

The International Journal on Advances in Security is published by IARIA.

ISSN: 1942-2636

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Security, issn 1942-2636

vol. 16, no. 1 & 2, year 2023, http://www.iariajournals.org/security/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Security, issn 1942-2636

vol. 16, no. 1 & 2, year 2023, <start page>:<end page> , http://www.iariajournals.org/security/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2023 IARIA

International Journal on Advances in Security

Volume 16, Number 1 & 2, 2023

Editors-in-Chief

Hans-Joachim Hof,
- Full Professor at Technische Hochschule Ingolstadt, Germany
- Lecturer at Munich University of Applied Sciences
- Group leader MuSe - Munich IT Security Research Group
- Group leader INSicherheit - Ingolstädter Forschungsgruppe angewandte IT-Sicherheit
- Chairman German Chapter of the ACM

Birgit Gersbeck-Schierholz
- Leibniz Universität Hannover, Germany

Editorial Advisory Board

Masahito Hayashi, Nagoya University, Japan
Daniel Harkins , Hewlett Packard Enterprise, USA
Vladimir Stantchev, Institute of Information Systems, SRH University Berlin, Germany
Wolfgang Boehmer, Technische Universitaet Darmstadt, Germany
Manuel Gil Pérez, University of Murcia, Spain
Carla Merkle Westphall, Federal University of Santa Catarina (UFSC), Brazil
Catherine Meadows, Naval Research Laboratory - Washington DC, USA
Mariusz Jakubowski, Microsoft Research, USA
William Dougherty, Secern Consulting - Charlotte, USA
Hans-Joachim Hof, Munich University of Applied Sciences, Germany
Syed Naqvi, Birmingham City University, UK
Rainer Falk, Siemens AG - München, Germany
Steffen Wendzel, Fraunhofer FKIE, Bonn, Germany
Geir M. Køien, University of Agder, Norway
Carlos T. Calafate, Universitat Politècnica de València, Spain

Editorial Board

Gerardo Adesso, University of Nottingham, UK

Ali Ahmed, Monash University, Sunway Campus, Malaysia

Manos Antonakakis, Georgia Institute of Technology / Damballa Inc., USA

Afonso Araujo Neto, Universidade Federal do Rio Grande do Sul, Brazil

Reza Azarderakhsh, The University of Waterloo, Canada

Ilija Basicevic, University of Novi Sad, Serbia

Francisco J. Bellido Outeiriño, University of Cordoba, Spain

Farid E. Ben Amor, University of Southern California / Warner Bros., USA

Jorge Bernal Bernabe, University of Murcia, Spain

Lasse Berntzen, University College of Southeast, Norway

Catalin V. Birjoveanu, "Al.I.Cuza" University of Iasi, Romania

Wolfgang Boehmer, Technische Universitaet Darmstadt, Germany

Alexis Bonnecaze, Université d'Aix-Marseille, France

Carlos T. Calafate, Universitat Politècnica de València, Spain

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Zhixiong Chen, Mercy College, USA

Clelia Colombo Vilarrasa, Autonomous University of Barcelona, Spain

Peter Cruickshank, Edinburgh Napier University Edinburgh, UK

Nora Cuppens, Institut Telecom / Telecom Bretagne, France

Glenn S. Dardick, Longwood University, USA

Vincenzo De Florio, University of Antwerp & IBBT, Belgium

Paul De Hert, Vrije Universiteit Brussels (LSTS) - Tilburg University (TILT), Belgium

Pierre de Leusse, AGH-UST, Poland

William Dougherty, Secern Consulting - Charlotte, USA

Raimund K. Ege, Northern Illinois University, USA

Laila El Aimani, Technicolor, Security & Content Protection Labs., Germany

El-Sayed M. El-Alfy, King Fahd University of Petroleum and Minerals, Saudi Arabia

Rainer Falk, Siemens AG - Corporate Technology, Germany

Shao-Ming Fei, Capital Normal University, Beijing, China

Eduardo B. Fernandez, Florida Atlantic University, USA

Anders Fongen, Norwegian Defense Research Establishment, Norway

Somchart Fugkeaw, Thai Digital ID Co., Ltd., Thailand

Steven Furnell, University of Plymouth, UK

Clemente Galdi, Universita' di Napoli "Federico II", Italy

Birgit Gersbeck-Schierholz, Leibniz Universität Hannover, Germany

Manuel Gil Pérez, University of Murcia, Spain

Karl M. Goeschka, Vienna University of Technology, Austria

Stefanos Gritzalis, University of the Aegean, Greece

Michael Grottke, University of Erlangen-Nuremberg, Germany

Ehud Gudes, Ben-Gurion University - Beer-Sheva, Israel

Indira R. Guzman, Trident University International, USA

Huong Ha, University of Newcastle, Singapore

Petr Hanáček, Brno University of Technology, Czech Republic

Gerhard Hancke, Royal Holloway / University of London, UK

Sami Harari, Institut des Sciences de l'Ingénieur de Toulon et du Var / Université du Sud Toulon Var, France

Daniel Harkins , Hewlett Packard Enterprise, USA

Ragib Hasan, University of Alabama at Birmingham, USA

Masahito Hayashi, Nagoya University, Japan

Michael Hobbs, Deakin University, Australia

Hans-Joachim Hof, INSicherheit - Ingolstadt Research Group Applied IT Security, CARISSMA – Center of Automotive

Research on Integrated Safety Systems, Germany

Neminath Hubballi, Infosys Labs Bangalore, India

Mariusz Jakubowski, Microsoft Research, USA

Ravi Jhawar, Università degli Studi di Milano, Italy

Dan Jiang, Philips Research Asia Shanghai, China

Georgios Kambourakis, University of the Aegean, Greece

Florian Kammueller, Middlesex University - London, UK

Sokratis K. Katsikas, University of Piraeus, Greece

Seah Boon Keong, MIMOS Berhad, Malaysia

Sylvia Kierkegaard, IAITL-International Association of IT Lawyers, Denmark

Hyunsung Kim, Kyungil University, Korea

Geir M. Køien, University of Agder, Norway

Ah-Lian Kor, Leeds Metropolitan University, UK

Evangelos Kranakis, Carleton University - Ottawa, Canada

Lam-for Kwok, City University of Hong Kong, Hong Kong

Jean-Francois Lalande, ENSI de Bourges, France

Gyungho Lee, Korea University, South Korea

Clement Leung, Hong Kong Baptist University, Kowloon, Hong Kong

Diego Liberati, Italian National Research Council, Italy

Giovanni Livraga, Università degli Studi di Milano, Italy

Gui Lu Long, Tsinghua University, China

Jia-Ning Luo, Ming Chuan University, Taiwan

Thomas Margoni, University of Western Ontario, Canada

Rivalino Matias Jr ., Federal University of Uberlandia, Brazil

Manuel Mazzara, UNU-IIST, Macau / Newcastle University, UK

Catherine Meadows, Naval Research Laboratory - Washington DC, USA

Carla Merkle Westphall, Federal University of Santa Catarina (UFSC), Brazil

Ajaz H. Mir, National Institute of Technology, Srinagar, India

Jose Manuel Moya, Technical University of Madrid, Spain

Leonardo Mostarda, Middlesex University, UK

Jogesh K. Muppala, The Hong Kong University of Science and Technology, Hong Kong

Syed Naqvi, CETIC (Centre d'Excellence en Technologies de l'Information et de la Communication),Belgium

Sarmistha Neogy, Jadavpur University, India

Mats Neovius, Åbo Akademi University, Finland

Jason R.C. Nurse, University of Oxford, UK

Peter Parycek, Donau-Universität Krems, Austria

Konstantinos Patsakis, Rovira i Virgili University, Spain

João Paulo Barraca, University of Aveiro, Portugal

Sergio Pozo Hidalgo, University of Seville, Spain

Yong Man Ro, KAIST (Korea advanced Institute of Science and Technology), Korea

Rodrigo Roman Castro, University of Malaga, Spain

Heiko Roßnagel, Fraunhofer Institute for Industrial Engineering IAO, Germany

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-

German Supercomputing Alliance, Germany

Antonio Ruiz Martinez, University of Murcia, Spain

Paul Sant, University of Bedfordshire, UK

Peter Schartner, University of Klagenfurt, Austria

Alireza Shameli Sendi, Ecole Polytechnique de Montreal, Canada

Dimitrios Serpanos, Univ. of Patras and ISI/RC ATHENA, Greece

Pedro Sousa, University of Minho, Portugal

George Spanoudakis, City University London, UK

Vladimir Stantchev, Institute of Information Systems, SRH University Berlin, Germany

Lars Strand, Nofas, Norway

Young-Joo Suh, Pohang University of Science and Technology (POSTECH), Korea

Jani Suomalainen, VTT Technical Research Centre of Finland, Finland

Enrico Thomae, Ruhr-University Bochum, Germany

Tony Thomas, Indian Institute of Information Technology and Management - Kerala, India

Panagiotis Trimintzios, ENISA, EU

Peter Tröger, Hasso Plattner Institute, University of Potsdam, Germany

Simon Tsang, Applied Communication Sciences, USA

Marco Vallini, Politecnico di Torino, Italy

Bruno Vavala, Carnegie Mellon University, USA

Mthulisi Velempini, North-West University, South Africa

Miroslav Velev, Aries Design Automation, USA

Salvador E. Venegas-Andraca, Tecnológico de Monterrey / Texia, SA de CV, Mexico

Szu-Chi Wang, National Cheng Kung University, Tainan City, Taiwan R.O.C.

Steffen Wendzel, Fraunhofer FKIE, Bonn, Germany

Piyi Yang, University of Shanghai for Science and Technology, P. R. China

Rong Yang, Western Kentucky University , USA

Hee Yong Youn, Sungkyunkwan University, Korea

Bruno Bogaz Zarpelao, State University of Londrina (UEL), Brazil

Wenbing Zhao, Cleveland State University, USA

International Journal on Advances in Security

Volume 16, Numbers 1 & 2, 2023

CONTENTS

pages: 1 - 11
Enhanced Attack Resilience within Cyber Physical Systems
Rainer Falk, Siemens AG, Germany
Steffen Fries, Siemens AG, Germany

pages: 12 - 22
Adapting to Change: A Study of the Software Architecture Evolution of a Physical Security Information
Management System
Oğuzhan Özçelik, ASELSAN A.Ş., Turkey
Mehmet Halit S. Oğuztüzün, Middle East Technical University, Turkey

pages: 23 - 32
Managing Cyber Black Swans: Can potentially crippling cyber situations be foreseen, allayed, and turned into
growth opportunities?
Anne Coull, N/A, Australia
Elena Sitnikova, Flinders University, Australia

pages: 33 - 43
Privacy-Preserving User Clustering: The Application of Anonymized Data to Community Detection in Large
Organizations
Igor Jakovljevic, Graz University of Technology, Austria
Martin Pobaschnig, Graz University of Technology, Austria
Christian Gütl, Graz University of Technology, Austria
Andreas Wagner, CERN, Switzerland

pages: 44 - 53
Binding the Battery to the Pass: An Approach to Trustworthy Product Life Cycle Data by Using Certificates Based
on PUFs
Julian Blümke, CARISSMA Institute of Electric, Connected and Secure Mobility, Germany
Hans-Joachim Hof, CARISSMA Institute of Electric, Connected and Secure Mobility, Germany

pages: 54 - 71
A Survey on Secure Android Apps Development Life-Cycle: Vulnerabilities and Tools
Mohammed-El-Amin Tebib, Univ. Grenoble Alpes, Grenoble INP*, LCIS lab., 26000 Valence, France
Mariem Graa, Univ. Grenoble Alpes, Grenoble INP*, LCIS lab., 26000 Valence, France
Pascal André, UMR 6004 CNRS, Nantes University, France
Oum-El-Kheir Aktouf, Univ. Grenoble Alpes, Grenoble INP*, LCIS lab., 26000 Valence, France

pages: 72 - 85
SPVExec and SPVLUExec - A Novel Realtime Defensive Tool for Stealthy Malware Infection
Nicholas Phillips, Towson University, USA
Aisha Ali Gombe, LSU, USA

pages: 86 - 95
Runtime Trustworthiness Evaluation of Evolving Cyber Physical Systems

Rainer Falk, Siemens AG, Germany
Steffen Fries, Siemens AG, Germany

pages: 96 - 105
Protected Establishment of a Secondary Network Access Channel
Steffen Fries, Siemens, Germany
Rainer Falk, Siemens, Germany

1

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Enhanced Attack Resilience within Cyber Physical Systems

Rainer Falk, Steffen Fries

Siemens AG

Technology

Munich, Germany

e-mail: {rainer.falk|steffen.fries}@siemens.com

Abstract—Cyber physical systems control, monitor, and

supervise physical, technical systems using information and

communication technology, also called operation technology.

The focus of cyber security is protection against cyber attacks,

their detection, and recovery from successful cyber attacks.

Cyber resilience aims at delivering an intended outcome of the

cyber physical system despite attacks and adverse cyber events

and even due to failures not directly related to attacks.

Industrial security standards define how cyber physical systems

and the used devices can be protected against attacks (prevent).

Despite all efforts to protect from attacks, it should always be

assumed that attacks may happen. Security monitoring allows

to detect successful attacks (detect), so that corresponding

measures can be performed (react). This paper describes an

additional, complementary approach for protecting cyber

physical systems. The devices are designed in a way that makes

it harder to use them for launching attacks on other devices or

on their physical environment. A device-internal hardware-

based or isolated firewall limits the network traffic that the

device software executed on the device can send or receive. Even

if the device software contains a vulnerability allowing an

attacker to compromise the device, the technically possible

negative impact on other connected devices is limited, thereby

enhancing the resilience of the cyber physical system in the

presence of manipulated devices.

Keywords–cyber security; cyber resilience; system integrity;

cyber physical systems; industrial automation and control system;

Internet of Things.

I. INTRODUCTION

Traditionally, IT security has been focusing on protection
of confidentiality, integrity, and availability of data at rest and
data in transit, and sometimes also protecting data in use by
confidential computing or by applying homomorphic
encryption. In cyber physical systems (CPS), major protection
goals are availability, meaning that the CPS, e.g., an industrial
automation system, stays productive, and system integrity,
ensuring that the CPS is in fact operating as intended and
designed. Typical industrial application domains are factory
automation, process automation, building automation, railway
signaling systems, intelligent traffic management, and power
system management. Such CPSs are also called industrial
Internet of Things (IIoT), distinguishing them from other
Internet of Things (IoT) domains as, e.g., consumer IoT.
Cyber security is covering different phases during operation

as there are protect, detect, and react: Protecting against
threats, detecting when an attack has occurred, and recovering
from successful attacks. With the approach of “resilience
under attack”, it shall be ensured that the CPS can stay
operational even during an ongoing attack, maybe with
limited performance or functionality [1]. This property
reduces the impact of a successful attack, as the CPS can be
continued to be used even if parts of the CPS should have been
attacked successfully. The availability of the overall CPS is
thereby improved, as the CPS can stay operational even under
an ongoing attack.

When designing a security solution for a CPS or for a
device used within the CPS, the focus is on protecting the
assets of the CPS or device, by preventing attacks against the
relevant assets. However, this approach is not complete from
a more holistic perspective: It is also important to detect
ongoing attacks, and to recover efficiently from an attack.
Also, the environment of a device or a CPS has to be protected
from attacks originating from a manipulated CPS or one of its
devices. In particular, IoT devices have been attacked with the
objective to use them for launching attacks against other
systems. Dao, Phan et al. described distributed denial of
service (DDoS) attacks originating from manipulated IoT
devices [2]. As (consumer) IoT devices have often also a weak
security management, vulnerabilities are often not patched in
time, making them an easy attack target. Vulnerable IoT
devices connected to the Internet can easily be found by using
Internet-based device search engines like Shodan [3] or
Morpheus [4].

This paper presents an approach for protecting the network
environment, i.e., other devices of a CPS and further connect
devices, from attacks originating from a manipulated
component of the CPS. It is an extended version of the
conference paper [1], extending in particular the possible
reduction in risk exposure, see section VI. The objective is to
limit the impact of a manipulated CPS device on other devices
of the CPS, thereby enhancing resilience of the overall CPS.
The intention is to keep the CPS in a trustworthy operational
state even if some devices of the CPS should have been
successfully attacked and manipulated. The high-level
objective addressed by this paper is to present a design for
resilient CPS devices that limits the possibility that an
attacked device can be used by an attacker for further attacks

2

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on other devices of the CPS. A manipulated device could
otherwise provide manipulated sensor or control data to other
CPS devices or manipulate their firmware or configuration
data. Such manipulations of CPS devices may finally lead to
manipulated control operations impacting the real, physical
world, i.e., on the controlled physical process, in a critical
way. The main idea is to extend CPS devices with a resilience
function that allows to isolate a manipulated operational CPS
device from other devices of the CPS. This isolation from
other CPS devices extends the isolation from accessing the
physical world by a manipulated CPS device by a physical-
world firewall [5].

After giving an overview on cyber physical systems and
on industrial cyber security and IoT security in Sections II and
III, a new approach on protecting the network environment
from manipulated devices of a CPS is described in Section V.
It is a concept to increase the resilience of a CPS when being
under attack. Aspects to evaluate the new approach are
discussed in Section VI, investigating the possible reduction
of overall risk exposure of the CPS that can be achieved by
the presented approach. Section VII concludes the paper.

II. CYBER PHYSICAL SYSTEMS

A CPS, e.g., an Industrial Automation and Control System
(IACS), monitors and controls a technical system. Examples
are process automation, machine control, energy automation,
and cloud robotics. Automation control equipment with
sensors (S) and actuators (A) is connected directly with
automation components, or via remote input/output modules.
The technical process is controlled by measuring its current
state using the sensors, and by determining the corresponding
actuator signals. Also, IoT in general can be seen as a cyber
physical system, as IoT devices usually interact via the
physical world using sensors and actuators [5].

Figure 1 shows an example of an industrial automation and
control system, i.e., of an industrial CPS, comprising different
control networks connected to a plant network and a cloud
backend system. Separation of the network is typically used
to realize distinct control networks with strict real-time
requirements for the interaction between sensors and actuators
of a production cell, or to enforce a specific security policy
within a production cell. Such an industrial automation and
control system is an example of a CPS and is utilized in
various automation domains, including discrete automation
(factory automation), process automation, railway
automation, energy automation, and building automation.

Figure 2 shows the typical simplified structure of IoT
devices, e.g., automation components. The functionality
realized by an automation component is largely defined by the
firmware/software and the configuration data stored in its
flash memory (FW Flash). Such an automation component
can also be considered as a remote input/output (IO) device,
as in many cases, its operation is controlled by a different
control device connected via the network interface (NW IF).

Automation Component / Remote IO

S

S

A

A

RAM
FW

Flash

CPU
NW
IF

IO

Figure 2. Automation Component

Control Network

SCADA
Log

Server

Plant Network

Automation
Component

S S A A

Automation
Component

S S A A

GW

IoT
Gateway

GW

Control Network

Automation
Component

S S A A

Automation
Component

S S A A

Automation
Component

IoT Backend

Remote IO

S S A A

Remote IO

S S A A

Edge Cloud

Figure 1. Example – Industrial Automation and Control System

3

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In practice, it has to be assumed that each software
component may comprise vulnerabilities, independent of the
effort spend to ensure high software quality. This is one reason
why automation systems are usually organized in separate
security zones. Network traffic can be filtered using network
firewalls between different zones, limiting the impact of an
impact in one security zone on other connected security zones.
In addition, it is often not possible to fix known vulnerabilities
immediately by installing a software update, as updates have
to be tested thoroughly in a test system before being installed
in an operational system, and as an installation is often
possible only during a scheduled maintenance window. Also,
the priorities of security objectives in different security zones
are often different, too. In CPSs, the impact of a vulnerability
in an OT system may not only affect data and data processing
as in classical IT, but it may have an effect also on the physical
world. For example, production equipment could be damaged,
or the physical process may operate outside the designed
physical boundaries, so that the produced goods may not have
the expected quality or even that human health or life is
endangered.

III. CYBER SECURITY OF CPS

Protecting IACSs against intentional attacks is
increasingly demanded by operators to ensure a reliable
operation, and also by regulation. This section gives an
overview on industrial security, and on the main relevant
industrial security standard IEC 62443 [15]. It summarizes
also selected security standards addressing consumer IoT
devices.

A. Industrial CPS Security Requirements

Industrial security is called also Operation Technology
security (OT security), to distinguish it from general
Information Technology (IT) security. Industrial systems have
not only different security requirements compared to general
IT systems but come also with specific side conditions
preventing the direct application of security concepts
established in the IT domain in an OT environment. For
example, availability and integrity of an automation system
often have a higher priority than confidentiality. As an
example, high availability requirements, different
organization processes (e.g., yearly maintenance windows),
and required component or system certifications may prevent
the immediate installations of updates.

The three basic security requirements in IT environments
are confidentiality, integrity, and availability (“CIA”
requirements). This CIA order corresponds to the priority of
the basic security requirements typically relevant in common
IT systems, However, in automation systems or industrial IT,
the priorities are commonly just the other way around:
Availability of the IACS has typically the highest priority,
followed by integrity. Confidentiality is often no strong
requirement for control communications, but may be needed
to protect critical business know-how.

Figure 3 shows that in common IT systems, the priority is
“CIA”. As shown graphically, the CIA pyramid is inverted
(turned upside down) in many automation systems.

Availability

P
ri

o
ri

ty

Integrity

Confidentiality

Confidentiality

Integrity

Availability

Industrial Automation

and Control Systems

Office IT Systems

Figure 3. The CIA Pyramid [13]

Specific requirements and side conditions of an IACS like
high availability, planned configuration (engineering info),
long life cycles, unattended operation, real-time operation,
and communication, as well as safety requirements have to be
considered when designing a cyber security solution. Often,
an important aspect is that the applied security measures do
not put availability and integrity of the automation system at
risk. Depending on the considered industry (vertical), they
may also be part of the critical infrastructure domain, for
which security requirements are also imposed for instance by
the European Network and Information Systems (NIS)
directive [14] or country specific realizations of the directive.
Further security requirements are provided by applying
standards defining functional requirements, for instance
defined in IEC 62443. The defined security requirements can
be mapped to different automation domains, including energy
automation, railway automation, building automation, process
automation.

Security measures to address these requirements range
from security processes, personal and physical security,
device security, network security, and application security. No
single security technology alone is adequate, but a
combination of security measures addressing prevention,
detection, and reaction to incidents is required (“defense in
depth”).

B. Overview IEC 62443 Industrial Security Standard

The international industrial security framework IEC
62443 [15] is a security requirements framework defined by
the International Electrotechnical Commission (IEC). It
addresses the need to design cybersecurity robustness and
resilience into industrial automation and control systems,
covering both organizational and technical aspects of security
over the life cycle. Specific parts of this framework are
applied successfully in different automation domains,
including factory and process automation, railway
automation, energy automation, and building automation. The
standard specifies security for Industrial Automation and
Control Systems (IACS) along the lifecycle of industrial
systems. Specifically addressed for the industrial domain is
the setup of a security organization and the definition of
security processes as part of an Information Security

4

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Management System (ISMS) based on already existing
standards like ISO 27001 [16] or the NIST cyber security
framework. Furthermore, technical security requirements are
specified distinguishing different security levels for industrial
automation and control systems, and also for the used
components. The standard has been created to address the
specific requirements of industrial automation and control
systems.

