermeasure against risk 3): When authenticating
workers who conduct remote diagnosis, a mechanism to
check whether the validity period of the work and the
authority to carry out the work have been revoked is needed.

IV. PROPOSED SECURITY-RISK-MITIGATION MEASURES

An overview of the remote diagnostic system operation is
shown in Figure 6. This system can execute remote diagnosis
with the following procedure.

142International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Authorized
Remote diag.

operator

Owner or
Local service

operator

Remote
diagnosis

server
Vehicle

Operation
request

Login

Trouble
detection

Remote
operation
requestOwner

authentication

Wait for
remote

operation

Certificate
issuance

Generate
Certificate

Diagnostic
Commands

Transmit
certificate

Start check
remote diag.

Analysis &
trouble fix

Register possible
operation & time

Check result

Figure 6. Overview of system operation

A. Remote Operation Permission

The vehicle owner who wants to solve a problem with
the vehicle or a mechanic who receives a repair request by
the owner first conducts owner authentication in the vehicle.
The following permission methods are possible.

• The Human Machine Interface (HMI) in the vehicle
(navigation-system screen, LCD of cluster meter,
etc.) is used to authorize remote diagnosis. This can
be done using a PIN or password preset by the
vehicle owner to increase the reliability of the
authentication.

• The presence of multiple intelligent keys in the
vehicle is a condition for starting remote diagnosis
permission. This is intended to detect differences
from normal driving when only one key is present in
the vehicle by the owner bringing a spare intelligent
key into the vehicle.

• Pair the owner's smartphone with the vehicle and
store the authentication information in the
smartphone. The vehicle accepts remote diagnostics
only for a certain period after successful Near Field
Communication (NFC) authentication.

It is important to combine multiple conditions to increase
the reliability of the remote diagnostic authorization
described above.

B. Registration of Permitted Operations and Periods

Assuming that part of a vehicle component is
malfunctioning, multiple input HMIs should be provided.

1) The owner's smartphone or operator's PC inputs the
information and registers the operation information
to be allowed to the remote diagnosis server and its
validity period.

2) Input the information on an HMI in the vehicle and
register the operation information to be allowed to
the remote diagnosis server via the vehicle's wireless
communication unit.

The user can select which operations to allow by using
HMI of vehicle infotainment system or Web site of Remote
diagnosis server, for example, reprogramming firmware or
resetting the ECU.

C. Requesting Analysis via the Diagnosis Server

The remote diagnosis server notifies the target vehicle
that the permitted operations and validity period of the work
have been registered. At this time, the vehicle confirms that
"permission for remote operation" has been granted in
advance and that the vehicle is in a safe maintenance state
(e.g., the vehicle is stopped, and the engine hood latch is
open), and notifies the remote diagnosis server that it is
"waiting for remote diagnosis".

The notification data from the vehicle can be
supplemented with the vehicle's location information
obtained from GPS, etc., and a request can be made to the
diagnosis server to limit the locations where remote
diagnosis is permitted to the area around the current location.
Upon receiving this notification, the remote diagnosis server
sends a failure-analysis request to an appropriate operator
from among the "authorized remote diagnosis holders"
registered in advance.

It is also effective to include a one-time password in the
failure-analysis request to increase the reliability of the
certificate-issuance process in the next step.

D. Generating and Issuing Certificate of Remote

Diagnostic Operations

When an authority holder receives the notification, they
log into the remote diagnosis server and request the issuance
of a working certificate. To enhance security, it is
recommended to require the entry of a one-time password,
which is sent only to the authority holder when they receive
the notification of the analysis request, as a condition for
issuing the certificate.

The issuance of this certificate is also sent to an HMI of
the vehicle and the registered smartphone of the vehicle
owner. If this notification indicates that a remote diagnostic
request was not intended by the driver or vehicle owner in
the vehicle, the "waiting for remote diagnosis" status of the
vehicle can be canceled, or an instruction can be sent to the
remote diagnosis server to stop remote operation for the
vehicle in question as a risk-mitigation measure.

143International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Zone.1

Wireless Unit

TLS

communication

process from/to

off-board server

Zone.2

Isolate by

Hardware or

Hypervisor

Judgement process

of remote diagnosis

permission

HMI device

Diagnosis communication process

Certificate data

Diagnostic

service request

Allow/abort operation

of Remote diagnosis

Diagnosis result or

Negative response

Remote diagnosis

Lock/Unlock

NFC reader,

Sensors,

GNSS antenna

• Vehicle speed

• Engine hood status

• Owner key location

• Date & Time

ECU1 ECU2 ECU3 ・・・・・Diagnosis

Target ECUs

Status of remote diagnosis

permission

Master ECU

Measure 1 Measure 2

Measure 3

Measure 4 Measure 5

Measure 6

Measure7

Measure 8

Measure 9

Figure 7. Implementation example for UDS generation using master ECU

The remote diagnosis server issues a certificate to the
authority holder as a token that records the expiration date
and permitted operating privileges.

E. Access to Vehicles from Remote-diagnostic-authority

Holders

The authority holder responsible for remote diagnosis
sends a token to the target vehicle. The vehicle checks the
token's signature using the remote diagnosis server's pre-
shared public key, and if the token is issued by the legitimate
remote diagnosis server and is still valid, the vehicle unlocks
the remote diagnosis communication and authorized
operation rights recorded on the token. The expiration date
on the token prevents unauthorized access after the work is
completed, which is not intended by the owner.

V. AVOIDING CONSTRAINTS WHEN IMPLEMENTING

PROPOSED MEASURES IN VEHICLE COMPONENT

A. Implementation Constraints to Consider

The following are constraints in implementing the
proposed measures in a vehicle.

1. Automobiles are equipped with dozens of ECUs that
execute diagnostic communications, and changing
all these ECUs to components that implement
security measures for remote diagnostics would
require large-scale development and take too much
time to implement.

2. The resources required to adopt enhanced
authentication algorithms, user rights management
and expiry date management cannot be implemented
in components with resource-constrained processors,
such as 16-bit microcontrollers, which limits their
applicability.

3. Direct end-to-end communication between the off-
vehicle server, which is the connection source for
remote diagnosis, and the ECU to be diagnosed,
creates a pathway for a direct attack on the ECU
inside the vehicle from the off-vehicle server if a
vulnerability exists in the ECU communication
software, so a workaround is necessary.

4. Introducing SOVD architecture will be able to solve

the constraints from 1 to 3 above, but it will bring
other security risks, especially new risk caused by
in-vehicle HTTPS server, because it makes a new
attack surface having an open port to the internet.

5. Since SOVD uses REST API base communication,
popular user authentication protocols (e.g., OpenID
Connect [12], OAuth2.0 [13]) for web services
would be preferable of the remote operator
authentication. However, there is no available
authentication service provider covering global
vehicle markets to prove that the remote access
requester is not a cyber attacker, but a skilled vehicle
diagnostic operator, because proving it requires
identity verification to check the requester’s car
maintenance experiences. Most of the vehicle
manufactures want to avoid localizing the
authentication system for vehicle development
efficiency. Therefore, minimizing diversity of the
remote operator authentication is an important
demand of the remote diagnosis.

B. Our measures for UDS Generation to avoid Constraints

We devised our security-risk-mitigation measures shown
in Figure 7 to avoid the constraints described in Section V.A.

To reduce the security risk of remote diagnosis, these
measures have the following features that the conventional
measures shown in Figure 5 do not have.
Measure 1: The in-vehicle gateway is used as the master
ECU to manage the remote diagnosis control.
Measure2: The master ECU has a zone for communication
with the external server via a wireless communication unit
(Zone 1) and another zone for in-vehicle communication
(Zone 2), which verifies certificate data for remote diagnosis
and sends and receives diagnosis commands to and from
multiple ECUs in the vehicle. Zones 1 and 2 are separated by
hardware or software, such as a hypervisor, to prevent direct
attacks from outside the vehicle to Zone 2, which executes
in-vehicle communication processing.
Measure 3: Zone 1 of the master ECU communicates with
the remote diagnosis server using Transport Layer Security
(TLS) to prevent the in-vehicle wireless communication unit
from eavesdropping on and falsifying communication data

144International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Example of remote SOVD sequence

between the master ECU and remote diagnostic server (a
countermeasure against man-in-the-middle attacks).
Measure 4: To check the expiration date & time of the public
key certificate for TLS, the master ECU must manage the
absolute date & time using not only Global Navigation
Satellite System (GNSS) data, but also trustable in-vehicle
timer counter, because GNSS signals may get a replay attack.
For example, the master ECU can detect the replayed GNSS
signal when a newly received GNSS signal shows older time
than the elapsed time of in-vehicle timer counter value or
received signals in the past. Even if the timer counter's
accuracy is low, e.g., a few seconds per month, it can still
detect invalid GNSS signals when the difference between the
result of adding the counter's elapsed time to the date and
time of the last received GNSS signal and the date and time
of the newly received GNSS signal exceeds the tolerance
range.
Measure 5: The master ECU boots with the remote
diagnostics as locked status by default. In the locked status,
“Diagnosis communication process” in the master ECU
rejects all diagnostic service requests coming from TLS
communication process to prevent receiving any unexpected
remote requests. Only when remote diagnosis is unlocked,
the “Diagnostic communication process” in Zone 2 executes
diagnostic communication in response to a remote-
diagnostic-service request from Zone 1.
Measure 6: If the master ECU receives the result of the
remote-diagnosis permission correctly executed with an HMI
in the vehicle and the "remote diagnosis permission
condition" is satisfied within a certain period after that, the
master ECU unlocks the remote diagnosis process and enters
the "waiting for remote diagnosis" state. The "remote-
diagnosis-permission condition" is, for example, all the
following conditions are satisfied.

(1) Successful verification of certificate received from
Zone 1.

(2) The HMI executes remote diagnostic permission in
the vehicle and is not canceled.

(3) No timeout has occurred since the operation in (2).
(4) The vehicle must be stopped.
(5) Signals indicating that the vehicle is in a service

condition (e.g., engine hood is open) are detected.
Measure 7: The target ECU for remote diagnosis connected
to the master ECU operates by receiving diagnostic
commands from the “Diagnostic communication process”
implemented in Zone 2. The master ECU executes the
verification process of the certificate data and permission by
the HMI, which are necessary as security measures of remote
diagnosis, thus avoiding software and hardware changes in
the target ECU.
Measure 8: If the verification of certificate data fails more
than once, the time until accepting the next verification is
extended.
Measure 9: If a diagnostic-service request that is not
authorized by the certificate is received, the diagnostic
communication process returns a negative response. This
history is stored in remote diagnosis sever. The request
commands thus rejected are signed and included in the

negative-response history data to prevent repudiation by the
authorized remote diagnosis operator.

In our previous paper [1], we inspected feasibility of
implementing zone separation measures from a processing
performance viewpoint. We conducted the experiment on
Renesas R-carS4N-8A processor, and we confirmed that the
proxy processing required for separating the zones could
handle 96 Mbps of real-time video transfer with very low
latency (1.675 ms), and we found no performance problem.

C. Proposed SOVD Sequence to Address Constraints

Figure 8 shows an example case of our proposal
sequence to solve the SOVD constraints 4 & 5 described in
Section V.A.

The SOVD generation will have the following sequence
steps:

Step 1: A vehicle Owner (VO) can subscribe any remote
diagnosis services (e.g., provided by the vehicle
manufacturer, by a local car maintenance company etc.) and
have its access account for remote service request. When VO
wants to request for the remote diagnosis, the owner logins
to Authentication Server (AS) and inputs the vehicle trouble
information.

Step 2: Based on VO’s input, AS generates a request
token including a set of recommended remote operator’s
privileges. VO downloads this AS request token into VO’s
smartphone. If this request token is standardized among
various remote diagnosis service providers and signed by
PKI based certificate authority chain, the vehicle can manage
the diversity of the service providers.

Step 3: VO transfers the downloaded AS request token to
HMI device in the vehicle. HMI device extracts the
recommended privileges and shows them in the touch screen
display of HMI device for VO’s approval. VO can accept
them all or change them to a minimum set of privileges.

Step 4: After the approval by VO in step 3, HMI device
sends the privileges authorized by VO to SOVD Sever (SS)

145International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VEHICLE

HPC

Public SOVD Server

Authorization

Server

HMI

device
Zone-2

Zone-1

Is
o
la

te
d

b
y

H
a

rd
w

a
re

 o
r

H
y
p

e
rv

is
o
r

UDS

Old ECUs

Wireless Unit

CDAVirtual

ECU 1

Virtual

ECU 2

・・・・・

SOVD

Manager

SOVD API

NFC reader,

Sensors

Diagnostic service request

Result/Response

of diagnosis

Remote diagnosis

Lock/Unlock command

•
V

e
h
ic

le
s
p
e
e
d

•
E

n
g
in

e
 f

o
o

d
 s

ta
tu

s

•
O

w
n

e
r

k
e

y
 l
o

c
a

ti
o

n

d
e

te
c
ti
o

n

• Request

Token

• Allow/abort

operation

of Remote

diagnosis

Generated

Access Token

Secure Storage

PKI Root CA

Public Keys

Reading keys

for token

processes

HPC’s private

& public Key

Request for

checking

Access Token

Figure 9. Implementation example for SOVD generation

and requests SS to validate signature of AS request token. SS
extracts the certificate chain information to get a public key
of AS for the token signature validation.

Step 5: If signature of AS token is valid, SS generates an
access token and requests Wireless Unit to upload it to AS
by using AS URL in AS request token.

Step 6: The wireless unit passes the access token to the
Proxy Server. This proxy server can be a bridge to UDS
Security Access Key Management Server (SAKMS) of the
vehicle manufacturer when an old UDS ECU sends a
challenge to unlock its critical diagnostic operation. This
bridge function can avoid connecting the remote client to the
vehicle manufacturer’s UDS SAKMS directly to get SA
unlock response.

Step 7: The Proxy Server requests AS to send the access
token to the remote operator. This Proxy Server hides the
internet address of Wireless Unit by generating a random
dynamic URL (Uniform Resource Locator) to prevent
unexpected direct access to the vehicle from the public
network. This dynamic URL is also shared with AS to
inform it to the remote operator as a virtual URL of SS.

Step 8: AS passes the access token and dynamic URL to
the remote operator.

Step 9: The remote operator starts accessing to the
vehicle using the shared token & dynamic URL.

Step 10: The Proxy Server transfers the remote operator’s
access request to a target Wireless Unit specified by the
dynamic URL.

As the Proxy Server hides the vehicle’s access address
from the public network, it can be the first firewall against
the cyber-attack risk caused by constraint 4 in Section V.A.

Similarly, using PKI for the public key certificate chain
at step 4 of this sequence enables covering various
Authentication Servers in the global market, so it helps to
solve constraint 5 in Section V.A.

An additional security advantage of this sequence is
VO’s approval by HMI device in the vehicle. This approval
process requires some physical access actions in the vehicle
cabin. This point can be a strong proof of VO’s authorization.

Even though we implement security-risk-mitigation
measures mentioned above, in-vehicle component also
should have a similar zone separation as same as UDS
generation in Figure 7 considering “Defense in depth”
principle.

Figure 9 shows an example of the zone separation
implementation for SOVD generation. In this example,
“Public SOVD Server” in Zone-1 should provide HTTPS
communication from/to the outside of vehicle through the
Wireless Unit to mitigate the risk caused by constraint 4 in
Section V.A. This “Public SOVD Server” has the similar
functions of “Data communication process from/to off-board
server”.

Zone-2 hosts two new functions “Authorization Server”
and “SOVD Manager” to match the SOVD software
architecture.

“Authorization Server” has three token processes, the
Request Token validation, the Access Token generation &
check. The Request Token is authorized and validated by the
vehicle owner’s operation on HMI device and PKI Root CA

Public Keys. If this authorization and validation are OK, the
Access Token is generated using HPC’s Private Key. When
a remote operator starts access to the vehicle by sending its
access token, “Authentication Server” also checks the access
token sent by the remote operator. HPC must have a Secure
Storage to protect the integrity of public keys and
confidentiality of its private key.

“SOVD manager” has similar functions of “Diagnosis
communication process” in Figure 7. It can lock or unlock
the remote diagnostic communications using inputs from
“Authentication Server” and “NFC reader, Sensors”. “SOVD
manager” switches the remote diagnosis communication path
to the Virtual ECUs or old physical ECUs using UDS
communication.

VI. FUNCTIONAL SECURITY EVALUATION

Figure 10 illustrates the architecture of Proof-of-Concept
(PoC) simulation environment based on our SOVD sequence
described in Section V.C. In this evaluation, we focus
specifically on the components highlighted in the figure,
namely the Remote SOVD Client, the in-vehicle SOVD
Public Server hosted on the HPC, and the Vehicle HMI. As
these three elements represent the primary attack surface
where authentication and authorization decisions occur.

Based on the simulation environment, we defined three
functional test cases. The objective of evaluation is to verify
the in-vehicle authorization concept functions correctly
under realistic conditions. The evaluation focuses on two
fundamental requirements:

Authentication Integrity: The SOVD Server must reject
unauthenticated requests or invalid tokens, accepting only
properly signed and valid credentials.

Authorization (scope enforcement): Access to diagnostic
endpoints is determined by the operator’s assigned privileges
as reflected in the access token payload.

The following subsections detail the results of these
functional test cases.

146International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. System Architecture of the SOVD Prototype Environment

A. Test Case 1: Unauthorized Access Token Blocking

In this test case, we verify that SOVD Server enforces
token-based authentication correctly. We tested three
scenarios:

1) Missing Authorization Header: A GET request

was sent by the operator to the
/sovd/v1/Component endpoint with an empty

HTTP Authorization header. As shown in Figure 11,
SOVD Server rejected the request with a "401

Unauthorized" response, which confirms that

the Server does not allow unauthenticated operators
to initiate any diagnostic query.

2) Invalid Token Signature: the same endpoint was
accessed using a JWT token with an invalid
signature. The Server returned "401

Unauthorized" as shown in Figure 12.

3) Expired Token: We attempted to access the API
using a token that was structurally correct but
possessed an expired timestamp. As Figure 13
shows, the Server responded with "401

Unauthorized" and identified the validation

failure with a message "claim timestamp

check failed".

4) Valid Token: Finally, a valid and correctly signed
token was used. The Server responded with "200

OK", returning the structured component list

defined by SOVD as shown in Figure 14.

B. Test Case 2: SOVD API Scope Enforcement

 While Test Case 1 validates authentication integrity, Test
Case 2 evaluates authorization by verifying whether
protected SOVD API endpoints enforce the access
permissions encoded in the JWT token. We define two
operator roles: a "Viewer" role restricted to read-only
operations, and a "Developer" role with full diagnostic
permissions. Figures 15 and 16 show the permission

configurations assigned to these roles in the simulation
environment. To illustrate how these permissions are
encoded in the issued credentials, we show a JWT token
generated for a "Developer" operator in Figure 17. The token

payload shows full access, including GET, POST, PUT, and

DELETE operations, while the denyPermissions field is

empty.
We then executed a functional test using the "Viewer"

role. As shown in Figure 18, a "Viewer" operator
successfully accessed fault information using GET

/sovd/v1/Components/adas-

module/faults/C1456, the operation succeeded with

a "200 OK" response from the Server and returned the

expected diagnostic data. However, when the same operator
attempted to delete the fault code with a DELETE request,

the Server correctly blocked the operation. Figure 19 shows
the resulting "403 Forbidden error" with the

message: "Role 'Viewer' does not have

permission to DELETE". SOVD Server correctly

interprets the permissions embedded in JWT token, and
operations requiring elevated privileges (e.g., DELETE fault
codes) are blocked for restricted roles.

C. Test Case 3: HMI UI Approval by VO

 Finally, in Test Case 3 we validate the physical
authorization step, to ensure that remote access cannot be
established without explicit, in-vehicle approval by the
Vehicle Owner (VO) through the in-vehicle HMI. Figure 20
shows the initial UI screenshot of HMI prompt displaying
the list of permissions contained in the owner-provided
certificate. Through the simulator, we show the requested
privileges to VO to be selected (e.g., Body Control Module,
HVAC, Power Line Communication). In this test scenario,
VO selected only the "Body Control Module" permission
and leave the other privileges unchecked. After approval, the
HMI goes to confirmation screen shown in Figure 21,

147International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Response of an Empty Authorization Header

Figure 12. Response of Invalid Token Signature

Figure 13. Response of Expired JWT Token

Figure 14. Response Success 200 OK with Component List

Figure 15. Viewer Role Permission Page

Figure 16. Developer Role Permission Page

indicating that “Remote diagnosis is in progress” with an
option to “Quit Remote Diagnosis”. We confirm that the
system enforces vehicle-side user approval before allowing
any remote diagnostic activity.

D. Discussion

 While the functional evaluations confirm that
authentication, authorization, and in-vehicle approval
mechanisms work as intended, we note that the timer
counter's accuracy was not experimentally verified. However,
our current vehicles already have decoded GNSS date and
time information as in-vehicle CAN signals (e.g., via
wireless communication unit). Therefore, even if the timer
counter's accuracy is relatively low or GNSS time drift
occurs, the system can still detect invalid GNSS signals
when the difference exceeds a reasonable tolerance (e.g.,
several seconds). In practice, an attack that manipulates
GNSS time by only a few seconds is highly unlikely, as such
a minimal shift would not provide a meaningful advantage to
an attacker. Consequently, the proposed detection approach
remains effective even with coarse timer accuracy.
Nevertheless, the evaluation does not yet quantify
performance overhead or resilience against advanced attack
scenarios such as DoS or token forgery. Future work should
include large-scale stress tests, latency and resource profiling,
and usability studies for HMI-based approval to validate
feasibility in production environments.

148International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 17. JWT Token Payload for Developer Role

Figure 18. Viewer Operation “Read the fault info successfully”

Figure 19. Viewer Operation “Failed to delete the fault”

Figure 20. HMI Simulator UI for Selecting Diagnostic Privileges

Figure 21. HMI Simulator UI: Active Remote Diagnostic Session

149International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. CONCLUSION

Similar to our previous work, the communication
software to the remote operator, “Public SOVD Server” in
SOVD case, must be isolated from the security critical
software modules “Authorization Server” and “SOVD
manager”. This measure will help to mitigate risks caused by
implementation of HTTPS function in HPC.

The most important point of security-risk-mitigations for
SOVD remote diagnosis is the privilege authorization in the
vehicle cabin, because the feasibility of cyber-attack to the
remote diagnosis system becomes easy for the attacker if
both of user authentication and privilege authorization are
possible on the public network. The authorization operation
by in-vehicle HMI device can proof that VO (or a local
maintenance operator trusted by VO) authorizes the
necessary privileges for its requested remote diagnosis.

The second important point is having the proxy server
between the vehicle and public network to hide the URL of
in-vehicle HTTPS server. It can make difficult the port
scanning by attackers and avoid unexpected access to open
port 443 for HTTPS communication.

We conclude that these additional security-risk-
mitigations can reduce cyber-attack feasibility to the remote
diagnosis on SOVD systems.

ACKNOWLEDGMENT

We thank Nissan Technology Development Shanghai to
make and test our PoC environment for this research.

REFERENCES

[1] M. Miyashita and H. Takakura “Security-risk-mitigation
Measures for Automotive Remote Diagnostic System”. In
Proceedings of the Eighteenth International Conference on
Emerging Security Information, Systems, and Technologies
(SECURWARE 2024), Nice, France. 2024.

[2] C. Miller and C. Valasek, “Remote Exploitation of an
Unaltered Passenger Vehicle”, pp. 84–85, Blackhat Aug.
2015.