Different parts of the IEC62443 standard are grouped into
four clusters, covering:

− common definitions and metrics;

− requirements on setup of a security organization (ISMS

related, similar to ISO 27001 [16]), as well as solution

supplier and service provider processes;

− technical requirements and methodology for security on

system-wide level, and

− requirements on the secure development lifecycle of

system components, and security requirements to such

components at a technical level.

The framework parts address different roles over different
phases of the system lifecycle: The operator of an IACS
operates the IACS that has been integrated by the system
integrator, using components of product suppliers. In the set
of corresponding documents, security requirements are
defined, which target the solution operator and the integrator
but also the product manufacturer.

According to the methodology described in IEC 62443
part 3-2, a complex automation system is structured into zones
that are connected by and communicate through so-called
“conduits” that connect different zones. A conduit maps, e.g.,
to the logical network protocol communication between two
zones over a firewall. Moreover, this document defines
Security Levels (SL) that correspond with the strength of a
potential adversary. To achieve a dedicated SL, the defined
requirements have to be fulfilled.

Part 3-3 of IEC 62443 [18], addressing an overall
automation system, is in particular relevant for the system
integrator. It defines seven foundational requirements that
group specific requirements of a certain category:

− FR 1 Identification and authentication control

− FR 2 Use control

− FR 3 System integrity

− FR 4 Data confidentiality

− FR 5 Restricted data flow

− FR 6 Timely response to events

− FR 7 Resource availability

For each of the foundational requirements, several
concrete technical security requirements (SR) and
requirement enhancements (RE) are defined. Related security
requirements are defined for the components of an industrial
automation and control system in IEC 62443 part 4-2 [19],
addressing in particular component manufacturers.

C. Consumer IoT Security

While industrial CPS or industrial automation and control
systems are called also industrial IoT, IoT in general includes
also consumer IoT. Example consumer IoT devices are
connected smoke sensors, connected home automation
devices, connected washing machines, or smart cameras.

The standard EN 303 645 [20] defined by the European
Telecommunications Standards Institute (ETSI) defines
baseline security requirements for consumer IoT devices,
addressing cyber security and data protection (user privacy).
It is complemented by the assessment specification
TS 103 701 [21] and a (draft) implementation guide
TR 103 621 [22]. The cyber security provisions defined by
EN 303 645 address the following areas:

− No universal default passwords

− Implement a means to manage reports of vulnerabilities

− Keep software updated

− Securely store sensitive security parameters

− Communicate securely

− Minimize exposed attack surfaces

− Ensure software integrity

− Ensure that personal data is secure

− Make systems resilient to outages

− Examine system telemetry data

− Make it easy for users to delete user data

− Make installation and maintenance of devices easy

− Validate input data

The defined security requirements or examples also
consider resilience of the overall IoT system comprising a
huge set of IoT devices, e.g., by randomizing when an update
check is performed. Several provisions are defined addressing
resilience of the system with respect to outages of data
network connectivity or power supply. The main functionality
of an IoT device shall be maintained locally when network
connectivity is lost, ensuring that the main functionality is
available to users independently of network availability. IoT
devices may reconnect after power outage with a randomized
delay to avoid an overload on the network infrastructure by a
huge set of reconnecting IoT devices. This maintains the
availability of the network infrastructure after a loss of power
in a larger geographic area.

The National Institute of Standards and Technology
(NIST) developed a standard for IoT security [23], with an
associated catalogue of security requirements [24]. The
catalogue defines requirements for the following main cyber
security capabilities:

− Device identification

− Device configuration

− Data protection

− Logical access to interfaces

− Software update

5

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

− Cybersecurity state awareness

− Device security

In addition, also non-technical, supporting capabilities
have been defined:

− Documentation

− Information and query reception

− Information dissemination

− Education and awareness

While resilience in general is not within the addressed
scope, the requirements catalogue also includes examples
related to resilience, e.g., that an IoT device continues
operation when associated networks are unavailable.
Furthermore, a draft defining baseline security criteria for
consumer IoT devices has been published for comments [25].
A program on trustworthy network of things has been setup,
where both IoT devices are protected from the Internet and
where the Internet is protected from IoT devices, improving
security and robustness of large-scale deployments of IoT
devices. One aspect are manufacturer usage descriptions
(MUD), as specified in [27], that define the intended
communication behavior of an IoT device. It enables a
network to block other types of network communication,
reducing the attack surface associated to a specific IoT device.
It also provides the possibility to automatically configure rules
for communication traffic, based on the intended
communication behavior. Such rules can be either directly
applied, or after inspection and approval by a network
administrator.

IV. RESILIENCE UNDER ATTACK

Being resilient means to be able to withstand or recover
quickly from difficult conditions [30]. It shifts the focus of
“classical” IT/OT cyber security, which puts the focus on
preventing, detecting, and reacting to cyber-security attacks,
to the aspect to continue to deliver an intended outcome even
when an adverse cyber attack is taking place, and to recover
quickly back to regular operation [31]. More specifically,
resilience of a system is the property to be resistant to a range
of threats and withstand the effects of a partial loss of
capability, and to recover and resume its provision of service
with the minimum reasonable loss of service quality (e.g.,
performance). It has been addressed in telecommunications,
ensuring that subscribers can continue to be served even when
one line is out of service [11]. Bodeau and Graubart [32]
define resilience guidelines for providers of critical national
telecommuni-cations infrastructure in the UK. Kott and
Linkov [33] have compiled a book of different contributions
addressing various aspects of cyber resilience in networks and
systems. Besides an overview on cyber security, metrics to
quantify cyber resilience, approaches to assess, analyze and to
enhance cyber resilience are described. The notion of
resilience is related to risk management, and also to
robustness. Risk management, the “classical” approach to
cyber security, identifies threats and determines the risk
depending on probability and impact of a potential attack. The
objective is to put the focus of defined security measures on

the most relevant risks. Resilience, however, puts the focus on
a reduction of the impact, so that the system stays operational
with a degraded performance or functionality even when it has
been attacked successfully, and to recover quickly from a
successful attack. Robustness is a further related approach that
tries to keep the system operational without a reduction of the
system performance [12], i.e., to withstand attacks.

t
Absorb RecoverPlan/Prepare Adapt

Attack

System
Performance /
Functionality

Figure 4. Concept of Cyber Resilience

Figure 4 illustrates the concept of cyber resilience: Even if
an attack is carried out, the impact on the system operation,
i.e., the performance or functionality of the system, is limited.
The effects of an attack are “absorbed”, so that the system
stays operational, but with limited performance or
functionality. A recovery takes place to bring the system up to
the regular operation. In adaptation of resilience, the system
might be enhanced to better prepare for future attacks. As
stated above, a main objective in a CPS is that the CPS stays
operational and that its integrity is ensured. In the context of
an industrial automation and control system, that means that
(only) intended actions of the system in the physical world
continue to take place even when the automation and control
system of the CPS should be attacked.

The standard NIST SP 800-193 [28] describes technology-
independent guidelines for resilience of platform firmware.
Resilience-specific roots of trust are defined for update of
platform firmware, for detection a corrupted firmware, and for
recovery from a compromised platform state. A working
group on “cyber resilient technologies” of the Trusted
Computing Group (TCG) is working on technologies to
enhance cyber resilience of connected systems. Different
building blocks for cyber resilient platforms have been
described that allow to recover a malfunction device reliably
back into a well-defined operational state [29]. Such building
blocks enhance resilience as they allow to recover quickly and
with reasonable effort from a manipulation. Basic building
blocks are a secure execution environment for the resilience
engine on a device, protection latches to protect access to
persistent storage of the resilience engine even of a
compromised device, and watchdog timers to ensure that the
resilience engine can in fact perform a recovery. These
building blocks are complementary to the extension described
in section VI, and they may be used in combination.

6

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. PROTECTING NETWORK ENVIRONMENT FROM

MANIPULATED IOT DEVICES

The security objective “resilience under attack” means that
a CPS, e.g., an IACS or an industrial IoT environment, should
stay operational even when some of its components would be
manipulated. Considering the manifold of devices used in
real-world CPS and practical limitations to timely install
patches, it has to be assumed that some of them will have
vulnerabilities that can be exploited and be used to also infect
further CPS devices. Hence, it shall be avoided that a
successfully hacked device can be used to launch attacks
against other devices. This is a specific security objective:
When designing the security architecture for a device, usually
attacks against the device are considered. Here, it shall be
avoided that a successfully attacked device can be misused by
an attacker to launch attacks on other devices within the CPS.
So, the possibility to misuse a vulnerable CPS device to
launch attacks on other devices of the CPS is reduced.

The software execution environment executes the
software (firmware) of the device that might have a
vulnerability. A separated, e.g., a separate hardware based, on-
device firewall limits the network communication that the
executed software can perform. This enforcement is realized
independently from the executed device software, so that it is
still working even if the device software has been manipulated
by an attacker. This independence is a necessary pre-requisite.
In the described design, this independence is achieved by
separate hardware-based component. However, the
independence from the executed device software could be
achieved also by using an isolated software execution
environment, e.g., a separate processor or a separate trusted
execution environment. Using a hardware-based realization
has the advantage of limiting the impact on real-time
communication properties as delay and jitter, and also on the
energy consumption. It can be easily implemented if a
dedicated hardware-based network interface is in use anyhow
to support real-time communication protocols.

Possible filter criteria are source and destination network
addresses, protocols (e.g., TCP, UDP), port numbers, transmit
rate (frames/packets per second), or data volume. In an
advanced form, the firewall may even verify on application
level whether certain control flows are aligned with either the
typical (historical) behavior of the device or with the
engineered CPS configuration information. The policy might
be fixed, e.g., for embedded control devices with a fixed
functionality, or it may be configurable. Important is that the
device software cannot modify the filter policy on its own.

The filter policy might be adapted automatically
depending on the patch status of the device software, or
depending on the result of a device integrity self check of the
IoT device, or based on a cryptographically protected health
check confirmation received from a device integrity
monitoring service. This would allow to keep the system
operational, although with potentially limited capabilities,
thus keeping it resilient. Also, limiting specific functionalities
as result of missing device integrity may stipulate the timely
application of patches, to get the system back to normal
operation with full functionality and performance.

IoT Field Device

CPU

RAM Flash

NW

IF

U
S

B
 P

o
rtD+

D-

Environment

Protecting

Hardware

Network

Firewall

I/O

Figure 5. Attack-preventing IoT Device Architecture

Figure 5 shows an IoT Field Device with a central
processing unit CPU executing device firmware/software
stored in a flash of RAM memory. The software can
communicate over the network interface (NW IF) with other
devices, e.g., using HTTPS or OPC UA over TCP/IP. Also,
sensors and actuators can be connected via an input-output
(I/O) interface. An USB interface allows to configure the
device or to install a firmware update.

To enhance resilience, the device includes a hardware-
based network firewall to protect the network environment
from attacks originating from the IoT field device. It limits the
type of network communication that can be performed by the
device software executed on the CPU. This function is fixed,
so that the device software cannot modify it, so that the
filtering is performed with high level of trustworthiness. It
would be possible as well to use a secure execution
environment that is isolated from the main device software
executed on its CPU. In both cases, the network firewall is
effective even if the main device software executed on the
CPU should be manipulated.

The hardware-based firewall can be realized by an
integrated circuit, e.g., an application-specific integrated
circuit (ASIC), a field programmable gate array (FPGA), or a
separate microcontroller or security controller, or it can be
integrated with a hardware-based network interface. The filter
policy might be adapted, depending on whether a
cryptographically protected network access token (NAcT) is
provided to the hardware firewall. The NAcT can be provided
by a backend device integrity check service. The device
software may provide a received NAcT token to the device
hardware firewall, but cannot manipulate it. This allows the
backend device integrity check service to temporarily activate
a less restrictive policy if the device integrity has been verified
successfully. A NAcT token can be protected by a
cryptographic checksum, e.g., a digital signature (e.g., RSA,
DSA, ECDSA) or a symmetric message authentication code
(e.g., HMAC, AES-CBC-MAC). The NAcT token realizes an
authenticated watchdog, as described by England, Aigner,
Marochko, Mattoon, Spiger, and Thom [7]. However, here it
is used for selecting a firewall policy, not for initiation a
device recovery procedure. If an integrity monitoring system
monitoring the integrity of control devices or a network-based
intrusion detection system, realizing the device integrity check
service, detects an ongoing attack in the IACS, it can limit
reliably the network communications of devices, allowing to
confine the attack.

7

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A different approach compared to attack monitoring is to
monitor write access to the flash memory, i.e., to check
whether the device software (firmware) stored in the flash
memory is updated regularly. The less restrictive, open filter
policy stays activated only if the device firmware is updated
regularly.

This section described a hardware network firewall of an
IoT device to prevent attacks of a manipulated IoT device via
network communications. A related, complementary
approach, limiting access to the physical world via the sensors
and actuators connected to the input/output interface by
manipulated software running on the CPU has been described
in previous work [6].

IoT Field Device

RAM Flash

NW

IF

U
S

B
 P

o
rt

D+

D-

Network-

Environment

Protecting

Network

Firewall

I/O
Physical World

Firewall

CPU

Figure 6. IoT Device Architecture protecting against attacks on both the

physical and the cyber environment

Both approaches can be combined in a single IoT device,
see Figure 6. The impact of successful attacks on an IoT
device on both the network environment as well as on physical
world is limited. The possibility that a manipulated IoT device
can be used for launching attacks on other connected systems
is reduced. While shown as separate entities, both firewall
functionalities can also be combined into a single on-device
firewall functionality, protecting both access to physical world
via I/O interfaces as well as access to other devices by data
communication. After having detected a device manipulation
by a device integrity check, restrictive filtering policies would
be activated in a reliable way by the device so that a
manipulated software executed on the CPU has only limited
possibilities to perform unwanted sensitive operations
impacting the physical world or other IoT devices of the CPS.

VI. EVALUATION

While the original motivation for ”plug and produce”, as
defined for Industry 4.0, is to increase flexibility in production
and to reduce the time needed to reconfigure an automation
environment for different manufacturing tasks or batches, this
flexibility is also advantageous for increasing resilience under
attack: Even if some of the devices are manipulated (attacked)
and cannot be used for production until they are patched, the
flexibility of the overall production system allows to
reconfigure the IACS components, avoiding or at least
limiting the interaction with affected devices. Therefore,
production can continue, maybe with limitations, even when
some devices should have been manipulated. This means that
functionality coming with Industry 4.0 can already be used
also to increase resilience under attack, i.e., to improve
availability of automation and production systems being under

attack. When using the enhancement described in section V,
it depends on the specific IACS and on the specific attack
scenario to what degree the IACS can stay operational under
which specific attack scenario. For the evaluation, it has to be
determined to what degree relevant risks of the IACS are
reduced by introducing such protection measures.

The security of a CPS is evaluated in practice in various
approaches and stages of the system’s lifecycle:

− A Threat and Risk Analysis (TRA, also abbreviated as

TARA) is typically conducted at the beginning of the

product design or system development, and updated after

major design changes, or to address a changed threat

landscape. In a TRA, possible attacks (threats) on the

system are identified. The impact that would be caused

by a successful attack and the probability that the attack

happens are evaluated to determine the risk of the

identified threats. The risk evaluation allows to prioritize

the threats, focusing on the most relevant risks and to

define corresponding security measures. Security

measures can target to reduce the probability of an attack

by preventing it, or by reducing the impact.

− Security checks can be performed during operation or

during maintenance windows to determine key

performance indicators (e.g., check compliance of

device configurations) and to verified that the defined

security measures are in fact in place.

− Security testing (penetration testing, also called

pentesting for short) can be performed for a system that

has been built, but that is currently not in operation. A

pentest can usually not be performed on an operational

automation and control system, as the pentest could

endanger the reliable operation auf the system.

Pentesting can be performed during a maintenance

window when the physical system is in a safe state, or

using a separate test system. Security testing can be

performed also on a digital representation of a target

system, e.g., a simulation in the easiest case. This digital

representation is also called “digital twin”. This allows

to perform security checks and pentesting for systems

that are not existing yet physically (design phase), or to

perform pentesting of operational systems in the digital

world without the risk of disturbing the regular operation

of the real-world system. Using a dedicated test system

or a digital twin simulation environment allows also to

install patches and to test their effectiveness and possible

influence on the CPS operation without interfering with

the operational system.

As long as the technology proposed in the paper has not
been proven in a real-world operational setting, it can be
evaluated conceptually by analyzing the impact that the
additional security measure would have on the identified
residual risks as determined by a TRA. The general effect of
the presented resilience-under attack security measure is that
the worst-case impact of a threat, i.e., a successful attack, on
the physical world controlled by the CPS is reduced.
Whatever attack is ongoing on the IT-based automation and

8

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

control system, still the possible impact on the real, physical
world is limited. While security measures often target the
prevention of attacks, the proposed resilience measure reduces
the impact and thereby the risk. The impact of a threat is
reduced if the IACS in fact can stay operational, at least with
limited functionality, in relevant attack scenarios. A further,
indirect effect of the improved resilience would be that
relevant key performance indicators of the CPS, e.g., its
uptime/availability, the output of produced goods, the
required production time, quality-relevant metrics of
produced goods, or the number of deficient goods are
maintained even when the CPS is being attacked.

However, TRAs for real-world CPS are not available
publicly. Nevertheless, an illustrative example may be given
by a chemical production plant performing a specific process
like refinery, or a factory producing glue or cement. If the
plant is attacked, the attack may target to destroy the
production equipment by immediately stopping the process
leading to physical hardening of the chemicals / consumables
and thus to a permanent unavailability of the production
equipment. In this case, trusted sensors could be used to detect
a falsified sensor signal, and the physical-world firewall can
be used to limit actions in the physical world. Both, the trusted
sensors and the physical world firewall build a security
overlay network, independent from the actual operational
control network. Thereby, a physical damage of the
production equipment can be avoided. If needed, a controlled
shutdown of the production site can be performed.

moderate

moderate

moderate

majorlikely

possible

minorunlikely

unlikely

Device communication

intercepted

Device communication

manipulated

Vulnerability in unpatched

device exploited

Device replaced by fake

device

Likelihood

moderate

Impact RiskThreat

crit ical

crit ical

Figure 7. Example Threats of a Threat and Risk Analysis

Figure 7 shows a simplified table as used typically in a
threat and risk analysis to collect and evaluate relevant treats
to a technical system or component. Some selected threats are
shown as examples. Realistic TRAs for real-world systems
and components include usually a much longer list of threats.
The likelihood and the impact of the threat is determined by
judgement of competent personal, usually in a team including
technical experts and people responsible for the product or
system. The corresponding risk is determined based on
likelihood and impact. It has shown to be useful to define and
document explicitly the criteria leading to the categorization
of likelihood and impact, including also the made assumptions
on the operational environment. The TRA with prioritized
risks is the basis for security design decisions, focusing on the
most critical risks. It is the basis to define a security concept
that includes suitable protection measures. Protection
measures may not be technical measures only, but include as

well organizational and personal security measures (e.g.,
performing regularly security audits and security trainings).

Figure 8 shows how the likelihood and the impact are
mapped to the corresponding risk value. In the example, the
three categories unlikely, possible, and likely are used to
describe the likelihood. For the impact, the three categories
negligible, moderate, and critical are used. In practice, also
more fine-granular rankings can be used, distinguishing, e.g.,
four or five different categories. Also, the risk evaluation can
in general include further categories, e.g., disastrous.

For the example threats shown in Figure 7, the risk that the
device communication is intercepted is evaluated as minor, as
the assumption in the example is that the device
communication is protected cryptographically (e.g., by the
Transport Layer Security protocol TLS [42]), and that the data
would not reveal highly sensitive information.

moderate

moderate

signifi cant

signifi cant

Im
p

a
c

t

mi nor

mi nor

maj or

moderate

mi nor

n
e

g
lig

a
b

le
m

o
d

e
ra

te
c

ri
tic

a
l

Likelihood

unlikely possibl e likely

Figure 8. Risk Mapping

The risk that the communication is manipulated, leading
to a manipulated device operation, is unlikely as well as the
communication is assumed to be protected in transit.

However, the impact is evaluated as critical, as, without
any further protection, this threat could lead to arbitrary
effects on the device operation and therefore also on the CPS.
The risk that a vulnerability of the software running on the
device is exploited is ranked here as major, as the assumption
is that the device is not regularly patched while being
connected to the public Internet. Therefore, it is likely that the
vulnerability will be exploited. The functionality of the
manipulated device could be changed in arbitrary ways, so
that the impact can be critical, leading to a major risk. The
threat that the device is replaced by a fake device is evaluated
as moderate.

An overview on the determined risks can be shown in a
graphical risk reporting as shown in Figure 9. It gives an easily
understandable representation on the distribution of identified
risks. This representation can be useful to depict the overall
risk exposure of a CPS if many risks have been identified. In
particular, the example shows one major threat (red field) as
well as a moderate threat (yellow field) having a critical
impact. Butting resilience measures as the one described in
section V into place can reduce the impact of threats, thereby
improving the overall risk exposure.

9

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Im
p

a
c

t

n
e

g
lig

a
b

le
m

o
d

e
ra

te
c

ri
tic

a
l

Likelihood

unlikely possibl e likely

Figure 9. Risk Reporting for the Example Threats without Resilience-Under-

Attack Protection

If the resilience under attack protection as described in
section IV is put into place, the possible impact of the threats
is reduced. This effect is illustrated in Figure 10. As, in the
example shown, the impact of the two risks with critical
impact reduces from critical to moderate, the risk is reduced
correspondingly. Thereby, also the overall risk situation of the
overall CPS in which the considered device is used, is
improved.

Im
p

a
c

t

n
e

g
lig

a
b

le
m

o
d

e
ra

te
c

ri
tic

a
l

Likelihood

unlikely possibl e likely

Figure 10. Risk Reporting for the Example Threats with Resilience-Under-

Attack Protection

As the evaluation in a real-world CPS requires significant
effort, and as attack scenarios cannot be tested that could
really have a (severe) impact on the physical world, a
simulation-based approach or using specific testbeds are
possible approaches, allowing to simulate the effect on the
physical world of certain attack scenarios with compromised
components in a simulation model of the CPS, or to evaluate
it in a protected testbed, e.g., a CPS test system. The
simulation would have to include not only the IT-based
control function, but also the physical world impact of an
attack. Using physical-world simulation and test beds to
evaluate the impact of attacks have been described by Urbina,
Giraldo et al. [43]. They allow to analyze the impact of
successful attacks on the physical world in a safe evaluation
environment.

VII. CONCLUSION

A CPS comprises the operational cyber-technology and
the physical world with which the system interacts. Both parts
have to be covered by a security concept and solution.
Traditional cyber security puts the focus on the cyber-part,
i.e., automation and control systems. The security of the
physical part, like machinery, is protected often by physical
and organizational security measures, only. This paper
presented a concept for a new approach that enhances the
resilience of a CPS in the presence of attacked devices, by
making it harder that a compromised CPS device is used for
attacking other devices of the CPS. This can be a useful
element to ensure the availability of the automation system.
Even under attack, the automation system has not to be shut
down completely. It can stay operational, possibly with
reduced performance or functionality. It is complementary to
other approaches for enhancing CPS resilience by protecting
the physical-world interface [5] as well as to platform
resilience measures as known from [28] [29] that allow to
recover a manipulated device quickly and reliably back into a
well-defined state.