[3] H. Wen, Q. A. Chen and Z. Lin, “Plug-N-Pwned:
Comprehensive Vulnerability Analysis of OBD-II Dongles as
A NewOver-the-Air Attack Surface in Automotive IoT”, pp.
960–961, Aug. 2020.

[4] Official Journal of the European Union. (2018). Regulation
(EU) 2018/858, OJ L 151, 14.6.2018, p. 1.

[5] S. Robert and J.S. Jayasudha, “Overview of Diagnostic over
IP (DOIP), Ethernet Technology and Lightweight TCP/IP for
Embedded System”, International Journal of Advanced
Research in Computer Science, pp. 296–299, 2013.

[6] R. B. Gujanatti, S. A. Urabinahatti and M. R. Hudagi, “Suvey
on Security Aspects Related to DoIP”, International Research
Journal of Engineering and Technology, pp. 2350–2355, 2017.

[7] M. Matsubayashi et al., “Attacks Against UDS on DoIP by
Exploiting Diagnostic Communications and Their
Countermeasures”, 2021 IEEE 93rd Vehicular Technology
Conference, pp. 1922–1927, 2021.

[8] ASAM e.V., ASAM SOVD v1.0.0: (Service-Oriented Vehicle
Diagnostics). https://www.asam.net/standards/detail/sovd/
(Accessed: July. 22, 2025).

[9] C. Miller and C. Valasek, “Remote Exploitation of an
Unaltered Passenger Vehicle,” in Blackhat USA. Las Vegas,
NV, USA: Blackhat Press, pp. 86-88, 2015.

[10] S. Kulandaivel, “Revisiting remote attack kill-chains on
modern invehicle networks,” PhD thesis, Carnegie Mellon
University, pp. 28, 2021.

[11] K. Daimi, “A Security Architecture for Remote Diagnosis of
Vehicle Defects”, The Thirteenth Advanced International
Conference on Telecommunications, pp. 1-7, 2017.

[12] N. Sakimura, J. Bradley, M. Jones, B. De Medeiros, and C.
Mortimore, “Openid connect core 1.0,” The OpenID
Foundation, p. S3, 2014.

[13] D. Hardt, “The OAuth 2.0 Authorization Framework,”
Internet Requests for Comments, RFC Editor, RFC 6749,
October 2012. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc6749.txt. (Accessed: July. 22, 2025).

150International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithmic Attraction: Detecting Content Traps in YouTube’s Recommendation
Graph via Network Resilience and Topical Cohesion

Md Monoarul Islam Bhuiyan∗, Nitin Agarwal ∗†
∗COSMOS Research Center, University of Arkansas at Little Rock, Arkansas, USA

†International Computer Science Institute, University of California, Berkeley, California, USA
e-mail: {mbhuiyan, nxagarwal}@ualr.edu

Abstract—Algorithmic recommendation systems, such as
YouTube, play a central role in shaping users’ online content
exposure, often inadvertently reinforcing content traps, which are
clusters of videos exhibiting limited topical diversity and repeti-
tive thematic patterns. Although prior research has highlighted
concerns around algorithmic homogeneity and echo chambers,
few studies provide a systematic and comprehensive framework
for detecting, quantifying, and evaluating these content traps
within the complex structure of YouTube’s recommendation
networks. In this study, we introduce a combined network
resilience and topic-based framework to identify and analyze
content traps by leveraging a diverse set of social network
analysis (SNA) approaches applied to the recommendation graph.
We evaluate the semantic coherence of the resulting clusters
using BERTopic and a sensitivity-based thresholding technique
to measure topical uniformity. Our findings indicate that focal
structure analysis (FSA) consistently uncovers clusters with
higher semantic homogeneity compared to traditional commu-
nity detection methods and, under moderate threshold settings,
outperforms several centrality-based approaches in capturing
cohesive content regions. By integrating structural and semantic
insights, this work provides a robust methodological foundation
for detecting content traps and enhances our understanding of
the intricate relationship between network topology and thematic
repetition in algorithmically curated content.

Keywords-Focal Structure Analysis; Social Network Analysis;
YouTube; Network Resiliency; Content Trap; YouTube Recommen-
dation Network.

I. INTRODUCTION

YouTube, the world’s largest video-sharing platform, plays
a central role in shaping user exposure to content, with over
70% of watch time driven by its recommendation algorithm.
While this algorithm helps users discover relevant content,
it can also lead to the emergence of content traps, which
are repetitive and thematically concentrated recommendations.
These contents may limit exposure to diverse viewpoints
and reinforce algorithmic bias, particularly in politically or
culturally sensitive topics.

Despite growing concerns around algorithmic homogene-
ity and echo chambers, there remains a lack of systematic
approaches to identify and assess such content traps within
YouTube’s dynamic recommendation system. This study ad-
dresses that gap by analyzing content traps through a structural
and topical lens to identify cohesive sets of videos that form
homogeneous content regions. As a result, such structures
contribute to thematic uniformity and limit user exposure to
diverse content.

Figure 1. Illustration of a content trap within a YouTube recommendation
network where the nodes represent videos and edges denote recommendation
links. The "Key Group" refers to a structurally identified set of videos in the
recommendation network that share highly similar themes, making them a
potential content trap.

In this study, we construct a multi-hop YouTube recom-
mendation network using a keyword-seeded crawl strategy
and apply a set of SNA techniques, including FSA, Louvain,
Leiden, Label propagation, and centrality-based slicing, to
extract structurally meaningful clusters. We then assess the
resilience of the network by measuring its fragmentation after
removing each method’s identified groups. To evaluate the-
matic coherence, we apply BERTopic to video transcripts and
quantify topical uniformity using a sensitivity-based thresh-
olding approach.

Network resilience [1] offers a complementary perspective
by evaluating how the removal of structurally cohesive clusters
affects the overall connectivity and stability of the recommen-
dation network. Metrics such as flow robustness and the giant
component ratio quantify the network’s ability to maintain
information flow in the absence of critical nodes or groups.
By integrating resilience analysis with topical homogeneity
assessment, we can identify clusters that not only exhibit
strong thematic similarity but also act as pivotal bridges
sustaining the recommendation pathways. This dual analysis
provides a more nuanced understanding of the algorithmic
structures that reinforce content traps [2] and their potential

151International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

influence on user exposure and engagement.
Our contributions in this study are thus as follows:
• We propose a network and topic-based framework to de-

tect content traps by extracting structural groupings from
YouTube’s recommendation network and then applying
topic modeling to assess their topical homogeneity.

• We introduce a sensitivity-based method to evaluate top-
ical homogeneity across these groupings.

This work offers a novel perspective on how structurally de-
rived groupings in YouTube’s recommendation network reveal
patterns of topical uniformity [3]. By identifying clusters of
videos with high topical consistency, we show how certain
regions of the recommendation network function as potential
content traps, underscoring the need for a deeper analysis of
algorithmic curation.

The findings of this study also have several practical and
theoretical implications. Practically, our framework can guide
platform designers and content moderators in detecting algo-
rithmically reinforced content traps, enabling interventions to
diversify user exposure and reduce the reinforcement of biased
or polarized content. Theoretically, the study contributes to
computational social science by demonstrating how network
structure and topic homogeneity interact to shape information
flow, providing a blueprint for future analyses of algorith-
mic influence in social media ecosystems. Furthermore, our
resilience-based approach offers a quantitative measure to
assess the potential impact of removing or modifying critical
clusters, informing strategies to promote healthier information
dissemination.

The rest of the paper is organized as follows. Section II
reviews existing studies on identifying network structures,
including detecting authoritative and community approaches,
and measuring network resiliency metrics, along with content
homogeneity in recommender systems. Section III outlines
the experimental methodologies applied, while Section IV
presents the findings of our research. Finally, Section V sum-
marizes the study and suggests directions for future research.

II. RELATED WORK

In this section, we review prior work on structural detec-
tion methods in social network analysis, network resiliency
metrics applied in social network analysis, and the emergence
of topical homogeneity in algorithmically curated content,
highlighting the gap our study aims to address.

A. Structural Detection in Social Networks

Detecting structurally significant subsets of nodes, whether
influential individuals or cohesive groups, has been a core
focus in social network analysis. Among the most established
techniques are centrality-based approaches, which quantify
the importance of nodes using measures such as degree,
betweenness, closeness, and eigenvector centrality [4]–[6].
These metrics have been widely used for identifying nodes
that control information flow or act as central hubs in com-
munication, transportation, or online platforms.

In contrast to node-level ranking, community detection
algorithms group nodes into modular clusters based on internal
density and inter-group sparsity. Notable methods include
Louvain [7], Leiden [8], and Label Propagation [9], each
of which strikes a balance between scalability and structural
accuracy. These techniques have been extensively applied
in contexts ranging from citation networks to social media
interactions, revealing latent clusters that often correspond to
real-world social or topical boundaries [10].

FSA [11] is one such method within the broader framework
of SNAs. Initially proposed to extract small, densely connected
structures that extend beyond traditional communities, it has
been applied in domains such as biological and communication
networks [12]. While not as widely adopted as classical com-
munity detection or centrality measures, it offers an alternate
view of influence through group-level connectivity and density.

B. Network Resiliency Metrics

Network resilience, like influential node and community
identification, is crucial in Social Network Analysis (SNA),
denoting a network’s ability to withstand disruptions while
maintaining core functions. The study by Bertoni et al. [13]
employs social network analysis to identify key contributors to
resilience in an intensive care unit, integrating SNA-derived in-
dicators with non-network attributes, whereas another research
comprehensively reviews resilience functions and regime shifts
in complex systems across various domains through empirical
observations, experimental studies, and theoretical analysis
[14]. Several metrics have also been developed to quantify
network resilience in the face of disruptions, such as flow
robustness [15], and giant component ratio [16].

However, a key gap exists in current research. While these
metrics effectively measure network resilience, they have not
been extensively applied to the context of social networks like
YouTube. Our work aims to bridge this gap by incorporating
network resilience approaches into the analysis of social
networks, offering a more comprehensive understanding of
their ability to adapt and function under various stresses.

C. Topical Homogeneity in Recommendation Systems

The prevalence of algorithmically curated content on social
media platforms has intensified concerns about exposure to
homogeneous information. Pariser’s foundational work [17]
describes how personalization algorithms isolate users from
diverse viewpoints, potentially reinforcing cognitive bias. Sub-
sequent empirical studies have confirmed this phenomenon on
platforms such as Facebook [18] and Twitter, where content
similarity and repeated exposure to aligned narratives have led
to increased polarization and the spread of misinformation.

In the context of YouTube, recent research has documented
how recommendation algorithms can promote narrow thematic
loops, particularly around political and ideologically sensitive
topics [19], [20]. Ribeiro et al. [20] analyzed YouTube’s polit-
ical video recommendations and found evidence of funneling
toward more extreme content, while Hosseinmardi et al. [19]

152International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

examined engagement dynamics, revealing that recommenda-
tion pathways often reinforce existing content themes that may
limit content diversity.

Efforts to quantify this homogeneity have included semantic
similarity measurements using embeddings; topic modeling
approaches such as Latent Dirichlet Allocation (LDA) and
BERTopic; and entropy-based diversity metrics [21], [22].
BERTopic, in particular, has gained traction due to its ability
to extract interpretable topics using transformer-based em-
beddings and class-based TF-IDF representations [23]. This
enables a more nuanced evaluation of topical coherence across
sets of content, making it well-suited for analyzing thematic
consistency in recommendation networks.

Despite growing attention to content homogeneity, few stud-
ies have systematically analyzed the structural underpinnings
of content homogeneity within recommendation networks,
especially on YouTube [2]. Most existing studies have fo-
cused on content themes, topical polarization, and engagement
metrics, or have examined the role of semiotics in guiding
thematically aligned exposure patterns [24]–[26], leaving a gap
in understanding the purely structural factors that influence
how content traps can form. Our work addresses this gap
by systematically applying topic modeling to the outputs
of various structural detection methods, including Louvain,
Leiden, Label Propagation, centrality-based groups, and FSA,
within a real-world YouTube recommendation network. By
quantifying topic similarity across these groupings, we provide
a novel lens on how structure and semantics intersect [27].
This offers insight into how recommendation systems may
reinforce thematic uniformity at the group level.

III. METHODOLOGY

This section describes the comprehensive methodology em-
ployed to analyze content traps within YouTube’s recom-
mendation network, focusing on both structural and topical
dimensions. Our approach integrates network science, social
network analysis (SNA), and natural language processing
(NLP) techniques to capture how algorithmic curation am-
plifies cohesive content clusters. We first detail the dataset
and crawling strategy used to construct a multi-hop rec-
ommendation network centered on culturally and politically
significant content. Subsequently, we describe the methods
for detecting structurally meaningful groups, including focal
structures, centrality-based slices, and community detection
algorithms.

To evaluate the importance of these groups within the net-
work, we employ network resilience metrics, which quantify
the impact of removing specific clusters on the connectivity
and cohesion of the recommendation space. Finally, we in-
corporate topic modeling and sensitivity-based analysis to as-
sess thematic consistency within structurally identified groups.
By combining these structural and topical evaluations, our
methodology provides a holistic framework for identifying and
characterizing content traps in a large-scale recommendation
ecosystem.

A. Dataset Background and Collection

The data collection in this study was carefully structured to
systematically capture YouTube’s algorithmic patterns via its
‘watch-next’ recommendation system. We focused on a spe-
cific context: the Cheng Ho propaganda dataset. The following
sections provide a concise background for this context and
explain the rationale behind its selection for analysis.

Cheng Ho Propaganda - In contemporary discourse, the
Chinese Communist Party (CCP) has reinterpreted the story
of the 15th-century admiral Zheng He, also known as Cheng
Ho, to bolster its current political messages. Once celebrated
for his peaceful sea voyages, Zheng He is now portrayed as a
symbol of religious tolerance and diplomacy [28]. This shift
aligns with China’s efforts to address criticism regarding its
treatment of Uyghur Muslims and to promote its Maritime
Silk Road initiative. The CCP aims to enhance its soft power
by rebranding this historical figure, particularly in Southeast
Asia.

B. Keyword Selection and Crawling

We initiated the process by conducting workshops with
subject matter experts to compile a targeted list of keywords
related to the Cheng Ho Propaganda. These keywords, as
shown in Table I, served as search queries on YouTube’s
search engine, generating an initial set of seed videos. From
these seeds, the first level of recommendations was captured,
and each recommended video was subsequently treated as a
parent node for further crawling, continuing up to the fifth
hop. As we explored deeper recommendation levels, the data
volume increased exponentially. The analysis was restricted to
a maximum of 5 levels for a more manageable evaluation of
the data without compromising the integrity of the findings.
Metadata and engagement statistics were retrieved using the
YouTube Data API [29], and transcripts were collected via
external transcript extraction services [30].

TABLE I. KEYWORDS RELATED TO CHENG HO PROPAGANDA

Keywords
Cheng Ho, Zheng He, Sam Po Kong, Sam Poo Kong, Daerah Otonom
Uighur Singkiang, Singkiang, Hatta + 1957, Novi Basuki, Sam Po Bo,
Cheng Ho / “Zheng He" + laksamana + damai, Sam Po Kong + Islam
+ Indonesia, 1421 Saat China Menemukan Dunia + “Gavin Menzies",
Gavin Menzies, Cheng Ho / “Zheng He" “Columbus"

Following the initial collection, we performed data cleaning
and pre-processing to ensure the quality and consistency
of the dataset. Duplicate videos, inactive links, and videos
without accessible transcripts were excluded from the anal-
ysis. Additionally, the textual content of the transcripts was
preprocessed by removing stopwords, punctuation, and non-
standard characters, while preserving key entities and named
references relevant to the Cheng Ho propaganda narrative.
This comprehensive preprocessing allowed us to construct a
reliable, multi-hop recommendation network that accurately
captures both the structural relationships between videos and
their topical content, forming the foundation for subsequent
structural and semantic analyses.

153International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Recommendation Network Construction

We modeled the recommendation space as a directed graph
G = (V,E), where nodes represent videos and edges indicate
YouTube’s recommendation links. The recursive crawl yielded
a five-hop recommendation graph with 8,489 unique videos
and 13,384 directed edges, as shown in Figure 2. This network
serves as the basis for both structural analysis and semantic
evaluation of content clusters. Unlike a tree structure, the
network contains cycles in which seed or recommended videos
may reappear through multiple recommendation paths.

Figure 2. YouTube recommendation network centered on Cheng Ho-related
content.

D. Structural Group Detection

Focal Structure Analysis (FSA): Focal Structure Analysis
(FSA) is a network-centric optimization framework designed
to identify structurally cohesive and influential subsets of
nodes, referred to as focal structures, within a social network.
Unlike traditional approaches that rely solely on node-level
centrality metrics or global community detection, FSA focuses
on extracting minimal yet structurally significant node groups
that collectively exert strong influence across the network.

Formally, consider a social network represented by a graph
G = (V,E), where V denotes the set of users (nodes) and
E represents their interactions (edges). The objective is to
identify a subset S ⊆ V such that the cumulative influence, as
measured by a chosen centrality metric, is maximized under
a cardinality constraint:

max
S⊆V, |S|≤k

∑
i∈S

C(i) (1)

Here, C(i) denotes the centrality score of node i, which
may correspond to degree, closeness, betweenness, or other
centrality measures, and k is a tunable parameter that limits
the size of the selected group.

To solve this combinatorial problem, FSA employs a
decomposition-based optimization procedure that recursively
partitions the network and refines candidate groups based on
modularity and intra-group connectivity heuristics. To ensure
the structural cohesiveness of the identified focal structures,
the following density constraint is enforced:

δ(S) =
2|ES |

|S|(|S| − 1)
≥ τ (2)

where ES denotes the set of internal edges within the subset
S, and τ ∈ [0, 1] is a predefined threshold governing the
minimum allowable density.

By jointly optimizing for aggregate influence (Equation 1)
and structural tightness (Equation 2), FSA identifies compact,
high-impact node clusters that are well-suited for analyzing
influence dynamics, modeling coordinated behavior, and de-
signing structural interventions in social networks.

Centrality-Based Node Slicing: involves selecting top-
ranked nodes based on classical centrality measures that
capture various notions of structural importance within the net-
work. Specifically, we compute degree centrality (measuring
direct connectivity), betweenness centrality (reflecting control
over shortest paths), closeness centrality (indicating proximity
to all other nodes), and eigenvector centrality (accounting for
the influence of neighbors). For each metric, we extract the
top-k nodes and treat them as influential slices. This method
enables a comparative evaluation of individual node-based
influence heuristics against group-based approaches such as
Focal Structure Analysis and community detection algorithms.

Community detection algorithms: We apply three widely
used methods: the Louvain algorithm, which optimizes mod-
ularity through hierarchical aggregation of communities; the
Leiden algorithm, an improved variant of Louvain that guar-
antees well-connected communities and faster convergence;
and the Label Propagation algorithm, which iteratively as-
signs node labels based on majority voting among neighbors,
resulting in efficient yet potentially unstable partitions. The
output of each algorithm consists of node clusters, from which
we extract the top-ranked groups by adopting the network
resiliency approach for further analysis. These community-
based groupings serve as structural baselines for comparison
with focal structures and centrality-driven selections.

These methods yielded non-overlapping groups of nodes. To
ensure a fair comparison, centrality-based groups were sam-
pled to match the node counts of top-ranked focal structures.

To identify structurally cohesive groups, we applied a col-
lection of SNA methods, including centrality-based node slic-
ing (degree, betweenness, closeness, and eigenvector) to form
centrality based node groups, community detection algorithms
(Louvain [7], Leiden [8], and Label Propagation [9]), and
FSA [12]. Each method was used to extract groups of nodes
for comparison. FSA was treated as one of several structure-
based grouping strategies, with focal structures defined as non-
overlapping, dense subgraphs G′ = (V ′, E′) ⊂ G, ensuring
that no two structures fully contain one another. To ensure

154International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fair comparison, the size of each centrality-based group was
matched to the corresponding focal structure.

E. Network Resiliency Metrics

This section describes the metrics employed to quantify
network resilience, providing insight into how structurally
critical nodes or groups contribute to the stability and con-
nectivity of the network. Network resilience is a vital concept
in understanding the robustness of recommendation systems,
as it reflects the system’s ability to sustain content flow even
when influential nodes or clusters are removed. By measuring
resilience, we can identify which nodes or focal structures act
as critical bridges or bottlenecks within the network and how
their removal may amplify content traps or fragmentation.

1) Flow Robustness: Flow robustness is a fundamental
metric that captures the network’s capacity to maintain com-
munication under perturbation [15]. A flow in this context
refers to a path between any two nodes, and a flow is
considered reliable if it remains intact despite the removal of
certain nodes or edges. Flow robustness therefore quantifies
the proportion of such reliable flows relative to all possible
flows in the network, offering a comprehensive measure of
connectivity resilience.

Mathematically, flow robustness (FR) for a network
G(V,E) is given by:

FR(G) =

∑n
i=1 |Ci|(|Ci| − 1)

|n|(|n| − 1)
, 0 ≤ FR ≤ 1 (3)

where Ci represents the i-th connected component of the
network and |Ci| is the number of nodes in that component. An
FR value of 1 indicates that every node can communicate with
every other node, denoting a fully resilient network, whereas
a value near 0 implies extreme fragmentation with minimal
connectivity. By computing FR before and after removing
focal structures or high-centrality nodes, we can assess which
groups have the greatest structural influence on maintaining
the flow of recommendations across the network.

2) Giant Component Ratio: The Giant Component Ratio
(GCR) is a complementary metric that provides a macroscopic
view of network connectivity by measuring the proportion of
nodes in the largest connected component (LCC) relative to
the total network size. Formally, it is defined as:

GCR(G) =
NLCC

N
, 0 < GCR < 1 (4)

where NLCC denotes the number of nodes in the largest
connected component and N is the total number of nodes
in the network. A high GCR value indicates that the major-
ity of the network remains interconnected, reflecting strong
structural cohesion. Conversely, a low GCR signals that the
network is highly fragmented, suggesting that critical nodes
or groups have been removed. GCR is particularly informative
when evaluating the effects of targeted removals, such as focal
structures or community-based clusters, as it highlights the
impact on overall connectivity and the potential isolation of
subgroups.

3) Isolated Nodes and Cluster Analysis: In addition to
global connectivity metrics, it is important to examine local
fragmentation effects. The number of isolated nodes measures
the extent to which nodes become disconnected from the net-
work following the removal of influential structures, providing
insight into potential disruptions in information dissemination.
Cluster analysis, on the other hand, examines changes in the
community structure, revealing how removal of key groups can
fracture cohesive clusters into smaller subgroups. Together,
these metrics offer a nuanced understanding of how node
or cluster removal affects both the micro- and macro-level
dynamics of the network, particularly in the context of recom-
mendation systems where structural bottlenecks may amplify
content trap effects.

F. Spearman’s Rank Correlation Coefficient

To quantify the relationship between different resilience
metrics, we employed Spearman’s rank correlation coeffi-
cient [31], which assesses the strength and direction of a
monotonic association between two variables without assum-
ing linearity. This is particularly useful when comparing
metrics such as flow robustness and giant component ratio,
which may not vary linearly with each other. Spearman’s ρ is
computed as:

ρ = 1−
6
∑n

i=1(R(Xi)−R(Yi))
2

n(n2 − 1)
,

where R(Xi) and R(Yi) represent the ranks of observations
in X and Y , di is the rank difference, and n is the number
of paired observations. In our analysis, we found a strong
positive correlation of ρ = 0.92 between flow robustness
and the giant component ratio, indicating that networks with
higher flow resilience also tend to maintain larger connected
components. Given this high correlation, we primarily rely
on flow robustness to evaluate the structural importance of
nodes and groups within the network while also considering
the effects on overall network connectivity and cohesion.

G. Network Resilience Assessment

To assess the structural significance of the groups extracted
by each method, we conducted a comprehensive network
resilience analysis, drawing on methodologies established in
prior studies [1]. Specifically, for each structural detection
approach, we systematically removed the groups identified by
that method from the recommendation network and quantified
the resulting fragmentation of the network. Fragmentation was
measured in terms of the number of disconnected or isolated
clusters emerging after group removal, with higher fragmen-
tation scores indicating a more pronounced disruption to the
network’s overall cohesion and connectivity. This approach
enabled us to evaluate the relative influence of different struc-
tural groupings on the flow of information and the structural
integrity of the recommendation network. To provide a con-
sistent basis for cross-method comparison, we subsequently
ranked the top five groups derived from focal structure analysis
(FSA) and from community detection methods according to

155International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

their respective contributions to network fragmentation. In the
case of centrality-based groupings, we selected top-ranked
nodes such that the cumulative size of these nodes matched
the size of the top five focal structures, ensuring a fair and
equitable comparison across all methods. By combining these
analyses, we obtained a nuanced understanding of which
structural configurations most critically sustain or disrupt the
network’s connectivity, thereby shedding light on the under-
lying mechanisms through which content traps may influence
user traversal within YouTube’s recommendation ecosystem.

H. Topic Modeling and Sensitivity Analysis

To examine the thematic content within network structures,
we employed the BERTopic model [23], a state-of-the-art
topic modeling approach that can extract interpretable topics
from large text corpora. BERTopic was chosen over traditional
methods such as Latent Dirichlet Allocation (LDA) [32] and
Non-negative Matrix Factorization (NMF) due to its superior
ability to capture semantic relationships and contextual nu-
ances, enabling the generation of more refined and granular
topics. This capability allowed us to gain deeper insights
into the thematic composition of videos within each network
structure.

Given the length of YouTube video transcripts, BERTopic’s
token limitation (maximum 512 tokens) posed a challenge.
To address this, transcripts were split into multiple coherent
chunks, each under 512 words, with splits occurring at sen-
tence boundaries to preserve contextual integrity. This strat-
egy minimized information loss, reduced noise, and ensured
more accurate topic extraction. Each identified topic was then
mapped to its corresponding video ID, allowing us to quantify
the distribution of topics across videos in each focal structure
and assess the diversity or concentration of thematic content.

1) Content Trap Identification: A content trap within a
focal structure was operationally defined as a scenario where a
single topic dominated more than θ% of the videos. Formally,
the threshold T for detecting a content trap is expressed as:

T =
ntopic

ntotal
> θ (5)

where
• T represents the detection of a content trap within a

network structure,
• ntopic denotes the number of videos sharing a specific

topic, and
• ntotal is the total number of videos in the focal structure.
Key network structures exceeding this threshold were classi-

fied as containing content traps, highlighting clusters in which
the recommendation algorithm disproportionately favored a
single topic. Such homogeneity limits exposure to diverse
content, potentially guiding users toward repeated engagement
with similar or attractor videos. This identification provides
insights into the structural and algorithmic mechanisms that
contribute to content traps and their implications for user
experience.

2) Sensitivity Analysis: To rigorously evaluate the degree of
topical homogeneity within the structurally identified groups,
we performed a sensitivity analysis over a range of thresh-
olds spanning from 0.4 to 0.7. In this framework, a focal
structure was deemed topically homogeneous if a single
BERTopic-generated topic encompassed at least a proportion
θ ∈ [0.4, 0.7] of its constituent videos. Thresholds set below
0.4 were found to be overly permissive, often resulting in false
positives by categorizing broadly themed or loosely connected
groups as homogeneous. Conversely, thresholds above 0.7
proved excessively stringent, excluding many groups that,
while not perfectly uniform, nonetheless exhibited signifi-
cant thematic coherence indicative of potential content traps.
By selecting the threshold range of 0.4–0.7, we established
a balanced and meaningful criterion that captures genuine
instances of thematic dominance without overgeneralizing
or being unduly restrictive. This systematic exploration of
threshold sensitivity not only facilitated a robust assessment
of content homogeneity but also enhanced the interpretability
and reliability of our content trap detection methodology,
ensuring that the identified clusters represent substantively
cohesive and structurally relevant thematic groupings within
the recommendation network.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

We evaluated each structural detection method by quantify-
ing the number of their top (k = 5) extracted groups that
exhibited high topical uniformity across varying thresholds
(θ ∈ {0.4, 0.5, 0.6, 0.7}). A group was labeled as a potential
content trap if a single BERTopic-generated topic accounted
for at least θ proportion of the group’s videos. This evaluation
allowed us to assess the alignment between structural cohesion
and semantic homogeneity in the recommendation network.

Figure 3 illustrates the number of potential content traps
identified by each method across different thresholds. FSA
consistently outperformed community detection algorithms
(Louvain, Leiden, and Label Propagation) in surfacing groups
with high thematic concentration. Notably, under moder-
ate thresholds (θ = 0.5, 0.6), FSA also surpassed several
centrality-based groupings. At the lower threshold (θ = 0.4),
both Eigenvector centrality and FSA identified five highly
homogeneous groups, reaching the maximum detectable under
our ranking constraint (k = 5). These results suggest that
FSA is robust in detecting cohesive groups even when varying
the sensitivity threshold, highlighting its utility in identifying
latent content traps.

Table II provides a detailed summary of the top k = 3
groups ranked by each method, showing node counts and
the size of the dominant topic within each group. FSA’s
top-ranked group comprised 127 videos, with 108 associated
with a single topic, resulting in a dominance score of 85%.
This demonstrates FSA’s ability to surface clusters where
algorithmic recommendation can disproportionately favor a
single topic, potentially constraining user exposure to diverse
content. In contrast, while closeness centrality and Louvain
occasionally captured strong topic clusters in lower-ranked

156International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. NODE COUNT AND MAX TOPIC SIZE FOR TOP 5 NETWORK STRUCTURES ACROSS SNA APPROACHES

Rank Metric Betweenness Closeness Degree EigenVector FSA Label Prop. Leiden Louvain

Rank 1 NodeCount 127 127 127 127 127 89 94 92
Rank 1 MaxTopicSize 50 104 59 60 108 35 49 27
Rank 2 NodeCount 32 32 32 32 32 57 88 91
Rank 2 MaxTopicSize 23 25 27 31 17 16 28 45
Rank 3 NodeCount 28 28 28 28 28 51 87 88
Rank 3 MaxTopicSize 26 7 9 12 21 31 44 28

Figure 3. Number of potential content traps per method under varying topical uniformity thresholds.

groups, their performance was inconsistent. For instance,
Louvain’s top-ranked group contained only 27 videos under a
single topic, despite better performance in subsequent ranks.
Overall, FSA demonstrated stable topical cohesion across all
ranks, reinforcing its effectiveness in identifying structurally
and semantically cohesive content traps.

To visually contextualize these findings, Figures 4, 5, and 6
present network visualizations of the top three focal structures
identified via FSA. Red nodes indicate dominant topics, while
blue nodes represent associated videos within the respective
group. The overwhelming dominance of a single topic within
each group underscores the presence of tightly bound thematic
pockets, directly reflecting potential content traps. By exam-
ining these structures, we observe how FSA captures not only
densely connected subgraphs but also semantically coherent
content clusters, illustrating the interplay between network
topology and content homogeneity.

These results indicate that FSA, despite being primarily
structurally grounded, excels in surfacing latent thematic at-
tractors within recommendation networks. Unlike community
detection methods, which often extract large but semantically
heterogeneous clusters, or centrality-based methods that em-
phasize hub nodes without guaranteeing topical coherence,
FSA identifies smaller, self-reinforcing topical pockets. The
practical implication is that content traps may emerge in
seemingly modest subgraphs where high structural connec-
tivity aligns with strong thematic homogeneity. Recognizing
such focal structures provides actionable insight into how
recommendation algorithms can inadvertently restrict content
diversity, potentially shaping user engagement patterns and
reinforcing specific themes over time.

V. CONCLUSION AND FUTURE WORK

In this study, we proposed a comprehensive network and
topic-based framework for detecting content traps within

157International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Network visualization of Ranked 1 focal structure showing red
topic nodes linked to blue video nodes leading to a potential content trap.

Figure 5. Network visualization of Ranked 2 focal structure showing red
topic nodes linked to blue video nodes leading to a potential content trap.

YouTube’s recommendation network. By leveraging Focal
Structure Analysis (FSA) alongside a suite of traditional social
network analysis (SNA) approaches, we provided a nuanced
evaluation of how structural cohesion relates to thematic con-
sistency in recommendation networks. Our methodology in-
corporates a sensitivity-based assessment of topical uniformity,
enabling a fine-grained understanding of how closely related
content clusters emerge and persist within the network. The
results of our analysis reveal that certain structurally cohesive
groups, particularly those identified through focal structures,
consistently exhibit higher thematic alignment compared to
groups derived from conventional community detection algo-
rithms. In several cases, these focal structures even outperform

Figure 6. Network visualization of Ranked 3 focal structure showing red
topic nodes linked to blue video nodes leading to a potential content trap.

centrality-based groupings across varying threshold levels,
highlighting the importance of considering both structural and
topical dimensions when analyzing recommendation networks.
These findings underscore the potential of focal structures as
a robust tool for detecting algorithmically reinforced content
traps, offering insights into how recommendation systems
may unintentionally guide users toward narrow and repetitive
content.

While our current study primarily focused on structural and
thematic properties, there exist several promising avenues for
future research. Incorporating temporal dynamics could allow
researchers to examine how content traps evolve over time,
capturing the emergence, persistence, and potential decay of
highly cohesive content clusters. Similarly, integrating sen-
timent analysis and user behavior metrics could provide a
richer understanding of how these traps influence user engage-
ment, perception, and decision-making within the platform.
Beyond YouTube, extending the framework to other datasets
and content platforms would enable comparative analyses,
offering valuable insights into the similarities and differences
in algorithmic content curation practices across platforms.
Such extensions could further inform the design of intervention
strategies aimed at mitigating the influence of content traps, ul-
timately contributing to more diverse and balanced information
ecosystems. Taken together, our study lays the groundwork for
a multi-dimensional approach to understanding and addressing
the structural and thematic mechanisms underlying algorithmic
recommendation systems.

This study presents a network and topic-based framework
for detecting content traps in YouTube’s recommendation
network. We evaluate FSA alongside multiple SNA approaches
using a sensitivity-based assessment of topical uniformity. Our
findings demonstrate that certain structurally cohesive groups,
particularly those identified via focal structures, exhibit higher

158International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

thematic consistency than those derived from community
detection methods, and in some cases, outperform centrality-
based groupings across varying threshold levels.

While our focus was on structural and thematic properties,
future work may incorporate temporal dynamics, sentiment, or
user behavior to better understand the persistence and impact
of content traps. Additionally, applying this framework across
other datasets and other platforms could offer comparative
insights into algorithmic content curation.

ACKNOWLEDGEMENTS

This research is funded in part by the U.S. National
Science Foundation (OIA-1946391, OIA-1920920), U.S. Of-
fice of the Under Secretary of Defense for Research and
Engineering (FA9550-22-1-0332), U.S. Army Research Of-
fice (W911NF-23-1-0011, W911NF-24-1-0078, W911NF-25-
1-0147), U.S. Office of Naval Research (N00014-21-1-2121,
N00014-21-1-2765, N00014-22-1-2318), U.S. Air Force Re-
search Laboratory, U.S. Defense Advanced Research Projects
Agency, the Australian Department of Defense Strategic Policy
Grants Program, Arkansas Research Alliance, the Jerry L.
Maulden/Entergy Endowment, and the Donaghey Foundation
at the University of Arkansas at Little Rock. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the funding organizations. The researchers
gratefully acknowledge the support.

REFERENCES

[1] M. M. I. Bhuiyan, S. Shajari, and N. Agarwal, “Resilience
and node impact assessment in youtube commenter networks
leveraging focal structure analysis,” The Eleventh International
Conference on Human and Social Analytics (HUSO 2025),
2025.

[2] M. M. I. Bhuiyan and N. Agarwal, “Identification and char-
acterization of content traps in youtube recommendation net-
work,” The Seventeenth International Conference on Informa-
tion, Process, and Knowledge Management (eKNOW), 2025.

[3] M. M. I. Bhuiyan and N. Agarwal, “Detecting algorithmic
homophily in recommendation graphs via weighted topic dis-
tribution,” 2025 IEEE 37th International Conference on Tools
with Artificial Intelligence (ICTAI), 2025.

[4] L. C. Freeman, “Centrality in social networks conceptual
clarification,” Social Networks, vol. 1, no. 3, pp. 215–239,
1978.

[5] U. Brandes, “A faster algorithm for betweenness centrality,”
Journal of Mathematical Sociology, vol. 25, no. 2, pp. 163–
177, 2001.

[6] P. Bonacich, “Power and centrality: A family of measures,”
American Journal of Sociology, vol. 92, no. 5, pp. 1170–1182,
1987.

[7] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
“Fast unfolding of communities in large networks,” Journal
of Statistical Mechanics: Theory and Experiment, vol. 2008,
no. 10, P10008, 2008.

[8] V. A. Traag, L. Waltman, and N. J. van Eck, “From louvain to
leiden: Guaranteeing well-connected communities,” Scientific
Reports, vol. 9, no. 1, pp. 1–12, 2019.

[9] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear
time algorithm to detect community structures in large-scale
networks,” Physical Review E, vol. 76, no. 3, p. 036 106, 2007.

[10] S. Fortunato, “Community detection in graphs,” Physics Re-
ports, vol. 486, no. 3–5, pp. 75–174, 2010.

[11] F. Şen, R. Wigand, N. Agarwal, S. Tokdemir, and R. Kasprzyk,
“Focal structures analysis: Identifying influential sets of in-
dividuals in a social network,” Social Network Analysis and
Mining, vol. 6, pp. 1–22, 2016.

[12] M. Alassad, M. N. Hussain, and N. Agarwal, “Comprehensive
decomposition optimization method for locating key sets of
commenters spreading conspiracy theory in complex social
networks,” Central European Journal of Operations Research,
vol. 30, no. 1, pp. 367–394, 2022.

[13] V. B. Bertoni, T. A. Saurin, and F. S. Fogliatto, “How to
identify key players that contribute to resilient performance: A
social network analysis perspective,” Safety Science, vol. 148,
p. 105 648, 2022.

[14] X. Liu et al., “Network resilience,” Physics Reports, vol. 971,
pp. 1–108, 2022.

[15] M. J. Alenazi and J. P. Sterbenz, “Comprehensive compar-
ison and accuracy of graph metrics in predicting network
resilience,” in 2015 11th International Conference on the
Design of Reliable Communication Networks (DRCN), IEEE,
2015, pp. 157–164.

[16] B. Bollobás and B. Bollobás, Random graphs. Springer, 1998.
[17] E. Pariser, The filter bubble: How the new personalized web

is changing what we read and how we think. Penguin, 2011.
[18] A. Bechmann and K. L. Nielbo, “Are we exposed to the same

“news” in the news feed? an empirical analysis of filter bubbles
as information similarity for danish facebook users,” Digital
Journalism, vol. 6, no. 8, pp. 990–1002, 2018.

[19] H. Hosseinmardi et al., “Evaluating the scale, growth, and
origins of right-wing echo chambers on youtube,” in Proceed-
ings of the International AAAI Conference on Web and Social
Media, vol. 15, 2021, pp. 197–208.

[20] M. H. Ribeiro, R. Ottoni, R. West, V. A. Almeida, and W.
Meira, “Auditing radicalization pathways on youtube,” in Pro-
ceedings of the 2020 Conference on Fairness, Accountability,
and Transparency, 2020, pp. 131–141.

[21] S. Koehler, M. Stadelmaier, et al., “Topic diversity in rec-
ommender systems,” Information Processing & Management,
vol. 58, no. 3, p. 102 536, 2021.

[22] K. Zhou, Y. Yang, X. Wang, and N. Z. Gong, “Recommender
systems: A survey on privacy, fairness, and bias,” ACM Trans-
actions on Recommender Systems, vol. 1, no. 1, pp. 1–42,
2020.

[23] M. Grootendorst, “Bertopic: Neural topic modeling
with a class-based tf-idf procedure,” arXiv preprint
arXiv:2203.05794, 2022.

[24] M. I. Gurung, M. M. I. Bhuiyan, A. Al-Taweel, and N.
Agarwal, “Decoding youtube’s recommendation system: A
comparative study of metadata and gpt-4 extracted narratives,”
in Companion Proceedings of the ACM on Web Conference
2024, 2024, pp. 1468–1472.

[25] M. I. Gurung, N. Agarwal, and M. M. I. Bhuiyan, “How does
semiotics influence social media engagement in information
campaigns?” Proceedings of the 58th Hawaii International
Conference on System Sciences, 2025.

[26] M. I. Gurung, N. Agarwal, M. M. I. Bhuiyan, and D. Poudel,
“Symbolic signals on instagram: How visual media shapes
engagement, emotion, trust, and diffusion,” Social Network
Analysis and Mining, vol. 15, no. 1, pp. 1–16, 2025.

[27] M. M. I. Bhuiyan and N. Agarwal, “Structure, semantics, and
attraction: Analyzing homophily in recommender networks,”
in International Conference on Social Computing, Behavioral-
Cultural Modeling and Prediction and Behavior Representa-
tion in Modeling and Simulation, Springer, 2025, pp. 173–182.

159International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[28] R. Finlay, “The voyages of zheng he: Ideology, state power,
and maritime trade in ming china,” Journal of the Historical
Society, vol. 8, no. 3, pp. 327–347, 2008.

[29] Google Developers, YouTube Data API, https : / / developers .
google.com/youtube/v3, Accessed: April. 10, 2025, No Date.

[30] M. C. Cakmak and N. Agarwal, “High-speed transcript col-
lection on multimedia platforms: Advancing social media
research through parallel processing,” in 2024 IEEE In-
ternational Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2024, pp. 857–860. DOI: 10 . 1109 /
IPDPSW63119.2024.00153.

[31] C. Spearman, “The proof and measurement of association
between two things,” The American Journal of Psychology,
vol. 100, no. 3/4, pp. 441–471, 1987.

[32] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” Journal of Machine Learning Research, vol. 3,
no. Jan, pp. 993–1022, 2003.

160International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Developing Domain-Specific Threat Models for Greater Software Security
Aspen Olmsted

School of Computer Science and Data Science
Wentworth Institute of Technology

Boston, MA 02115
olmsteda@wit.edu

Abstract— Developing secure software applications in modern,
complex environments presents significant challenges, as
traditional threat modeling approaches often fall short in
addressing domain-specific vulnerabilities. This paper introduces
and discusses three novel, domain-specific threat models designed
to enhance secure software development: BIRFS, CRIRTA, and
PERTD. BIRFS (Bias, Input, Reasonable, Forensics, Sensitive) is
a specialized threat model tailored for software systems that
leverage Artificial Intelligence and Machine Learning algorithms,
focusing on unique risks arising from data inputs, model behavior,
and algorithmic biases. CRIRTA (Column, Row, Inference,
Relationship, Table, Availability) provides a comprehensive
framework for identifying and mitigating security threats in
database applications, moving beyond generic data flow analysis
to address specific database vulnerabilities. PERTD (Partition,
Execution, Requisite, Timing, Data) is designed for Cloud
Application Threat Modeling, emphasizing the distinct security
challenges inherent in cloud environments, including distributed
architecture, shared tenancy, and dynamic resource allocation.
Collectively, these models aim to enable proactive risk
identification during the design phase, enabling the
implementation of targeted mitigation strategies earlier in the
software development lifecycle. By moving beyond a sole focus on
malicious user threats, these models address a broader spectrum
of vulnerabilities stemming from poor design, misunderstood use
cases, and environmental changes, thereby contributing to more
robust and resilient software systems across diverse domains.

Keywords- cyber-security; software engineering; software
development lifecycle

I. INTRODUCTION

The landscape of software development has undergone a
profound transformation in recent decades, driven by the
proliferation of cloud computing, the pervasive integration of
Artificial Intelligence (AI) and Machine Learning (ML)
algorithms, and the ever-increasing reliance on complex
database systems. While these advancements have unlocked
unprecedented capabilities and efficiencies, they have
simultaneously introduced a new generation of security
challenges. Traditional approaches to secure software
development, often centered on identifying and mitigating
threats from malicious actors, are proving increasingly
inadequate. Many contemporary vulnerabilities stem not from
external attacks, but from inherent design flaws, a lack of
understanding of system use cases, and insufficient planning for
dynamic environmental changes.

In this context, the need for robust and adaptable threat
modeling has become paramount. Threat modeling is a proactive
security practice that enables developers and security
professionals to identify potential threats and vulnerabilities
early in the software development lifecycle, thereby allowing for
the implementation of effective mitigation strategies before code
is even written. However, the one-size-fits-all approach to threat

modeling often fails to capture the nuanced risks specific to
particular domains or technological paradigms. For instance, the
security considerations for a cloud-native application differ
significantly from those of an AI-driven system or a highly
sensitive database.

This paper addresses this critical gap by introducing and
discussing three novel, domain-specific threat models designed
to enhance the security posture of modern software applications.
We propose:

BIRFS (Bias, Input, Reasonable, Forensics, Sensitive): A
specialized threat model meticulously crafted for software
systems that integrate Artificial Intelligence and Machine
Learning algorithms. BIRFS extends traditional security
concerns to encompass unique risks such as data poisoning,
model manipulation, algorithmic bias, and fairness issues, which
generic threat models often overlook.

CRIRTA (Column, Row, Inference, Relationship, Table,
Availability): A comprehensive framework developed to
identify and mitigate security threats specifically within
database applications. CRIRTA moves beyond conventional
data flow analysis to address the unique vulnerabilities inherent
in data storage, retrieval, and management, ensuring robust data
protection and system resilience.

PERTD (Partition, Execution, Requisite, Timing, Data): A
dedicated threat model for Cloud Application Threat Modeling.
PERTD focuses on the distinct security challenges posed by
cloud environments, including shared tenancy, complex
distributed architectures, API security, and data privacy
concerns across multi-tenant infrastructures.

By adopting these domain-specific models, organizations
can achieve a more granular and practical approach to
identifying and mitigating risks, leading to the development of
inherently more secure, resilient, and trustworthy software
systems. The subsequent sections of this paper will delve into
the details of each of these models, outlining their principles,
methodologies, and practical applications, followed by a
discussion of their collective impact on the future of secure
software development. This work is an extension of a previous
published conference paper [1].

 The organization of the paper is as follows. Section II
describes the related work and the limitations of current
methods. Section III describes workflow engines used in our
motivating example of a distributed cloud application. Section
IV discusses a current Threat Modeling technique called
STRIDE. Section V discusses an alternative Threat modeling
technique called DREAD. In Section VI, we give a motivating
example from our distributed system modeling. Section VII
describes our distributed modeling methodology. In Section
VIII, we provide a motivating example from our database
system modeling. Section IX describes our database modeling
methodology. In Section X, we give a motivating example for

161International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

our AI/ML system modeling. Section XI describes our AI/ML
modeling methodology. We conclude and discuss future work
in Section XII.

II. RELATED WORK

Functional requirements can be defined and represented in
various ways. While these requirements serve as the foundation
for software development, non-functional requirements (NFRs)
provide the essential guidelines for coding implementation.
Many authors have examined NFRs and the challenges of
incorporating them into the design process. Pavlovski and Zou
[1] NFRs are defined as specific behaviors and operational
constraints, including performance expectations and policy
limitations. Despite many discussions surrounding them, they
are often not given the attention they deserve.