Possible future work is to not only analyze the effect on
reducing the risk exposure of a complex real-world CPS, but
to determine the effect of successful attacks on relevant
operational key performance indicators of the CPS, as, e.g.,
uptime and output of a production system. A CPS simulation
environment, i.e., a digital twin of the CPS, or a non-
operational CPS testbed can be used to analyze the impact of
different attack scenarios on CPS key performance indicators
that are relevant to the operation of the CPS in a safe way.
Such analysis is considered to be relevant in particular for
CPS, as attacks may impact not only IT-related assets, but may
have also an impact on both the real, physical world of the
controlled technical system and on the business-relevant
operation of the CPS.

REFERENCES

[1] R. Falk and S. Fries, “Enhancing Attack Resilience in the
Presence of Manipulated IoT Devices within a Cyber Physical
System”, The Sixth International Conference on Cyber-
Technologies and Cyber-Systems CYBER 2021, pp. 1-6,
October 03, 2021 to October 07, 2021 - Barcelona, Spain,
[Online]. Available from
https://www.thinkmind.org/index.php?view=article&articleid
=cyber_2021_1_20_80046 [retrieved March, 2023]

[2] N. N. Dao, T. V. Phan, U. Sa’ad, J. Kim, T. Bauschert, and S.
Cho, “Securing Heterogeneous IoT with Intelligent DDoS
Attack Behavior Learning”, arXiv: 1711.06041v3 [cs.NI] 7
Aug 2019, [Online]. Available from:
https://arxiv.org/pdf/1711.06041.pdf [retrieved March, 2023]

[3] Shodan - Search engine for the Internet of everything,
[Online], https://www.shodan.io/, [retrieved March, 2023]

[4] Morpheus – Network Security Scanner, [Online],
https://www.morpheus.com.na/, [retrieved March, 2023]

[5] R. Falk and S. Fries, “Enhancing Resilience by Protecting the
Physical-World Interface of Cyber-Physical Systems”, The
Fourth International Conference on Cyber-Technologies and
Cyber-Systems CYBER 2019, pp. 6–11, September 22, 2019
to September 26, 2019 - Porto, Portugal, [Online]. Available
from:
https://www.thinkmind.org/index.php?view=article&articleid
=cyber_2019_1_20_80033 [retrieved March, 2023]

10

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] R. Falk and S. Fries, “Enhancing the Resilience of Cyber-
Physical Systems by Protecting the Physical-World Interface”,
International Journal On Advances in Security, volume 13,
numbers 1 and 2, pp. 54-65, 2020, [Online]. Available from:
http://www.thinkmind.org/index.php?view=article&articleid=
sec_v13_n12_2020_5 [retrieved March, 2023]

[7] P. England, R. Aigner, A. Marochko, D. Mattoon, R. Spiger,
and S. Thom, “Cyber resilient platforms”, Microsoft Technical
Report MSR-TR-2017-40, Sep. 2017, [Online]. Available
from: https://www.microsoft.com/en-
us/research/publication/cyber-resilient-platforms-overview/
[retrieved March, 2023]

[8] Electronic Communications Resilience&Response Group,
“EC-RRG resilience guidelines for providers of critical
national telecommunications infrastructure”, version 0.7,
March 2008, available from:
https://assets.publishing.service.gov.uk/government/uploads/s
ystem/uploads/attachment_data/file/62281/telecoms-ecrrg-
resilience-guidelines.pdf [retrieved March, 2023]

[9] D. Urbina, J. Giraldo, N. O. Tippenhauer, and A. Cardenas,
“Attacking fieldbus communications in ICS: applications to the
SWaT testbed”, Singapore Cyber-Security Conference (SG-
CRC), IOS press, pp. 75–89, 2016, [Online]. Available from:
http://ebooks.iospress.nl/volumearticle/42054 [retrieved
March, 2023]

[10] C. C. Davidson, T. R. Andel, M. Yampolskiy, J. T. McDonald,
W. B. Glisson, and T. Thomas, “On SCADA PLC and fieldbus
cyber security”, 13th International Conference on Cyber
Warfare and Security, National Defense University,
Washington, DC, pp. 140–148, 2018

[11] D. Bodeau and R. Graubart, “Cyber resiliency design
principles”, MITRE Technical Report, January 2017, [Online].
Available from: https://www.mitre.org/sites/default/files/
publications/PR%20170103%20Cyber%20Resiliency%20Des
ign%20Principles%20MTR17001.pdf [retrieved March, 2023]

[12] A. Kott and I. Linkov (Eds.), “Cyber Resilience of Systems and
Networks”, Springer, 2019

[13] R. Falk and S. Fries, “Enhancing integrity protection for
industrial cyber physical systems”, The Second International
Conference on Cyber-Technologies and Cyber-Systems,
CYBER 2017, pp. 35–40, November 12 - 16, 2017, Barcelona,
Spain, [Online]. Available from:
http://www.thinkmind.org/index.php?view=article&articleid=
cyber_2017_3_30_80031 [retrieved March, 2023]

[14] European Commission, “The directive on security of network
and information systems (NIS Directive)”, [Online]. Available
from: https://ec.europa.eu/digital-single-market/en/network-
and-information-security-nis-directive [retrieved March, 2023]

[15] IEC 62443, “Industrial automation and control system
security” (formerly ISA99), [Online]. Available from:
https://webstore.iec.ch/searchform&q=62443 [retrieved
March, 2023]

[16] ISO/IEC 27001, “Information technology – security techniques
– Information security management systems – requirements”,
October 2013, [Online]. Available from:
https://www.iso.org/standard/54534.html [retrieved March,
2023]

[17] NIST, “Framework for Improving Critical Infrastructure
Cybersecurity”, Version 1.1, April 16, 2018, [Online].
Available from:
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.041620
18.pdf [retrieved March, 2023]

[18] IEC 62443-3-3:2013, “Industrial communication networks –
network and system security – Part 3-3: System security
requirements and security levels”, Edition 1.0, August 2013

[19] IEC 62443-4.2, “Industrial communication networks - security
for industrial automation and control systems - Part 4-2:

technical security requirements for IACS components”,
February 2019

[20] EN 303 645, “Cyber Security for Consumer Internet of Things:
Baseline Requirements”, ETSI, V2.1.1 (2020-06), June 2020,
[Online]. Available from:
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/
02.01.01_60/en_303645v020101p.pdf [retrieved March, 2023]

[21] TS 103 701, “Cyber Security for Consumer Internet of Things:
Conformance Assessment of Baseline Requirements”, ETSI,
V1.1.1 (2021-08), August 2021, [Online]. Available from:
https://www.etsi.org/deliver/etsi_ts/103700_103799/103701/0
1.01.01_60/ts_103701v010101p.pdf [retrieved March, 2023]

[22] TR 103 621, ” Guide to Cyber Security for Consumer Internet
of Things”, ETSI, Draft 0.0.6 (2021-06), June 2021.

[23] M. Fagan, J. Marron, K. Brady, B. Cuthill, K. Megas, R.
Herold, D. Lemire, B. Hoehn, “IoT Device Cybersecurity
Guidance for the Federal Government: Establishing IoT
Device Cybersecurity Requirements”, NIST SP 800-213,
November 2021, [Online]. Available from:
https://csrc.nist.gov/publications/detail/sp/800-213/final
[retrieved March, 2023]

[24] M. Fagan, K. Megas, J. Marron, K. Brady, B. Cuthill, R.
Herold, D. Lemire, B. Hoehn, “IoT Device Cybersecurity
Guidance for the Federal Government: IoT Device
Cybersecurity Requirement Catalog”, NIST SP 800-213A,
November 2021, [Online]. Available from:
https://csrc.nist.gov/publications/detail/sp/800-213a/final
[retrieved March, 2023]

[25] NIST, “DRAFT Baseline Security Criteria for Consumer IoT
Devices”, NIST, August 31, 2021, [Online]. Available from:
https://www.nist.gov/system/files/documents/2021/08/31/IoT
%20White%20Paper%20-%20Final%202021-08-31.pdf
[retrieved March, 2023]

[26] NIST, “Trustworthy Network of Things”, December 15 , 2020,
[Online]. Available from: https://www.nist.gov/programs-
projects/trustworthy-networks-things [retrieved March, 2023]

[27] E. Lear, R. Droms, D. Romascanu, “Manufacturer Usage
Description Specification”, Internet Request for Comments,
RFC8520, March, 2019, [Online]. Available from:
https://www.rfc-editor.org/rfc/rfc8520.html [retrieved March,
2023]

[28] A. Regenscheid, “Platform Firmware Resiliency Guidelines”,
NIST SP 800-193, May, 2018, [Online]. Available from:
https://csrc.nist.gov/publications/detail/sp/800-193/final
[retrieved March, 2023]

[29] TCG, “Cyber Resilient Module and Building Block
Requirements”, V1.0, October 19, 2021, [Online]. Available
from: https://trustedcomputinggroup.org/wp-
content/uploads/TCG_CyRes_CRMBBReqs_v1_r08_13jan20
21.pdf [retrieved March, 2023]

[30] P. England, R. Aigner, A. Marochko, D. Mattoon, R. Spiger,
and S. Thom, “Cyber resilient platforms”, Microsoft Technical
Report MSR-TR-2017-40, Sep. 2017, [Online]. Available
from: https://www.microsoft.com/en-
us/research/publication/cyber-resilient-platforms-overview/
[retrieved March, 2023]

[31] Electronic Communications Resilience&Response Group,
“EC-RRG resilience guidelines for providers of critical
national telecommunications infrastructure”, version 0.7,
March 2008, available from:
https://assets.publishing.service.gov.uk/government/uploads/s
ystem/uploads/attachment_data/file/62281/telecoms-ecrrg-
resilience-guidelines.pdf [retrieved March, 2023]

[32] D. Bodeau and R. Graubart, “Cyber resiliency design
principles”, MITRE Technical Report, January 2017, [Online].
Available from:
https://www.mitre.org/sites/default/files/publications/PR%201
7-

11

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0103%20Cyber%20Resiliency%20Design%20Principles%20
MTR17001.pdf [retrieved March, 2023]

[33] A. Kott and I. Linkov (Eds.), “Cyber Resilience of Systems and
Networks”, Springer, 2019

[34] P. Bock, J. P. Hauet, R. Françoise, and R. Foley, “Ukrainian
power grids cyberattack - A forensic analysis based on
ISA/IEC 62443”, ISA InTech magazine, 2017, [Online].
Available from: https://www.isa.org/intech-
home/2017/march-april/features/ukrainian-power-grids-
cyberattack [retrieved March, 2023]

[35] ZVEI, ”Orientation guideline for manufacturers on IEC
62443”, “Orientierungsleitfaden für Hersteller zur IEC 62443“
[German], ZVEI Whitepaper, 2017, [Online]. Available from:
https://www.zvei.org/presse-
medien/publikationen/orientierungsleitfaden-fuer-hersteller-
zur-iec-62443/ [retrieved March, 2023]

[36] H. R. Ghaeini, M. Chan, R. Bahmani, F. Brasser, L. Garcia, J.
Zhou, A. R. Sadeghi, N. O. Tippenhauer, and S. Zonouz, “PAtt:
Physics-based Attestation of Control Systems”, 22nd
International Symposium on Research in Attacks, Intrusions
and Defenses, USENIX, pp. 165–180, September 23-25, 2019,
[Online]. Available from:
https://www.usenix.org/system/files/raid2019-ghaeini.pdf
[retrieved March, 2023]

[37] Plattform Industrie 4.0, “Industrie 4.0 Plug-and-produce for
adaptable factories: example use case definition, models, and
implementation”, Plattform Industrie 4.0 working paper, June
2017, [Online]. Available from:
https://www.zvei.org/fileadmin/user_upload/Presse_und_Med
ien/Publikationen/2017/Juni/Industrie_4.0_Plug_and_produce
/Industrie-4.0-_Plug-and-Produce-zvei.pdf [retrieved March,
2023]

[38] T. Hupperich, H. Hosseini, and T. Holz, “Leveraging sensor
fingerprinting for mobile device authentication”, International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, LNCS 9721, Springer, pp. 377–396,
2016, [Online]. Available from: https://www.syssec.ruhr-uni-
bochum.de/media/emma/veroeffentlichungen/2016/09/28/pap
er.pdf [retrieved March, 2023]

[39] H. Bojinov, D. Boneh, Y. Michalevsky, and G. Nakibly,
“Mobile device identification via sensor fingerprinting”,
arXiv:1408.1416, 2016, [Online]. Available from:
https://arxiv.org/abs/1408.1416 [retrieved March, 2023]

[40] P. Hao, “Wireless device authentication techniques using
physical-layer device fingerprint”, PhD thesis, University of
Western Ontario, Electronic Thesis and Dissertation
Repository, 3440, 2015, [Online]. Available from:
https://ir.lib.uwo.ca/etd/3440 [retrieved March, 2023]

[41] R. Falk and M. Trommer, “Integrated Management of Network
and Host Based Security Mechanisms”, 3rd Australasian
Conference on Information Security and Privacy, ACISP98,
pp. 36-47, July 13-15, 1998, LNCS 1438, Springer, 1998

[42] E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.3”, Internet RFC8446, August 2018, [Online].
Available from: https://datatracker.ietf.org/doc/html/rfc8446
[retrieved March, 2023]

[43] D. Urbina, J. Giraldo, A. Cardenas, N. O. Tippenhauer, J.
Valente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg,
“Limiting The Impact of Stealthy Attacks on Industrial Control
Systems”, ACM Conference on Computer and
Communications Security (CCS), pp. 1092–1105, Vienna,
Austria, 2016

12

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Adapting to Change: A Study of the Software Architecture Evolution of a Physical

Security Information Management System

Oğuzhan Özçelik

ASELSAN A.Ş.

Ankara, Turkey

e-mail: oozcelik@aselsan.com.tr

Halit Oğuztüzün

Department of Computer Engineering

Middle East Technical University

Ankara, Turkey

e-mail: oguztuzn@ceng.metu.edu.tr

Abstract—Physical Security Information Management (PSIM)

system customizations tend to be similar to each other with

core requirements being more or less the same in different

projects. One of the most common differences in these projects

is the sensors being used. Some sensors could be integrated into

the PSIM system easily if they are compatible with a standard

communication interface such as Open Network Video

Interface Forum (ONVIF) protocols. But sensors that use a

special communication interface need to be integrated one by

one. A PSIM system is always expected to integrate additional

sensors to its inventory. In order to do this easily, the modules

that need to be developed to integrate a sensor must be

segregated and developed individually for each sensor. These

modules can be seen as features to be used in a software

product line architecture. The planned reuse mentality of

software product line engineering makes it possible to deliver

similar products within a short amount of time. In this work,

we aim to segregate the sensor integration of a PSIM system

and compare the old and new generations of the architecture

both qualitatively, based on their architecture models, and

quantitatively, based on test results. Several tests and surveys

have conducted in order to inspect the new architecture’s

performance.

Keywords-Physical Security Information Management

Systems; Physical Protection Systems; Software Product Line

Engineering.

I. INTRODUCTION

A Physical Security Information Management (PSIM)
system integrates diverse independent physical security
applications and devices. Applications such as building
management or network video recorder systems, and devices
such as security cameras, access control systems, radars and
plate recognition systems are used interconnectedly through
a centralized platform. It is designed to ensure the physical
security of a facility, city or an open field, while providing a
complete user interface to the security operators to monitor
and control them. With the help of PSIM systems, security
personnel can make prompt decisions about a security
situation by investigating the comprehensive picture the
PSIM system generated with the data that it gathered,
associated and analyzed.

This work is a continuation of our previous work [1]. We
have conducted a survey to see the problem, and the gains
we achieve with this architectural change better. And we

have tested the old and new architecture in order to see
whether the new architecture comes with a performance loss.

Physical Protection System (PPS) is also a common term
to refer to such a system. Mary Lynn Garcia described the
PPS functions, which can be seen in Figure 1, in three main
categories: detection, delay, response [2]. Detection is the
discovery of a malevolent incident. Measuring the threat
level of an action would also be beneficial while deciding the
following functions’ extents. This measurement must
provide information about the importance of detection and if
it is important, every detail about the cause of the alarm. The
level of detail is primarily based on the type of sensor that
detected the alarm. Next function of a PPS is delay. After the
adversary action got detected, the first thing to do is delaying
its operations. This can be accomplished by locks, barriers or
security personnel in the perimeter. The reason for this
function is basically stalling the adversary in order to gain
time for the next function, response. Response is the
cumulative actions taken by the security personnel or system,
in order to prevent adversary action.

The subject PSIM system of this work is called SecureX,
which is not the name of the actual system, but a placeholder
used for confidentiality reasons. SecureX is a PSIM system
that aims to satisfy the needs mentioned above and to
provide an easy integration environment for new sensors and
applications. The ever-increasing number of such new
systems and particular security needs of different customers
drove SecureX team to embrace a software product line
engineering approach in order to reduce the response time to
reply to the customers’ demands. These demands vary from

Figure 1. Functions of a Physical Protection System [2].

13

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

practical improvements to integrating a new sensor or
security application as a feature to the system. SecureX is
deployed with the full feature set and only at runtime these
features are reduced to the ones required by a given
customer, using different configuration files. Any new
integration required by a customer needs to be developed as
a feature in SecureX. Afterwards, a new SecureX build must
be generated. Following every new integration, a new testing
process takes place and because the previously integrated
system might not always be available for testing, it must be
guaranteed that the new integration will not affect the
previously completed integrations. In this work, a new
method for integrating such new systems while reducing the
number of required tests is proposed. The new method is also
going to be an evolutionary step toward a product line
architecture.

The rest of the paper is structured as follows. In Section
II, several PSIM products and their specializations are
mentioned. Also, we briefly explain how they approach the
sensor integration problem and why that is not enough in the
case of SecureX. In Section III, the general architecture of
SecureX is described and the point where sensor integration
takes place is shown. Also, the technology that will be used
is described. In Section IV, this sensor integration point is
described in more detail. In Section V, the problems with the
current architecture are explained and in Section VI, a new
architecture that solves those problems is described. In
Section VII, results of a survey and performance tests are
detailed. In Section VIII, the benefits of the new architecture
are shown by further explaining how it solves each problem
of the current design.

II. RELATED WORKS

There are several companies offering PSIM products.
Although they provide every essential feature of a PSIM
system, they may have different specializations. Some
companies are more promident in video management
systems and some in geographic information systems. Plate
recognition and access control systems are also fields in
which a PSIM system can be used. In the SecureX’s case, all
four types of systems mentioned now can be used together.

Genetec [3] provides a video analytics tool to detect
intrusions. They also develop access control systems and use
plate recognition systems to monitor vehicles. Milestone [4]
uses its own Network Video Recorder (NVR) system and
provides an easy-to-use video management system. They
work with numerous different companies and provide an
easy integration framework to work with them. Nedap [5] is
specialized in access control systems and they work with
other companies like Genetec and Milestone to get integrated
in their PSIM systems as well. However, not many details
exist on how they work internally. These products integrate
some general communication standards like ONVIF [6]
protocols and also release Software Development Kits
(SDK) and expect sensor manufacturers or customers to
integrate their custom subsystems into the PSIM system as
well. This way, they accelerate sensor integration by
including numerous 3rd parties. While developing an SDK to
use in integrations is a feasible solution, in the SecureX’s

case, the main objective is developing an architecture that
can simplify not only the sensor integrations, but also the
component selection to deploy because different customers
have different requirements. Another requirement is that the
new architecture will be able to remove the update and test
overhead. A software product line architecture would be
suitable to accomplish this goal.

Recently, Tekinerdogan et al. [7] described how a PSIM
system should be designed with software product line
engineering methodologies to reduce the cost of
development by improving reuse. The present work
describes a step in architectural evolution toward a product
line architecture.

In different programming languages, there are many
frameworks in which a software product line could be
implemented. One specific technology that has the software
product line implementation capability is called Open
Services Gateway Technology (OSGi) framework for Java
[8]. Its details will be explained in the coming chapters, but
its abilities are shown by Almeida, E. et al [9]. In their work,
they tried to provide a method that can be used in the domain
implementation phase of software product lines. They
conducted experiments using a pilot project in order to
investigate the feasibility of their method. Seven M.Sc.
students with industrial software development experience are
selected and after a short training, the participants were
expected to complete the tasks assigned to them. After the
project had been completed, the quantitative analyses
showed that the method is beneficial in developing software
components with high maintainability while lowering the
overall complexity. The participants also got surveyed and
their answers indicated that the method provides useful
guidance, thanks to the OSGi, a technology which is very
suitable to be used in software product line development. But
subjects without experience with this technology noted that
they had challenges using it. However, these challenges are
nothing that training cannot be overcome. Overall, their
experimental study showed that using a software product line
architecture with OSGi helps developers to build products
with better quality.

III. ARCHITECTURE OF SECUREX

SecureX is a PSIM system that is used in a wide variety

of fields from border or airport security to protecting various

critical facilities and oil or gas pipelines with special

sensors. In some projects, the system is used in low

performance computers and tablets while some projects use

high performance servers. Some projects requires a dozen

sensors to protect a small remote location and some uses

thousands of sensors in a highly concentrated manner inside

a city. Some projects are a combinations of those.

Houndreds of small, secure facilities with dozens of sensors

each, connected hierarchically to each other and at the top,

controlled by high authority security officers. These

different projects comes with different requirements from

both public and private instutions. SecureX has to be able to

adapt the different needs of each customer. This need

14

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

caused SecureX to be a highly configurable system that is

tailored for every new customer and project.
SecureX has a distributed architecture which can be seen

in Figure 2. Graphical User Interface (GUI) Clients of
SecureX are installed on the computers of security officers,
enabling them to monitor the entire security infrastructure of
the area under surveillance. These clients are connected to
the SecureX Server application which handles the
communication between SecureX components. The server is
also responsible for recording events, including detections
and errors sent from adapter components to the central
database. SecureX could also be installed in a hierarchical
fashion in which higher servers could also control and
monitor the security components that are connected to the
servers under them. Under the SecureX Server, there are
adapter applications for each sensor group such as camera,
radar, plate recognition systems, access control systems, etc.
These adapters are the points where the SecureX
environment makes its connections to the outer world.

When a user wants to perform some action with a sensor,
after pressing a button in the SecureX GUI Client, a message
will be sent to the SecureX Server. Then, the server delegates
this message to the adapters and other servers that are
hierarchically under that server. The message arrives at the
sensor’s adapter and, according to the Interface Control
Document (ICD) used in its integration, a message would be
sent to the sensor to perform the desired action. Events and
detections caught by the sensors would follow the reverse
route and find their way to the SecureX GUI Clients.

SecureX is developed using the OSGi framework, which
is a Java framework to develop modular software [10]. It is a
platform in which manufacturers and developers can use as a
software component framework. It is a versatile deployment
API that can manage the life cycle of applications.

A. OSGi

The OSGi framework, based on its specifications, is a
framework that can be used for creating highly modular Java
systems. With its component model, it is a very reasonable
candidate to be used in software product line development. It
provides a simple way to change software components not
only without a need to rebuild the entire system, but also
dynamically changing them at the runtime. This shows the
main capability of OSGi that simplifies the development of
variation points, which is a crucial aspect of software product
line architecture. The components are called “bundles” in the
OSGi world, and the framework provides methods for
installing, uninstalling and updating those bundles [11]. The
life cycle that each bundle undergo in the OSGi framework
can be seen in the Figure 3.

Every application that runs on the OSGi framework is
expected to be able to immediately respond to the component
changes at runtime. Any component might get an update or
gets installed at runtime and the application that uses the
component must properly react to this change and migrate to
the new component. OSGi is a dynamic environment that
expects applications to catch up to its changes.

Every bundle in an OSGi application has a start level that
is defined in the bundle configuration files. When an
application that runs on the OSGi framework starts, its
bundles get initialized in the order of their start levels.
SecureX uses this ordered initialization procedure and
runtime bundle installation capabilities to optimize its
initialization time by only installing the key bundles at first
and installing the remaining bundles at the runtime.

IV. EXISTING ADAPTER ARCHITECTURE

There are several adapter applications developed for
different types of sensors such as Camera Adapter, Radar
Adapter or Seismic Adapter etc. Their working principles are
quite similar. The SecureX Server connects to the adapters
and the adapter connects to the sensors. To segregate the
sensor integration, we must first analyze the existing adapter
architecture.

Figure 3. OSGi bundle life cycle. [11]

Figure 2. Deployment model of SecureX.

15

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A few of the bundles in the Camera Adapter program can
be seen in Figure 4. SecureX uses this framework to take
advantage of its service architecture. We use the Camera
Adapter application to describe the adapter architecture, but
all adapter applications of SecureX are quite similar.

The Camera Adapter application consists of many OSGi
bundles whose purposes vary from providing network
connection interfaces or utility tools, to message definition of
sensors. These message definition bundles contain the
methods for encoding and decoding messages to and from
the sensor. Generally, the message formats for each sensor
are different. They have different data types, header types,
checksum calculation methods, big or little endian formats.
Some sensors accept JSON formatted string messages, and
some require encoding messages in a certain length byte
array and sending them. Information about how to
communicate with a sensor is given in its ICD. A message
bundle is basically an implementation of the related ICD.

The Configuration Manager class in the Core bundle is
mainly responsible for opening a Transmission Control
Protocol (TCP) port to accept incoming server connections
and initializing the Message Handlers. Each sensor’s type,
model, unique identifier key and required information about
establishing a connection to it is written in a configuration
XML file. The Configuration Manager constantly iterates
over these files, creating a Camera Communicator and a
specific Message Handler for every new or updated file.
Messages are received by the TCP server and forwarded
from there to the Camera Communicator and lastly to the
sensor’s Message Handler.

A Camera Communicator, which extends from the
Sensor Communicator class as in every other sensor family,
is the class where the processing of messages that came from
the server starts. It handles generic messages or preprocesses
them before the messages arrive at the Message Handler.
When a message is received from the server, it is added to
the message buffer of every active Camera Communicator in
that adapter. Camera Communicators takes this message and
decide if this message is meant for their sensor. To do this,
they use the sensor identifiers in the messages. If the
identifier is the same as the Message Handler they have, the

message gets processed as will be explained in the
subsequent paragraph, otherwise it is discarded.

The processing of the messages starts at the Camera
Communicator level. Some messages are not specific to
different sensor integrations and can be handled at the
Camera Communicator level. Alternatively, some messages
require a preprocessing step such as transforming some
variables before they get forwarded to the Message Handler.
After the initial processing is done, the Camera
Communicator sends the message to the Message Handler.

The Message Handler is where the connection to the
sensor is established using the protocol the sensor uses,
which could be TCP, User Datagram Protocol (UDP),
WebSocket, serial port, (Representational State Transfer)
REST or any other network connection method that is stated
in its ICD. The Message Handler knows how the connection
should be established and how the incoming and outgoing
messages should be processed. It receives the incoming
message from the communicator and sends necessary
commands to the sensor. The Message Handler needs a
utility bundle to do the message conversions. When it needs
to encode/decode messages to/from the sensor, it uses the
Message bundle of that sensor that contains the message
types, formats, checksum methods and the information of
exactly how a message should be generated. After a message
is generated, the Message Handler sends it to the sensor
using the connection interface.

V. THE INTEGRATION PROBLEM

To keep up with the new and updated sensors to be
integrated, and changing customer needs regarding sensor
types and capabilities, sensor integration must be segregated
and can be developed and updated independently. After
analyzing the adapter architecture in the previous chapter, we
can focus on what makes it difficult to integrate sensors in
the current architecture.

When the adapter starts, the StartLevelEventDispatcher
thread in the OSGi framework initializes all bundles that are
marked for auto-start in the bundle configuration file. In
Figure 5, initialization of the Core bundle is shown. The
Core bundle is the one that starts the main Camera Adapter
process with its thread “ConfigurationMonitor”. In the
initialization of the Core bundle, a single Configuration
Manager instance gets created. The Configuration Manager
then opens a port to listen to incoming SecureX Server
connections. After that, it starts a thread that periodically
checks sensor configuration files to find new or updated
configurations. If there is such a file, then the Configuration
Manager creates a Camera Communicator and the Message
Handler for that sensor. In the existing architecture, in order
to create a Message Handler instance, the Configuration
Manager has to know which Message Handler needs to be
used for which sensor configuration. In the configuration
file, the identifier of the correct Message Handler is given,
and the Configuration Manager uses that identifier to
construct the Message Handler. But these Message Handler
classes are inside the Core bundle and the Configuration
Manager has a class dependency for them. This is the root
problem in the current architecture.

Figure 4. Simplified Camera Adapter model in the existing architecture.

16

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Message Handler initialization in the existing architecture.

Figure 6. Simplified Camera Adapter model in the new architecture.

A. Difficulties with the Existing Architecture

In order to carry out a new sensor integration, the
message definition bundle has to be added in the Camera
Adapter product file and its Message Handler has to be
included in the Core bundle. The Configuration Manager
class needs to know with which configuration identifier the
new Message Handler should be constructed beforehand,
hence the dependency. Because of this design, integrating or
updating the integration of a sensor requires updating the
Core bundle in the adapter. The components in the Core
bundle, such as Configuration Manager and Camera
Communicator, are used in every Message Handler and need
to be compatible with all of them too. Therefore, any change
in those components in the integration of a sensor could
affect the already integrated sensors and cause them not to
function as intended. Alarms detected by the sensor might
start not to be forwarded to the server or changing the
orientation of the sensor becomes difficult because of a
change in some movement speed calculations.

In the current design, to update an already deployed
system, a complete new build needs to be generated and
tested. But the regression testing of the previous sensor
integrations is not always easy or even possible. These
sensors could be produced in very limited numbers, and they

can only be found in the customer's facilities, working with
the previous SecureX version. The location of these facilities
might be difficult to access too and trips to these locations
are not only costly, but sometimes, also dangerous. Because
these sensors are almost always used in closed networks, the
only way to test them is by going to these facilities,
increasing the cost of testing. Also, customers would not
want testers to separate these sensors from the PSIM system
to test with the new version, creating a window of
vulnerability.

Even if the tests are somehow completed, the update
procedure has its own problems. To quickly update systems
used in remote locations with little to no network access, or
used in thousands of mobile locations without stable internet
access, the update size must be minimal. But, with the
current architecture, the whole adapter build needs to be
updated, rather than just a couple of bundles.

Also, to catch up with new and updated sensors or
security systems, 3rd party companies are employed for
integrations. But this process is done through signing a Non-
Disclosure Agreement (NDA) and sharing substantial parts
of the adapter code with them to be used to integrate the
sensors. Any one of them could expose the code at any point
and this indeed is a security vulnerability.

Because of these reasons, there is a need for an
architecture that ensures that the new integrations will not
affect the existing ones. The main problem with the current
design is, for every new integration, it has a need to update
the Core bundle. The reason for that is the Configuration
Manager class needs to know all available Message
Handlers and for what kind of sensor they need to be used
beforehand via class dependencies. In the new architecture,
this problem is targeted with the aim to reduce testing
overhead, reducing the amount of code that is shared with
3rd parties and also enables updating the deployed systems
with small amount of data.

VI. NEW ADAPTER ARCHITECTURE

To solve the problems with the existing architecture, a
new adapter architecture shown in Figure 6 is developed.
With this new architecture, all Message Handler classes
moved to their message definition bundles and an OSGi
service called IMessage Handler Provider Service that

17

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

provides a Message Handler constructor for a given
configuration identifier is developed. With that change, now
the Core bundle does not depend on the Message Handlers
or message bundles, but it depends on the Message Handler
Provider Service bundle. Message bundles also depend on
this service bundle too. This fixes the problem of the Core
bundle depending on Message Handlers and its need to be
updated to include a dependency with every new sensor
integration. These message bundles, similar with every other
OSGi bundle, can be extracted as a compiler .jar file and be
installed externally.

Figure 7 shows the new classes and their hierarchies
while Figure 8 shows the new message handler initialization
procedure. The Message Handler Provider Service Manager
implements the IMessage Handler Provider Service interface
and when it is initialized by the StartLevelEventDispatcher,
it reads a directory in which the new sensor integration
bundles are placed as .jar files. The manager installs those
new integrations and after the initialization of every new
bundle, it registers itself as an instance that implements the
IMessage Handler Provider Service interface to the OSGi
context.

While those bundles are initialized, they register
themselves with the IMessage Handler Provider Service in
the OSGi context using the configuration identifier to
indicate the sensor they should be used for. Accessing the
registered IMessage Handler Provider Service is made
possible through the Message Handler Provider Service Util
class. This access technique blocks the requester thread until
a service instance registers. The Message Handler Provider

Service Manager registers itself after it initializes every
integration file. Because Message Handlers access this
manager using the same blocking technique, they can only
register themselves after the service manager finishes its job.
This causes all Message Handlers to register almost
simultaneously.

While this process continues, the Core bundle also starts
by the StartLevelEventDispatcher thread and continues its
regular processes. But this time, the Configuration Manager
class does not know any Message Handler itself. The
dependencies for Message Handler classes are removed.
When the Configuration Manager reads a sensor
configuration, it uses its configuration identifier and asks a
Message Handler constructor from the registered IMessage
Handler Provider Service. It uses the Message Handler
Provider Service Util class to access the service, so it also
waits until an IMessage Handler Provider Service finishes
its initializations and registers itself. After that, if a Message
Handler for a given configuration identifier exists in the
application, the Configuration Manager uses its constructor
to create an instance and initialize it. The initialized Message
Handler connects to the sensor and starts its regular
processes. If a Message Handler does not exist for that
identifier, the Configuration Manager skips that
configuration for this iteration.

Figure 7. Camera Adapter Class Diagram (Simplified).

18

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. EXPERIMENTS AND SURVEY

Similar to any other PSIM system, SecureX does not
tolerate slow performance. It must provide a quick response
capability for its users. Therefore, the architecture change
must not cause a performance drawback. Also, to justify this
architecture change, the new system must lower the test
costs, as this was one of the promises of the new
architecture.

A. Performance Tests

 The main difference between the old and new
architectures is the initialization of the adapter. As shown in
Figure 7, the new initialization procedure is more
complicated than the old one, which is shown in the Figure
4. Comparing those two diagrams, the difference mainly
resides in how the Configuration Manager gets access to the
Message Handler constructers. In the old architecture,
Configuration Manager and all Message Handlers are in the
Core bundle. Therefore, when StartLevelEventDispatcher
initializes the Core bundle, every Message Handler class

gets initialized along with the Configuration Manager. This
enables Configuration Manager to access Message Handlers
instantly without any additional dependency.

In the new architecture, Message Handlers are initialized
in their separate bundles, and they register themselves to the
Message Handler Provider Manager. Configuration
Manager uses Message Handler Provider Manager to access
the Message Handler constructers. This additional step
causes a delay in the initialization phase of the adapter. But
after the initialization is completed, any extra delay in other
parts of the adapter is not expected. The tests confirm this
hypothesis.

With the old architecture, time it takes to start the
ConfigurationManager thread and for it to generate a
Message Handler instance is on average 30 milliseconds,
ranging between 29 and 31 milliseconds. In the new
architecture, the average time for the same part of the
initialization phase takes about 96 milliseconds, ranging
from 88 to 104 milliseconds. This increase in time is the
obvious result of not accessing the Message Handler
constructers from within the same bundle and using an OSGi

Figure 8. Message Handler initialization in the new architecture.

19

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

service to do so. Both the Message Handler’s registration to
the Message Handles Provider Service, and the service’s
own registration to the OSGi context takes time. But
Message Handler Provider Service Manager keeps the
Message Handler constructers in a map to easily access them
if the ConfigurationManager needs it again. Therefore, this
increased initialization time only happens on the first access
of the constructer of a Message Handler. If there is another
sensor of the same type in the system, the previous
constructer gets used for the initializing of its Message
Handler. But for a different type of sensor, another
constructer must be generated.

This one time per sensor type increase in Message
Handler initialization is trivial and it has little to no effect on
SecureX’s effectiveness.

After the Message Handler initializes, its operations such
as processing, sending and receiving messages do not change
between old and new architectures. On both architectures,
typical message processing took about 3 milliseconds. This
duration is the time between receiving a message from the
SecureX server and after processing it, sending a notification
to the server. So, the runtime performance of the adapter
seems to be unaffected by this architecture change.

These tests show that the new design does not come with
a significantly low performance. Increase in the initialization
time is insignificant and hard to notice in the everyday use.

B. Survey for Cost of Testing

Another claim of the new design is that the test costs for
a new sensor integration is high and the reason for this is the
new bugs of the previously tested systems. We surveyed the
testers who participated SecureX sensor integration tests to
find out if that claim is true.

We have surveyed testers using in-depth interviews to
understand the challenges in the SecureX tests. All nine
testers who took the survey have at least one year, four of
them has over three years of experience testing the SecureX
sensor integrations. All participants had tested different
cameras, radars, acoustic and seismic detectors. The used
question set can be seen in Table 1. Based on their responses,
on average, testing a camera or acoustic sensors takes about
two hours, while a radar or seismic detector takes four hours.
These test durations are not to be expected to be reduced by
the proposed architecture change. New design does not
provide a way to test one sensor faster, but it reduces the
number of sensors to be tested after each new integration.

Table 1. Survey Questions
ID Question

1 How long have you been testing software?

2 How long have you been testing SecureX?

3 What type of sensors did you test?

4 How many different cameras did you test?

5 How many different radars did you test?

6 How many different seismic detectors did
you test?

7 How many different acoustic detectors did
you test?

8 How long does it take to test a camera?

9 How long does it take to test a radar?

10 How long does it take to test a seismic
detector?

11 How long does it take to test an acoustic
detector?

12 In the last year, how many times was it
necessary to go to the test site or the location
where the system is installed to perform the
test?

13 In the last year, how many times an
intercity travel was necessary to reach to the
test site or the location where the system is
installed to perform the test?

14 How long does it take to go to the test site
or the location and where the system is
installed to perform the test?

15 In the last year, when a new sensor
integration is tested, how often was it
necessary to test other sensors of the same type
as well? Ex: After testing a newly integrated
camera, testing the other cameras in the
system.

16 In the last year, when a new sensor
integration is tested, how often a new bug from
other sensors of the same type is detected?

17 How long does it take to fix and re-test the
new bugs of the previously integrated sensors?

18 How much the development and test cost
increase if new bugs of the previously
integrated sensors were to be detected?

19 What was the worst-case scenario you
experienced about bugs in previous
integrations or increased test iterations like?

20

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Because the participants had worked on different projects
that SecureX is used, their answers to the questions shown in
Figure 9 and Figure 10 depend on those projects’ test
locations and configurations. If tests can be performed in
house, and travel is unnecessary, the only test cost is the time
spent testing the integrated sensors. When intercity travel is
needed, the transportation and sometimes accommodation
costs are added to the overall test cost.

But after testing the integrated sensor, tests for previously
integrated sensors are needed; test durations for each of these
sensors are also be considered when calculating the test cost.

Figure 11 shows that every participant stated that it was
always necessary to test the previously tested sensors of the
same type after a new sensor integration is completed. For
example, after testing a newly integrated camera, testing
other cameras in the system. Six of the testers said at least
three times this was necessary and two of them said they had
to test other sensors on more than eight occasions. Figure 12
shows the reasoning behind these additional tests. Often after

a new sensor integration is completed, these additional tests
reveal new bugs of the previously integrated sensors. Sensor
integration in the old architecture does not segregate these
integrations enough and provides an environment that is
error prune.

These bugs extend the test and development duration as
they need to be fixed and tested again. Also, the possibility
of a bug occurring in the previous integrations cause testers
to request testing those integrations whenever a new
integration gets completed. As shown in Figure 13, this extra
test and development process comes with an average cost
increase of 30% to 50%, depending on the project
configuration and location.

The participants also asked what was the worst-case
scenario that they experienced about sensor integration tests.
Testers also point out that after the development and bug
fixing processes for the bugs in the integration of sensors of
same type, it was observed that the previously acquired and
tested capabilities from other sensors were lost. This
situation creates the need to review the integrations
repeatedly and retest them after each bug fix. On one
occasion, a SecureX system was installed at a remote
location and is used by the operators when the customer
wanted a new camera to be added for their changed security
needs. The camera integration completed and tested at the
company. But because the SecureX configuration the
customer uses contains sensors not available at that moment
during the tests of the new sensor, testers had to go to the
location that SecureX system is installed. They, along with a
developer, tested other sensors that the customer uses in
order to verify that they still function as before. Testers
found a couple of bugs and the developer fixed them and

Figure 9. Distribution of the answers to Question 12.

Figure 11. Distribution of the answers to Question 16.

Figure 10. Distribution of the answers to Question 13.

Figure 12. Distribution of the answers to Question 15.

Figure 13. Distribution of the answers to Question 18.

21

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

after the re-test of the system, it is left to the operators again.
During these tests, controls of the tested sensors are taken
from the operators, and this lowers the PSIM system’s
availability.

As these tests take place in the customer's deployment,
they may give customers a bad reputation about SecureX.
Because for any bug that is found in those tests, there is a
chance that it can be seen by the customer, or the security
personnel at the location. Because it is not always possible to
complete the tests without involving anyone from the
customer’s company. Usually, tests take place in the same
room that the security personnel use and anyone would be
curious to see what the new sensor can do. Even if the found
bugs are minor or hard to reproduce in typical usage of the
system, it would not matter if the customer realizes those
bugs as well. If this situation keeps happening, reputation of
SecureX would start to decline. Also, these security
personnel or the customers themselves would mention their
own requests from the PSIM system. Without anyone from
the project management, the testers and developers are not
always expected, to discuss the details of those requests.

Participants noted that for regression tests, having to go
to remote locations where the existing systems are installed
is costly and a way to reduce those costs are needed.

VIII. CONCLUSION

The proposed adapter architecture allows us to integrate
additional sensors into the already deployed PSIM systems,
without requiring to generate another complete build of an
adapter software. Because previous integrations are not
touched, integration tests of only the newly integrated
sensors would be sufficient. When the sensor is integrated, it
will most probably be available for testing as well and going
to the field for using the sensor of a customer in order to
conduct the tests will no longer be needed.

The survey with the testers has showed the extra work
that needs to be done because of the new or reoccurring bugs
in already tested sensor integrations. With the new
architecture, these additional tests are no longer a regular
requirement that takes place every time a new sensor gets
integrated to the SecureX. Testing the sensor integrations
only at their own integration times and keeping them bug
free, even if new sensors or systems added to the project is
crucial. An additional capability to a system should not take
away or break the already existing and used capabilities. The
cost of re-testing previously tested system after every
integration is not something to be ignored. In addition to the
amount of man hour being wasted for these tests, the
financial cost also includes the logistic costs, which is
depended on the test location. Therefore, the training that
seemed to be required to work with this architectureas
Almedia E. et al. found in their work [9], require a cost that
is not worth mentioning of, when those additional test costs
are considered.

The .jar files of the integration bundles are smaller than
one MB. Thanks to these low sized components, system
updates can be completed even with unstable or slow
networks. Even if new sensor integrations have a problem
working with previously integrated sensors, simply removing

the .jar file would be enough to revert back to the previous
deployment.

Segregating sensor integration also enables easily
selecting and combining different integration bundles
according to the project's requirement, as one could expect
from a system developed with software product line
principles. When starting a new project, depending on the
sensors that are going to be used, only their integration files
can be used. There is no need for adding every sensor
integration to the project. The new design also enables
employing 3rd party companies for integrations without
sharing the bulk of the adapter code. Now, any integrator can
develop an integration bundle only with the Message
Handler, IMessage Handler Provider Service and the
Message Handler Provider Service Util classes.

The proposed architecture is also shown to have similar
performance with its predecessor with only a minimal delay
at startup. Even if this startup duration increase was much
more, if it’s not extreme, it still might not be a problem.
Generally, PSIM systems are not expected to shutdown and
startup frequently. Due to high availability requirements,
they tend to be designed as if they were expected to run
continuously. So this minor increase in the initialization time
can easily be ignored. Also, with the new architecture,
stopping the system for adding a new senosr integration or
changing an integration file is not required. New integrations
can be added or updated while the system is running. This
new capability also lowers the amount of times that the
system had to be restarted. After the system is restarted and
initialization is completed, the performance of the system
was the same as it was with the old architecture. Only thing
that the new architecture changes is the way sensor
integrations are initialized.

The new architecture provides a helpful pattern towards
transforming SecureX into a Software Product Line (SPL).
An external .jar installer service could be used not only for
sensor integrations, but also for features such as additional
GUI views or in the server, new alarm evaluation algorithms.
Because every feature is developed as an OSGi bundle, they
all could be externalized. The sensor integration problem
could be solved by developing an SDK, similar to the
products given in Section II, but our design also eliminates
the need of deploying the SecureX with a full feature set and
stripping it off with configuration files at runtime. As this
design gets implemented in other parts of SecureX, they
could all be removed from the base build and can be added
per customer demand.

The new design opens an evolutionary path for
segregating such different aspects in SecureX architecture
and is expected to be even more beneficial in the future. As
such, the architectural change is not only applicable to PSIM
systems like SecureX, but also any system that is developed
with OSGi. Because at its core, our work can be described as
a case study in how a software product line architecture can
be implemented in an OSGi based product. What we achieve
is within reach of any similar product.

We altered the existing architecture and took advantage
of the OSGi framework to improve the modularity of our
system. The modularity we achieve is a crucial requirement

22

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for an SPL architecture, as SPL products are actually a
combination of features selected from a feature set to satisfy
particular requirements. These features can be developed in
the same manner the sensor integration jar files are
developed in the new architecture. And feature selection can
be completed by using different feature jar files for different
requirements. Message Handler Provider Service Util class
and IMessage Handler Provider Service interface gives an
example on how to select and use different features as well.
Therefore, the architecture we proposed can be used in any
software product line project.

REFERENCES

[1] O. Özçelik, M. H. S. Oğuztüzün, “Software Architecture
Evolution of a Physical Security Information Management
System”. The Eighth International Conference on Advances
and Trends in Software Engineering (SOFTENG), 2022, pp.
15-20.

[2] M. L. Garcia. The design and evaluation of physical
protection systems. 2nd ed. Amsterdam: Elsevier, 2008.