Glinz [2] suggests categorizing functional and non-
functional requirements to ensure that they are inherently
considered during application development. Alexander [3]
points out that the language used to describe requirements is
essential, noting that words ending in “-ility,” such as reliability
and verifiability, often refer to NFRs. Much of this research
focuses on identifying NFRs. Our work builds on these
foundations by applying domain-specific models using our
proposed modeling technique.

Ranabahu and Sheth [4] explore four different modeling
semantics to represent cloud application requirements: data,
functional, non-functional, and system. Their work primarily
addresses functional and system requirements, with some
overlap in non-functional requirements from a system
perspective. They built upon research conducted by Stuart, who
defined semantic modeling languages for modeling cloud
computing requirements throughout the three phases of the
cloud application life cycle: development, deployment, and
management. Our work fills in the gap regarding the semantic
category of non-functional requirements.

Ranabahu and Sheth [4] use Unified Modeling Language
(UML) to model only functional requirements. UML [6] is a
standardized notation for representing software systems'
interactions, structures, and processes. It consists of various
diagram types, with individual diagrams linked to different
perspectives of the same part of a software system. We utilize
UML to express non-functional requirements as a secondary
step following the PERTD models.

Integrating UML Sequence, Activity, and Class diagrams
can enhance the semantics of our models. UML offers
extensibility mechanisms that allow designers to add new
semantics to a model. One such mechanism is a stereotype,
which helps extend the vocabulary of UML to represent new
model elements. Traditionally, software developers interpret
these semantics and manually translate them into program code
in a hard-coded manner. In our book [6], we marry the models
generated by each phase of the software development lifecycle
into with threat modeling and risk mitigation techniques.

The Object Constraint Language (OCL) [8] is part of the
official Object Management Group (OMG) standard for UML.
An OCL constraint specifies restrictions for the semantics of a
UML specification and is considered valid as long as the data is
consistent. Each OCL constraint is a declarative statement in
the design model that signifies correctness. The expression of
the constraint occurs at the class level, while enforcement

happens at the object level. Although OCL has operations to
observe the system state, it does not include functions to modify
it.

JSON [9] stands for "JavaScript Object Notation," a simple
data interchange format that began as a notation for the World
Wide Web. Since most web browsers support JavaScript, and
JSON is based on JavaScript, it is straightforward to support it
there, which stands for "JavaScript Object Notation," a simple
format used for data interchange that originated as a notation
for the World Wide Web. Since most web browsers support
JavaScript and JSON is based on JavaScript, it is easy to work
with in web environments. Many cloud-based web services now
exchange data in JSON format. JSON Schemas [10] define
correctness for data passed in JSON format. We utilize an
extended form of JSON schemas on the aggregated data from
several web services.

Our contribution to secure software development involves
new Threat Modeling techniques, coupled with modeling
standards, such as UML and OCL, utilizing their extensibility
mechanism of stereotypes to model non-functional
requirements effectively.

III. WORKFLOW ENGINES

Workflow engines like Zapier [11] and Power Automate
[12] are powerful automation tools that enable users to create
and manage workflows for integrating and automating tasks
across various applications and services, whether in the cloud
or on-premises.

Zapier is a popular cloud-based automation platform that
allows users to connect to different web applications and
automate their workflows. It operates on a simple "trigger-
action" model, where an event in one application triggers an
action in another. Users can create "Zaps" (automated
workflows) by selecting a trigger and defining the subsequent
actions. For example, when a new email arrives in Gmail
(trigger), the attachments can be automatically saved to Google
Drive (action).

Zapier supports numerous apps and services, including
well-known ones like Gmail, Slack, Salesforce, and Trello. It
features a user-friendly interface, pre-built Zap templates for
everyday use cases, and advanced options like filters, delays,
and data transformations. Additionally, Zapier allows for multi-
step Zaps, making it possible to create complex workflows with
multiple actions and conditions.

Power Automate is a cloud-based service from Microsoft
that allows users to automate workflows and integrate
applications and services within the Microsoft ecosystem and
beyond. It offers connectors for various applications, including
Microsoft 365 apps (such as Outlook and SharePoint),
Dynamics 365, Azure services, and third-party services like
Salesforce, Dropbox, and Twitter.

Power Automate features a visual design interface where
users can create workflows by combining triggers, actions, and
conditions. Available triggers include email arrivals, button
clicks, data changes, and scheduled events. Actions can involve
sending emails, creating tasks, updating records, etc. Power
Automate offers advanced capabilities like loops, parallel
branches, and approval processes.

162International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Both Zapier and Power Automate provide extensive
libraries of pre-built templates and connectors, making it easier
for users to begin automating tasks. They offer options to
monitor and manage workflows, handle errors, and track
activity logs. These platforms cater to users with varying
technical expertise, from business users to developers, and help
automate repetitive tasks, streamline processes, and enhance
productivity.

IV. STRIDE THREAT MODELING

STRIDE [12] is a threat modeling framework that offers a
structured approach for identifying and analyzing threats in
software systems. It helps security practitioners and developers
understand potential risks and implement appropriate security
controls. STRIDE is an acronym representing six categories of
threats:

1. Spoofing Identity: This category involves attackers
impersonating legitimate users or entities to gain unauthorized
access or deceive the system. For instance, attackers may spoof
a user's identity by stealing credentials or manipulating
authentication mechanisms.

2. Tampering with Data: Tampering threats involve the
unauthorized modification or alteration of data within the
system. Attackers may tamper with data in transit, modify
stored data, or manipulate system parameters to achieve desired
outcomes. For example, an attacker could alter the contents of
a database, inject malicious code into an application, or change
parameters to bypass security checks.

3. Repudiation: Repudiation threats allow users to deny
their involvement in specific transactions or activities, posing
challenges for auditing and accountability. For instance, an
attacker might modify logs or manipulate transaction records to
evade detection or deny their actions.

4. Information Disclosure: This category addresses threats
related to unauthorized exposure or disclosure of sensitive
information. Attackers may exploit vulnerabilities to access
confidential data, such as personal information, financial
records, or intellectual property. This can happen through
insecure data transmission, weak access controls, or
information leakage via error messages.

5. Denial of Service: Denial of Service (DoS) threats aim to
disrupt or degrade a system's availability or performance.
Attackers may overload resources, exhaust system capacity, or
exploit vulnerabilities to cause a service outage, rendering the
system unresponsive or unusable for legitimate users.

6. Elevation of Privilege: Elevation of Privilege threats
involve attackers gaining unauthorized access to higher
privileges or permissions than they should have. By exploiting
vulnerabilities or design flaws, attackers can bypass security
controls and gain elevated access rights, leading to
unauthorized data access, system compromise, or further
exploitation.

When applying the STRIDE framework, security
practitioners and developers analyze the software system from
the perspective of each threat category. They identify potential
vulnerabilities and develop corresponding mitigation strategies
to address the threats. This analysis facilitates informed

decisions regarding security controls, system design
improvements, and the prioritization of security efforts.

V. DREAD THREAT MODELING

DREAD is a threat modeling framework designed to assess
and prioritize software vulnerabilities based on their potential
impact. The acronym DREAD stands for five key factors used
to evaluate threats:

1. Damage Potential: This factor refers to the extent of harm
that could be caused if a vulnerability is exploited. It evaluates
the impact, which can range from minor inconveniences to
severe consequences like data breaches, system compromises,
or financial losses.

2. Reproducibility: This measures how easily an attacker
can reproduce or exploit a vulnerability. Vulnerabilities that are
consistently easy to exploit are considered more dangerous than
those that require complex or unpredictable conditions for
exploitation.

3. Exploitability: This factor assesses the level of skill or
effort needed to exploit a vulnerability. Vulnerabilities easily
exploited with readily available tools or techniques pose a
higher risk. Conversely, vulnerabilities that are difficult to
exploit or require specialized knowledge are considered lower
risk.

4. Affected Users: This evaluates the number of users or
systems a vulnerability could impact. A vulnerability affecting
numerous users or critical systems is considered more
significant than one impacting only a limited subset of users.

5. Discoverability: This assesses how likely an attacker is to
find the vulnerability. Vulnerabilities that are easily
discoverable—through public disclosures, known attack
techniques, or automated scanning tools—are riskier than those
that are harder to find or require advanced reconnaissance.

Using the DREAD framework, each factor is scored on a
scale from 0 to 10, with 0 being the least concerning and ten
being the most critical. These scores help prioritize
vulnerabilities and allocate resources for mitigation efforts.
Higher scores indicate a higher priority for addressing the
identified vulnerabilities.

While DREAD is a valuable tool for assessing and
prioritizing vulnerabilities based on their potential impact, it
should be used alongside other threat modeling techniques and
considerations to ensure a comprehensive security analysis and
informed decision-making.

VI. DISTRIBUTED MODEL MOTIVATING EXAMPLE

The challenge with the STRIDE and DREAD threat models
is that they primarily focus on vulnerabilities associated with
malicious user activities. However, many risks arise from
architecture, the environment, or human error.

Consider a common architecture used by many businesses
today: data generated by an online transaction processing
(OLTP) system, either stored on-premises or logically on-
premises, is synchronized to a cloud system considered off-
premises and beyond the organization's control. This scenario
is not uncommon in today's business landscape.

163International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Consider a large performing arts venue employing a local
SQL Server-based system for ticketing and donation
transactions. Meanwhile, its marketing department uses a
cloud-based email and SMS marketing system. The OLTP data
must be extracted, translated, uploaded, and loaded regularly
for the marketing system to function correctly.

Various issues can arise when multiple processes and data
are transferred across networks that span domain boundaries. A
UML activity diagram illustrates the steps involved in moving
data from the on-premises OLTP system to the cloud-based
system used by the marketing team. This model shows that
activities occur in both environments. The challenge with the
STRIDE and DREAD threat models is that the vulnerabilities
modeled and the matching remediations target malicious user
activities. Many times, risks come from architecture,
environment, or human error.

A motiving example is an architecture that is used in many
businesses today where data that is generated in OLTP systems
that are either stored on-premises or logically on-premises is
synchronized to a cloud system that is considered off-premises
and outside the domain of control of the organization. To
understand this better, consider a large performing arts venue
that utilizes a local SQL Server-based system to process
ticketing and donation transactions. The marketing department
uses a cloud-based system for email and SMS marketing. The
OLTP data must be extracted, translated, uploaded, and loaded
regularly for the marketing system to be functional.

Understanding the data transfer process is crucial to prevent
potential risks. Figure 1 shows a UML activity diagram for
moving data from the on-premises OLTP system to the cloud-
based system used by the marketing folks. In the model, you
will see that activities happen in both partitions.

Figure 2 presents a model outlining the execution path for
retrieving data from the cloud system. The data includes sending
activity for both emails and SMS text messages. This sending
activity can be substantial, encompassing tuples for sends,
opens, clicks, and bounces. Additionally, information regarding
communication preferences and unsubscribed data is retrieved.

The marketing department requires service availability and
data integrity for its business operations. For instance, NFRs
could specify that the system must be available 99.999% of the
time or that the data must be no more than 24 hours old.
Whenever a distributed system is proposed, a model should be
developed to represent these NFRs and the threats to the system's
ability to meet them.

Unfortunately, the focus of STRIDE and DREAD on
malicious users does not adequately address many of the risks in
our motivating example. Table 1 Illustrates a STRIDE model
corresponding to the update activity depicted in Figure 1, while
Table 2 shows the STRIDE model related to the download
activity from Figure 2. In the STRIDE model, actions are at risk
from malicious users; however, many steps are also vulnerable
to environmental issues that can impact the system's availability
and integrity. Examples of these issues include network and
system outages, concurrent computational usage on equipment,
and a lack of control over the quality of source data.

VII. PERTD MODEL

We developed the PERTD Model to better assess the risks
associated with distributed applications [13]. This model
addresses four main environmental risk categories for
distributed systems:

1. PARTITION

Figure 2 - Download Activity

Table 1 - Upload Activity STRIDE Model

Action S T R I D E

Timerfires

PrepareDataForUpload

SendData X X X X

ReceiveData

LoadData

BuildViews

Table 2 - Download Activity STRIDE Model

Action S T R I D E

Timerfires

PrepareDataForDownload

SendData X X X X

ReceiveData

LoadData

Figure 1 - Upload Activity

164International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Activities vulnerable to partition errors will fail if a network
is partitioned between on-premises devices and the cloud. Risk
reduction strategies include:

- Pausing the complete workflow and retrying

- Utilizing previous execution data

- Employing alternative data sources

2. EXECUTION

Activities that are susceptible to execution errors may fail
due to ambiguous code requirements, leading to runtime or
tooling errors. For example, queries that generate data might fail
with future datasets. Risk reduction measures include:

- Utilizing previous execution data (most systems create a
copy before execution)

- Using alternative data sources

3. REQUISITE

Activities with requisite vulnerabilities depend on
prerequisite activities. If a prerequisite fails, the dependent
activity becomes stale. Risk reduction can involve:

- Utilizing previous execution data

- Employing alternative data sources

4. TIMING

Activities at risk due to timing need to finish within a
specific time window or under a threshold duration. Risk
reduction strategies include:

- Utilizing previous execution data (most systems create a
copy before execution)

- Using alternative data sources

5. DATA

Activities are at risk because data are often combined from
different sources. Unfortunately, schema correctness specifiers
only apply to one data source. Risk reduction strategies include:

- Additional workflow steps to verify correctness

In Tables 3 and 4, we apply our PERTD model to analyze
risks associated with uploading and downloading activities. The

PERTD model captures significantly more risks than the
STRIDE model.

After identifying NFRs in the PERTD model, we develop
standard UML Class, Sequence, and Activity Diagrams. The
threats to the system are modeled using UML stereotypes. UML
stereotypes extend the standard UML language by introducing
custom or specialized elements, properties, and behaviors. They
allow adding domain-specific annotations, constraints, or
semantics to UML elements, enhancing expressiveness and
tailoring modeling to specific contexts. Stereotypes are
indicated by guillemets (<< >>) placed above the name of the
stereotyped element.

Stereotypes can be attached to classes, messages, attributes,
and activities. With the PERTD model, we incorporated the
four risk categories as stereotypes: <<PARTITION>>,
<<EXECUTION>>, <<REQUISITE>>, <<TIMING>> and
<<DATA>>. These stereotypes are then tagged to messages in
UML Sequence and Activity diagrams, while data classes and
individual attributes can also be tagged if they are susceptible
to these risks.

Additionally, OCL is included to specify invariants that can
define additional semantics related to the correctness of method
calls, classes, or attributes. For instance, if data in a particular
class must be no older than three days, this can be expressed
using the last_update attribute.

To verify data from when it is vulnerable, we utilize an
extended version of JSON Schemas [10]. Our extension allows
the Schema to reference different data sources. JSON schema
supports a CONTAINS operator to verify the existence of an
element in a collection. We added a CONTAINEDIN operator
to span across schemas represented by different data sources in
the distributed system. We also added a NOTCONTAINEDIN
to verify the absence of an element. Figure 3 shows two sample
schemas. The top schema is a simplified version of a patron,
the bottom schema is a simplified version of a ticket. They
share an email field which is designated in the tickets schema
to require the existence in the patron data.

Table 4 - Upload Activity PERTD Model

Action P E R T D

Timerfires X

PrepareDataForUpload X

SendData X X X X

ReceiveData X X X X

LoadData X X X X

BuildViews X X

Table 3 - Download Activity PERTD Model

Action P E R T D

Timerfires X

PrepareDataForDownload X

SendData X X X X

ReceiveData X X X X

LoadData X X X

3 -

4 -

165International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3 - Sample Schema

To mitigate the risk of data integrity issues, we validate the
data against the specified schemas as part of the data
workflow.

VIII. DATABASE MODEL MOTIVATING EXAMPLE

The challenge with the STRIDE and DREAD threat
models for database application security is that the
vulnerabilities modeled and the matching remediations target
malicious user activities. Many times, risks come from
architecture, environment, or human error.

To explore a motivating example, consider an event
ticketing system used in a consortium of performing arts
centers, such as a symphony, opera, ballet, and Broadway
venue. A transaction processing (OLTP) system stores the data
generated from the patron transactions on-premises for ticket
purchases. Data needs to be logically partitioned so patrons are
shared, but only the transaction data appropriate to the
organization is visible on software screens and reports. Patrons
can go to individual constituent box offices to work with an
agent on transactions related to that constituent organization, or
they can use self-service on a web or mobile interface that
allows them to purchase tickets to any constituent organization
or see all their individual transaction histories.

To illustrate a weakness in the traditional threat models
when applied to database security, we picked out four use cases
from our motivating example:

 A constituent box office agent accessing a patron's
ticket history. In this case, the data rows must be
confidential, so only those related to the
constituent organization should be visible.

 A constituent box office agent selecting a patron's
general admission (GA) seats. In this use case, the

agent should only have access to constituent
inventory and not exceed capacity.

 A patron accessing their ticket history through a
self-service web page. In this case, the data rows
must be confidential to just the patron's data and
not make other patrons' histories available.

 A patron selects general admission (GA) seats
through a self-service web page. In this use case,
the patron should not exceed the venue capacity.

Unfortunately, the focus of STRIDE and DREAD on the

malicious user does not account for many of the risks in our
motivating example. Table 5 shows a STRIDE model to match
the four use cases we are analyzing. Table 6 shows the
equivalent DREAD model. In both models, we can see a large
surface area of vulnerabilities to malicious user attacks. As
stated earlier, most security risks to database software and
software generally come from not understanding and enforcing
security requirements in the software engineering process. This
lack of enforcement leaves an application vulnerable to user
error and malicious attacks.

IX. CRIRTA MODEL

We developed the CRIRTA Model to better model the risks
associated with database applications. The model covers a
database system's seven main environmental risk categories.

A. Column Confidentiality
Activities vulnerable to exposing column confidentiality

have data with sensitive data, where some users should have
restricted read and write access. Other users will need access
to the column values. Risk reduction can include:
 Removing all access at the table level for users who

should not have access.
 Creating database views without the column values and

granting access to these user groups

B. Row Confidentiality

Activities vulnerable to row confidentiality have user
access that must be restricted to specific values for some user
groups. Examples include self-service apps where users can
only see their data, or departmental users can only see
department records. Risk reduction can consist of:

Table 5 - STRIDE Model for Database Software

Action S T R I D E

Agent View of Ticket History X X X X

Agent Reserving GA Seat Selection X X X X

Self-Service View of Ticket History X X X X

Self-Service Reserving GA Seat
Selection

 X X X X

166International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Removing all access at the table level for users who
should not have access.

 Creating database views with where statements that
restrict the rows that are visible to these user groups

C. Column Inference
Activities vulnerable to column inference allow users to

infer other values based on values in these columns. Gender or
race are often examples of this when the greater data population
is relatively homogenous. Risk reduction can include:
 Limiting access to the column to essential users (see

column confidentiality reductions above)

D. Relationship Correctness
Activities vulnerable to relationship correctness issues

have correctness that spans a relationship between tables. An
example would be an order that needs a shipping address that
exists in a customer’s address. Risk reduction can include:
 Utilizing database foreign keys
 Utilizing database check constraints with queries that

check for the existence of rows or values in related tables.
 Utilizing database triggers

E. Table Correctness
Activities vulnerable to table correctness issues have

column values restricted based on other columns or sets of
column values. Risk reduction can include:
 Utilizing database check constraints with predicates that

check row values
 Utilizing database triggers

F. Availability
Activities vulnerable to availability issues often use locks

to access one process at a time. The exclusivity is done with
the database isolation level. Risk reduction can include:
 Minimize code with higher restriction levels
 Table design changes

We model the risks to the motivating example system in
Table 7 - CRICRTA Model that utilizes our CRIRTA model. As
you can see, the CRIRTA model captures many more risks than
the STRIDE and DREAD models.

After identifying NFRs in the CRIRTA model, standard
UML Class, Sequence, and Activity Diagrams are developed.
The threats to the system are modeled by utilizing UML
Stereotypes. UML (Unified Modeling Language) stereotypes
are a way to extend the standard UML language by introducing
custom or specialized elements, properties, and behaviors.
Stereotypes allow you to add domain-specific annotations,
constraints, or semantics to UML elements, making them more
expressive and tailored to specific modeling contexts.
Stereotypes are denoted by guillemets (<< >>) placed above the
name of the element being stereotyped.

Stereotypes can be attached to classes, messages, attributes,
and activities. With the CRIRTA model, we added the six
CRIRTA categories as stereotypes: << ColumnConfidentiality
>>, <<RowConfidentiality >>,<< Column Inference >>,<<
RelationshipCorrectness>>,<<TableCorrectness>>,<<Availabil
ity>>. These stereotypes are then tagged to messages in UML
Sequence and Activity diagrams; data classes and individual
attributes can be tagged with the stereotype if the data in the class
or attribute is susceptible to the risk.

OCL is added to provide invariants that can specify
additional semantics related to the correctness of a method call,
class, or attribute. An example is if data in a particular table
must have a related table with a specific attribute range.

X. AI/ML MODEL MOTIVATING EXAMPLE

The challenge with the STRIDE and DREAD threat

models for applications that consume ML and AI algorithms is
that the vulnerabilities modeled and the matching remediations
are aimed at malicious user activities attacking a system. Many
times, risks come from architecture, environment, or human
error.

A motivating example is an architecture that is used in
many businesses today, where data that is generated in online
transaction processing (OLTP) systems that are either stored
on-premises or logically on-premises is synchronized to a cloud
system that is considered off-premises and outside the domain
of control of the organization. Once the data is in the cloud, it
is augmented utilizing AI or ML algorithms. To understand this
better, consider a large performing arts venue that operates a
local SQL Server-based system to process ticketing and

TABLE 6 - DREAD Model for Database Software

Action D R E A D

Agent View of Ticket History 2 3 7 1 5

Agent Reserving GA Seat Selection 3 3 9 9 2

Self-Service View of Ticket History 6 6 8 3 5

Self-Service Reserving GA Seat
Selection

9 6 9 9 2

Table 7 - CRICRTA Model

Action C R I R T A

Agent View of Ticket History X X X

Agent Reserving GA Seat
Selection

 X X X

Self-Service View of Ticket
History

 X X X

Self-Service Reserving GA
Seat Selection

 X X X

167International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

donation transactions. The marketing department uses a cloud-
based system for email and SMS marketing. The OLTP data
must be extracted, translated, uploaded, and loaded regularly
for the marketing system to be functional.

Once the data is in the cloud, the data is augmented for
several purposes, including segmentation, lookalike matching,
data flows, and personalized advertising. Segmentation
arranges potential customers into groups based on attributes and
activities in the input data. Lookalike matching is used to match
the attributes and activities of new customers to similar
customers who have been with the organization for a more
extended period. Input data is utilized to design interactions
with the new prospects to increase their engagement with the
organization. The input data from the attribute or activities is
also used to design personalized advertisements to motivate the
new prospect to engage in that next activity.

Unfortunately, the input data may have been entered
incorrectly in a self-service fashion, such as through a mobile
application, web page, or kiosk. A tired or poorly trained
customer service representative may have entered the data
incorrectly. A third option for poor input data is the data may
have come incorrectly from an external organization, such as a
biographical data service provider that may suggest updates to
addresses, phone numbers, or email addresses. A fourth option
could be a malicious user intentionally polluting the data in
revenge for some wrong they feel was done to them by the
organization.

The best case is that an improper email is sent or the
prospect displays and ignores an advertisement or offer. Worse
case, an organization's reputation is damaged, and sales and
relationships with customers are lost. It would be best to
discover the vulnerabilities early in the design process or
software development to minimize the risk.