[3] Genetec KiwiVision. [Online], retrieved May 2023 Available:
https://www.genetec.com/products/

[4] Milestone XProtect. [Online], retrieved May 2023 Available:
https://www.milestonesys.com/solutions/

[5] Nedap Aeos Access Control. [Online], retrieved May 2023
Available: https://www.nedapsecurity.com/solutions/

[6] Open Network Video Interface Forum (ONVIF). [Online],
retrieved May 2023 Available: https://www.onvif.org/

[7] B. Tekinerdoğan, İ. Yakın, S. Yağız, and K. Özcan, “Product
Line Architecture Design of Software-Intensive Physical
Protection Systems”. IEEE International Symposium on
Systems Engineering (ISSE), 2020, pp. 1-8, doi:
10.1109/ISSE49799.2020.9272239.

[8] “The Java Language Specification, Java SE 8 Edition” J.
Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. Apr.
2015. [Online]. retrieved May 2023 Available:
https://docs.oracle.com

[9] E. Almeida, et al. “Domain Implementation in Software
Product Lines Using OSGi”. Seventh International
Conference on Composition-Based Software Systems, 2008,
doi: 10.1109/ICCBSS.2008.19

[10] R. S. Hall, K. Pauls, S. McCulloch, and D. Savage. “OSGi in
Action - Creating Modular Applications in Java”. Manning
Publications, 2011

[11] “OSGi Service Platform, Core Specification, Release 8,” The
OSGi Alliance, April. 2018. [Online]. retrieved May 2023
Available: http://docs.osgi.org/specification/

23

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Managing Cyber Black Swans

Can potentially crippling cyber situations be foreseen, allayed, and turned into growth opportunities?

Anne Coull

Objective Insight

Sydney, Australia

anne.coull@proton.me

 Elena Sitnikova

Flinders University

Adelaide, Australia

elena.sitnikova@flinders.edu.au

Abstract— Black Swan situations and their consequences

are considered extremely unlikely before they happen and

make perfect sense afterwards. Two malicious cyber attacks

that triggered Black Swan situations, Emotet and WannaCry,

are assessed, along with their attack sequences, and the

vulnerabilities they exploited. The early warning signs and

practical actions to prevent these types of Cyber Black Swan

situations are presented. Prevention is based on protection

through practical defence in depth controls along with effective

ongoing maintenance. Added to this is the crucial element of

situational awareness and a call to action for the cyber teams

to focus their response efforts. This robust foundation of

security and resilience, when combined with adaptability, are

the attributes for antifragility. Enabling the organisation to

thrive and grow in the midst of this volatility.

Keywords- Black Swan; Emotet; WannaCry; Early Warning

Indicator; Critical Vulnerability; Situational Awareness;

Response; Antifragility; Adaptability.

I. INTRODUCTION

In his book: “Antifragility, things that gain from

disorder,” Nassim Taleb [51] uses the term Black Swan to

describe unexpected situations with three attributes: Before

the situation occurs, it is considered extremely unlikely, if

not impossible; When it occurs its consequences are

significant, either in changing belief, or in consequence;

After it has occurred, it makes perfect sense as something

that could happen [1][19][52]. As an Australian, the notion

of a Black Swan as an unexpected event is counter intuitive.

While the swans in Europe may be white, in Australia the

native swans are black. In a country of jumping kangaroos

and duck-billed platypus, the unexpected is modus operandi

[1].

With Australian insight it becomes clear that unusual

creatures and events do not just suddenly appear, they

evolve over time. Similarly, Black Swan situations develop

over time and show early warning indicators. Noticing these

early signs and acting upon them, will make the difference

between a dramatic event, a well-managed situation, or just

another day doing business [1]. The proposed approach for

responding to these Black Swans is based on situational

awareness, basic, practical, and well-maintained cyber

controls, and response to emergency situations.

Two black swan cyber situations, the Emotet Trojan,

and the WannaCry Worm, are reviewed along with their

attack vectors and the vulnerabilities they target. These two

cyber attacks that triggered Black Swan situations were

selected due to their scale and impact, which in turn can be

attributed primarily to the lack of preparation and poor

response of the target organisations. These attacks differed

in their initial access approach, their style of attack, and the

combinations of attack vectors they utilised [6][44]. For

each of these black swan cyber situations, the potential for

predictability and reduced impact through stringent

maintenance and monitoring, situational awareness, and

response to early warning indicators is assessed.

This approach to cyber security and resilience requires

a combination of structured, pragmatic thinking and follow-

through, along with action-based responses to emerging

threats. If the organization is to grow and thrive, rather than

merely survive from these events, adaptive thinking is also

needed. Antifragility develops through environmental

awareness, seeking out and being open to opportunities, and

taking action to take advantage of the volatile environment

and create new markets.

Section 2 outlines the Emotet and WannaCry exploits

and their respective impacts. Section 3 analyses their attack

sequences for access, escalation, persistence, scanning,

spread, exfiltration, and assault. Section 4 looks at how

these events could have been foreseen by reading the early

warning indicators. Section 5 outlines how these attacks and

others like them can be mitigated using practical cyber

defence in depth with effective ongoing maintenance,

situational awareness, and timely response. Section 6

addresses the actions needed to contain, manage, and

recover from an infection. Section 7 explains how

antifragile organisations, that are adaptable and agile, can

gain advantage from these situations, and thrive in these

volatile cyber environments.

II. EMOTET AND WANNACRY EXPLOITS AND THEIR IMPACTS

Over the last decade two of the most significant cyber

attacks, in terms of scale and impact, have been Emotet and

WannaCry. Both utilised a combination of exploits to target

Microsoft vulnerabilities and gain access to organisations,

establish persistence, escalate privileges, and exfiltrate data

whilst concurrently spreading, infecting, establishing a

foothold, and implementing assault strategies across the

network [6][7][22][27][35][42][43][46][48]-[50].

24

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Emotet scale and impact

Emotet is believed to be based out of Ukraine [17][44].

It started as a banking Trojan and has continued to evolve

since it was first identified in 2014 [17][44] (see Figure 1).

Figure 1. Emotet timeline, adapted from [17].

In 2019, Emotet was responsible for approximately

60% of malware email spam [44]. By 2020 it had morphed

into Botnet as a Service, and Malware as a Service (MaaS)

with global distribution [55]. Infected devices themselves

become command and control (C2) bots. In May 2019, 310

unique infected IP addresses were identified, of which two

thirds (208) were confirmed bots, and 8% (17) of these were

also infected with Trickbot [43] (see Figure 2).

Figure 2. Geographic distribution of Emotet Botnet IP

addresses, June 2019 [40].

In January 2021, the German Bundeskriminalamt

(BKA) federal police agency coordinated a combined effort

of law enforcement agencies to shut down the global botnet

of hundreds of Emotet servers [43]. The Trojan malware, or

a copycat, returned in November 2021 and infected an

estimated 1.2 million systems in 2022 [17][43][55] (see

Figure 1).

B. WannaCry scale and impact

In May 2017, after infecting more than 300,000

computers and crippling 150+ organisations worldwide.

WannaCry was dubbed “the largest ransomware event in

history” [43] (see Figure 3). The WannaCry ransomware

attack was stopped by a MalwareTech cyber researcher,

who identified a key design flaw and purchased the URL

WannaCry referenced in its attack sequence [26] (see Figure

4).

Figure 3. Distribution of WannaCry infections

14 May 2017, after 24 hours [6][23].

The situations triggered by WannaCry and Emotet

could both be regarded as Black Swans. Each was

considered extremely unlikely before they were experienced

and identified. Each gained the attention of Europol and

Eurojust due to their scale and the significant and costly

consequences for those affected [43]. WannaCry brought

25

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the British NHS to a standstill [15], including the closure of

public hospitals. By June 2022, Emotet had spread from

banks to auto & other manufacturers, health, government,

education, transport, real estate, and retail [16][17] across

Japan, Asia Pacific, Europe, Middle East, Africa, North and

South America [17] (see Figure 2). It was estimated as

costing in excess of $1 million for every organisation it

infected [6][43].

Figure 4. WannaCry timeline, derived from

[18][25][26][49].

III. ATTACK SEQUENCE ANALYSIS

 While there are some commonalities in the zero-day

exploits targeting Microsoft SMB remote control

vulnerabilities, Emotet and WannaCry utilise different

attack vectors in the infection process.

A. Emotet access, escalation, persistence, scanning,

spread, exfiltration, and assault

Emotet utilises social engineering phishing campaigns

to entice recipients to click on a link that downloads a

macro-infected Microsoft office file. These emails appear to

come from a friend or colleague, or from a known

organisation, and include PayPal receipts, shipping

notifications, “past-due” invoices [6], or COVID

information [41] (see Figure 5). The macro executes the

payload malware for the next stage, where it establishes

persistence using auto-start registry keys and services to

embed a scheduled task at startup [6][42][43].

 Figure 5. Emotet malicious email Emotet [6].

Emotet spreads by extracting contact lists from

infected users’ email accounts and using these to send

phishing emails so they appear to come from a friend or

colleague. Concurrently, Emotet spreads to systems across

the network by enlisting a credential enumerator with

service and bypass components. It utilises publicly available

tools to recover passwords: (i) NetPass.exe from NirSoft

extracts passwords stored on the user’s system and external

drives; (ii) WebBrowserPassView extracts passwords stored

on web-browsers such as Google Chrome, Internet Explorer,

Mozilla etc.; and (iii) MailPassView extracts passwords

stored on email providers such as Gmail, Outlook, Hotmail

etc.

Emotet concurrently utilises a malicious-actor-

developed spreader module that applies brute force with

enriched password lists to move through the Windows

Admin Shares. It uses these credentials to access accounts

and copy itself to the ADMIN$ of other network hosts,

before using Server Message Block (SMB) to schedule

execution on these hosts. It locates writable share drives and

infects the entire disk by writing the Emotet service

component onto the network [6][42][43] (see Figure 6).

26

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Emotet attack sequence, derived from [6][42][43].

 From 2016 Emotet incorporated a Trickbot banking

trojan which evolved to exploit the Microsoft Windows

SMBv1 and NBT Remote Code Execution Vulnerabilities

(CVE-2017-0144, CVE-2017-0147), and the Windows

SMB Remote Code Execution Vulnerabilities (CVE-2019-

0630, CVE-2019- 0633) [6][9][11]-[13][29][31]-

[33][36][38]-[40][42]. The Trickbot is used to launch the

malware payload, bypass Microsoft security measures,

communicate with the command-and-control infrastructure,

upload data and download DLL updates [42].

B. WannaCry access, escalation, persistence,

scanning, spread, exfiltration, and assault

WannaCry identified its targets using EternalBlue to

scan externally facing hosts across the internet where TCP

ports 139 and 445 were open [54]. These ports are used to

communicate using the SMB network protocol that enables

remote code execution in MS Windows & sharing across

networks [7][22][50].

When it identified the Microsoft SMB Windows

Server Remote Code Execution Vulnerability (CVE-2017-

0144) and the Microsoft SMB Windows Server Remote

Code Execution Vulnerability (CVE-2017-0145)

[9][10][29][30][36][37][49] which enabled remote code

execution over SMB v1, EternalBlue then accessed the

vulnerable target systems and installed the DoublePulsar

exploit for persistence [7][27][35]. It continued to scan,

access and replicate while it encrypted files and destroyed

backups on every computer it infected: disrupting

businesses by denying users access to their critical data

[18][46][48][49] (see Figure 8).

It then displayed a ransomware image to the users of

infected devices [7][24] (see Figure 7).

Figure 7. WannaCry image displayed

on infected user’s desktop [7][24].

Figure 8. WannaCry infection process, adapted from [46].

27

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. PROACTIVELY LOOKING FOR THE EARLY WARNING

INDICATORS

Situational awareness is key to preventing malicious

exploits developing into Black Swan situations. It enables

organisations to notice the early warning signs and prepare

for and respond to emerging situations. The early warning

signs are there for Emotet and WannaCry, but they will only

be noticed by those who actively seek them out. The early

warning signs include:

1. The cybersecurity capability of the organisation:

a. The cyber-risk awareness of personnel, based

on their click-rate on targeted phishing

campaigns.

b. The level of compliance with standards and

guidelines for basic defence maintenance

practices, including compliance to the

Australian Signal Directorate’s Essential Eight

cyber mitigations, in particular: the extent of

unpatched Microsoft windows systems;

privileged access management; ability to

download macro-enabled email attachments;

and availability of separately stored backup

data [2][3][8].

2. Critical vulnerability reports:

a. Microsoft CVE-2017-0144, CVE-2017-0145,

& CVE-2017-0147 vulnerability reports

published in the Microsoft Vulnerability

Update Guide on 14 March 2017 [29]-[31] and

corresponding CVE reports [9]-[11] and NIST

reports published on 16 March 2017 [36]-[38].

b. Microsoft CVE-2019-0630 & CVE-2019-0633

vulnerability reports published in the

Microsoft Vulnerability Update Guide on 12

February 2019 [32][33] and corresponding

CVE reports [12][13] and NIST reports

published on 3 May 2019 [39][40].

3. Threat alerts and reports:

a. Threat alerts and reports are readily available

through research centres such as Fifth

Quadrant [14], Malwarebytes [25],

MalwareTech [26], Metasploit [28], Qualys

[45], Proofpoint [44], Talos [53], Truesec

[57][58], and Verizon [61].

b. Cyber teams in peer organisations sharing

information. Australian organisations,

including the big-4 Banks, openly share

information in a joint effort to fight cyber

crime, directly and through the Joint Cyber

Security Centre (JCSC) [20].

c. Up-to-date information is available through

the reports provided by the Australian Signals

Directorate (ASD) and US Cert [4][6].

V. PREVENTING BLACK SWAN SITUATIONS

Emotet, WannaCry and similar trojan and worm-based

malware exploits can be prevented, and/or their effects

limited by applying basic cyber defence maintenance

practices, maintaining situational awareness, and monitoring

and responding when a threat is identified, or suspected.

A. Applying basic cyber defence maintenance

practices

1. Address the weakest link. Educate all people in the

organisation on the risks and indicators of cyber

exploits, such as emails with links and attachments.

Educate people to not click on links or unpreviewed

attachments and to run their mouse over to see where

it links to, even if the email comes from a trusted

colleague or friend. Educate them to not click on

online advertisements, and to never share unencrypted

sensitive information through external email or on the

phone [6][8].

2. Incorporate desired cyber practices into policies.

For example, implement a policy requiring users to

forward suspicious emails to the security team [6].

3. Control and monitor who has access to what, when.

Implement Privileged Access Management based on

the principle of least privilege [8].

4. Keep all operating system and application patching

up-to-date, by applying tested patches and updates as

a priority. In particular, test and apply critical patches

immediately. Five weeks prior to the main WannaCry

attack, both the Australian Signals Directorate [4] and

Microsoft had issued updated CVE reports. Microsoft

released emergency patches to the Windows SMB

vulnerabilities that enabled WannaCry’s EternalBlue

and DoublePulsar exploits recommending updates be

applied immediately [7][8][34].

5. Regularly perform vulnerability scans to identify any

unpatched devices [8][45].

6. Set a Firewall rule to restrict inbound SMB

communication between client systems, using

Windows Group Policy Object, or if using a non-

windows host-based intrusion prevention system

(HIPS), implement custom modifications for the

control of client-to-client SMB communication [6].

7. Using antivirus programs on clients and servers, with

automatic updates of signatures and software will

mitigate against many other malware exploits that are

signature based [6][8].

28

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

8. Whitelist IP addresses and block suspicious and

known malicious IP addresses at the firewall. Filter

out emails with known malspam indicators, such as

known malicious subject lines, by implementing

filters at the email gateway [6][8].

9. Block or scan file attachments commonly associated

with malware, such as .dll and .exe and those that

include macros, as well as attachments that cannot be

scanned by antivirus software, such as .zip files

[6][8].

10. Disable macros and PowerShell to prevent macro

driven PowerShell commands, such as those utilised

by Emotet [6][8].

11. Implement Domain-Based Message Authentication,

Reporting & Conformance (DMARC), a validation

system that minimises spam emails by detecting email

spoofing using Domain Name System (DNS) records

and digital signatures [6].

12. Be prepared for the worst. Take daily backups for

timely recovery and restoration of service to the

business and its customers. Ensure these are stored

offline or on a separate network and restoration is

tested regularly to prevent failure when restoration is

really needed [2][3][6][8].

13. Limit exposure of critical systems to zero-day

exploits. Take vulnerable, critical systems off-line

and/or restrict their external accessibility when a zero-

day exploit is underway.

14. Apply emergency zero-day patches immediately.

During the WannaCry event, Microsoft released

emergency patches for out-of-support versions of MS

Windows such as XP and Server 2003 [18]

[38][46][49].

B. Maintaining situational awareness

Security teams need to be tasked with staying abreast

of the current and emerging threats, the vulnerability-state

of the organisation’s systems and people, the effectiveness

of existing controls, and availability of updated controls to

address emerging vulnerabilities. The Cyber Security

Strategy, based on robust risk management, needs to be

maintained in-line with the evolving environment. Ongoing

communication to key stakeholders is critical to ensure

organisational support and resourcing.

C. Responding proactively to emerging threats and

exploits

Historically, Australia has faced the global-scale cyber

attacks after Europe and North America. This has provided

a short window in which to act, and mitigate known

vulnerabilities. On Sunday 14th of May, Australian

organisations had a few hours during which to ensure

critical windows-based systems were patched or segregated

to protect themselves from the ensuring WannaCry attack,

prior to business opening on the Monday morning.

As cyber exploits are combined in new and crafty

ways, the ingeniousness of the response needs to match that

of the adversaries.

VI. MANAGING AN INFECTION

Priority response actions are needed to minimise the

impact of these cyber Black Swan situations, for

organisations that become infected.

A. Managing an Emotet infection.

Emotet progresses with credential extraction, captures

the user’s credentials on all accounts and systems, and

spreads across the network prior to issuing a ransomware

demand that makes the user eventually aware of the

infection. By this time Emotet is embedded throughout the

network. Immediate action is required to:

1. Contain the infection, to prevent it spreading across

the network. Identify, shutdown, and take the

infected machines off the network. Don’t use

domain or shared local administrator accounts to

log into infected systems [5].

2. It may be necessary to temporarily take the

network offline [5].

3. Remove the Emotet malware from infected devices

by reimaging these devices, and ensure the

windows patches provided by Microsoft have been

applied [5][32][33][36][38].

4. Apply backups.

5. Prevent re-infection. Scan the reimaged and clean

systems and move these to a segregated virtual

local area, away from the infected network [5].

6. Issue password resets for all affected credential

groups, including password vaults [5].

7. Identify the original source of the infection. ie. The

device that was first infected [5].

8. Review the log files for this user’s account to

ensure any auto-forward rules for emails are turned

off, and prevent further data breaches [5].

9. Use the clean systems to return to normal business

operations.

10. Continue to monitor for any unidentified

infections, affected systems, and users.

11. Document the incident report.

12. Communicate with senior stakeholders, employees

and customers, throughout. Sensitive customer

29

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

information may have been exfiltrated during the

infected period. Communicate to impacted entities

and regulatory bodies in line with company policy

and regulatory requirements.

13. To prevent re-infections: Review the operating

system maintenance and patching processes; and

Educate users to not click on phishing email links.

14. If not already in place, implement targeted

educational phishing campaigns.

15. Post Incident Review to assess protection,

response, and restoration effectiveness and identify

improvements.

16. Communicate findings, and action improvements.

17. Post Implementation Review the system

maintenance processes, and measure the click rate

in the organisation 3 & 6 months later to ensure the

required changes have been made and the desired

click rated achieved.

18. Implement further improvements, if required.

B. Managing a WannaCry infection.

Those infected with WannaCry malware were

immediately made aware by the ransomware messages,

and the loss of data availability due to WannaCry

encrypting all the word, excel, pdf etc. files [6][21].

Immediate action was required to:

1. Contain the infection, to prevent it spreading across

the network and prevent re-infection, by

identifying unpatched devices applying the

Windows patches provided by Microsoft

[32][33][39][40].

2. Implement regular vulnerability scanning to

identify unpatched devices [45]. Targeted

vulnerability scanners that focus on finding the

specific Windows vulnerabilities that enabled

WannaCry, are now also available [59].

3. Recover the encrypted files from backups. At the

time of the original WannaCry attack, the only way

to recover lost or encrypted files, was to restore

from backup. Since then, WannaCry decryptors

have been developed [60].

4. Return to normal business operations.

5. Continue to monitor for any unidentified infections

and affected files.

6. Document the incident report.

7. Communicate with senior stakeholders, employees,

and customers, throughout. Communicate to

regulatory bodies in line with company policy and

regulatory requirements.

8. Review the operating system maintenance and

patching processes to prevent similar infections.

9. Post Incident Review to assess protection,

response, and restoration effectiveness and identify

improvements.

10. Communicate findings, and action improvements.

11. Post Implementation Review these processes 3 & 6

months later to ensure the required changes have

been made.

12. Implement further improvements, if required.

VII. FROM SURVIVE TO THRIVE

The practices of situational awareness, proactive risk

management, systems’ maintenance, and priority response

to threats and infections are the fundamentals of good cyber

and systems’ management practices. When performed

consistently over time, these practices provide a solid

foundation for robust security and business resilience.

Significantly reducing the likelihood that the organization

will be heavily impacted by a cyber attack. But routine

procedures are designed to operate within known thresholds.

When unexpected and unknown events exceed these

thresholds, such as those experienced in cyber black swan

situations, these alone cannot necessarily be relied upon to

perform optimally. These situations require more flexible

response [47].

Fragility relates to how systems are negatively impacted

when the environmental volatility exceeds a threshold [52].

Organisational risk management is typically based on

known historical events. The thresholds of the risk

management are defined by these past events. By definition,

black swan events are unexpected, and lie outside the

threshold [51][52].

The process of evolution through natural selection

produced the Australian platypus and kangaroos. Evolution

is, at its core, an example of antifragility [56]. Only

organisms that are adaptable to the changing environmental

conditions and variables survive, thrive, and proliferate.

Those that are only robust within stable environments do

not survive when this environment changes rapidly or

unexpectedly.

Paradoxically, cyber antifragility is built on a foundation

of structure, standardisation, and good cyber and systems

practices, combined with behavioural adaptability to volatile

situations to take advantage of opportunities emerging from

the disruption [56].

Going beyond security and resilience to antifragility

moves the focus from surviving to thriving in the face of

adversity. The critical attribute displayed by antifragile

organisations is their ability to modify goals and behaviours

when in crisis. This requires flexible thinking, problem

solving, and in the case of cyber black swan situations,

ability to utilise technology to obtain and interpret

information in real time [56]. Leaders, and teams need to be

able to adjust their ways of working and coordinate

30

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

differently; To adjust their performance strategies, and adapt

to the new situation [47].

Antifragile organisations turn crises into opportunity by

rapidly modifying their business model and organisational

behaviours to take advantage of the situation. This requires

foresight, a hunger for new opportunities, agility to rethink

and change the way they work, ongoing research to

determine how this can be achieved, and capital investment

to enable it [56].

Cyber antifragility is more than just defence or

resilience as it necessitates both stability and growth in the

face of adversity, of any scale. Rather than just recovering

to the pre-event state, after the incident, antifragile

organisations improve as a result of being regularly

challenged by new cyber events and situation [56].

VIII. CONCLUSION

Analysis of the Black Swan Situations generated by

the Emotet and WannaCry malicious exploits highlight the

ways in which these types of situations can be predicted and

prevented.

Situational awareness enables organisations to notice

and interpret the early warning signs; to stay abreast of and

prepare for emerging vulnerabilities and threats. Preparation

involves addressing the weakest link as well as

implementing practical controls, such as privileged access

management, maintaining defence in depth, and keeping

reliable backups.

Awareness of its cyber capability and open

vulnerabilities also ensures the organisation can respond to

zero-day exploits by limiting exposure of critical systems

and immediately applying emergency patches to vulnerable

systems. Priority protection and response action when an

infection is detected limits the extent of the infection, its

effects, and the impact on the business and customers. These

are the fundamentals of good systems and cyber

management practice, providing security and resilience.

Antifragile organisations take this to the next level by

developing the agility to adapt in the face of adversity, to

take advantage of the situation. While others survive, these

organisations thrive, benefiting from the constantly

changing threat landscape and the cyber black swans.

REFERENCES

[1] A. Coull, “Black Swan or Just an Ugly Duckling?, Can

potentially crippling cyber situations be foreseen and

mitigated? ” IARIA CYBER 2022 : The Seventh International

Conference on Cyber-Technologies and Cyber-Systems.

Available from:

https://www.thinkmind.org/index.php?view=instance&instanc

e=CYBER+2022

[2] ACSC, “Strategies to mitigate cyber security incidents,

“Australian Government, Australian Signals Directorate,

2017, Available from: https://www.cyber.gov.au/acsc/view-

all-content/publications/strategies-mitigate-cyber-security-

incidents, accessed October 2022.

[3] ACSC, “Essential eight explained, Australian Government,”

Australian Signals Directorate, 2019, Available from:

https://www.cyber.gov.au/sites/default/files/2020-

01/PROTECT%20-

%20Essential%20Eight%20Explained%20%28April%202019

%29.pdf, accessed October 2020.

[4] ACSC, Australian Signals Directorate - view all alerts,

Available from: https://www.cyber.gov.au/acsc/view-all-

content/alerts, accessed February 2023.

[5] 3+1Any run, “Emotet”, 2021, Available from:

https://any.run/malware-trends/emotet, accessed October

2022.

[6] CISA 2018-2020, “Alert [TA18-201A] Emotet Malware,”

Available from: https://www.cisa.gov/uscert/

ncas/alerts/TA18-201A, accessed October 2022.

[7] A. Coull, “WannaCry Malware Case Study," Cyber Security

Operations 2017, UNSW.

[8] A. Coull, “How much cyber security is enough,” The Fourth

International Conference on Cyber-Technologies and Cyber-

Systems, CYBER 2019, September 22, 2019 to September 25,

2019 – Porto, Portugal, Available from:

https://www.iaria.org/conferences2019/CYBER19.html/CYB

ER19.html, accessed October 2022.

[9] CVE, “CVE-2017-0144 - CVE.report,” 2017, Available from:

https://cve.report/CVE-2017-144, accessed October 2022.

[10] CVE, “CVE-2017-0145 - CVE.report,” 2017, Available from:

https://cve.report/CVE-2017-145, accessed October 2022.

[11] CVE, “CVE-2017-0147 - CVE.report,” 2017, Available from:

https://cve.report/CVE-2017-147, accessed October 2022.

[12] CVE, “CVE-2019-0630 - CVE.report,” 2019, Available from:

https://cve.report/CVE-2019-630, accessed October 2022.

[13] CVE, “CVE-2019-0633 - CVE.report,” 2019, Available from:

https://cve.report/CVE-2019-0633, accessed October 2022.
[14] Fifth Quadrant, “Customer Experience Research, Design &

Consulting,” 2017, Available from:
https://www.fifthquadrant.com.au/
customer-experience-research-design-consulting-fifth-
quadrant, 2022, accessed October 2022.

[15] J. Graham, “How to Rapidly Identify Assets at Risk to

WannaCry Ransomware and ETERNALBLUE Exploit,”

2017, Available from: https://blog.qualys.com/

vulnerabilities-threat-research/2017/05/12/how-to-rapidly-

identify-assets-at-risk-to-wannacry-ransomware-and-

eternalblue-exploit, accessed October 2022.
[16] J. Hanrahan, “Suspected Conti Ransomware Activity in the

Auto Manufacturing Sector,” Dragos Blog 16 March 2022,
Available from: https://www.dragos.com/blog/industry-
news/suspected-conti-ransomware-activity-in-the-auto-
manufacturing-sector/, accessed March 2023.

[17] HC3 Health Sector Cybersecurity Coordination Centre, Office
of Information Security, “The Return of Emotet and the
Threat to the Health Sector,” June 2, 2022, Available from:
https://www.hhs.gov/sites/default/files/return-of-emotet.pdf,
accessed March 2023.

[18] A. Hern and S. Gibbs, “What is 'WanaCrypt0r 2.0'

ransomware and why is it attacking the NHS?,” the guardian,

Saturday 13 May 2017, Available from:

https://www.theguardian.com/technology/2017/may/12/nhs-

ransomware-cyber-attack-what-is-wanacrypt0r-20, accessed

October 2022.

[19] H. Jankensgard, “The Black Swan problem: Risk

management strategies for a world of wild uncertainty,” 2022,

31

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

John Wiley & Sons Ltd. The Atrium, Southern Gate,

Chichester, West Sussex, P019 8sQ, United Kingdom.

[20] JCSC, “Joint Cyber Security Centre”, 2022, Available from:

https://www.cyber.gov.au/acsc/view-all-content/glossary/

joint-cyber-security-centre-jcsc, accessed December 2022

[21] D. Kennedy, J. O’Gorman, D. Kearns, & M. Aharoni,

“Metasploit: the penetration tester’s guide,” 2011, No starch

press, 245 8th Street, San Francisco, CA 94103.

[22] L. Kessem, “How did the wannacry ransomware begin?” IBM

Security, 26 May 2017, Available from:

https://www.quora.com/How-did-the-Wannacry-ransomware-

begin, accessed October 2022.

[23] M. Lee, W. Mercer, P. Rascagneres and C. Williams, “Player

3 Has Entered the Game: Say Hello to 'WannaCry',” Talos

Intelligence, 12 May 2017, Available from:

http://blog.talosintelligence.com/2017/05/wannacry.html,

accessed October 2022.

[24] LogRhythm, “A technical analysis of wannacry ransomware,

LogRhythm Labs,” 16 May 2017, Available from:

https://logrhythm.com/blog/a-technical-analysis-of-wannacry-

ransomware/, accessed October 2022.

[25] Malwarebytes Labs, “Threat Types”, 2023, Available from:

https://www.malwarebytes.com/blog/threats, accessed

January 2023.

[26] MalwareTech, “Botnet tracker,” MalwareTech, 2017,

Available from: https://intel.j.com/botnet/wcrypt

/?t=1h&bid=all, accessed October 2022.

[27] A. McNeil, “How did the WannaCry ransomworm spread?”

Malwarebytes, 19 May 2017, Available from:

https://blog.malwarebytes.com/cybercrime/2017/05/how-did-

wannacry-ransomworm-spread/, accessed October 2022.

[28] Metasploit, “Metasploit | Penetration Testing Software, Pen

Testing Security,” 2022, Available from:

https://www.metasploit.com/, accessed October 2022.

[29] Microsoft, “Windows SMB Remote Code Execution

Vulnerability CVE-2017-0144,” 2017, Available from:

https://msrc.microsoft.com/update-guide/vulnerability/CVE-

2017-0144, accessed October 2022.

[30] Microsoft, “Windows SMB Remote Code Execution

Vulnerability CVE-2017-0145,” 2017, Available from:

https://msrc.microsoft.com/update-guide/vulnerability/CVE-

2017-0145, accessed October 2022.

[31] Microsoft, “Windows SMB Information Disclosure

Vulnerability CVE-2017-0147,” 2017, Available from:

https://msrc.microsoft.com/update-guide/vulnerability/CVE-

2017-0147, accessed October 2022.

[32] Microsoft, “Windows SMB Remote Code Execution

Vulnerability CVE-2019-0630,” 2019, Available from:

https://msrc.microsoft.com/update-guide/en-

US/vulnerability/CVE-2019-0630, accessed October 2022.

[33] Microsoft, “Windows SMB Remote Code Execution

Vulnerability CVE-2019-0633,” 2019, Available from:

https://msrc.microsoft.com/update-guide/en-

US/vulnerability/CVE-2019-0633, accessed October 2022.

[34] Microsoft, “Security Update Severity Rating System

(microsoft.com),” available from:

https://www.microsoft.com/en-us/msrc/security-update-

severity-rating-system, accessed March 2023.

[35] P. Muncaster, “Wannacry didn’t start with phishing attacks,”

says Malwarebytes, Infosecurity, 22 May 2017, Available

from: https://www.infosecurity-magazine.com/news/

wannacry-didnt-start-with-phishing, accessed October 2022.

[36] NIST, “CVE-2017-0144 Detail,” 2017, Available from:

https://nvd.nist.gov/vuln/detail/CVE-2017-0144, accessed

October 2022.

[37] NIST, “CVE-2017-0145 Detail,” 2017, Available from:

https://nvd.nist.gov/vuln/detail/CVE-2017-0145, accessed

October 2022.

[38] NIST, “CVE-2017-0147 Detail,” 2017, Available from:

https://nvd.nist.gov/vuln/detail/CVE-2017-0147, accessed

October 2022.

[39] NIST, “CVE-2019-0630 Detail,” 2019, Available from:

https://nvd.nist.gov/vuln/detail/CVE-2019-0630, accessed

October 2022.

[40] NIST, “CVE-2019-0633 Detail,” 2019, Available from:

https://nvd.nist.gov/vuln/detail/CVE-2019-0633, accessed

October 2022.

[41] D. Palmer, “Emotet: The world's most dangerous malware

botnet was just disrupted by a major police operation,”

ZDNET 27 January 2021, Available from:

https://www.zdnet.com

/article/emotet-worlds-most-dangerous-malware-botnet-

disrupted-by-international-police-operation/, accessed March

2023.

[42] A. Perin, “Emotet Re-emerges with Help from TrickBot,” 6

January 2022, Available from:

https://blog.qualys.com/vulnerabilities-threat-

research/2022/01/06/emotet-re-emerges-with-help-from-

trickbot, accessed January 2023.

[43] A. Petcu, “Emotet Malware Over the Years: The History of an

Infamous Cyber-Threat,” 23 February 2022, Available from:

https://heimdalsecurity.com/blog/emotet-malware-history/,

accessed January 2023.

[44] Proofpoint, “Q4 2020 Threat Report,” 2020, Available from:

https://www.proofpoint.com/us/blog/threat-insight/q4-2020-

threat-report-quarterly-analysis-cybersecurity-trends-tactics-

and-themes, accessed November 2022.

[45] Qualys, “IT Security and Compliance Platform,” 2023,

Available from: https://www.qualys.com/, accessed January

2023.

[46] A. Rousseau, “WCry/WanaCry ransomware technical

analysis,” End Game, 14 May 2017, Available from:

https://www.endgame.com/blog/technical-blog/wcrywanacry-

ransomware-technical-analysis, accessed September 2022.

[47] J. Steinke, B. Bolunmez, L. Fletcher, V. Wang, A.

Tomassetti, K. Repchick, S. Zaccaro, R. Dalal, and L. E.

Tetrick 2015, “Improving Cybersecurity Incident Response

Team Effectiveness Using Teams-Based Research,” IEEE

Security & Privacy, Multidisciplinary Security July/August

2015 Vol. 13, No. 4, Available from:

https://www.researchgate.net/publication/281467215_Improvi

ng_Cybersecurity_Incident_Response_Team_Effectiveness_

Using_Teams-Based_Research, accessed February 2023.

[48] Symantec, “WannaCry: Ransomware attacks show strong

links to Lazarus Group,” Symantec Security Response, 22

May 2017, Available from: https://www.symantec.com

/connect/blogs/

wannacry-ransomware-attacks-show-strong-links-lazarus-

group, accessed October 2022.

[49] Symantec, “Ransom.Wannacry”, Symantec, 24 May 2017,

Available from: https://www.symantec.com/

security_response/writeup.jsp?docid=2017-051310-3522-99,

accessed September 2017.

32

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[50] Symantec, “WannaCry variant protection details and

information”, Symantec Support, 26 May 2017, Available

from: https://support.symantec.com/en_US/

article.INFO4361.html, accessed October 2022.

[51] N.N. Taleb, “Antifragile, things that gain from disorder”,

Random House, Penguin Random House LLC, New York,

2021.

[52] N. N. Taleb and J. West, “Working With Convex Responses:

Antifragility From Finance to Oncology,” Tandon School of

Engineering, New York University, 2015

[53] Talos, “Talos Threat Intelligence”, 2023, Available from:

https://talosintelligence.com/ , accessed January 2023.

[54] I. Thomson, “Wannacry: everything you still need to know

because there were so many unanswered Qs”, The Register,

20 May 2017, Available from:

https://www.theregister.co.uk/2017/05/20/

wannacry_windows_xp/, accessed October 2022.

[55] Trendmicro, “EMOTET malware resurges with new

detections (trendmicro.com),” Available from:

https://success.trendmicro.com/dcx/s/solution/1118391-

malware-awareness-emotet-resurgence?language=en_US,

accessed March 2023.

[56] TQM 2021, “Turning crises into opportunities in the service

sector: how to build antifragility in small and medium service

enterprises,” The TQM Journal, December 2021.

[57] Truesec, “Threat Intelligence Report 2021,” 2021, Available

from: https://www.truesec.com/hub/report/threat-intelligence-

report-2022, accessed January 2022.

[58] Truesec, “Threat Intelligence Report 2022”, 2022, Available

from: https://www.truesec.com/hub/report/threat-intelligence-

report-2022, accessed January 2023.

[59] TWC, “Free vaccinator & vulnerability scanner tools for

WannaCry ransomware,” 15 May 2017, The Windows Club,

Available from: https://www.thewindowsclub.com/free-

vaccinator-vulnerability-scanner-tools-wannacry-ransomware,

accessed January 2023.

[60] TWC, “WannaCrypt or WannaCry ransomware decryptors

are available,” The Windows Club, 19 May 2017, Available

from: https://www.thewindowsclub.com/wannacrypt-

wannacry-ransomware-decryptor, accessed January 2023.

[61] Verizon, “Latest Cybersecurity Risks and Events”, Verizon

Business, 2023, Available from: https://www.verizon.com/

business/en-au/resources/security/cybersecurity-news-and-

events/, accessed January 2023.

[62] S. Winterfeld and J. Andress, “The basics of cyber warfare:

understanding the fundamentals of cyber warfare in theory

and practice”, 2013, Elsevier, Inc, United States of America.

33

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Privacy-Preserving User Clustering: The
Application of Anonymized Data to Community

Detection in Large Organizations
1st Igor Jakovljevic

ISDS
Graz University of Technology

Graz, Austria
e-mail: igor.jakovljevic@cern.ch

3rd Christian Gütl
ISDS

Graz University of Technology
Geneva, Switzerland

e-mail: c.guetl@tugraz.at

2nd Martin Pobaschnig
ISDS

Graz University of Technology
Graz, Austria

e-mail: martin.pobaschnig@student.tugraz.at

4th Andreas Wagner
IT Department

CERN
Graz, Austria

e-mail: andreas.wagner@cern.ch

Abstract—This paper is an extension of our previous work
on privacy-protected user clusters identification in large orga-
nizations. Oversharing exposes risks, such as improved targeted
advertising and leakage of sensitive information. Requiring only
the bare minimum of data reduces these risk factors, while simul-
taneously increasing the privacy of each user. Using anonymized
data to find communities opens up new possibilities for large
organizations under strong data protection regulations. Although
related work often focuses on privacy-preserving community
detection algorithms, including differential privacy, in this paper
the focus was on the anonymized data itself. Channel membership
information was used to build a weighted social graph and
groups of interest were identified using popular community
detection algorithms. Graphs based on channel membership data
resembled interest groups within the network satisfactorily but
failed to capture the organizational structure. Furthermore, a
statistical evaluation and a user study were conducted to measure
the performance of the recommender prototype. The statistical
evaluation showed promising results, while the user study yielded
mediocre satisfaction of the participants and revealed various
potential shortcomings and limitations of the recommender
system and user dataset retrieved from the notification system.

Index Terms—Data Privacy; Open Data; Large Organizations;
Clustering

I. INTRODUCTION

This paper is an extension of our previous work on privacy-
protected identification of user clusters in large organizations,
presented in [1].

Large organizations are estimated to generate a median of
300 terabytes (TB) of data weekly [2]. Data are generated from
the use of various methods of communication (chat, email,
face-to-face, phone, short message service, social media)
between organization members, data sharing tools, internal
processes, different hardware units (mobile phones, tablets,
laptops, etc.) and more [2]. The publication of these data

to be used for analysis and research has been an excellent
source of information for researchers, promoting innovation
and advancements in various areas and facilitating cooperation
between various groups [3][4]. In this context, the term used to
describe the data available freely to anyone to use for analysis
and research is open data [5]. There have been different
initiatives for collaboration based on open data, such as the
Netflix Prize, OpenStreetMap, CERN (Conseil européen pour
la recherche nucléaire) Open Science Initiative, Open City
Initiatives, and more [3][5][6]. The purpose of these projects
has been to improve existing technologies and algorithms
and facilitate innovation and collaboration [3]. In addition to
these projects, organizations internally analyze user behavior
and user data and create new or improve existing services,
generally relying on continuous user surveys and behavior
tracking while invading their privacy [7].

The sharing of personal data that contain identifiers, quasi-
identifiers, and sensitive attributes has been identified as a
common issue with similar projects [3]. Sensitive and per-
sonal data should not be accessed freely; organizations must
protect and secure them. To achieve this, organizations usually
secure themselves and do not release this type of data. By
doing so, the possible benefits available from private data
are not explored. To avoid privacy breaches and publish
organizational data, multiple data privacy preservation tech-
niques were developed. Most of them are based on pseudo-
anonymization or complete anonymization of the data [8]. The
use of anonymized private data led to privacy-preserving data
analysis methods. These methods offer a way to use private
data safely, considering privacy requirements [9].

CERN has always stood for the principles of open data and
open science, facilitating collaborative, transparent, and repro-
ducible research and development whose results are publicly

34

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

available [6]. One such initiative is the CERN anonymized
Mattermost dataset, which contains anonymized user data, re-
lationships between users, organizations, buildings, teams, and
channels. The goal of this dataset is to facilitate innovation for
channel recommendations, user clustering, feature extractions,
and others [10].

This paper, which is an extension of our previous work
on privacy-protected identification of user clusters in large
organizations, aims to analyze the provided CERN datasets
and determine the privacy aspects and attributes that can be
used for privacy-sensitive clustering methods and applications
in recommender systems [1]. Based on the observations stated
above, more specifically, the main research questions are as
follows:

• RQ1: Which user information can be extracted from the
anonymized Mattermost organizational open data?

• RQ2: Is it possible to detect user groups without invading
user privacy?

• RQ3: What is the performance of clustering algorithms
when applied to sparse anonymized user data?

The remainder of this paper is organized as follows. Section
II covers the literature overview and discusses current topics
in privacy-preserving data mining, open data, sparse data,
clustering methodologies, and clustering evaluation metrics.
In Section III, we discuss and describe the CERN Mattermost
dataset. Section IV focuses on the analysis of various cluster-
ing methodologies and algorithms on the previously mentioned
data and evaluates the best performing algorithms on the notifi-
cation system dataset. Section V describes the user evaluation
and analysis of the application of clustering algorithms on
sparse anonymized user data from the notification system.
Section VI discusses the findings of the statistical and user
evaluation and explains the use of clustering methodologies.
We conclude the work in Section VII with a discussion of the
research questions and future work.

II. BACKGROUND AND RELATED WORK

A. Networks and Graphs

Networks are defined as interconnected or interrelated
chains, groups, or systems and can be found in a variety of
areas, such as the World Wide Web, connections of friends,
connections between cities, connections in our brain, power
line links, and citation links. In essence, a network is a set
of interconnected entities, which we call nodes, and their
connections, which we call links. The nodes describe all
types of entities, such as people, cities, computers, Web
sites, and so on. Links define relationships or interactions
between these entities, such as connections between people,
flights between airports, links between Web pages, connections
between neurons, and more. A special type of network is a
social network. It is a group of people connected by a type of
relationship (friendship, collaboration, or acquaintance) [11].

The data structure commonly used for the representation
of networks is called a graph. A graph is defined as a set of
connected points, called vertices (or nodes), that are connected

via edges, also called links. The set of vertices is denoted as
V = {v1, v2, v3, . . . }, while the set of edges is denoted as
E = {e1, e2, e3, . . . }. The resulting graph G consists of a set
of vertices V and a set of edges E that connect them and can
be written as G = (V,E). Two vertices connected by an edge
are called adjacent or neighbors, and all vertices connected to
a vertex are called neighborhood [12].

Graphs have a variety of measures associated with them.
These measures can be classified as global measures and nodal
measures. Global measures refer to the global properties of
a graph, whereas nodal measures refer to the properties of
nodes. The most important measures are degree measures,
strength measures, modularity measures, and clustering coef-
ficient measures. The degree measure is a nodal. It is the sum
of edges connected to a node. The sum of the weights of all
edges connected to a node is defined as the strength measure,
while the extent to which a graph divides into clearly separated
communities (that is, subgraphs or modules) is described by
modularity measures [13].

B. Clustering Methods

Fundamental tasks in data mining are clustering and clas-
sification, among others. Clustering is applied mostly for
unsupervised learning problems, while classification is used
as a supervised learning method. The goal of clustering is
descriptive, and that of classification is predictive [14].

Clustering is used to discover new sets of groups from sam-
ples. It groups instances into subsets using different measures.
Measures used to determine similar or dissimilar instances
are classified into distance measures and similarity measures.
Different clustering methods have been developed, each of
them using different principles. Based on research, clustering
can be divided into five different methods: hierarchical, parti-
tioning, density-based, model-based clustering, and grid-based
methods [14][15].

Hierarchical Methods - Clusters are constructed by recur-
sively partitioning items in a top-down or bottom-up fashion.
For example, each item is initially a cluster of its own; then
the clusters are merged based on a measure until the desired
clusters are formed [15].

Partitioning Methods - These methods typically require a
predetermined number of clusters. Items are moved between
different predetermined clusters based on different metrics
(error-based metrics, similarity metrics, distance metrics) until
desired clusters are formed. To achieve the optimal cluster
distribution, extensive computation of all possible partitions
is required. Greedy heuristics are used for this computation
because it is not feasible to calculate all possible partitions
under time constraints [14].

Density-Based Methods - These methods are based on the
assumption that clusters are formed according to a specific
probability distribution. The aim is to identify clusters and
their distribution parameters. The distribution is assumed to
be a combination of several distributions [16].

Model-based Clustering methods - Unlike the previously
mentioned methods, which group items based on similarity

35

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and distance metrics, these methods attempt to optimize the
fit between the input data and a given mathematical model
[17].

Grid-based methods - The previous clustering methods
were data-driven, while grid-based methods are space-driven
approaches. They partition the item space into cells discon-
nected from the distribution of the input. The grid-based
clustering approach uses a multiresolution grid data structure.
It groups items into a finite number of cells that form a grid
structure on which all clustering operations are performed. The
main advantage of the approach is its faster processing time
[18].