Table 8 shows the four activities that utilize AI or ML in
the cloud arranged in a STRIDE Model. We marked the
columns for spoofing with the data flow activity, as we can
envision a scenario when a user may want to qualify for a new
customer offer by creating a fake account. The rest of the model
is left blank as they are inappropriate threats to the activities.
The small number of threats in our model could lead a software
development team to believe the application is not at risk based
on the limited representation in the STRIDE model.

XI. BIRFS THREAT MODELING

To better model the risks associated with applications that
utilize AI or ML algorithms, we developed the BIRFS Model

[14]. The BIRFS Model covers a process or system's five
leading risk categories that utilize AI or ML algorithms.

B-potential biases in output
The B in BIRFS comes from the risk of potential biases in the
AL or ML algorithm output. AI algorithms can exhibit biases in
their production due to various reasons. These biases can arise
from the data used to train the models, the design of the
algorithms, or both. Here are some familiar sources of biases in
AI algorithms:
─ Biased Training Data: If the training data used to train the

AI model is biased, the model will learn and perpetuate those
biases. For example, if historical data used for training
reflects societal biases, the model may replicate and amplify
those biases.

─ Data Sampling Bias: If the training data does not represent
the entire population, the model may be biased toward the
overrepresented groups. The sampling bias can lead to
inaccurate predictions or decisions for underrepresented
groups.

─ Labeling Bias: Biases in labeling training data can also
contribute to biased models. If the labels used for training
data are biased, the model may learn and propagate those
biases.

─ Algorithmic Bias: The design and structure of the algorithm
itself can introduce bias. The bias may happen if the
algorithm uses feature proxies for sensitive attributes (e.g.,
using ZIP code as a proxy for race) or if the algorithm
inherently reflects certain societal biases.

─ Implicit Bias in Training Examples: Biases in the
examples used to train the model can also contribute to
biased outputs. For instance, if a model is trained on text
from the internet, it may learn and reproduce the biases
present in that text.

─ Lack of Diversity in Development Teams: The
composition of the teams developing AI models can also
influence biases. If development teams lack diversity, there
may be a lack of perspectives and awareness regarding
potential biases in the models.

─ Feedback Loop Bias: Biases can be reinforced through
feedback loops. For example, biased predictions can lead to
biased outcomes, which are then used as input for future
predictions, creating a self-reinforcing cycle.

─ Contextual Bias: The context in which the AI system is
deployed may introduce bias. For instance, a model trained
on data from a specific cultural or geographical context may
not generalize well to other contexts.

Addressing biases in AI algorithms is a complex and ongoing
challenge. It requires careful consideration at every stage of the
AI development process, including data collection, model
training, and deployment. Strategies such as diverse and
representative data collection, regular audits of model outputs,
and involving diverse teams in AI development can help
somewhat mitigate biases.
I - input is outside the domain of control.

Table 8 – AI/ML Activity STRIDE Model

Action S T R I D E

Segmentation

LookALike

Data Flow X

Personalized Advertisements

168International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The I in BIRFS comes from the risk when the input data comes
from outside the organization's control. When it comes to AI
models, some factors and inputs are outside the direct control
of the developers or operators. These external influences can
affect the performance and behavior of AI models in various
ways. Here are some examples:
─ External Data Changes: AI models are often trained on

historical data, and if the real-world data changes over time,
it can impact the model's performance. For example, sudden
shifts in user behavior, market dynamics, or other external
factors might lead to a mismatch between the training data
and the current environment.

─ Changing User Expectations: User expectations and
preferences can evolve. AI models trained to meet specific
user needs may become less effective if user expectations
change, and these changes are beyond the direct control of
the AI developers.

─ Regulatory Changes: Changes in regulations or legal
frameworks can significantly impact how AI models operate,
especially in highly regulated industries. Developers may
need to adapt models to comply with new laws or
regulations.

─ External Security Threats: AI systems can be vulnerable
to external security threats. Malicious actors may attempt to
manipulate or compromise AI models, leading to undesirable
outcomes. These threats are often beyond the control of the
AI developers and require ongoing security measures.

─ Environmental Factors: The performance of AI models
may be affected by environmental factors, such as changes
in weather, network conditions, or other external variables.
For example, a model designed for specific weather
conditions might perform differently in a completely
different climate.

─ Integration with External Systems: AI models are often
integrated into larger systems and workflows. Changes or
issues in these external systems, which are not under the
direct control of AI developers, can impact the overall
performance of the AI model.

─ Global Events and Catastrophes: Unforeseen global
events, such as natural disasters, economic crises, or
pandemics, can have widespread effects on various
industries. AI models operating in affected domains may
face challenges due to disruptions caused by such events.

─ User Feedback and Interactions: User interactions and
feedback can influence the behavior of AI models. Users
providing biased or unrepresentative feedback may impact
the model's learning and performance. User behavior is often
outside the direct control of AI developers.

Addressing the challenges posed by external factors

requires robust system design, ongoing monitoring, and
adaptability. Developers should consider building models that
adapt to environmental changes and implement continuous
monitoring and update mechanisms.
R - output result does not deviate from a reasonable range
The R in BIRFS comes from the risk when the output is wrong
but in a reasonable range for the input data. Ensuring that the

output results of AI algorithms fall within a reasonable and
expected range is crucial for the reliability and safety of AI
systems. Deviations outside a reasonable range can pose risks
and challenges. Here are some considerations related to the risk
of output results deviating from a reasonable range in AI
algorithms:
─ Out-of-Distribution Data: If an AI model encounters data

significantly differently from what it was trained on (out-of-
distribution data), it may produce unpredictable and
unreliable results. The new data ranges can happen if the
model encounters scenarios or inputs not adequately
represented in the training data.

─ Overfitting: Overfitting occurs when a model learns the
training data too well but fails to generalize to new, unseen
data. In such cases, the model may perform well on the
training set but poorly on real-world data, leading to outputs
that deviate from a reasonable range.

─ Data Quality Issues: Poor-quality or biased training data
can contribute to the model learning incorrect patterns or
making inaccurate assumptions. If the data used to train the
model is not representative or contains errors, the model's
outputs may deviate from what is considered reasonable.

─ Lack of Explainability: If an AI model is too complex or
lacks interpretability, it may be challenging to understand
why it produces a particular output. This lack of transparency
can make identifying and addressing deviations from a
reasonable range challenging.

─ Concept Drift: Over time, the underlying patterns in data
may change, a phenomenon known as concept drift. If an AI
model is not regularly updated to adapt to these changes, its
outputs may become less accurate and fall outside the
expected range.

─ Adversarial Attacks: Adversarial attacks involve
intentionally manipulating input data to deceive an AI model
and produce incorrect outputs. If an AI system is vulnerable
to such attacks, the outputs may deviate from the reasonable
range, posing security and reliability risks.

─ Uncertainty and Confidence Estimation: AI models
should ideally provide measures of uncertainty and
confidence in their predictions. If a model is overly confident
in its outputs, even in situations where it should be uncertain,
it may lead to outputs that deviate from a reasonable range.

─ Monitoring and Validation: Monitoring and validating
model outputs against real-world data are essential. If the
model's performance degrades or deviates from expected
behavior, it should trigger alerts for further investigation and
potential retraining.

It's vital to employ good practices in data collection,

preprocessing, model training, and ongoing monitoring to
mitigate the risk of output results deviating from a reasonable
range. Additionally, incorporating human oversight and
feedback mechanisms can enhance the system's robustness and
help identify and correct possible deviations. Regular updates
and retraining of models based on new and relevant data are
also crucial for maintaining performance in dynamic
environments.

169International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F - forensics or logging to defend results
The F in BIRFS comes from the risk when the algorithm process
cannot be audited to discover why it produced a particular
output based on a set of input data. Forensics and logging play
crucial roles in defending the results generated by AI
algorithms. They provide a means to trace, understand, and
validate the processes and decisions made by AI models. Here
are critical aspects of forensics and logging in the context of AI:
─ Data Logging: Record all relevant data in the AI model's

training and inference processes. The logging includes input
data, preprocessing steps, feature engineering, and any
transformations applied to the data. Having a detailed log
helps in understanding the context and ensuring
transparency.

─ Model Configuration and Hyperparameters: Document
and log the configuration settings and hyperparameters used
during the training of AI models. This information is crucial
for reproducibility and understanding the model's setup.

─ Model Training Logs: Record information about the
training process, such as training loss, accuracy metrics, and
other relevant statistics. The logs help track the model's
performance during training and identify potential issues.

─ Algorithm Versions and Updates: Keep track of the
versions of algorithms and models used. When updates or
changes are made to the algorithm, logging ensures you can
trace which version was used for specific results.

─ Timestamps and Versioning: Timestamps in logs can be
critical for establishing a chronological order of events.
Additionally, versioning of data, models, and algorithms
helps associate specific results with the corresponding
versions used.

─ Explainability and Interpretability Logs: Record
explanations and interpretations provided by the AI model,
especially in cases where explainability is crucial. The logs
can include feature importance, attention weights, or any
other information that aids in understanding the model's
decisions.

─ User Interactions and Feedback: If the AI system involves
user interactions, log relevant user inputs and system
responses. This information is valuable for analyzing user
experiences and addressing issues from the user's
perspective.

─ Monitoring and Anomaly Detection Logs: Implement
monitoring logs to track the model's performance in real-
time. Logging anomalies or unexpected behavior helps
identify when the model's outputs deviate from expected
ranges.

─ Security Logs: Incorporate security logs to capture
information about potential adversarial attacks or
unauthorized access. Security logs can help identify and
mitigate security risks.

─ Compliance and Regulations: Ensure that logging
practices align with relevant compliance requirements and
regulations. Some industries and regions may have specific
guidelines regarding data handling and logging.

─ Forensic Tools and Techniques: Develop or utilize forensic
tools and techniques to investigate issues or discrepancies in

AI model results. These tools can help conduct detailed
analyses of model behavior and decision-making processes.

─ Human-in-the-Loop Logging: If human reviewers are
involved in decision-making, log their interactions and
decisions. This information can be valuable for
understanding the role of human oversight in the system.

By incorporating comprehensive logging and forensic

practices, developers and operators of AI systems can enhance
transparency, accountability, and the ability to defend the
results produced by AI algorithms. These practices are critical
in applications where the stakes are high, such as healthcare,
finance, and critical infrastructure.

S - Sensitive or private data needs to be protected
The S in BIRFS comes from the risk associated with protecting
private or sensitive input data. Protecting sensitive or private
data is a critical aspect of using AI algorithms, and there are
several techniques and best practices to ensure data privacy and
security. Here are key considerations:
─ Data Encryption: Implement encryption mechanisms to

protect data at rest and in transit. Encryption ensures the data
remains unreadable even if unauthorized access occurs
without the appropriate decryption keys.

─ Secure Data Storage: You should store sensitive data in
secure, access-controlled environments. Utilize secure
databases and storage systems with proper access controls to
restrict unauthorized access to sensitive information.

─ Data Masking and Anonymization: Before using data in
AI algorithms, consider techniques such as data masking and
anonymization to replace or generalize sensitive
information. Masking and anonymization reduce the risk of
exposing private details introduced during model training.

─ Federated Learning: Consider federated learning when
data cannot be centralized. This approach allows models to
be trained across decentralized devices or servers without
exchanging raw data, preserving privacy.

─ Differential Privacy: Implement differential privacy
techniques to add noise or randomness to data, making it
harder to link specific data points to individuals. Differential
privacy protects individual privacy while still allowing
meaningful analysis.

─ Access Controls and Authorization: Implement strict
access controls and authorization mechanisms to ensure that
only authorized personnel can access sensitive data.
Regularly review and audit access permissions.

─ Secure Model Deployment: When deploying AI models,
ensure the inference process is conducted securely. Limit
access to the model and its outputs to authorized users and
systems.

─ Secure APIs: If AI models are accessed through APIs
(Application Programming Interfaces), secure the APIs by
implementing authentication and authorization mechanisms
and encrypting data transmitted between the client and the
API.

─ Regular Security Audits: Conduct regular security audits to
identify vulnerabilities in the system. The regular security

170International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

audits include the AI models and the infrastructure
supporting them.

─ Compliance with Privacy Regulations: Ensure your AI
system complies with relevant privacy regulations such as
GDPR, HIPAA, or other industry-specific standards.
Understand the legal requirements for handling sensitive
data and incorporate necessary safeguards.

─ Data Lifecycle Management: Establish clear policies for
the entire data lifecycle, including collection, storage,
processing, and disposal. Regularly review and update these
policies to align with evolving privacy and security
standards.

─ Educate and Train Personnel: Train personnel handling
sensitive data on privacy best practices and security
protocols. Human error is a common source of data breaches,
so awareness and education are crucial.

─ Incident Response Plan: Develop a comprehensive incident
response plan to address potential data breaches. This plan
should outline the steps during a security incident, including
communication strategies and legal obligations.

─ Transparent Communication: Communicate to users and
stakeholders how their data will be used, processed, and
protected. Transparent communication builds trust and helps
users understand the measures to safeguard their privacy.

By incorporating these measures, organizations can

significantly reduce the risks of handling sensitive or private
data in the context of AI algorithms. Data privacy should be a
fundamental consideration throughout the entire AI
development and deployment lifecycle. Table 9 displays the
same four AI/ML activities discussed earlier in the BIRFS
model. As you can see from the model, many more risks and
vulnerabilities are represented by the model than in the previous
STRIDE model. The mitigations discussed, along with the
BIRFS model elements can next be applied to reduce the risks.

XII. CONCLUSIONS AND FUTURE WORKS

In this work, we provide three domain-specific modeling
methodologies to handle issues in cloud, database, and AI/ML
software related to NFRs in distributed systems. We present
modeling methodologies aimed at uncovering issues related to

NFRs in the software development lifecycle. Our models enable
us to identify significantly more fine-grained risks associated
with the development of these systems than traditional threat
modeling techniques. Additionally, we have enhanced the
modeling of functional requirements by employing UML
stereotypes to represent the NFRs identified in the models.
Future work will incorporate code generation to mitigate the
risks identified and modeled throughout this process.

REFERENCES

[1] A. Olmsted, "PERTD - Cloud Application Threat Modeling," in

Proceedings of CLOUD COMPUTING 2025, The Sixteenth
International Conference on Cloud Computing, GRIDs, and
Virtualization, Valencia, Spain, 2025.

[2] C. J. Pavlovski and J. Zou, "Non-functional requirements in
business process modeling," Proceedings of the Fifth on Asia-
Pacific Conference on Conceptual Modelling, vol. 79, pp. 1-10,
2008.

[3] M. Glinz, "Rethinking the Notion of Non-Functional
Requirements," Third World Congress for Software Quality,
Munich, Germany, pp. 1-10, 2005.

[4] Alexander, I, "Misuse Cases Help to Elicit Non-Functional
Requirements," Computing & Control Engineering Journal, 14,
40-45, pp. 1-10, 2003.

[5] R. Ajith and A. Sheth, "Semantic Modeling for Cloud
Computing, Part I," Computing, vol. May/June, pp. 81-83, 2010.

[6] Object Management Group, "Unified Modeling Language:
Supersturcture," 05 02 2007. [Online]. Available:
http://www.omg.org/spec/UML/2.1.1/. [Accessed 11 Nov
2025].

[7] A. Olmsted, Security-Driven Software Development: Learn to
analyze and mitigate risks in your software projects,
Birmingham, UK: Packt Publishing, 2024.

[8] Object Management Group, "OMG Formally Released Versions
of OCL," 02 2014. [Online]. Available:
http://www.omg.org/spec/OCL/. [Accessed 11 Nov 2025].

[9] JSON.org, "Introducing JSON," 2024. [Online]. Available:
https://www.json.org/json-en.html. [Accessed 11 Nov 2025].

[10] Open Collective, "JSON Schema," 2024. [Online]. Available:
https://json-schema.org/. [Accessed 11 Nov 2025].

[11] Zapier Inc., "Automate without limits," 2024. [Online].
Available: https://zapier.com/. [Accessed 11 Nov 2025].

[12] Microsoft, "Power Automate," 2024. [Online]. Available:
https://www.microsoft.com/en-us/power-
platform/products/power-automate. [Accessed 11 Nov 2025].

[13] R. Khan, D. Laverty, D. McLaughlin and S. Sezer, "STRIDE-
based threat modeling for cyber-physical systems,," in 2017
IEEE PES Innovative Smart Grid Technologies Conference
Europe (ISGT-Europe), Turin, Italy, 2017.

[14] A. Olmsted, "BIRFS is a Threat Model for Software Systems
That Utilize Artificial Intelligence or Machine Learning
Algorithms," International Conference on Artificial Intelligence
and its Application, pp. 23-37, 2024.

Table 9 - AI/ML Activity BIRFS Model

Action B I R F S

Segmentation X X X X

LookALike X X X X X

Data Flow X X X X

Personalized Advertisements X X X

171International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

From Principles to Practice: An End-to-End Approach
for Trustworthy ML in Critical Systems

Afef Awadid, Lucas Mattioli, Karla Quintero
IRT SystemX, France

email: {afef.awadid, lucas.mattioli, karla.quintero}@irt-systemx.fr

Juliette Mattioli
Thales, France

email: juliette.mattioli@thalesgroup.com

Abstract—This work presents one of the products of the
Confiance.ai research program which addresses an end-to-end
method for engineering trustworthy ML-based systems [1]. The
proposed methodology revisits software and systems engineering
as it encompasses all development phases of the system while
integrating the specificities related to the development of ML-
based components within the system. The method leverages vastly
researched and deployed standard procedures from design to
validation and maintenance in order to provide rigor, structure,
and traceability when developing ML-models.

Keywords- trustworthy AI; trustworthiness attributes; trustwor-
thiness risk analysis; trustworthiness assessment; safety-critical
ML-based systems; end-to-end engineering methodology; trustwor-
thy AI engineering.

I. INTRODUCTION

The term "AI" (Artificial Intelligence) was first used in a
workshop held at Dartmouth College in 1956. It was intro-
duced as a branch of computer science that tries to mimic
human thinking by using symbols and knowledge bases that
are also symbol-based. Any technology, even AI, is developed
to provide a service fulfilling some needs. The AI discipline
aims to embed cognitive capacities such as perception, learn-
ing, reasoning, planning, decision and dialogue, to an artificial
system. In February 2025, the European Commission defines
an AI system (see Figure 3) as the following: a machine-
based system that is designed to operate with varying levels
of autonomy that may exhibit adaptiveness after deployment
and, for explicit or implicit objectives, infers from the input it
receives how to generate outputs, such as predictions, content,
recommendations or decisions that can influence physical or
virtual environments.

Figure 1. The European Commission AI-system definition comprises seven
main elements (Feb. 2025)

In our context, an AI-based system is defined as a system
that incorporates AI components. AI-based critical systems,
which can have severe consequences in case of failure, are

considered to be "high risk" under the European regulation
known as the "EU AI Act" [2]. These systems can, for exam-
ple, represent safety components of regulated products which
are required to undergo a third-party conformity assessment.
Examples of such systems can be found in the fields of
transportation, healthcare, defense, and security in general.
The deployment of such systems is contingent upon their
demonstrated capacity to deliver the anticipated service in a
secure manner, while meeting user expectations with regard
to quality and continuity of service. Furthermore, users might
consider negative any surprising or unexpected actions from
the system.

In order to characterize such systems with a view to qual-
ity assurance, [3] proposed considering several dimensions,
including the artifact type dimension, the process dimension
and the trustworthiness characteristics, which are relevant to
software product or system quality. Furthermore, the focus of
the series of standards SQuaRE (Systems and Software Quality
Requirements and Evaluation) is on software quality [0]. In
addition, the specific nature of AI is addressed in order to
provide a quality model for AI systems. Consequently, the
design of critical AI systems requires the demonstration of
their trustworthiness, as asserted by [4].

Trustworthy AI is based on these three components [5]:
it must comply with all applicable laws, adhere to ethical
principles, and be robust. This shift is driving the new dis-
cipline of AI engineering [6] to support the industrial design
of such systems. Therefore, the development of AI-enabled
systems is heavily dependent on the application of specific
traditional software and system engineering practices. For ex-
ample, engineering teams must conceptualize AI systems that
can handle the inherent uncertainty of their components, data,
models, and outputs — particularly when implementing data-
driven AI. The user experience with AI systems is dynamic
[7]. Interfaces must clearly show what the system is doing,
how outputs are generated (dataset quality), and when the
system is not behaving as expected (monitoring throughout
the lifecycle). Therefore, engineering teams must account for
the different rhythms of change, including changes in data,
models, systems, and business processes.

This discipline aims to ensure that critical AI-based systems
in safety-, mission- and business-related domains are valid,
explainable, resilient, safe, secure, and compliant with regu-
lations, standards, and responsible practices (ethics, sustain-
ability, etc.). When dealing with critical systems, additional

172International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. From ethics to the end-to-end methodology through regulation and standards

constraints must be considered. In the context of system de-
sign, processes must be optimized, justified, replicated where
possible, and improved. However, it is also essential to ensure
that the system meets the appropriate level of trustworthiness
[8] [9]. This includes robustness (the ability of a system to
withstand errors during execution and cope with erroneous
input), cybersecurity, and dependability (including reliability,
availability, maintainability, and safety properties), among
others.

Thus, in the following, we will first remind the current
context of AI regulation and standardization of the definition
of "trustworthiness" as "the ability to meet stakeholders’
expectations in a verifiable way". To determine whether a
given risk is as such, it should be first identified. Then it should
be analyzed with respect to the "intended purpose" which is
defined as "the use for which an AI system is intended by the
provider". It also includes "the specific context and conditions
of use".

It is imperative that a well-established engineering discipline
oversees AI capabilities. "AI Engineering" is an emerging
discipline that focuses on applying AI in real-world contexts.
AI engineering involves applying engineering principles and
methodologies to create scalable, efficient, trustworthy and
responsible AI-based solutions. It merges aspects of data engi-
neering, knowledge engineering, algorithm engineering, soft-
ware engineering, system engineering, cyber-security, safety
and ethical engineering and also cognitive engineering in-
cluding human factors to accelerate the development and the
deployment of AI-based capabilities. It also speeds up the mat-
uration of individual tools. This is particularly evident in high-
stakes scenarios such as responding to national security threats
and military operations. Therefore, to maximize the potential
of AI in such situations, we must address the unique challenges

that AI systems encounter. While the capability to develop AI
systems has increased due to greater computing power and
more extensive datasets, these systems often only function in
controlled environments and are difficult to replicate, verify
and validate in real-world scenarios. AI Engineering aims
to provide a framework and tools to proactively design AI
systems to function in environments characterized by high
degrees of complexity, ambiguity, and dynamics.

Then, we present an end-to-end methodology to support
"trustworthy AI engineering", which encompasses the entire
lifecycle of AI-based systems, from operational design domain
(ODD) specification to maintenance [1]. This holistic metho-
dology covers the design, development and deployment of AI
systems in critical environments, including data engineering,
algorithm design and development, deployment and moni-
toring. By integrating the principles outlined in international
and national initiatives with our advanced internal engineering
practices, this lifecycle ensures that AI systems perform their
intended functions with the desired level of performance.
It also makes AI-powered solutions transparent, responsible,
and ethical. This systematic approach involves organizing
multidisciplinary and fragmented approaches to trusted AI
and applying a continuous workflow. Measures to improve AI
trustworthiness must be implemented at every stage, including
data sanitization, robust algorithms, anomaly monitoring, and
risk auditing.

II. REGULATION AND STANDARDIZATION

To ensure safety, reliability, availability, and maintainabi-
lity, AI systems must perform, and continue to perform, as
intended under sufficient conditions. Hazard analysis and risk
assessment must be tailored to the unique characteristics of AI
systems. This includes identifying potential critical errors in

173International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. European Data and AI Regulation

the training data or knowledge representation and assessing
the AI model’s ability to generalize to unseen operational
data. Performance requirements for AI algorithms are often
driven by safety objectives, which limit the worst credible
approximation error to an acceptable threshold.

However, trustworthiness is closely linked to accountability,
which can be considered a measure of trust or an alternative to
it. In [10], dependability is used to represent a system’s overall
quality based on four sub-attributes: security, safety, reliability,
and maintainability. Subsequently, security and dependability
became key attributes of trust in computer-based systems [11].

Another requirement relates to the quality of datasets used
to train, validate and test models for high-risk AI systems.
This considers a non-exhaustive list of issues, such as data
collection processes, data engineering activities (e.g., anno-
tation, labeling, cleaning, enrichment and aggregation), data
quality assessment and identification of possible data gaps or
shortcomings and how these can be addressed. Last but not
least is the mitigation of possible biases likely to affect the
health and safety of individuals or lead to discrimination.

In 2019, the U.S. National Artificial Intelligence Research
and Development Strategic Plan [12] stressed the importance
of standard metrics for quantifying AI technologies. "Standard
metrics are required to define quantifiable measures in order
to characterize AI technologies". As a matter of fact, [13]
have recently stated that "a great deal of effort is required to
determine which suitable measurements should be utilized to
evaluate system performance across characteristics for respon-
sible AI and across profiles for specific applications/contexts".
Governments are responding with regulations typically as-
sociated with human rights. In 2024, the European Union
adopted the AI Act (see Figure 3). These regulations set
out long-term, high-level requirements, sometimes based on
recommendations from organizations such as UNESCO [14]
and the OECD [15] [16], or from High-Level Expert Groups
(HLEG) [5].

These high-level requirements need to be operationalized for
companies and developers. As shown in Figure 3, standards

and regulatory frameworks define more detailed requirements,
but they focus on what to do rather than how to do it.
This leaves the choice of tooled, end-to-end methodology for
developing AIs that fulfill these requirements to companies
and developers.

The Assessment List for Trustworthy AI considers 7 pillars
of trustworthiness: 1) human agency and autonomy, 2) tech-
nical robustness and safety, 3) privacy and data governance,
4) transparency, 5) diversity, non discrimination and fairness,
6) societal and environmental well-being, 7) accountability.
This List is one of the basis of the AI Act [2] which requires
companies to take measures to ensure that their products
developed or deployed in the European Union are safe and
comply with ethical principles.

In the aeronautic domain, EASA [17] proposes a model of
trustworthiness based on the characterization of the machine
learning (ML) application (high-level function/task, concept of
operations, functional analysis, classification of the ML appli-
cation), safety assessment, information security management,
and ethics-based assessment (which includes the 7 pillars of
the ALTAI [18]). The Fraunhofer [19] offered an analysis
of the standard [20] on management system for AI, stating
compliance to the standard can contribute to ensuring AI
trustworthiness since it encompasses the pillars of the ALTAI,
provided that a third-party verification has been performed and
along with an adapted quality management system.

In the same period, the characteristics of trustworthy AI
system specified by the NIST include: "valid and reliable,
safe, secure and resilient, accountable and transparent, ex-
plainable and interpretable, privacy-enhanced and fair with
harmful bias managed". Then the NIST produced an analysis
of the components of trust [21] and highlighted several top
level aspects for the design of a trustworthiness model, that
should encompass the user experience, the perceived technical
trustworthiness, the pertinence of each trustworthiness charac-
teristic in the user’s specific context of use...

Standards provide a framework for legislation and rules
by recording the current state of the art and recommended

174International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. High-level view of the end-to-end methodology (source: https://bok.Confiance.ai).

practices, and offering a foundation for showing adherence
and accreditation. Several organizations and initiatives, such
as ISO/IEC, IEEE and NIST, are currently working on de-
veloping relevant AI standards. The standards developed by
ISO/IEC [20] cover a wide range of AI aspects. These include
terminology, performance metrics, data quality, ethics, and
human-AI interaction. The ethical implications of AI technolo-
gies are the focus of the IEEE P7000 series of standards [22].
The NIST framework [21], meanwhile, provides guidance on
managing risks, ensuring data quality, and promoting trans-
parency and accountability in AI systems.

In 2019, ETSI set up an Industry Specification Group on
Securing AI (ISG SAI) [23] to provide existing and potential
mitigation against threats for AI-based systems. Robust se-
curity measures must protect AI systems from cyber-attacks,
data breaches and unauthorised manipulation. These should
include advanced threat detection and mitigation strategies and
resilience mechanisms to operate securely in hostile environ-
ments. Cybersecurity should be embedded in the system and
data pipelines. The lines between security and safety are not
always clear when it comes to AI. Incorrect outputs can be
caused by malicious actions or natural events.

Ethical engineering focuses on the need for fairness, trans-
parency, and accountability in AI. This involves ensuring
that algorithms are unbiased, produce explainable results, and
adhere to societal and legal values. This engineering requires
ongoing review by engineers, ethicists and domain experts.

However, it is crucial to recognize that the transfer of AI
technology, particularly ML, must adhere to specific standards
and processes to successfully transform research outcomes into

industrial products fit for purpose that meet customer needs.
For example, since data collection and analysis are crucial for
developing any ML-based system, prioritizing data quality is
essential. This requires adherence to compliance regulations,
such as those relating to data privacy. Concurrently, operational
requirements encompassing maintenance must be addressed. It
is therefore evident that developing and implementing AI/ML
systems involves both technical and business aspects, from
problem conception to customer delivery. The development
and operation of critical AI systems therefore requires an end-
to-end, tool-based AI engineering methodology, which will be
outlined subsequently.

III. THE END-TO-END METHODOLOGY

The version of the methodology presented herein has been
produced as a result of the work within the French program
Confiance.ai [1] [25] [26] [27] which was a pillar of the
Grand Défi “AI for industry” initiative, which is pioneering
methodologies for the development of trustworthy AI sys-
tems across sectors. Its associated roadmap is nourished by
industrial needs and the evolution of the state-of-the-art [28].
Namely, several industrial projects and research initiatives
have derived from Confiance.ai, generating the emergence
of an ecosystem for the engineering of trustworthy AI for
critical systems. In addition, the European Trustworthy
AI Association (https://www.trustworthy-ai-association.eu/) is
built on an open-source, community-driven approach, serving
as a key enabler, giving stakeholders access to a dynamic
ecosystem where they can learn from peers and co-develop
tools. These tools are designed to ensure the adoption of

175International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. ML algorithm engineering pipeline [24]

scalable, secure and trustworthy AI based on this end-to-end
methodology, which supports the engineering of trustworthy
AI-based systems. The proposed methodology addresses fol-
lowing issues [29]:

• How can AI/ML models be designed to satisfy trustwor-
thy attributes (explainability, robustness, accuracy, etc.)?

• How can these models allow a clear understanding of
their behavior in the operational domain?

• How can AI/ML models be implemented and embedded
on hardware, by making them fit to the target without
discarding their trustworthy properties?

• Which data engineering methods should be applied to
manage large volumes of data and account for the evolv-
ing operational domain?

• What kinds of verification, validation, and certifica-
tion processes should be considered when dealing with
AI/ML-based systems?

By addressing these challenges, the end-to-end methodol-
ogy aims to answer the research question: How to ensure
the reliability and trustworthiness of AI-based safety-critical
systems? It is based on the premise that the development
of ML-based critical systems should be structured with a
trustworthiness imperative from the design phase, thus pro-
viding precise requirements for integration, verification, and
validation, as well as for proper deployment and maintenance
[30] [31]. It is a multi-domain collaboration that leverages
concepts and procedures coming from different fields into
the agnostic proposal of engineering trustworthy AI/ML-based
critical systems. The result is the formalization, through a
common language, of the structure and workflow for all actors
involved in the process of designing trustworthy AI-based
critical systems, i.e., data engineers, systems engineers, safety

engineers, software engineers, among many others.

A. ML Algorithm Engineering

The engineering ML-based systems is often portrayed as
involving the creation of an ML model and its deployment. But
in practice, the ML model is only a small part of the whole
system. Much more is needed to ensure that an ML model
is trustworthy and its behavior is predictable. This includes
things like designing data pipelines, monitoring and logging,
and so on. We defined the ML algorithm engineering pipeline
to capture these aspects of AI engineering (see Figure 5). This
pipeline differentiates between three types of development:
requirements-driven, outcome-driven and AI-driven [32]. The
starting point is that data must be available for training. Data
engineering provides the foundation for various data collection
and qualification methods, which can then be divided into
training, testing, and cross-validation sets.

The following steps are encapsulated as sub-tasks within the
pipeline:

1) Problem specification: Inclusion of the operational
design domain (ODD), which is the description of the
specific operating condition(s) in which a safety-critical
function or system is designed to operate properly,
including but not limited to environmental conditions
and other domain constraints [33]. These requirements
and architecture are the result of subsystem design
activities and are part of specification activities. These
requirements describe the specific function that the ML
items should implement. They also describe the safety,
performance and other requirements that the machine
learning items should achieve.

176International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. ML algorithm engineering process

2) Data engineering: Large amounts of data are needed
to train a machine learning model so that it can learn
to carry out its function. Before it can be used, data
needs to be collected. It also needs to be prepared. The
process of collecting data from a number of sources is
known as data aggregation. The collected data needs
to be substantial, accessible, comprehensible, reliable
and usable. The process of transforming raw data into
usable information is known as data preparation, or data
preprocessing.

3) ML Algorithm Design: The ML algorithm can be
trained using a feeding set, allowing it to learn ap-
propriate parameters and features. The model will be
refined once the training is complete, using the vali-
dation dataset. This process may involve modifying or
discarding variables, as well as tweaking model-specific
settings (hyperparameters) until an acceptable level of
accuracy is achieved.

4) Implementation: For an ML component to be devel-
oped, the targeted hardware platform, the IDE (Inte-
grated Development Environment) and the language for
development must be decided on. There are a number
of options to choose from. The majority of these would
undoubtedly satisfy our requirements, as all of them pro-
vide the implementation of AI algorithms that have been
discussed to date. However, it is sometimes necessary to
take into account embedded constraints.

5) Evaluation and verification: Once we have found an
acceptable set of hyperparameters and optimized the
model’s accuracy, we can test it. The testing process

employs our test dataset and is intended to verify that our
models are utilizing accurate features. We may decide to
retrain the model based on the feedback we receive. This
could lead to improvements in accuracy, adjustments
to output settings, or the deployment of the model as
required.

6) Model Deployment
The next step is to design or select an AI algorithm from

an existing library (e.g., Scikit Learn [34]) to create a model.
The model is then trained iteratively so that the result closely
aligns with the “correct answers” from the ground truth. The
model is then ready to be deployed, like any other component,
once validation has been successfully completed, provided that
the specified criteria have been met.

As algorithm engineering workflow, ML pipelines consist of
several steps to train a model (see Figure 6). Such pipelines
are iterative as every step is repeated to continuously improve
the accuracy of the model and achieve a successful algorithm.
Pipelines are not one-way flows. They are cyclic in nature and
enables iteration to improve the scores of the machine learning
algorithms and make the model scalable.

The method addresses as a whole both the system engineer-
ing layer and the ML algorithm engineering layer. The system
layer accounts for all underlying phases that should design
and specify to further along verify and validate the overall
system’s objective and performance as carried out in classic
systems engineering. The ML layer then covers all phases
related to the ML component that inherit system requirements
to then refined requirements specific to the ML-components to
be developed. This process aims to ensure the compliance of

177International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the AI/ML components with the overall system requirements
and intended purpose.

B. Data Engineering

The quality of the data-set depends on the processes and
technologies that ensure data values are consistent with the
ODD. These values are then assessed for quality using various
methods and key performance indicators (KPI) [35]. In certain
instances, when a natural language processing application
contains spelling errors, it is possible to ascertain the caliber
and dimensions, such as accuracy [36]. However, it is more
difficult to detect admissible but incorrect values. As discussed
in [37], most ML research focuses on improving model perfor-
mance rather than datasets. Typically, classical ML practices
involve using existing datasets and enhancing the complexity
of techniques to address performance challenges. Conversely,
data-driven AI adopts a more comprehensive strategy, placing
significant emphasis on the data itself [38] [39]. Instead of
just looking for patterns and relationships in the features that
are given, data-driven AI involves collecting, processing and
analyzing lots of data to create models that are more accurate
and robust. Furthermore, it is a real challenge in the present
day to link datasets together. These should be linked to the
ODD. This should be done at the operational level of the
system definition.

As highlighted in [40], dataset quality may have a bigger
impact on performance than model design. Poor data quality
is a major risk in data-driven AI, as it can cause issues at
every data engineering step, like collection, annotation and
feature engineering, and can lead to problems being missed.
To overcome these challenges, the Confiance.ai research pro-
gram proposes a methodological process for assessing data
trustworthiness.

Data trustworthiness evaluation indicates the degree to
which data and data items satisfy expectations. An overview
of the main metrics used for the data quality assessment
is summarized in Figure 7. This evaluation can be carried
out at various stages of the process, typically during data
development (e.g., raw data or dataset preparation), but also
during IVVQ and deployment (e.g., to detect data drift).

C. ML Algorithm Design

In this phase, a modeling technique is chosen and applied,
and its parameters are set, then an ensemble model is de-
veloped and tested. The variant and structure type are both
determined here, as is the algorithm. This process is referred
to as "training", wherein data and outcomes are employed
to optimize the configuration of the model. This process
constitutes the "learning" aspect of ML.

Various ML techniques are available. These include multiple
types of classification models. These models identify the
category that the input belongs to. There are also regression
models. These predict a continuous-valued attribute for super-
vised tasks. Then there are clustering models. These group
similar items into sets for unsupervised tasks. Finally, there

are reinforcement learning models. These provide an optimal
set of actions.

A common question is "Which ML architecture should I
use?". The following table [41] is provided by the DEEL
project (https://www.irt-saintexupery.com/deel/), which sum-
marizes the most common ML techniques and their main
applications. Each ML technique relies on one or more hypoth-
esis function spaces and one or more exploration algorithms
(not listed in this document) to minimize a loss function on
the training dataset.

Techniques Applications
Linear models: Linear and logistic
regressions, SVM

Classification, Regression

Neighborhood models: KNN, K-
means, Kernel density

Classification, Regression,
Clustering, Density estima-
tion

Trees: decision trees, regression
trees

Classification, Regression

Graphical models: Bayesian net-
work, Conditional Random Fields

Classification, Density esti-
mation

Combination of models: Random
Forest, Adaboost, XGboost

Classification, Regression,
Clustering, Density estima-
tion

Connexionist and statistical mod-
els: Neural networks, Deep learn-
ing...

Classification, Regression

After choosing the model, among the various algorithms
present, one needs to tune the hyper parameters of each model
to achieve the desired performance.

• Select the right algorithm based on the learning objective
and data requirements.

• ConFigure and tune hyperparameters for optimal perfor-
mance and determine a method of iteration to attain the
best hyperparameters.

• Identify the features that provide the best results.
• Determine whether model explainability or interpretabil-

ity is required.
• Develop ensemble models for improved performance.
• Test different model versions for performance.
• Identify requirements for the overall lifecycle.
The resulting model can then be evaluated to determine

whether it meets the business and operational requirements.

D. The ML-based system lifecycle

Developing ML-based systems can be visualized as a "W-
shaped" life-cycle (see Figure 4). This W-shape can be split
into two parts. For AI systems, "intended goal"/"intended
purpose" and "intended domain of use" are very high-level
requirements that have to be translated into "engineering
terms". The engineered "intended domain of use" is called
Operational Design Domain (ODD). The ODD is the opera-
tional conditions for which an AI system is specified, designed,
verified, assessed, operated, and disposed. ML engineering
life-cycle begins with defining AI/ML algorithm requirements
refined from system specification. This ML specification step
includes the characterization of the ODD.

178International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Approach / method Machine Learning use Data

Diversity DPP [42] Training and test sets Image (object localization) & text (doc-
ument summarization)

R-DPP [43] proposition of new metric No data implemented
D-MCL [44] Training & test sets Image (classification)
PDS [45] Training & test sets Image (MNIST [46]), audio & 2-D

synthetic data

Completeness MADI [47] [48] Not used for ML Numerical & categorical data (from
hospital for [48])

POVM [49] Test set (evaluation by using deep
learning approaches (ICCnet & Fid-
Net))

Tomography images

MCAR, MAR, NMAR
[50]

Training & test sets Numerical data (diabetic data)

Representativeness R-indicator [51] [52] Not used for ML Internet Data sources for [52]
CI [53] Test set Tabular data
Log Disparity [54] Sampling, training and test sets Clinical trials (classification)

Coverage SelectiveNet [55] [56] Training and test sets Image (MNIST, Cifar [57] & Ima-
geNet)

Neuron Coverage [58] Test set Image (MNIST, ImageNet, Driving
datasets) & numerical/categorical
(Contagio, VirusTotal & Drebin
datasets)

DeepTest based on neuron
coverage [59]

Test set Image (real driving camera & syn-
thetic)

TensorFuzz [60] Test set Image (MNIST)
TDA-AI2 [61] Test set (applied on DRL) 3-D cloud data

Corner cases [62], [63],
[64],[65],[66],[67]

Anomaly detection Images or videos

[68] Anomaly detection Images (optical, radar & lidar)
[69] Anomaly detection Numerical data (trajectories)
[70],[59] model evaluation Images
[58] model evaluation Images, PDFs, Android apps

Figure 7. A brief overview of the approaches and metrics used for data quality evaluation

This engineering activity is a critical step that changes the
way AI researchers and engineers work. It involves a detailed
description of all possible operating conditions, called the
operating environment of the system, to enable data collection
and knowledge representation. The reliability of the AI-based
system depends on the correctness and completeness of this
description, particularly for rare events or combinations of
conditions that could be unsafe. The validity of a system is
established by its intended use [71]. The ODD description is
developed using a combination of top-down and bottom-up
approaches. ODD aligns data and functional intent, i.e., the
data used for training and the resulting ML model(s) with
their intended use, covering a wide range of conditions.

Data engineering is key. It involves the identification,
collection, preprocessing and extraction of features from
large datasets. These datasets are essential for designing and
verifying ML models. This phase often involves advanced
techniques. These techniques improve the representativeness,
completeness, and relevance of the dataset (minimizing the
simulation-to-reality gap). Rigorous quality controls, guided
by Data Quality Requirements (DQRs), ensure data inputs are
accurate and consistent. During model design, engineers select
appropriate learning algorithms and improve model architec-
tures through training and evaluation cycles. Optimization
strategies balance computational efficiency and performance.

The second "V" of the "W-shaped" life-cycle includes the
implementation engineering processes performed on the target
platform (e.g., specific hardware embedded in a ground or
aerial vehicle). Validation and verification activities are driven
by key trustworthiness properties, specified in low-level ML
requirements. Validation activities ensure the correctness and
completeness of ML requirements by verifying, analyzing, and
tracing them back to higher-level requirements. Verification
activities include extensively simulating, testing edge/corner
robustness, scenario-based testing, analyzing the ML model
explainability, and ODD coverage analysis [72]. The first level
of verification ends with a selected AI model, which meets all
its requirements in the development (learning) environment
and serves as a design specification, ready for implementation
into software and/or complex electronic hardware elements in
the second level of verification. Figure 8 shows a high-level
view of the verification phase of an automated feature based
on ML and the interaction with the specification and validation
phases.

MLOps, or Machine Learning Operations, and AI Engineer-
ing, while closely related, serve distinct roles within the ML
lifecycle. MLOps focuses on the operationalization of machine
learning models, ensuring that they are deployed efficiently
and maintained effectively in production environments. In
contrast, ML Engineering is primarily concerned with the

179International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

development and maintenance of an ML-based system. Thus
MLOps emphasizes the operational aspects of machine learn-
ing, while AI Engineering is centered on the overall lifecy-
cle of the system covering all system engineering concerns
(from specification to maintenance) which includes MLOps
for ML-based systems. MLOps involves collaboration between
data scientists, ML engineers, and IT operations teams when
AI Engineering involves system ad software engineers, data
scientists, safety and cyber-security engineers. The end-to-
end methodology (see Figure 4) supports all AI engineering
activities where MLOps covers ML algorithm engineering and
data engineering.

E. Deployment of a ML-component in the system

Deploying an ML component involves integrating it into
an existing system, validating it and making it accessible for
real-time or batch processing. The challenge for AI/ML-based
systems lies in integrating, deploying and scaling a solution.
The end-to-end methodology validates the quality of the data
and knowledge, the process, and the added value delivered
by AI/ML components, at a lower cost than the classical
software/system engineering effort involved in automating and
integrating a non-validated application with in-house and third-
party systems. Combining the different engineering steps can
require significant development effort, creating cost barriers
when testing and validating ideas and prototypes that depend
on integration with the rest of the system. Validating ML-
based systems is more complex than manually coded systems.
This is due to the behavior of ML-based systems, which
depends heavily on data and knowledge, and for which models
cannot be strongly specified a priori. Therefore, training data
or knowledge-based models require qualification, similar to
code [73].

Thus, verification testing of the ML-based system must
also rely on the integration tests already performed at the
"Integration of ML Component in System" step. They are
usually run in a simulated environment (i.e., with test benches
or synthetic input data, or pre-recorded operational data).
Consequently, testing the ML-based system consists again
at least in regression testing (i.e., test of no functional or
non-functional regression), enabling to verify that the ML
component features previously tested, integrated in the final
ML-based system, still operate in conformance with their
requirements based for example on

• Test by sampling and perturbation (empirical testing),
• Testing by formal verification of robustness (formal test-

ing)...
However, it is also necessary to develop and run new verifica-
tion tests, with potentially new tools and new test datasets, in
order to ensure a complete requirements test coverage, prior
to delivery to the Validation level.

F. Validation and Verification

Once the ML-based System has been successfully verified, it
can be provided to the next engineering phase: the validation of

the ML-based System. The difference between “verification”
and “validation” is the following:

• Verification: evaluation against the system requirements
that were written in order to design the ML-based System.
Have we built the system right (as per design intent)?

• Validation: evaluation against the high-level needs iden-
tified during operational analysis. Have we built the right
system (as per initial need)?

Then the "Validation, Qualification of ML-based System"
engineering activity has to be performed:

• each time the “Operational Analysis” activity releases a
new version of the operational/stakeholder needs (espe-
cially Intended Purpose Summary) against which the ML-
based System shall be validated;

• and each time the “System Verification” activity releases
a new version of verified ML-based System that is ready
for validation.

Particular attention should be paid to stakeholders/operational
requirements relating to the automation objectives that the
system’s feature implemented by ML is intended to satisfy.
Furthermore, ML-based system tests must be run in the target
operational environment. It is no longer possible to simulate
the environment using a test bench, synthetic input data or
pre-recorded operational data.

The performance of a safety-critical system in its intended
operational environment is a mandatory part of overall sys-
tem validation. The process of traditional software validation
involves establishing a chain of evidence that connects re-
quirements to system-level tests. However, the use of machine
learning techniques frustrates this approach due to the use
of training data rather than a traditional design process. It is
essential that software validation is based on tests that demon-
strate a performance level commensurate with the criticality
of the risks. These tests should be performed on a dataset
that is fully representative of the factors that influence the
model. The way in which the model’s functional characteris-
tics and operational environment are specified may result in
numerous factors influencing performance. To demonstrate the
model’s effectiveness would require extensive testing datasets,
potentially numbering in the millions of samples. Achieving
this goal is an interesting prospect, but it is still at an
early stage of research. Formal verification and simulation are
interesting tracks to pursue. Therefore, verification requires
ensuring that training and testing data cover all relevant
operational conditions. In practice, this problem is generally
made tractable by constraining the operational environment
to a subset of all possible situations that could be dealt with
by a human operator. The adoption of an ODD is the term
given to that approach to limiting the operational needs of the
system. Testing an ML component aims to detect discrepancies
between the actual and intended behaviors of ML models.
The term "ML testing" is used to describe any activity that
is designed to reveal any bugs in ML items. "ML bugs" refer
to any imperfection in an ML item that causes a discrepancy
between the output.