C. Evaluation Metrics

According to the literature, there are two main types of eval-
uation metrics for recommendation systems; they are statistical
accuracy metrics (SAM) and decision support accuracy metrics
(DSAM) [19]. SAM methods such as Mean Absolute Error
(MAE) evaluate the precision of a recommender system by
comparing the predicted values with the actual ratings of the
original predictions and ratings [20][21]. DSAM determines
the effectiveness of a prediction engine by helping users select
relevant items from the available ones. The most common
measures are sensitivity, specificity, and precision. Using the
right model validation techniques helps to understand the
models and estimate the performance of a model [19].

Figure 1. Classification Evaluation Representation based on [22]

Figure 1 illustrates the main elements used for classification
evaluation. True positive values are values when the actual

and predicted conditions are positive. False positive values
are states in which the predicted value is positive, but the
actual value is negative. The true negative value indicates that
the actual and predicted conditions are the same and are both
negative. The state in which the actual condition is positive
but the prediction is negative is referred to as false negative
values. [23].

Actual positive (AP) values, as seen in equation (1), refer
to the number of true positives (TP) together with the number
of false positives (FP).

AP = TP + FN (1)

Actual negative (AN) values, as seen in equation (2), refer
to the number of false positives (FP) together with the number
of true negatives (TN).

AN = FP + TN (2)

Predicted positive (PP) values, as seen in equation (3), refer
to the number of true positives together with the number of
false negatives.

PP = TP + FP (3)

The predicted negative (PN), as seen in equation (4), refers
to the number of false negatives along with the number of true
negatives [23].

PN = FN + TP (4)

Sensitivity describes the ratio of correct predictions to
all actual positive conditions and is calculated as shown in
equation (5) [24].

sensitivity =
TP

AP
(5)

The specificity describes the ratio of correct rejections to
all actual negative conditions and is calculated as shown in
equation (6) [24].

specificity =
TN

AN
(6)

The precision describes the ratio of correct predictions out of
all positively predicted values and is calculated as shown in
equation (7) [25].

precision =
TP

PP
(7)

According to [26], the f-score is a measure of the accuracy of
the prediction. It is the harmonic mean between precision and
sensitivity and is calculated as shown in Equation (8).

fscore = 2
precision ∗ sensitivity
precision+ sensitivity

(8)

36

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Open Data, Sparse Data, and Privacy-aware Data Analy-
sis

Open Data describes data available without restrictions for
anyone to use for analysis and research [5]. Open innovation
is defined as the use of purpose-oriented inputs and outputs
of knowledge to stimulate internal innovation while increasing
the demands for external use of innovation, respectively. The
goal of open innovation and open data is to increase account-
ability and transparency while providing new and efficient
services [27].

Sparse data is characterized by a relatively high percentage
of variables that do not contain actual information. These vari-
ables contain values such as ”empty” or NA [28]. Sparse data
bias is a statistical bias that results from unevenly distributed
data. Models trained on sparse data can be biased towards
more common observations, leading to poor performance on
less common observations. It can occur in unbalanced datasets
or when dealing with missing data [29].

Privacy-preserving analytics are a set of methods for collect-
ing, measuring, and analyzing data that respect individual pri-
vacy rights. These methods allow data-driven decisions while
still giving individuals control over personal data. Restricting
access to the data could be found to restrict support for various
types of data analysis. Adopting approaches to restricting
information in the data so that they are free of identifiers and
free of content with a high risk of individual identification.
Techniques have been proposed to release data without reveal-
ing sensitive information for various applications. Interest in
the development of privacy-preserving data mining algorithms
has been growing over the years [30].

III. DATASET

The Mattermost dataset was extracted from an internal
PostgreSQL (Structured Query Language) database and is
accessible as a JSON (JavaScript Object Notation) formatted
file [10]. It includes data from January 2018 to November
2021 with 21231 CERN users, 2367 Mattermost teams, 12773
Mattermost channels, 151 CERN buildings, and 163 CERN or-
ganizational units. The dataset states the relationships between
Mattermost teams, Mattermost channels, and CERN users.
It contains various pieces of information, such as channel
creation, channel deletion times, user channel joining, and
leave times. It also includes user-specific information, such as
building and organizational units, messages, and the mention
count. To hide identifiable information (e.g., team name, user
name, channel name), the dataset was anonymized using a
combination of techniques such as omitting attributes, hashing
string values, and removing connections between users, teams,
and channels. It is important to note that there are various
other anonymization techniques, including pseudonymization,
differential privacy, and k-anonymity, that could affect the
results of privacy-preserving analytics in different ways. The
usage of these methods can cause algorithms applied to
anonymized datasets to perform differently, since each method
introduces a certain level of information loss.

Team Member

team_id

user_id

delete_at

Team

team_id (PK)

create_at

delete_at

invite_only

email_domain_restrictedUser

user_id (PK)

building

org_unit Channel

channel_id (PK)

team_id

create_at

delete_at

total_msg_count

post_count

reactions_count

Channel Member

channel_id

user_id

msg_count

org_unit

Channel Member History

channel_id

user_id

join_time

leave_time

Figure 2. CERN Mattermost dataset Entity Relation Diagram

The entity relationship diagram shown in Figure 2 describes
entities with data attributes and relationships between entities.

A. Data Transformation

The dataset was analyzed and prepared to filter out super-
fluous teams, channels, and users. According to the analysis,
approximately 22.6% teams consist of one single person and
can be removed as they form isolated nodes that do not
contribute to the community structure.

Table I shows the five-number summary of the number
of members within teams with more than one member. The
five-number summary consists of three quartiles, Q1, Q2 or
median, and Q3, which divide the dataset into two parts with
the lower part having 25%, 50% and 75% of the dataset’s
values, respectively. The other two values of the five-number
summary consist of the minimum and maximum value of the
dataset.

Using the quartiles from the five-number summary, the
lower and upper team size fences can be calculated, which
act as boundaries above or below which teams are considered
outliers. The upper fence can be calculated by UpperFence =
Q3+1.5∗IQR, where IQR represents the interquartile range.
IQR is defined as IQR = Q3 −Q1. This results in an upper
bound of 51.5.

Table I
FIVE-NUMBER SUMMARY OF TEAMS WITH MORE THAN ONE

MEMBER.

Minimum Q1 Median Q3 Maximum
Team Members 2 4 10 23 4512

When counting the number of teams above that threshold,
approximately 87.7% of the teams have less than 52 members.
The lower fence is calculated by LowerFence = Q1 − 1.5 ∗
IQR and yields −24.5. Since we do not have negative team
sizes, we can limit the lower bound to 2, since team sizes of
1 are isolated nodes.

37

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Graph Creation

Channel membership relations were used to generate graphs
that act as a basis for community detection and user group
analysis. A weighted edge is added between two users if
they share the same channel, and the weight of the edge is
increased for each additional channel they share. The idea
behind channel membership for graph creation is that team
members within CERN join channels related to their orga-
nization and work interest. Consequently, the more channels
members have in common, the more likely they are to belong
to the same organizational structure. The goal is to find the best
communities that resemble the CERN organizational structure
and communities.

IV. EVALUATION

A. Algorithm Evaluation

Following the procedure described in Section III-B with an
upper team threshold of 52, a weighted graph was produced.
The igraph implementation of the Large Graph Layout (LGL)
with 2000 iterations was used to visualize it [31].

LGL was used because it creates good layouts for a large
number of vertices and edges and produces well-observable
clusters. The graph produced is shown in Figure 3.

Figure 3. Graph based on channel membership relationship.

Table II lists several advanced clustering algorithms utilized
to detect communities in the Mattermost dataset along with
the corresponding evaluation results. The mentioned clustering
algorithms were selected for evaluation because they were the
commonly used algorithms for clustering and also available in
the ones in the igraph library. Evaluation metrics considered
include modularity, similarity, and the number of communities
identified by each algorithm.

Of all the available algorithms presented in Table II,
infomap (2), label propagation (3), and random walk (7)

delivered the best performance with respect to modularity,
similarity, and communities, as shown in Table II.

Random walk algorithms are based on the idea that a
random walk on a graph tends to stay within a community
and rarely cross over to other communities. It uses a spectral
clustering approach to partition the graph into communities by
performing a random walk on the graph and using the resulting
probability distribution to compute a normalized Laplacian
matrix. This algorithm is known for its ability to detect
overlapping communities and has been shown to perform well
on large-scale networks [38].

Figure 4. Communities detected by using the label propagation algorithm. A
clear separation between individual clusters in the outer part of the graph can
be observed.

The infomap algorithm utilizes random walks to assign
special codes, known as Huffman codes, to each vertex and
organizes them in a way that minimizes the description length
measured in bits per vertex. These Huffman codes are binary
strings assigned to objects based on their frequency, ensuring
that objects visited more frequently are assigned shorter encod-
ings, while less frequently visited objects receive longer ones.
This algorithm has demonstrated its effectiveness in detecting
hierarchical community structures and is widely recognized
for its high accuracy [33].

The Label Propagation Algorithm begins by assigning a
unique community label to each node in the network. These
labels are propagated through the network iteratively. During
each iteration, a node updates its label to the one that the
majority of its neighbours have. The algorithm continues to
propagate labels until convergence, where each node adopts
the majority label of its neighbours or if the maximum number
of iterations specified is reached. As the labels are propagated,
densely connected nodes quickly reach a consensus on the

38

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II
RESULTS INCLUDING FIVE-NUMBER SUMMARY OF SIMILARITIES BETWEEN MATTERMOST TEAMS AND FOUND COMMUNITY

WITH DIFFERENT ALGORITHMS. VALUES WITHIN COLUMNS REPRESENT THE MEAN AND STANDARD DEVIATION OVER 25
ITERATIONS.

Algorithm Communities Modularity Minimum [%] Q1 [%] Median [%] Q3 [%] Maximum [%]
1. Community structure through
greedy optimization of modularity
[32]

41 ± 0 0.75 ± 0.00 7.85 ± 0.00 23.43 ± 0.00 45.24 ± 0.00 66.67 ± 0.00 100 ± 0.00

2. Infomap community finding [33] 414 ± 3 0.71 ± 0.00 18.13 ± 1.18 46.52 ± 0.19 61.75 ± 0.68 75.97 ± 0.61 100.00 ± 0.00
3. Finding communities based on
propagating labels [34]

463 ± 8 0.70 ± 0.00 15.68 ± 2.23 48.18 ± 1.07 61.25 ± 0.81 75.08 ± 0.28 100.00 ± 0.00

4. Community structure detecting
based on the leading eigenvector of
the community matrix [35]

43 ± 0.00 0.67 ± 0.00 5.85 ± 0.00 15.17 ± 0.00 26.92 ± 0.00 52.48 ± 0.00 95.65 ± 0.00

5. Finding community structure of
a graph using the Leiden algorithm
[36]

1290 ± 3 0.64 ± 0.00 2.04 ± 0.00 20.00 ± 0.00 42.86 ± 0.00 66.67 ± 0.00 100.00 ± 0.00

6. Finding community structure by
multi-level optimization of modu-
larity [37]

40 ± 2 0.78 ± 0.00 8.80 ± 0.77 14.79 ± 1.12 21.75 ± 1.64 50.87 ± 6.80 86.51 ± 6.57

7. Computing communities using
random walks [38]

344 ± 0 0.72 ± 0.00 8.33 ± 0.00 55.56 ± 0.00 66.67 ± 0.00 80.00 ± 0.00 100.00 ± 0.00

8. Community detection based on
statistical mechanics [39]

25 ± 0 0.77 ± 0.00 8.10 ± 0.71 11.23 ± 0.79 14.06 ± 1.05 17.700 ± 1.39 31 ± 8.51

label, leading to the disappearance of many labels. At the end
of the propagation, only a few labels remain, and nodes with
the same label are considered to belong to the same commu-
nity. This algorithm is known for its simplicity, efficiency, and
scalability [34] .

Calculating the community structure with the highest mod-
ularity value (community optimal modularity) and commu-
nity structure detection based on edge betweenness (commu-
nity edge betweenness) were not feasible in practice, since
the runtime was too long. Figure 4 displays the result of the
label propagation algorithm applied to the graph created previ-
ously. Each community is assigned a unique color to observe
the separation of individual clusters. The label propagation
algorithm finds communities with slightly less similarity than
the infomap algorithm, which performs best with respect to
similarity measurement. However, it finds many and much
more detailed communities.

Figure 5 represents the similarities of the users between the
communities found and the Mattermost teams while Figure
6 illustrates the results of 10 iterations as violin plots. An
upper threshold of 52 for the teams was used for this figure,
as described later in this section.
Of all communities detected, 75% have similarities above
47.79%, 50% have similarities above 61.18%, and 25% have
similarities above 74.99%. Similarities are measured by com-
paring the discovered community with all Mattermost teams
and counting the common members in both sets. The per-
centage value of the Mattermost team with the most common
members is used.

Depending on the number of communities found, there may
be overlaps such that one team fits multiple communities
as the best match. This might be the case where the size
of communities is smaller than the size of teams, such that
communities form subgroups of the teams. However, less
than 0.01% of the communities discovered correspond to the

Figure 5. Sample run showing similarities of users between found commu-
nities and Mattermost teams.

same Mattermost team. The average size of the communities
discovered is 20 ± 23, the minimum is 2, the first quartile
Q1 is 6, the median is 13, the third quartile Q3 is 26, and the
maximum is 421.

Figure 7 shows the similarities of users between the detected
communities and the organizational units with a threshold of
52, and Table III shows the parameters of this figure in detail.
We can observe that the similarities are relatively low, with
75% of communities having at most 5.07% similarity. This
indicates that the discovered communities generally do not
resemble organizational units very well. The main reason is
that Mattermost teams often consist of members of different
organizational units. This is especially the case where users
form groups of interest that are not related to work. This results
in discovered communities that capture the teams and structure

39

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Similarities between discovered communities and Mattermost teams
over iterations with threshold 52.

within Mattermost rather than the organizational structure of
CERN.

Figure 7. Sample run showing similarities of users between found commu-
nities and organizational units.

When creating the graph, two different methods were used
and compared for filtering teams and channels. With the first
method, the threshold was used as an upper limit for team
members, i.e., only the channels of the teams below the
threshold are considered for creating the graph.

Table III
FIVE-NUMBER SUMMARY OF SIMILARITIES BETWEEN

ORGANIZATIONAL UNITS AND DISCOVERED COMMUNITIES
USING LABEL PROPAGATION ALGORITHM. VALUES WITHIN
COLUMNS REPRESENT MEAN AND STANDARD DEVIATION

OVER 25 ITERATIONS IN PERCENT.

Minimum Q1 Median Q3 Maximum
0.0 ± 0.0 0.42 ± 0.04 1.77 ± 0.04 5.07 ± 0.29 74.68 ± 4.55

Due to the random nature of the label propagation algorithm,
the results of each run differ slightly. The mean and standard

derivation over 25 runs were calculated to obtain more precise
results. With the second method, the threshold was used
as an upper limit for channel members, i.e., all channels
below the threshold are considered for creating the graph. The
second method yields more nodes, but fewer communities, and
slightly less similarity to the first. Due to this, the first method
was preferred.

B. Statistical Evaluation

For the statistical evaluation, the user-channel subscription
information of the most recent snapshot of the notification
system database was collected. The dataset was then divided
into a training set and a validation set. For a correct rec-
ommendation, an edge contained in the validation set should
be in the list of recommendations for a given user. This is
a classification problem as described in Section II-C. The
graph is created from the training set and communities are
discovered. The entire dataset contains 1270 user-channel
edges. When splitting them, 1016 edges fall into the training
set, while the remaining 254 edges fall into the validation set.
However, there are some points that need to be considered:

1) Some users might only be part of one channel. If
they are put in the validation set, they will never be
recommended.

2) Some users are removed when creating the graph, as
they might only be in groups above the upper user limit.
If they are removed from the graph, the user-channel
edges of the validation set will not be recommended.

3) There are recommendations that might be justified even
though they are not in the validation set.

The first two points can be addressed while creating the
graph and the recommendations, while the third point cannot.
However, the third point has a direct influence on the results,
as many of these recommendations fall into the false positive
group, directly influencing metrics such as precision and f-
score. The results of the statistical evaluation are shown in
Table IV.

Table IV
RESULTS OF THE STATISTICAL EVALUATION.

Algorithm Label Propagation Infomap
Mean Standard Deviation Mean Standard Deviation

True positive 42 6 40 6
True negative 35026 1484 35741 1095
False positive 3320 1484 2605 1096
False negative 12 4 13 4

Specificity 0.91 - 0.93 -
Sensitivity 0.78 - 0.75 -
Precision 0.012 - 0.015 -
F-Score 0.024 - 0.029 -

The results show a correct hit rate (Table IV - Sensitivity)
of 78% for the Label Propagation algorithm and 75% for
the Infomap algorithm. The correct rejection rate (Table IV
- Specificity) for the Label Propagation algorithm is 91% and
93% for the Infomap algorithm. The number of false positives
is high due to the user-channel edges that are in the list of
recommendations, but not in the validation set.

40

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. USER STUDY

For the user study, specific users of the CERN notification
system were invited to participate by joining a particular chan-
nel and their user data was collected for community detection.
Their data was anonymized to respect their privacy. Then,
the user-channel subscription information of the most recent
snapshot of the notification system database was collected and
used to create the user graph and discover communities. The
results of the statistical evaluation in Section IV were used
to select the algorithm to group the users and create graphs.
Figure 8 shows the graph created from the user-channel
information. The colors represent the communities, and the
numbers on the nodes represent the selected anonymized users
from CERN. Since the CERN IT department was the first to
fully adopt the new notification system, most of the chosen
users come from this department. This can also be seen in
Figure 8, where most of the users are grouped together into
the same community.

Figure 8. Graph with communities of the most recent user-channel informa-
tion.

For each community, a list of channels is created to which
the community members subscribed and the number of com-
munity members in each channel is enumerated. The list of
channels is sorted by popularity in descending order, where
the first channel contains most of the community members.
This list acts as a list of recommendations for the community.
The recommendations are created for each notification system
user by choosing the first five channels of the most popular
ones in the community to which the user has not already
subscribed. The survey containing the recommended channels
was sent to all participants through the notification system.
Each participant was asked to rate the recommendations as
personally relevant or irrelevant.

The survey was sent to 15 users of the notification system.
Of the initial users, 13 responded, making the response rate
86.66%. Table V shows the results of the user study. Users

were marked as active or inactive depending on their interac-
tion with the system.

Table V
RESULTS OF THE USER EVALUATION.

User Id Active Relevant Channels Irrelevant Channels Precision
128 x 1 4 0.333
476 x 3 2 0.6
484 x 5 0 1
496 x 1 4 0.2
42 3 2 0.6
67 1 4 0.2
68 3 2 0.6
177 1 4 0.2
242 4 1 0.8
266 1 4 0.2
428 2 3 0.4
576 4 1 0.8
637 3 2 0.6

Active users are long-time members who use the system
on a daily basis. While inactive users are users who recently
joined the notification system or users who do not use the
system daily.

The average precision on all participants for relevant and
irrelevant channels is 50%, with no significant impact on user
activity. Figure 9 shows the results as a graphical representa-
tion on a graph.

Figure 9. Relevant channels by user as shown in table V.

VI. FINDINGS AND DISCUSSION

Based on Section IV with a higher threshold, more users
are within teams and channels, increasing the edge weight
between many different users. Due to this, the weight differ-
ence between the edges of the communities within and outside
becomes smaller, resulting in fewer communities. Table VI
shows the number of users, edges and the average and standard
deviation of edge weights over different thresholds. Higher
thresholds result in more nodes and edges, but the average
weight decreases, as many users are only part of a few
channels and teams. Without a threshold, the average weight
increases due to channels increasing the weight for numerous
users.

41

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table VI
NUMBER OF NODES, EDGES, AND AVERAGE AND STANDARD

DEVIATION OF EDGE WEIGHTS OVER DIFFERENT
THRESHOLDS.

Threshold Nodes Edges Weight
52 9520 151501 2.94 ± 2.35

200 14906 809012 2.82 ± 2.25
500 17124 1909964 2.65 ± 1.88
1000 17948 3104814 2.53 ± 1.66
1500 18721 5000668 2.34 ± 1.58
None 19682 15194697 2.44 ± 1.62

Higher thresholds do not improve community discovery, as
the typical size of teams is up to 52, as previously stated. On
the basis of our experiments, the clustering tendency depicted
by the modularity value decreased with higher thresholds and
fewer communities were found.

The results of the user study show mediocre performance
in terms of relevance, which, however, might not be a good
indication of performance due to various factors that affect the
outcome:

1) Low number of participants
2) Low number of interactions between participants
3) Participants are primarily from the IT department
4) High chance that participants already subscribed to

channels that are relevant to them
5) Low channel diversity across the whole notification

system
Since these points mentioned above can only be addressed

when the notification system has more diverse channels and
a higher number of users, especially from other departments,
the user study gives a good first impression of the prototype.

VII. CONCLUSION AND FUTURE WORK

Data privacy preservation is one of the key issues in open
innovation and open data. This research aims to analyze
the provided CERN dataset and determine privacy aspects
and attributes that can be extracted and used for privacy-
protected identification of user clusters in large organizations.
Information such as user group matching has been the focus
of this research. Different clustering algorithms were used for
user group detection without invading user privacy. To achieve
this, only user communication and interaction data from the
CERN Mattermost dataset was used for cluster formation. The
dataset includes 21231 CERN users, 2367 Mattermost teams,
12773 Mattermost channels, 151 CERN buildings, and 163
CERN organizational units. It was expected to rediscover an
organizational structure that closely matches the organizational
hierarchical structures (Organizational Units, Departments,
Groups, Sections, etc.). Our research shows that fitting de-
tected clusters to existing organizational structures was not
successful and yielded poor results. Matching detected clusters
with interest groups, such as Mattermost teams, produced
satisfactory results. The main reason for this finding is that
users interact and communicate with individuals who share
their interests (the same channels or Mattermost teams). These

individuals might not be in the same organizational units, or
users from different organizational units might be in the same
channel, introducing noise to the data.

The algorithm evaluation results also showed that the clus-
tering tendency depicted by the modularity value decreased
with higher thresholds and fewer communities were found. In
addition, new metrics for weighting user-to-user connections
could be used to identify not only interest groups, but also
organizational connections between users.

Furthermore, the findings of the analysis of the CERN Mat-
termost dataset were applied to a new dataset retrieved from
the CERN notification system. Since this dataset resembled
the Mattermost dataset, it was expected that the clustering
algorithms produce similar results on this dataset. The user
study showed that the average precision of the best-performing
clustering algorithm is 50%. The decrease in performance
could be a product of the high level of sparsity in the dataset,
the low number of existing channels to recommend, and the
high level of users already subscribed to existing channels.

Future work might include the use of novel neural network-
based clustering algorithms. Additionally, new metrics for
weighting user-to-user connections could be used to identify
not only interest groups, but also organizational connections
between users. In addition to these improvements, the data
could be connected to external data to identify certain teams,
users, or organizational structures, and the level of communi-
cation between them.

To fully evaluate the effectiveness of channel recommen-
dations, it would be beneficial to provide a baseline of rel-
evant channels. The baseline would be formulated per user
by proposing random channels to users and checking their
relevance. This would allow for a better understanding of the
impact of the recommendation and provide better means of
evaluation. We suggest that future research includes such an
evaluation when the notification system is fully adopted by
other groups at CERN and when more users engage with the
system.