180International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Verification Phase: verification of the ML-based feature of the system.

Testing an ML component aims to detect discrepancies
between the actual and intended behaviors of ML models.
Formal ML testing refers to any activity designed to reveal ML
bugs, where an ML bug is defined as any imperfection in an
ML item that causes a discrepancy between the model’s output
and the reference output. Examples of discrepancies could be
due to a shift in the distribution of training and testing data,
or an incorrect assessment of the suitability of the data for the
task at hand; therefore, data is usually the cause of incorrect
or unexpected errors.

This definition highlights three challenges to overcome.
First, ML systems may have different types of "required
conditions", i.e., properties to verify. We can classify these
as basic functional requirements (e.g., correctness and model
relevance) and non-functional requirements (e.g., efficiency,
robustness, fairness, interpretability). Different methods and
metrics are required to verify such properties, so the selection
of the best tools for verifying the component must be preceded
by a definition of the required conditions: "What do we want
to prove through testing?". Second, an ML bug may exist in
the data, the learning program, or the framework. The testing
strategy should address either the component itself or another
"sub-component". This may make the testing more complex,
since establishing a causal link between the bug and its source
may be difficult, and defining a testing protocol allowing
the distinction of independent and dependent variables is not
trivial in an ML pipeline. Finally, testing activity may include
several radically different approaches. These may include
test input generation, test oracle identification, test adequacy
evaluation, and bug triage. The selection of the approach must
be based on a trade-off between the technical feasibility of

performing such a test on the ML component and the required
conditions initially formalized.

Quality control is an essential part of verifying and validat-
ing the ML component, and this can be achieved by estimating
the success of the task solved by the component. Traditional
metrics for regression problems include mean squared error
(MSE) or mean absolute error (MAE), while classification
problems can be evaluated using precision, accuracy, and re-
call. For classification problems, a confusion matrix depicting
the distribution of true/false negatives/positives for each class
is a practical tool for visualizing errors and allows most
metrics to be computed (e.g., precision, recall, sensitivity,
specificity, F1 score, and ROC curve).

The most common evaluation protocol involves maintaining
a hold-out validation set. This involves setting aside some of
the data as the test set. The process involves training the model
with the remaining data and tuning its parameters with the
validation set, before finally evaluating its performance on the
test set. The reason for splitting the data into three parts is to
avoid information leaks. The main disadvantage of this method
is that if a small amount of data is available, the validation and
test sets will contain so few samples that tuning and evaluating
the model will be ineffective. An alternative is k-fold cross-
validation, which involves splitting the data into k partitions
of equal size.

Another interesting approach is: Iterated k-fold validation
with shuffling. This technique is useful when there are few data
available and it is necessary to evaluate models as precisely as
possible. Functional performance evaluation presents its own
challenges. Selecting the most appropriate metrics to reflect the
desired level of performance and choosing a suitable testing

181International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

protocol require careful consideration. However, the notion
of quality control (QC) should go beyond simply estimating
functional performance.

First, we note that the validation set is part of the ML algo-
rithm design. The focus here is on the technical validity of the
algorithm design, with few links to the operational constraints
established in the specification phase. The influence of the
training data is ignored at this stage, as traditional protocols
do not necessarily take into account the informational value
of the data points in each set. QC should encompass more
than a simple evaluation of the ML algorithm. QC procedures
should be formalized and deployed at each stage of the ML
pipeline, with different objectives and verification strategies,
but with one overarching objective: to ensure the quality of
all processes involved in developing the ML component.

Although each domain has its own traditional ways of
performing qualification (for example, data qualification has
its own procedures), the link with the particularities and
constraints of ML components is not always well established.
Additionally, some aspects of verification and validation strate-
gies are underestimated or not routinely considered in ML
engineering. For example, data engineering information about
the limits and constraints of the data should be reflected in the
overall model evaluation strategy. The system in which the ML
component is intended to operate must also provide its own
set of constraints against which the component’s compliance
can be checked. This means that all parts of the ML pipeline
should include specific QC procedures, and this information
should be communicated to the relevant parts of the pipeline
to inform the overall evaluation of the component’s quality.

G. Maintenance and In-Service Support

Once the AI-based System has been validated and qualified,
it can be deployed and declared in-service. Maintaining AI
systems is a complex and evolving challenge. In many ways,
this mirrors the rigorous and continuous effort. At its core, AI
maintenance is not just about ensuring a model functions as
intended at deployment; it is also about safeguarding its per-
formance, reliability, and trustworthiness throughout its entire
lifecycle. This is particularly important because AI systems
are increasingly being integrated into high-stakes areas where
failures can have severe or even catastrophic consequences.
Maintaining AI systems is a complex and evolving challenge.
In many ways, this mirrors the rigorous and continuous effort.
At its core, AI maintenance is not just about ensuring a
model functions as intended at deployment; it is also about
safeguarding its performance, reliability, and trustworthiness
throughout its entire lifecycle. This is particularly important
because AI systems are increasingly being integrated into
high-stakes areas where failures can have severe or even
catastrophic consequences.

Robustness is a core concept in AI maintenance, referring
to an AI system’s ability to perform reliably in unexpected
or adversarial conditions. Robustness is threatened by various
factors during development and deployment. In development,
the integrity of training data is crucial. Data can be com-

promised by noise from errors in data collection, annotation,
or processing, or by data poisoning, where incorrect data is
injected to degrade performance. This can lead to a model that
performs well in testing but fails in real-world applications.
Another threat is the backdoor attack, where an attacker
embeds a hidden trigger in the model. When activated, the
model’s behavior can be manipulated without detection. These
vulnerabilities are concerning in distributed learning envi-
ronments, such as federated learning, where multiple parties
contribute to the training process without full data visibility.

Once deployed, an AI model faces new challenges that can
undermine its robustness. Adversarial examples, crafted inputs
designed to deceive the model, exploit its sensitivity to small,
often imperceptible, perturbations in the input data. An image
recognition system might be misclassified due to a few pixels
being altered in an image. Such vulnerabilities are dangerous
in safety-critical applications like avionics, where a single
misclassification can have life-or-death consequences. Another
challenge in deployment is out-of-distribution generalization,
the model’s ability to handle inputs that differ from the data it
was trained on. Real-world environments are dynamic, and
data distributions can shift over time due to factors such
as changing user behavior, sensor degradation, or evolving
contextual factors. A model that performs well on its training
data may struggle when faced with these shifts, leading to
degraded performance or unexpected failures.

To address these challenges, AI maintenance has been
proposed. It is a process akin to the maintenance of complex
systems. An AI system requires regular monitoring and testing
to remain reliable and maintain robustness. Inspection and
diagnosis involve probing the model to identify vulnerabil-
ities, anomalies, or degradation. Testing the model against
adversarial examples is an example of monitoring for data
drift. Soliciting feedback from users helps to understand the
model’s real-world behavior. Fixing and updating are next.
This can be recalibrations or interventions like hardening the
model against specific threats. Modules can be replaced if they
are flawed. The cost and complexity of these activities depend
on the identified issues and the requirements of the application.

An AI model inspector is a proactive framework that
goes beyond the passive documentation provided by tools
like model cards or data-sheets. Detect potential risks, such
as back-doors, adversarial vulnerabilities, or data drift, and
then take corrective actions to mitigate these risks. This
could involve retraining the model on updated data, applying
patches to address specific vulnerabilities, or even triggering
a complete overhaul if the model’s performance has degraded.
The inspector framework represents a shift from reactive to
proactive maintenance, where potential issues are identified
and addressed before they lead to failures.

IV. TRUSTWORTHINESS ATTRIBUTES AND ASSESSMENT

Trustworthiness is fundamental for the successful devel-
opment and adoption of AI-based critical systems. Thus,
trustworthiness assessment [76] can be defined as the process
of evaluating and determining the level of trustworthiness of

182International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. STPA method overview [74] [75]

a given characteristic, such as robustness [77] [78], accuracy,
reliability [26], or effectiveness, in the context of AI systems
engineering.

Nevertheless, it is very misleading to only judge how good
an AI system is based on how accurate it is. It is also difficult
to test and check the quality of software in the traditional
way, and it is even difficult to measure test coverage at
all. Trust and trustworthiness are complex, and so one of
the main issues we face is to establish objective attributes
such as accountability, accuracy, controllability, correctness,
data quality, reliability, resilience, robustness, safety, security,
transparency, explainability, fairness, privacy, and compliance
with regulatory actors. We need to map these attributes onto
the AI processes and its lifecycle and provide methods and
tools to assess them. This highlights the importance of quality
requirements, which are non-functional requirements and are
particularly challenging in AI systems, although many of
them can be considered in any critical system. Furthermore,
this can also include risk and process considerations. The
attributes and values for these requirements depend on things
like how important the application is, what the AI system is
used for, how it will be used, and the people involved. So,
in some situations, some attributes may be more important
than others, and new attributes may be added to the list [79].
Clear specifications of the non-functional requirements will
help clarify these conflicts and can also encourage innovation
that solves some of these conflicts, allowing us to fulfill more
of them at the same time.

A. Risk analysis related to trustworthiness relationships be-
tween stakeholders

All interactions between the stakeholders (e.g., engineers,
operators, end-users, certification authorities, insurance com-
panies, etc.) and the system are addressed by the trustworthi-
ness relationships dimension.

Trustworthiness relationships must be established at each
phase of the System lifecycle. They must also be maintained
at each phase. This applies from engineering and design,
until operation in a target environment. Indeed, during the

engineering and design phases, engineers must be able to build
trust on the system they will deliver to operators, which is an
essential step in the process. Ultimately, operators must have
confidence in the system features they will use.

The way in which trustworthiness relationships are estab-
lished is dependent on the automation objectives that need
to be achieved, as well as the environmental and human
conditions that must be taken into account when operating in a
trustworthy manner. As a result, trustworthiness relationships
need to be analyzed from the viewpoint of each stakeholder
involved in the automation Objectives, and defined and refined
so that they can be supported by the system.

The dimension of trustworthiness relationships requires the
application of an AI-specific risk analysis (see Figure 11). In-
deed, due to the high level of uncertainty and unpredictability
of the AI-based Automated Features outputs and behaviors,
a new risk analysis approach related to the dimension of
trustworthiness relationships is needed. Various techniques for
hazard analysis such as Failure Modes and Effects Analysis
(FMEA), Fault Tree Analysis (FTA), Hazard and Operability
Analysis (HAZOP), System Theoretic Accident model and
Processes (STAMP) and System Theoretic Process Analysis
(STPA) are common. The STAMP framework is an accident
causality model that provides a new paradigm for STPA.based
system safety engineering.

In our conte)xt, the Confiance.ai research program has
proposed a methodological process. The process relies on both
the unified approach for trustworthiness assessment defined in
our previous work [29] and the STPA method (see Figure 9),
which is identified as relevant for analysis purposes.

STPA [75] is a system approach that considers potential dys-
functional system’s characteristics and behaviors as a system
control problem and not only as a problem of component fail-
ure. It does not replace traditional failure analysis approaches
but complements them. In Confiance.ai, STPA is extended
beyond its traditional safety analysis domain to trustworthi-
ness characteristics/properties risks analysis and control, to be
applied for each autonomy objective and feature defined in the

183International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Concept name Definition
Misuse [ISO 21448: 2021] usage of the system by a human in a way not intended by the

manufacturer or the service provider
Error [ARP 4754 A] A mistake made by a crew member or maintenance person, or a mistake

in the requirements, design or implementation (derived from AMC 25.1309).
[ISO 26262: 2011] A discrepancy is when a value or condition is not the same as the
true value. It could be a computed value. Or an observed value. Or a measured value. Or
a theoretically correct value.
Note 1: An error can arise as a result of unforeseen operating conditions or due to a fault
within the system, subsystem or component being considered.
Note 2: A fault can manifest itself as an error within the considered element and the error
can ultimately cause a failure.

Failure An occurrence, which affects the operation of a component, part or element such that it
can no longer function as intended, (this includes both loss of function and malfunction).
Note: errors may cause Failures, but are not considered Failures. (AMC 25.1309)

Hazard Definition from STPA: A system state or set of conditions that, together with a particular
set of worst-case environmental conditions, will lead to an accident (loss).
[ARP 4754 A] Extended for trustworthiness: A condition resulting from failures, external
events, errors or a combination of these factors affecting trustworthiness.

Worst-case environmental con-
dition

Environmental, non-controllable context

Risk [ARP 4754 A] The level of severity of an occurrence is dependent on its frequency
(probability).

Accident-Loss Definition from STPA, extended for trustworthiness: An undesired or unplanned event
that results in a loss, including loss of human life or human injury, property damage,
environmental pollution, mission loss, trustworthiness loss etc.
Definition from STAMP: An undesired or unplanned event that causes loss, damage, or
injury [80].

Mitigation Any means enabling risk reduction (occurrence likelihood and/or impact with barriers) at
any step of the System of interest lifecycle (e.g., specification, design, training...).

Loss/Damage [STPA Handbook] extended for trustworthiness: A loss involves the loss of something of
value to stakeholders. They may consider this to include anything from loss of human life
or injury to property damage, environmental pollution, loss of mission, loss of reputation,
loss or leak of sensitive information or loss of trustworthiness.

Figure 10. Safety Analysis concept definition [29]

ODD. Therefore, STPA can be applied to analyze and mitigate
risk of trustworthiness loss.

Remind that STPA is a system-theoretic safety analysis
method designed to identify and mitigate risks in complex sys-
tems by focusing on control structures and unsafe interactions
rather than just component failures. It is particularly useful
for autonomous, cyber-physical, or human-machine systems
where traditional hazard analysis may fall short. The process is
structured into four key steps (see Figure 9), each building on
the previous one to ensure traceability from high-level losses
to specific scenarios:

1) Identify accidents and hazards list, and associated unac-
ceptable losses related to the System of Interest (either
material losses or immaterial losses, e.g., mission, trust-
worthiness loss. Identify also the boundary of the anal-
ysis and defines those losses and hazards that must be
prevented as well as high-level operational and system
constraints/requirements needed to prevent them.

2) Identify and model the control structures, starting from
the operational environment, and refining through the
abstraction layers of the system analysis (i.e, System
level, Architectural level, AI Component level)

3) Identify Unsafe Control Actions (UCAs) leading to haz-
ards and losses, and specify requirements and constraints

to prevent them.
4) Identify scenarios leading to UCAs or hazards, and

specify requirements to mitigate the risks.”

To define the process of trustworthiness risk analysis, tra-
ditional Safety Analysis concepts of the aeronautical business
domain have been considered (e.g., failure). Other business
domains (e.g., railway, automotive. . .) could introduce their
dedicated concepts (see Figure 10). The resulting process is
described in Figure 11, as a pattern that needs to be iteratively
applied at several steps of the end-to-end method.

The principle is that a specific Trustworthiness Engineering
team, once it has analyzed the trustworthiness properties, has
also to analyze the trustworthiness loss risks, according to
the approach AI specific risk analysis approach. It has also
to perform potential traditional risks analysis (e.g., Safety
failure modes analysis approaches). In addition to the system
specification including Operational Design Domain (ODD)
analysis, and trustworthiness assessment processes, a risk
analysis process is essential to address and mitigate the risks
related to AI technologies, based on add-hoc control-structures
specifications.

184International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Trustworthiness Risk Analysis - Generic process

B. Local trustworthiness assessment

Thus, by leveraging system engineering best-practices, ML
development workflows, and testing procedures, the end-to-
end methodology ensures that trustworthiness attributes are
embedded in every stage of the AI system life-cycle, from
conception to maintenance. The Confiance.ai framework fo-
cuses on the following attributes:

• Robustness covering Safety and Security: High-risk
systems must be as resilient as possible against errors,
faults or inconsistencies that may occur within the system
or the environment in which it operates, and also against
attempts by unauthorized third parties to alter its use, out-
puts or performance by exploiting system vulnerabilities;
furthermore, the technical solutions aiming to ensure the
cybersecurity of high-risk AI systems must be appropriate

to the risks and circumstances. Various perturbations (i.e.,
variations in input data and operating conditions) should
not be an issue for robust AI systems. Therefore, an
AI-based system must meet rigorous safety and security
requirements [81] (see Figure 12):

– Safety analysis and certification based on standards.
– Cybersecurity counter-measures, integrated on the AI

pipeline.

This requires :

– Adversarial robustness, ensuring the system is not
easily manipulable by adversarial attacks.

– OOD Robustness (Out-Of Distribution), the system
must generalize well across different environment
and be trained on diverse datasets.

– model monitoring, ensuring a continuous evaluation

185International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. ML model robustness evaluation process considering two complementary strategies

of the AI models, to detect performance degradation.
To evaluate the robustness of ML model, the end-to-end
methodology proposes a strategy made of two successive
phases:

– Robustness test by sampling and perturbation (em-
pirical evaluation).

– Formal verification of robustness (formal evaluation);
The test-based phase consists in comparing, on one
hand, the behavior of the ML model fed with a
perturbed dataset, and on the other hand, its nominal
behavior.
The formal evaluation-based phase uses formal meth-
ods and tools to verify one or several mathematical
properties (here, related to robustness) of the ML
model. Ideally, such a property shall be formally
verified on the whole Model, whatever the input
data. However, practically, because of constraints on
the formal verification tools, the property is formally
verified only for given input data: it proves that the
ML model is locally robust, at given points of the
test dataset. Each phase implies a specific expression
of ML model robustness requirements.
The first phase is relatively inexpensive, compared to
the second one. By testing the model with different
inputs and perturbations, information is obtained

about the performance of the model in different
scenarios and its ability to generalize well despite
data perturbation. However, this type of evaluation
has limited confidence because it only tests a subset
of possible scenarios but it may not uncover all
potential issues or weaknesses.
On the other hand, the second phase involves rigor-
ous mathematical analysis of the model robustness:
it is more expensive and time-consuming compared
to the first phase. Formal verification provides a
higher level of confidence in the model’s perfor-
mance because it is based on sound proofs. However,
it is important to note that formal verification may
not be possible for certain types of models due to
their complexity or lack of formal specifications. In
this sense, the adoption of a formal verification to
evaluate the robustness of ML models depends on
certain constraints such as the acceptability of formal
proofs, the compatibility of the verification tools with
the ML model algorithm, and the dimension of the
data space.
The interest of starting with sampling and pertur-
bation test is to quickly identify any major issues
or weaknesses in the model. If the model performs
well in this step, it can then be subjected to formal

186International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

verification to obtain a more expensive but also more
reliable result.
This combination of approaches allows for the most
comprehensive evaluation of the model robustness,
considering both cost-effectiveness and confidence.

• Transparency, Explainability, Interpretability and
Comprehensibility. The principle of "having a human
in the loop" is at the core of responsible and trustworthy
AI. Transparency is vital for effective human control
and oversight, including instructions for safe use and
information about the level of accuracy, robustness, and
cybersecurity of the critical AI system. This enables us
to: (i) Properly understand the relevant capacities and
limitations of the system and monitor its operations,
including in view of detecting and addressing anomalies,
dysfunctions and unexpected performance; (ii) Maintain
awareness of the potential tendency to automatically rely
or over-rely on the output produced by the system; (iii)
Accurately interpret the system’s output; and (iv) Decide
not to use the system or otherwise disregard, override
or reverse the system’s output. Moreover, trustworthy
AI should be transparent and its decisions should be
interpretable where

– Explainability deals with the capability to provide
the human with relevant information on how an AI
application is coming to its result.

– Interpretability relates to the capability of an element
representation (an object, a relation, a property...) to
be associated with the mental model of a human
being. It is a basic requirement for an explanation.

– Comprehensibility refers to the capability of an el-
ement representation (an object, a relation, a prop-
erty...) to be understood by a person according to its
level of expertise or background knowledge.

This requires:
– Post-hoc explainability tools, to provide insights into

model decisions.
– model simplification strategies to enhance inter-

pretability.
– Human-in-the-loop validation to ensure AI decisions

align with expert knowledge.
There is a profusion of methods, tools, and solutions
available, each with its own set of advantages, drawbacks,
and trade-offs [84]. The many different approaches show
how tricky it is to make sure that AI and machine learn-
ing models can explain their predictions and decisions.
Choosing the right way to make models explainable is
a technical and strategic decision. It depends on the
unique needs and limits of the people it will be used
by, the specific example it will be used for, and the
wider situation in which the AI system will be used.
What works for a medical diagnosis model may not
work for the aeronautic domain, and what regulators
expect can be very different from what end-users or
business stakeholders expect. The Confiance.ai program

provides a "Methodological Guideline for Explainability"
(https://catalog.Confiance.ai/) which is designed to be a
complete guide to help people use AI. It will explain why
explainability is important, highlight the many available
methods, and offer guidance on selecting the most suit-
able approach based on the specific situation.

• Fairness and Bias Mitigation. A key concern with data-
driven AI (such as ML) is the amplification of biases.
Therefore, we have first to take appropriate measures to
detect, prevent and mitigate possible biases and to use
high-quality datasets for training, validation, and testing,
as the output of the AI system depends largely on the
quality of the training data. The data must be relevant,
sufficiently representative and, to the best extent possible,
free of errors and complete. AI models should be free
from discriminatory biases. This involves:

– Bias detection and correction techniques, in the data
processing and model training phases.

– Regulatory alignment with fairness standards.
The end-to-end methodology integrates those attributes

throughout the AI system life-cycle, namely in:
• Operational Design Domain (ODD) definition: Critical

AI systems are subject to rigorous regulatory require-
ments, including conformity assessments and post-market
surveillance. The EU AI Act establishes a risk classi-
fication system for AI systems based on their intended
purpose. This means that the use for which an AI system
is intended by the provider, including the specific context
and conditions of use, determines its risk classification.
This ensures that regulatory scrutiny aligns with the
system’s anticipated function and impact.

– Define the operational boundaries where the AI
system is expected to function reliably.

– Establish clear environmental constraints for the AI-
system’s development.

The ODD is a description of measurable foreseeable
operating conditions within which a system/component
shall operate. A traceability property shall be assured
between the different levels of ODD (system, subsystem
or component).

• Systems Engineering
– Ensure AI system-level requirements are defined in

alignment with overall system objectives.
– Align AI-based system requirements with preexisting

system engineering standards and certification guide-
lines.

• Data Engineering and Data Quality Assessment
– Rely on a robust data pipeline to guarantee data

integrity, consistency, and traceability across the en-
gineering cycle.

– Implement bias mitigation strategies at the data col-
lection and processing stages.

– Use adaptive data augmentation strategies to improve
data diversity and model generalization to distribu-
tion shifts and operational scenarios.

187International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. The unified approach based on MCDA [82] [83]

• ML Algorithm Engineering
– Use ML robustness techniques, designed to handle

perturbation and adversarial outputs.
– Incorporate explanability techniques to have under-

standable decisions.
– Apply Uncertainty quantification techniques to asses

the model’s confidence.
• Verification and Validation

– Perform extensive simulation-based testing to asses
performances under edge cases.

In addition, measuring how trustworthy AI systems are is
tricky. The ideas behind them are complicated, the characteris-
tics they produce are different, and you can’t always compare
them. The Confiance.ai program proposes an innovative way
to measure trustworthiness using (max,+) algebra [85] based
on a complete hierarchical model that brings together different
properties, such as how strong, effective, dependable, easy to
use and human agency, and human oversight) into a single
assessment method. This offers advantages over traditional
weighted averaging methods by better handling extreme values
and preserving sensitivity to critical indicators, while maintain-
ing sensitivity to critical indicators to provide detailed, under-
standable assessments of AI-based system trustworthiness.

C. Global Trustworthiness Assessment

As it is not straightforward to select the relevant attributes
for assessing AI trustworthiness, given that the choice depends
on the context of application. This context is modeled ac-
cording to a number of elements, including the Operational
Design Domain (ODD), the intended domain of use, the
nature and roles of the stakeholders, and so on. The attributes
may be quantitative, typically comprising numerical values
derived from measurements or providing a comprehensive
statistical overview of a phenomenon. Alternatively, they may
be qualitative, based on the detailed analysis and interpretation
of a limited number of samples. Then, the second activity
mentioned above on the characterization of the trustworthiness

evaluation is broken down into several activities, according to
the Multi-Criteria Decision Aiding (MCDA) method [82] [83].
Those are:

1) Define trustworthiness characteristics. All the character-
istics of the considered item are identified and described
(i.e., their name, properties).

2) Structure attributes in a semantic tree. Characteristics
(i.e., quality attributes) are organized in a tree, from the
most general down to the leaf characteristics.

3) Identify numerical evaluations. Each characteristic is
typed by a numerical value domain.

4) Adapt attribute for commensurability. Characteristics
can follow different forms of distribution with different
value domains. The purpose is to make them compatible
so that they can be compared and operated together.

5) Define the aggregation methodology. MCDA enables
one to explore several solutions, compare them, and to
keep the best one.

Once the list of relevant attributes has been defined, the
aggregation of several attributes remains complex due to issues
of commensurability. This is because the attributes in question
are not of the same unit; for example, combining "oranges
and apples" is not a meaningful exercise. Furthermore, it is
necessary to make compromises and arbitrate between the
attributes. This means that the value of each attribute must be
transformed into a scale that is consistent across all attributes
and reflects the preferences of a stakeholder. Furthermore, the
values assigned to the scales for the various criteria must
be aggregated. These elements represent the primary stages
of a problem-solving process that employs an Multi-Criteria
Decision Aiding (MCDA) approach [85].

MCDA is a generic term for a collection of systematic
approaches developed specifically to assist one or several
decision makers in assessing or comparing alternatives based
on multiple criteria [86]. The challenge lies in the fact that the
decision-making criteria are often numerous, interdependent,
and occasionally in conflict with each other. For instance, there

188International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

may be a conflict between effectiveness and other criteria, such
as robustness, explainability, or affordability. The viewpoints
are quantified through the use of attributes. Aggregation func-
tions are frequently used to facilitate comparisons between
alternatives evaluated on the basis of multiple, potentially con-
flicting criteria. This is achieved by synthesizing their respec-
tive performances into overall utility values. These functions
must be sufficiently expressive to align with the preferences
of the stakeholders involved, enabling the identification of
the most preferred alternative or facilitating the negotiation of
compromises among the criteria. It is important to note that
improving one criterion may necessitate a trade-off in another.

V. CONCLUSION AND FUTURE WORKS

The Confiance.ai program has evolved since its kick-off in
2021, with a first year dedicated to covering the academic and
industrial state of the art related to ML-based system design.
Subsequent years (2022-2023) were dedicated to the accurate
characterization of industrial use cases, the development and
evaluation of technological components to address specific
aspects of reliability, and the construction of an end-to-end
method revisiting all stages of the engineering cycle for the
design, integration, and evaluation of ML components [9]. The
last year (2024) encompasses the evaluation of this end-to-end
method, the completion and dissemination of key results, and
the guarantee of their continuation and sustainability under the
aegis of a new research initiative currently under construction.
To facilitate the adoption of the tool-based methodology by
industry, several implementations of the 2023 version have
been carried out on use cases.

These experiments have demonstrated the importance of
integrating diverse tools and methods to address expectations
regarding trusted ownership, as illustrated by the following
two examples: In a use case involving autonomous driving,
the analysis of dataset diversity reveals a limited presence
of night-time images, prompting the generation of synthetic
night-time data. This data exhibits a "domain gap" and under-
goes "domain adaptation" prior to integration into the model
training data. These tools, instrumental in the construction
of datasets, will also be reused in the supervision stage of
the use case. In an aeronautical use case called LARD for
"Landing Approach Runway Detection" [87] and represented
Figure 14, a data quality supervision module is incorporated
to consolidate the confidence score of an ML model (see
Figure 14). In this example, local image quality estimators
(e.g., level of blur, brightness) are taken into account in the
detection zone of the landing strip that is being detected.
The combination of these indicators with the other indicators
intrinsic to the model facilitates the establishment of a level of
confidence for the system component. In addition to providing
a numerical value, this implementation serves as a tool to
facilitate the interpretation of model and data errors.

The Confiance.ai program is opening up two major out-
comes to the community as a "digital common good". First,
it provides a body of knowledge describing an end-to-end

method of AI engineering. This makes it possible to character-
ize and qualify the trustworthiness of a data-driven AI system
and integrate it into industrial products and services. Second,
this method is applicable to any sector of activity. A catalog of
developed and/or mature technological components to increase
the level of trust in AI integrated into critical systems.

The Body of Knowledge (BoK) is one of the main out-
comes because it provides access to a navigable version of
this end-to-end methodology that covers the activities struc-
turing the engineering cycle of a critical system based on
ML (https://bok.Confiance.ai/). This compendium of expertise
from multiple disciplines is a corpus that articulates the system
level with the model and data levels in the engineering process.
It is continuously updated and expanded and is expected to
continue beyond the program. The content provided in the
body of knowledge is structured with an end-to-end engineer-
ing method in mind and can be navigated through different
roles in this process, namely through the field of application of
different engineering profiles: These roles include, but are not
limited to, the following: machine learning algorithm engineer,
data engineer, embedded software engineer, IVVQ (Integra-
tion, Validation, Verification and Qualification) engineer or
system engineer.

The following simplified high-level view of the BoK is
presented as a gateway to the end-to-end method for engineer-
ing trustworthy ML-based systems.The body of knowledge
presents the stages of the methodology, from operational
analysis and specification of the function of the system that
one wishes to automate through the use of ML technology, to
verification/validation/qualification, including the development
and implementation of the ML model. The navigation through
each stage and according to each role facilitates the visualiza-
tion of the activities, sub-activities and workflow to be carried
out when developing a reliable ML-based system.This corpus
is thus a compendium of expertise from multiple disciplines
because it links the system level with the model and data
levels in the engineering process.It is continuously updated
and expanded, and this is planned beyond the program.

The catalog (https://catalog.Confiance.ai/) is a web applica-
tion that allows users to consult the results of the Confiance.ai
program. It employs filtering and search functions (sorting,
categories, etc.) to facilitate navigation through the various
results, which can be either documents or software. Results
categorized as "documentary" are exclusively of a literary
nature, including reports (studies or benchmarks), state of the
art, doctoral theses or good practice guides. "Software" results
are components intended to be run directly or through another
application, such as a web application, a library, a plugin or a
binary executable.

ACKNOWLEDGMENT

This work has been supported by the French government
under the "France 2030” program, as part of the SystemX
Technological Research Institute within the Confiance.ai Pro-
gram (www.Confiance.ai) and the CSIA (Confiance dans les
Systèmes d’IA) project.

189International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Example of the implementation of a supervision tool on the LARD [87] use-case

REFERENCES

[1] K. Quintero et al., “An end-to-end method for operationalizing
trustwothiness in AI-based critical systems”, in 15th Interna-
tional Conference on Performance, Safety and Robustness in
Complex Systems and Applications PESARO 2025, 2025.

[2] European Commission, Proposal for a Regulation of the Euro-
pean Parliament and of the Council laying down Harmonised
Rules on Artificial Intelligence (Artificial Intelligence Act) and
Amending Certain Union Legislative Acts, 2021.

[3] M. Felderer and R. Ramler, “Quality Assurance for AI-Based
Systems: Overview and Challenges (Introduction to Interactive
Session)”, in International Conference on Software Quality,
Springer, 2021, pp. 33–42.

[0] ISO/IEC 25024:2015, Systems and software engineering —
Systems and software Quality Requirements and Evaluation
(SQuaRE) — Measurement of data quality, 2015.

[4] H. Liu et al., “Trustworthy AI: A computational perspective”,
ACM Transactions on Intelligent Systems and Technology,
vol. 14, pp. 1–59, 2022.

[5] HLEG, A definition of AI: Main capabilities and scientific
disciplines, Definition developed for the purpose of the de-
liverables of the High-Level Expert Group on AI, 2018.

[6] A. Horneman et al., AI Engineering: 11 Foundational
Practices-Recommendations for Decision Makers from Experts
in Software Engineering, Cybersecurity, and applied Artificial
Intelligence White Paper DM19-0624, 06.06. Carnegie Mellon
University, Software Engineering Institute (SEI), 2019.

[7] M. Gonzalez et al., “Introducing RUM: A Methodological
Contribution for Engineering Trustworthy AI Components in
Industrial Systems”, in Proceedings of the AAAI Symposium
Series, vol. 7, 2025, pp. 153–160.

[8] M. Adedjouma et al., “Engineering dependable AI systems”, in
17th IEEE Annual System of Systems Engineering Conference
(SOSE), 2022, pp. 458–463.

[9] A. Awadid et al., “Ensuring the reliability of AI systems
through methodological processes”, in 2024 IEEE 24th In-
ternational Conference on Software Quality, Reliability and
Security (QRS), IEEE, 2024, pp. 139–146.

[10] A. Avizienis et al., “Basic concepts and taxonomy of depend-
able and secure computing”, IEEE Transactions on Depend-
able and Secure Computing, vol. 1, pp. 11–33, 2004.

[11] J. Cho et al., “Stram: Measuring the trustworthiness of
computer-based systems”, ACM Computing Surveys (CSUR),
vol. 51, pp. 1–47, 2019.

[12] NSTC, The National Artificial Intelligence Research and De-
velopment Strategic Plan: 2019 Update. National Science and
Technology Council (US), 2019.

[13] E. Schmidt et al., “National security commission on artificial
intelligence (AI)”, National Security Commission on Artificial
Intelligence, Tech. Rep., 2021.

[14] UNESCO, Recommendation on the Ethics of Artificial Intel-
ligence, 2022. Accessed: Nov. 8, 2024. [Online]. Available:
https://unesdoc.unesco.org/ark:/48223/pf0000381137.

[15] OECD, Recommendation of the Council on Artificial Intelli-
gence, Legal Instruments, May 2019. Accessed: Nov. 3, 2024.
[Online]. Available: https : / / legalinstruments . oecd . org / en /
instruments/OECD-LEGAL-0449.

[16] OCDE, G7 Hiroshima Process on Generative Artificial Intel-
ligence (AI), 2023. DOI: https: / /doi .org/https: / /doi .org/10.
1787/bf3c0c60- en. [Online]. Available: https : / /www.oecd-
ilibrary.org/content/publication/bf3c0c60-en.

[17] EASA, Concept Paper First Usable Guidance for Level 1
Machine Learning Applications, 2021. [Online]. Available:
https : / /www.easa . europa . eu / en / easa - concept - paper- first -
usable - guidance - level - 1 - machine - learning - applications -
proposed-issue-01pdf.

[18] P. Ala-Pietilä et al., The Assessment List for Trustworthy
Artificial Intelligence (ALTAI). European Commission, 2020.

[19] M. Mock et al., Management system support for trustworthy
artificial intelligence, 2021.

[20] ISO/IEC DIS 42001, Information technology — Artificial
intelligence — Management system, 2022.

[21] B. Stanton et al., “Trust and artificial intelligence”, NIST
preprint, vol. 10, 2021.

[22] IEEE 7000, IEEE Standard Model Process for Addressing
Ethical Concerns during System Design, 2021.

[23] ETSI, Securing Artificial Intelligence (SAI); Mitigation Strat-
egy Report, 2021.

190International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[24] J. Mattioli et al., “Empowering the trustworthiness of ML-
based critical systems through engineering activities”, arXiv
preprint arXiv:2209.15438, 2022.

[25] B. Braunschweig et al., “The wall of safety for AI: Approaches
in the confiance.ai program”, in Workshop on Artificial Intel-
ligence Safety (SAFEAI), 2022.

[26] J. Mattioli et al., “AI engineering to deploy reliable AI in
industry”, in 2023 Fifth International Conference on Trans-
disciplinary AI (TransAI), 2023, pp. 228–231.

[27] R. Gelin, “Confiance.ai program software engineering for a
trustworthy AI”, in Producing Artificial Intelligent Systems:
The Roles of Benchmarking, Standardisation and Certification,
Springer, 2024, pp. 11–29.

[28] A. Awadid et al., “AI Systems Trustworthiness Assessment:
State of the Art”, in Workshop on Model-based System Engi-
neering and Artificial Intelligence-MBSE-AI Integration 2024,
2024.

[29] A. Awadid et al., “Ensuring the reliability of AI systems
through methodological processes”, in 2024 IEEE 24th In-
ternational Conference on Software Quality, Reliability and
Security (QRS), 2024, pp. 139–146.

[30] A. Awadid, B. Robert, and B. Langlois, “Mbse to support
engineering of trustworthy AI-based critical systems”, in 12th
International Conference on Model-Based Software and Sys-
tems Engineering, 2024.

[31] A. Awadid et al., “Towards engineering processes to guide the
development of trustworthy ML systems”, in 2024 IEEE In-
ternational Symposium on Systems Engineering (ISSE), IEEE,
2024, pp. 1–6.

[32] V. Liubchenko, “Specific aspects of software development
process for ai/ml-based systems”, in 2022 IEEE 17th Inter-
national Conference on Computer Sciences and Information
Technologies (CSIT), IEEE, 2022, pp. 470–473.

[33] P. Koopman, F. Fratrik, et al., “How many operational design
domains, objects, and events?”, Safeai@ aaai, vol. 4, no. 4,
2019.

[34] F. Pedregosa et al., “Scikit-learn: Machine learning in python”,
the Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[35] J. Mattioli et al., “Information quality: The cornerstone for
ai-based industry 4.0”, Procedia Computer Science, vol. 201,
pp. 453–460, 2022.

[36] L. Mattioli et al., “Data curation matters: Model collapse
and spurious shift performance prediction from training on
uncurated text embeddings”, arXiv preprint arXiv:2506.17989,
2025.

[37] M. Mazumder et al., “Dataperf: Benchmarks for data-centric
AI development”, arXiv preprint arXiv:2207.10062, 2022.

[38] J. Jakubik et al., “Data-centric artificial intelligence”, arXiv
preprint arXiv:2212.11854, 2022.

[39] M. Jarrahi, A. Memariani, and S. Guha, “The principles of
data-centric AI (DCAI)”, arXiv preprint arXiv:2211.14611,
2022.

[40] G. Mountrakis and B. Xi, “Assessing reference dataset repre-
sentativeness through confidence metrics based on information
density”, ISPRS journal of photogrammetry and remote sens-
ing, vol. 78, pp. 129–147, 2013.

[41] H. Delseny et al., “White paper machine learning in certified
systems”, arXiv preprint arXiv:2103.10529, 2021.

[42] Z. Gong et al., “Diversity in machine learning”, IEEE Access,
vol. 7, pp. 64 323–64 350, 2019.

[43] M. Dereziński, “Fast determinantal point processes via
distortion-free intermediate sampling”, in Conference on
Learning Theory, PMLR, 2019, pp. 1029–1049.

[44] Z. Gong et al., “Diversity-promoting deep structural met-
ric learning for remote sensing scene classification”, IEEE

Transactions on Geoscience and Remote Sensing, vol. 56,
pp. 371–390, 2017.

[45] C. Zhang et al., “Active mini-batch sampling using repulsive
point processes”, in Proceedings of the AAAI conference on
Artificial Intelligence, vol. 33, 2019, pp. 5741–5748.

[46] Y. LeCun et al., “Gradient-based learning applied to document
recognition”, Proceedings of the IEEE, vol. 86, pp. 2278–2324,
1998.

[47] V. Gurupur and M. Shelleh, “Machine learning analysis for
data incompleteness (MADI): Analyzing the data complete-
ness of patient records using a random variable approach to
predict the incompleteness of electronic health records”, IEEE
Access, vol. 9, pp. 95 994–96 001, 2021.

[48] C. Holden et al., “The electronic health record system and
hospital length of stay in patients admitted with hip fracture”,
Am J Research Nurs [Internet], pp. 1–5, 2015.

[49] Y. Teo et al., “Benchmarking quantum tomography complete-
ness and fidelity with machine learning”, New Journal of
Physics, vol. 23, p. 103 021, 2021.

[50] C. Tran, Evolutionary machine learning for classification with
incomplete data, 2018.

[51] B. Schouten et al., “Indicators for the representativeness of
survey response”, Survey Methodology, vol. 35, pp. 101–113,
2009.

[52] M. Berkesewicz, “A two-step procedure to measure represen-
tativeness of internet data sources”, International Statistical
Review, vol. 85, pp. 473–493, 2017.

[53] M. Blatchford et al., “Determining representative sample size
for validation of continuous, large continental remote sensing
data”, International Journal of Applied Earth Observation and
Geoinformation, vol. 94, p. 102 235, 2021.

[54] M. Qi et al., “Quantifying representativeness in randomized
clinical trials using machine learning fairness metrics”, JAMIA
open, vol. 3, ooab077, 2021.

[55] Y. Geifman and R. El-Yaniv, “Selective classification for deep
neural networks”, Advances in Neural Information Processing
Systems, vol. 30, 2017.

[56] Y. Geifman and R. El-Yaniv, “Selectivenet: A deep neural
network with an integrated reject option”, in International
Conference on Machine Learning, 2019, pp. 2151–2159.

[57] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of
features from tiny images, 2009.

[58] K. Pei et al., “Deepxplore: Automated whitebox testing of deep
learning systems”, in proceedings of the 26th Symposium on
Operating Systems Principles, 2017, pp. 1–18.

[59] Y. Tian et al., “Deeptest: Automated testing of deep-neural-
network-driven autonomous cars”, in Proceedings of the 40th
International Conference on Software Engineering, 2018,
pp. 303–314.

[60] A. Odena et al., “Tensorfuzz: Debugging neural networks
with coverage-guided fuzzing”, in International Conference
on Machine Learning, PMLR, 2019, pp. 4901–4911.

[61] F. Adjed et al., “Coupling algebraic topology theory, formal
methods and safety requirements toward a new coverage
metric for artificial intelligence models”, Neural Computing
and Applications, vol. 34, pp. 1–16, 2022.

[62] J. Bolte et al., “Towards corner case detection for autonomous
driving”, in IEEE Intelligent Vehicles Symposium (IV), 2019,
pp. 438–445.

[63] J. Breitenstein et al., “Systematization of corner cases for
visual perception in automated driving”, in IEEE Intelligent
Vehicles Symposium (IV), 2020, pp. 1257–1264.

[64] J. Breitenstein et al., “Corner cases for visual perception in
automated driving: Some guidance on detection approaches”,
arXiv preprint arXiv:2102.05897, 2021.

191International Journal on Advances in Security, vol 18 no 3&4, year 2025, http://www.iariajournals.org/security/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[65] T. Ouyang et al., “Corner case data description and detection”,
in IEEE/ACM 1st Workshop on AI Engineering-Software En-
gineering for AI (WAIN), 2021, pp. 19–26.

[66] T. Ouyang et al., “Improved surprise adequacy tools for corner
case data description and detection”, Applied Sciences, vol. 11,
p. 6826, 2021.

[67] W. Wu et al., “Deep validation: Toward detecting real-world
corner cases for deep neural networks”, in 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), IEEE, 2019, pp. 125–137.

[68] F. Heidecker et al., “An application-driven conceptualization
of corner cases for perception in highly automated driving”, in
IEEE Intelligent Vehicles Symposium (IV), 2021, pp. 644–651.

[69] F. Heidecker, M. Bieshaar, and B. Sick, Towards corner case
identification in cyclists’ trajectories, 2019.

[70] A. Le Coz et al., “Leveraging generative models to character-
ize the failure conditions of image classifiers”, in The IJCAI-
ECAI-22 Workshop on Artificial Intelligence Safety (AISafety
2022), 2022.

[71] A. Awadid et al., “A methodological framework for supporting
the operational analysis of ML-based systems”, in Models and
Methods for Systems Engineering, Springer, 2025, pp. 129–
141.

[72] A. Fakhouri et al., “Ml model coverage assessment by topo-
logical data analysis exploration”, in Proceedings of the AAAI
Symposium Series, vol. 4, 2024, pp. 32–39.

[73] E. Breck et al., “The ml test score: A rubric for ml production
readiness and technical debt reduction”, in IEEE International
Conference on Big Data (Big Data), 2017, pp. 1123–1132.

[74] J. Thomas, “Systems theoretic process-analysis STPA”,
Availble online at: http://psas. scripts. mit. edu/home/wp-
content/uploads/2016/01, 2016.

[75] J. Berger, STPA guide. VTT Technical Research Centre of
Finland, 2024.

[76] B. Braunschweig et al., “AITA: AI trustworthiness assessment:
AAAI spring symposium 2023”, AI and Ethics, vol. 4, pp. 1–3,
2024.

[77] K. Kapusta et al., “Protecting ownership rights of ml models
using watermarking in the light of adversarial attacks”, AI and
Ethics, vol. 4 - 1, pp. 95–103, 2024.

[78] M. Lansari et al., “A Black-Box Watermarking Modulation
for Object Detection Models”, in Proceedings of the AAAI
Symposium Series, vol. 4, 2024, pp. 60–67.

[79] J. Mattioli et al., “An overview of key trustworthiness at-
tributes and KPIs for trusted ML-based systems engineering”,
AI and Ethics, vol. 4 - 1, pp. 15–25, 2024.

[80] A. Dakwat and E. Villani, “System safety assessment based on
STPA and model checking”, Safety science, vol. 109, pp. 130–
143, 2018.

[81] A. Awadid and B. Robert, “On assessing ML model robust-
ness: A methodological framework”, in Symposium on Scaling
AI Assessments, 2025.

[82] J. Mattioli et al., “Towards a holistic approach for AI trust-
worthiness assessment based upon aids for multi-criteria ag-
gregation”, in SafeAI 2023-The AAAI’s Workshop on Artificial
Intelligence Safety, vol. 3381, 2023.

[83] J. Mattioli et al., “A Brief Overview of Key Quality Metrics for
Knowledge Graph Solution. Illustration on Digital NOTAMs”,
in Proceedings of the AAAI Symposium Series, vol. 7, 2025,
pp. 206–213.

[84] S. Naveed et al., “An overview of the empirical evaluation
of explainable AI (XAI): A comprehensive guideline for
user-centered evaluation in xAI”, Applied Sciences, vol. 14,
p. 11 288, 2024.

[85] J. Mattioli et al., “Leveraging tropical algebra to assess trust-
worthy AI”, in Proceedings of the AAAI Fall Symposium
Series, vol. 4, 2024, pp. 81–88.

[86] C. Labreuche, “A general framework for explaining the results
of a multi-attribute preference model”, Artificial Intelligence,
vol. 175, pp. 1410–1448, 2011.

[87] M. Ducoffe et al., “Lard–landing approach runway
detection–dataset for vision based landing”, arXiv preprint
arXiv:2304.09938, 2023.