REFERENCES

[1] I. Jakovljevic, M. Pobaschnig, C. Gütl, and A. Wagner,
“Privacy aware identification of user clusters in large
organisations based on anonymized mattermost user
and channel information”, in Proceedings of the 11th
International Conference on Data Science, Technology
and Applications - IARIA DATA ANALYTICS, 2022,
pp. 62–67, ISBN: 978-1-61208-994-2. [Online]. Avail-
able: https : / / www. thinkmind . org / index . php ? view =
article&articleid=data analytics 2022 2 80 60050.

[2] I. Jakovljevic, A. Wagner, and C. Gütl, “Open search
use cases for improving information discovery and
information retrieval in large and highly connected
organizations”, 2020. DOI: 10.5281/zenodo.4592449.
[Online]. Available: https : / /doi .org/10.5281/zenodo.
4592449.

42

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] J. Zhang, Y. Wang, Z. Yuan, and Q. Jin, “Personalized
real-time movie recommendation system: Practical pro-
totype and evaluation”, Tsinghua Science and Technol-
ogy, vol. 25, pp. 180–191, Apr. 2020. DOI: 10.26599/
TST.2018.9010118.

[4] G. Navarro-Arribas, V. Torra, A. Erola, and J. Castellà-
Roca, “User k-anonymity for privacy preserving data
mining of query logs”, Information Processing Man-
agement, vol. 48, no. 3, pp. 476–487, 2012, Soft Ap-
proaches to IA on the Web, ISSN: 0306-4573. DOI:
https://doi.org/10.1016/j.ipm.2011.01.004. [Online].
Available: https : / / www . sciencedirect . com / science /
article/pii/S0306457311000057.

[5] S. Antony and D. Salian, “Usability of open data
datasets”, in Oct. 2021, pp. 410–422, ISBN: 978-3-030-
89021-6. DOI: 10.1007/978-3-030-89022-3 32.

[6] K. Naim et al., “Pushing the Boundaries of Open
Science at CERN: Submission to the UNESCO Open
Science Consultation”, Jul. 2020. DOI: 10.17181/CERN.
1SYT.9RGJ. [Online]. Available: http : / / cds .cern .ch /
record/2723849.

[7] P. Rao, S. Krishna, and A. Kumar, “Privacy preservation
techniques in big data analytics: A survey”, Journal of
Big Data, vol. 5, pp. 1–12, Sep. 2018. DOI: 10.1186/
s40537-018-0141-8.

[8] I. Jakovljevic, C. Gütl, A. Wagner, and A. Nussbaumer,
“Compiling open datasets in context of large organi-
zations while protecting user privacy and guaranteeing
plausible deniability”, In Proceedings of the 11th Inter-
national Conference on Data Science, Technology and
Applications (DATA 2022), pp. 301–311, 2022, ISSN:
2184-285X. DOI: 10.5220/0011265700003269.

[9] S. R. M. Oliveira and O. R. Zaiane, “A privacy-
preserving clustering approach toward secure and effec-
tive data analysis for business collaboration”, Comput-
ers Security, vol. 26, no. 1, pp. 81–93, Feb. 2007, ISSN:
0167-4048. DOI: https://doi.org/10.1016/j.cose.2006.
08.003. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167404806001222.

[10] I. Jakovljevic, C. Gütl, A. Wagner, M. Pobaschnig,
and A. Mönnich, “Cern anonymized mattermost data”,
version 1, Mar. 2022. DOI: 10.5281/zenodo.6319684.
[Online]. Available: https : / /doi .org/10.5281/zenodo.
6319684 (visited on 06/27/2022).

[11] F. Menczer, S. Fortunato, and C. A. Davis, A first course
in network science. Cambridge University Press, 2020,
ISBN: 9781108471138. DOI: 10.1017/9781108653947.
[Online]. Available: https : / / www . cambridge . org /
highereducation/books/first-course-in-network-science/
EE22722F27519D8BB1443C7225C57BAF.

[12] V. Voloshin, Introduction to Graph and Hypergraph
Theory. Nova Kroshka Books, Jan. 2013, p. 231, ISBN:
978-1606923726.

[13] L. Tang and H. Liu, Community Detection and
Mining in Social Media. Morgan Claypool
Publishers, Jan. 2010, vol. 2. DOI: 10 . 2200 /

S00298ED1V01Y201009DMK003. [Online].
Available: https : / / www . morganclaypool . com / doi /
abs / 10 . 2200 / S00298ED1V01Y201009DMK003
(visited on 08/14/2022).

[14] L. Rokach and O. Maimon, “Clustering methods”, in
Data Mining and Knowledge Discovery Handbook.
Springer US, 2005, pp. 321–352, ISBN: 978-0-387-
25465-4. DOI: 10.1007/0-387-25465-X 15. [Online].
Available: https://doi.org/10.1007/0-387-25465-X 15.

[15] C. Hennig, “An empirical comparison and characteri-
sation of nine popular clustering methods”, Advances
in Data Analysis and Classification, vol. 16, no. 1,
pp. 201–229, Mar. 2022, ISSN: 1862-5355. DOI: 10 .
1007/s11634-021-00478-z. [Online]. Available: https:
/ / doi .org /10 .1007 / s11634- 021- 00478- z (visited on
06/27/2022).

[16] J. D. Banfield and A. E. Raftery, “Model-based gaussian
and non-gaussian clustering”, Biometrics, vol. 49, no. 3,
pp. 803–821, 1993, ISSN: 0006341X, 15410420. [On-
line]. Available: http:/ /www.jstor.org/stable/2532201
(visited on 06/27/2022).

[17] P. D. McNicholas, “Model-based clustering”, Journal of
Classification, vol. 33, no. 3, pp. 331–373, Oct. 2016,
ISSN: 1432-1343. DOI: 10.1007/s00357- 016- 9211- 9.
[Online]. Available: https: / /doi .org/10.1007/s00357-
016-9211-9 (visited on 06/27/2022).

[18] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts
and Techniques. Morgan Kaufmann Publishers, 2012,
ISBN: 0123814790. [Online]. Available: http : / / www.
amazon . de / Data - Mining - Concepts - Techniques -
Management/dp/0123814790/ref=tmm hrd title 0?ie=
UTF8&qid=1366039033&sr=1-1.

[19] A. Bobic, I. Jakovljevic, C. Gütl, J. Le Goff, and A.
Wagner, “Implicit user network analysis of communica-
tion platform open data for channel recommendation”,
in 9th International Conference on Social Networks
Analysis, Management and Security - SNAMS 2022,
Apr. 2022, pp. 1–8. DOI: 10.1109/SNAMS58071.2022.
10062597. [Online]. Available: https://ieeexplore.ieee.
org/document/10062597.

[20] N. Good et al., “Combining collaborative filtering with
personal agents for better recommendations”, in Pro-
ceedings of the Sixteenth National Conference on Ar-
tificial Intelligence and the Eleventh Innovative Appli-
cations of Artificial Intelligence Conference Innovative
Applications of Artificial Intelligence, American Asso-
ciation for Artificial Intelligence, 1999, pp. 439–446,
ISBN: 0262511061. [Online]. Available: https://dl.acm.
org/doi/10.5555/315149.315352.

[21] T. Chai and R. Draxler, “Root mean square error
(RMSE) or mean absolute error (MAE)?”, Geoscientific
Model Development, vol. 7, no. 3, pp. 1247–1250, Jan.
2014. DOI: 10 . 5194 / gmdd - 7 - 1525 - 2014. [Online].
Available: https://gmd.copernicus.org/articles/7/1247/
2014/.

43

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] “Sensitivity and specificity”. (Jan. 2023), [Online].
Available: https : / / en .wikipedia .org /wiki /Sensitivity
and specificity.

[23] T. Fawcett, “An introduction to ROC analysis”, Pat-
tern Recognition Letters, vol. 27, no. 8, pp. 861–874,
2006, ISSN: 0167-8655. DOI: https : / / doi . org / 10 .
1016 / j . patrec . 2005 . 10 . 010. [Online]. Available:
https : / / www. sciencedirect . com / science / article / pii /
S016786550500303X.

[24] W. Mumtaz, S. S. Ali, A. Mohd Zasin, and A. Ma-
lik, “A machine learning framework involving eeg-
based functional connectivity to diagnose major depres-
sive disorder (MDD)”, Medical biological engineering
computing, vol. 56, Jul. 2017. DOI: 10.1007/s11517-
017-1685-z.

[25] T. de Greef, S. Masroor, M. A. Peletier, and R. Pen-
davingh, “Precision and sensitivity in detailed-balance
reaction networks”, SIAM Journal on Applied Mathe-
matics, vol. 76, no. 6, pp. 2123–2153, 2016. DOI: 10.
1137 / 15M1054869. eprint: https : / / doi . org / 10 . 1137 /
15M1054869. [Online]. Available: https://doi.org/10.
1137/15M1054869.

[26] N. Ye, K. M. A. Chai, W. S. Lee, and H. L. Chieu,
“Optimizing f-measures: A tale of two approaches”,
in Proceedings of the 29th International Coference on
International Conference on Machine Learning, Om-
nipress, 2012, pp. 1555–1562, ISBN: 9781450312851.
[Online]. Available: http: / /dblp.uni- trier.de/db/conf/
icml/icml2012.html#NanCLC12.

[27] J. West, A. Salter, W. Vanhaverbeke, and H. Ches-
brough, “Open innovation: The next decade”, Re-
search Policy, vol. 43, no. 5, pp. 805–811, Jun.
2014, ISSN: 0048-7333. [Online]. Available: https :
/ / www . sciencedirect . com / science / article / pii /
S0048733314000407 (visited on 08/14/2022).

[28] Oracle. “Oracle9i olap services”. (2023), [Online].
Available: https://docs.oracle.com/cd/A91034 01/DOC/
olap.901/a86720/esdatao6.htm.

[29] S. Greenland, M. A. Mansournia, and D. G. Altman,
“Sparse data bias: A problem hiding in plain sight”,
British Medical Journal, vol. 353, Apr. 2016. DOI: 10.
1136/bmj.i1981. [Online]. Available: https://www.bmj.
com/content/352/bmj.i1981.

[30] I. Pramanik et al., “Privacy preserving big data an-
alytics: A critical analysis of state-of-the-art”, Wiley
Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 11, pp. 207–218, Jan. 2021. DOI: https:
/ / doi . org / 10 . 1002 / widm . 1387. [Online]. Available:
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/
widm.1387 (visited on 08/14/2022).

[31] A. Adai, S. Date, S. Wieland, and E. Marcotte, “Lgl:
Creating a map of protein function with an algorithm
for visualizing very large biological networks”, Journal
of molecular biology, vol. 340, pp. 179–90, Jul. 2004.
DOI: 10.1016/j.jmb.2004.04.047. [Online]. Available:

https : / / www. sciencedirect . com / science / article / pii /
S0022283604004851.

[32] M. Newman and M. Girvan, “Finding and evaluating
community structure in networks”, Physical Review E,
vol. 69, no. 2, p. 026 113, Feb. 2004, ISSN: 1539-
3755, 1550-2376. DOI: 10.1103/PhysRevE.69.026113.
[Online]. Available: http : / / www . cse . cuhk . edu .
hk / ∼cslui / CMSC5734 / newman community struct
networks phys rev.pdf.

[33] M. Rosvall and C. T. Bergstrom, “Maps of random
walks on complex networks reveal community struc-
ture”, Proceedings of the National Academy of Sci-
ences, vol. 105, no. 4, pp. 1118–1123, Jan. 29, 2008,
ISSN: 0027-8424, 1091-6490. DOI: 10 . 1073 / pnas .
0706851105. arXiv: 0707 . 0609. [Online]. Available:
http://arxiv.org/abs/0707.0609.

[34] A. Rezaei, S. M. Far, and M. Soleymani, “Near linear-
time community detection in networks with hardly
detectable community structure”, Proceedings of the
2015 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining 2015, pp. 65–
72, 2015. DOI: 10 .1145 /2808797 .2808903. [Online].
Available: https://doi.org/10.1145/2808797.2808903.

[35] M. E. J. Newman, “Modularity and community structure
in networks”, Proceedings of the National Academy of
Sciences of the United States of America, vol. 103,
no. 23, pp. 8577–8582, Jun. 2006, ISSN: 0027-8424.
DOI: 10 .1073 /pnas .0601602103. [Online]. Available:
https : / / www . ncbi . nlm . nih . gov / pmc / articles /
PMC1482622/.

[36] V. Traag, L. Waltman, and N. J. van Eck, “From louvain
to leiden: Guaranteeing well-connected communities”,
Scientific Reports, vol. 9, no. 1, pp. 5233–5233, Dec.
2019, ISSN: 2045-2322. DOI: 10 . 1038 / s41598 - 019 -
41695-z. [Online]. Available: http://arxiv.org/abs/1810.
08473.

[37] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre, “Fast unfolding of communities in large
networks”, Journal of Statistical Mechanics: Theory
and Experiment, vol. 2008, no. 10, pp. 10 008–10 020,
Oct. 2008, ISSN: 1742-5468. DOI: 10.1088/1742-5468/
2008/10/P10008. [Online]. Available: http://arxiv.org/
abs/0803.0476.

[38] P. Pons and M. Latapy, “Computing communities in
large networks using random walks”, Proceedings of
the 20th International Conference on Computer and
Information Sciences, pp. 284–293, 2005. DOI: 10.1007/
11569596 31. [Online]. Available: https://doi.org/10.
1007/11569596 31.

[39] J. Reichardt and S. Bornholdt, “Statistical Mechanics
of Community Detection”, Physical Review E, vol. 74,
no. 1, p. 016 110, Jul. 2006, ISSN: 1539-3755, 1550-
2376. DOI: 10 .1103 /PhysRevE .74 .016110. [Online].
Available: http://arxiv.org/abs/cond-mat/0603718.

44

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Binding the Battery to the Pass: An Approach to
Trustworthy Product Life Cycle Data by Using

Certificates Based on PUFs
Julian Blümke

CARISSMA Institute of Electric,
Connected and Secure Mobility (C-ECOS)

Technische Hochschule Ingolstadt
Ingolstadt, Germany

e-mail: julian.bluemke@carissma.eu

Hans-Joachim Hof
CARISSMA Institute of Electric,

Connected and Secure Mobility (C-ECOS)
Technische Hochschule Ingolstadt

Ingolstadt, Germany
e-mail: hans-joachim.hof@thi.de

Abstract—Reusing batteries of electric vehicles in second life is
one pillar of the European Union’s Green Deal and its derivatives
in order to foster the reduction of greenhouse gases. Product life
cycle data plays an important role in improving and simplifying
the process of finding the most suitable second life application
for a used battery. Such data collected throughout the product’s
life cycle will be summarized in a digital product pass mandatory
for future batteries. Having trustworthy data is a key element
of the battery pass in order to provide authentic batteries.
This paper presents a concept to securely bind the pass to the
battery itself by using physical unclonable functions for creating
unique cryptographic keys per battery. Inhomogeneities and cell-
to-cell variations in a battery pack enable the use of batteries
as physical unclonable functions. The approach combines the
cryptographic keys derived from the battery with certificates and
makes use of Certificate Transparency promoting trust in the
issued certificates. Initial security analysis shows that attacks on
product life cycle data and certificates as well as the introduction
of manipulated and counterfeit batteries can be detected.

Index Terms—physical unclonable function; Certificate Trans-
parency; electric vehicle battery; battery identity; battery pass;
cybersecurity.

I. INTRODUCTION

This paper extends [1]. The European Union’s (EU) Green
Deal aims to reduce greenhouse gases towards net-zero emis-
sions by 2050 [2]. One of the measures is to lower the use of
fossil energy in the transportation sector. Electrically driven
vehicles foster this goal and are expected to achieve high
sales numbers in the upcoming years: The Faraday Institute
forecasts a worldwide demand of more than 5 900 GWh in
the year 2040 (2020: 110 GWh) [3]. The rise of Electrical
Vehicles (EV) is accompanied by an increasing need for high-
voltage batteries. However, batteries degrade during usage and
charging. They can only be used in an EV until their capacity
degraded to 80% [4, 5]. This will result in a large number
of dismounted and unusable EV batteries having a negative
economical, ecological, and social impact [6]–[8]. However,
these batteries may be still fine for other use cases. To support
the recycling and reusing of products and materials the EU
introduced the Circular Economy Action Plan containing the

reuse of batteries as one pillar [9]. Its goal is to set up
applications for a battery’s second life either as a complete
product in a different environment or dismantled in new
products.
The new mass market for EV batteries will also encourage
the production of counterfeit batteries. Non-certified or non-
qualified batteries can introduce safety risks due to deviations
from the specifications of genuine products and especially
due to cost-savings in risk-reducing controls and management
systems [10]. Reduced capacity and lifetime, overheating,
and self-ignition, as well as social aspects like underpaid
workers and bad working conditions during manufacturing, are
examples of likely effects when using counterfeit EV batteries.

Circular economy and the fight against counterfeiting em-
phasize a need for authentic batteries that we define as the
following: trust in the battery’s quality, evidence in the correct
implementation of the specification, and traceability of the
product life cycle enhance the opportunities for second life
applications and lower the risk of introducing low quality
and dangerous products into the market. Both, the readiness
for circular economy and the circulation of only high-quality
batteries, shall be regulated within the new EU-regulation
about the treatment of (old) batteries [11] introducing the
Battery Passport as an electronic record for batteries of EVs,
among others.

This paper presents an approach to inherently bind the digital
pass to the physical battery by using certificates based on
Physical Unclonable Functions (PUF) managed within the
method of Certificate Transparency. The following paragraphs
introduce the basic techniques of the presented approach.

Battery Passport: As of today the final adoption of the new
regulation by the European Council and the European Parlia-
ment is still open [12]. However, no significant modifications
of the regulation are expected until then. Therefore, the fol-
lowing requirements can be summarized: The Battery Passport
shall be unique for each individual battery and shall consist

45

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of data relevant to the battery’s model, and static and dynamic
data specific to a single battery. The latter shall accommodate
performance and durability parameters, the status of the bat-
tery, the number of charging and discharging cycles, negative
events like accidents, and operating environmental conditions
including the temperature and State of Charge (SoC).
The Battery Passport shall be available through an online
database. In case of a second life application, the existing data
shall be transferred into a new passport and the legacy passport
shall be deleted. Test reports shall be available to notified
bodies, market surveillance authorities, and the European
Commission to enable examination of compliance with the
battery-related requirements.

The regulation provides for a physical code as an identifier of
a battery. However, we want to solve the identification of a
battery by means of PUFs.

Physical Unclonable Function: A PUF uses physical devia-
tions that occur during production to create a unique and un-
clonable identifier [13]. It is described as a challenge-response-
pair (CRP) where a device to be authenticated needs to prove
the ownership of the PUF-identifier. According to McGrath
et al. [14] a PUF needs to fulfill the following properties:
robust, unique, easy to evaluate, challenging to replicate, and
impossible to predict. In general, a distinction is made between
weak and strong PUFs. Weak PUFs only comprise one or
few CRP, which brings the advantage of storing cryptographic
keys without requiring non-volatile memory. An example of
a weak PUF is the SRAM-PUF: An SRAM memory cell has
two stable states that represent 0 and 1. However, before the
first write operation has been executed, the cells tend either to
0 or to 1. This undefined state is used to derive a cryptographic
key [15].
On the other hand, strong PUFs are defined as having so
many CRP that an attacker cannot solve or recover the PUF
in a finite time. One example of these types of PUFs is the
optical PUF: It consists of a movable laser beam, a scattering
medium, and a sprinkle detector (Figure 1). The orientation of
the laser beam is the challenge, whereas the sprinkles comprise
the response. It is hardly possible to create equal scattering
media and therefore, this principle is suitable as a source of
randomness [15].

Laser Source Scattering Medium Sprinkle Detector Response
(Challenge)

Fig. 1. Process of optical PUF (illustration based on [16])

Regardless of the PUF’s type, the general process of deriving
cryptographic keys applies to both. Since both the physical

Fuzzy extractor

PUF
Challenge Error

correction Hash
Response
Noisy &

non-uniform

Response
Stable &

non-uniform

Key
Stable &
uniform

Fig. 2. Process of deriving cryptographic keys from PUF (illustration based
on [18])

source and the measurement process are subject to noise and
variabilities, the PUF’s response differs slightly, even if the
same challenge is used. Therefore, an additional step needs
to be done in order to correct these errors [15, 17]. To
enhance general security, the random number created from the
PUF is hashed using a cryptographic hash function [18]. The
process of deriving cryptographic keys from a PUF is shown
in Figure 2 in which a fuzzy extractor is used for stabilization
and uniformity of the plain PUF response.

The two main areas of application of physical unclonable
functions are a secret key generation (weak PUFs) and authen-
tication at low cost (strong PUFs) [13]–[15]. The advantages
of using PUFs instead of dedicated random number generators
are the following: they are simple as they are using existing
hardware structures and do not rely on pseudo-random number
generators. The secret is only available in a powered mode,
which makes it more difficult for attackers to read out the keys,
the chance for invasive attacks is reduced, and they are more
cost-efficient as they do not need expensive security hardware
modules [15].

As introduced later in Section III, the Battery Passport consists
of certificates. To enable trust and transparency in the issued
certificates, the methods of Certificate Transparency are used.

Certificate Transparency: Certificate Transparency (CT) was
originally developed by Google and is about the transpar-
ent and trust-worthy issuing of certificates used in the Web
PKI [19]. It is summarized in the experimental RFC 6962
[20] and deals with the difficulties of trusting Certificate
Authorities (CA) in general: private keys associated with a
certificate may be stolen or created in a wrongful way such that
encryption itself would not be damaged but an attacker might
be able to decrypt the communication without knowledge of
the necessary key. A common way to check the trustworthiness
of CAs is to examine audits. However, audits often check for
formal aspects only than for the correct implementation of
technical processes.
The idea of CT is about storing certificates in publicly
available append-only logs that can be validated by everyone.
Figure 3 shows the steps needed to implement CT: The owner
of the domain requests a certificate by the CA, which creates
a pre-certificate and sends it to the log. The latter is managed
as a Merkle Tree [21]. A Signed Certificate Timestamp (SCT)
ensuring that the certificate is added to the log is sent to the
CA. The certificate is extended with the SCT and transferred

46

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Domain
Owner

CA

Log

Website

Certificate

(1) requests certificate

(2a) sends
pre-
certificate

(2c) send SCT

(3) sends cert
and SCTs

(4) serves websites
and certificate

(2b) add certificates to
logs, powered by
Merkle trees

User Agents

End User

Monitors

(6) checked by

(5) via browser
through HTTPS

(7) notify of newly
issued certificate

Fig. 3. Implementation of certification transparency (illustration based
on [19]).

to the domain owner. From this time on, the domain owner
can use it as a normal certificate, e.g., for hosting websites. At
the end user’s site, the certificate is checked for the existence
of SCTs, e.g., during TLS handshake. Some internet browsers
require that the certificate is signed with at least two SCTs. The
certificate logs are checked periodically by external monitors.
The domain owner is informed if there are new and especially
odd activities with certificates of its domain.

Furthermore, there are other methods for detecting counterfeit
products, e.g., by statistical measures [22], physical inspection,
or electrical examination [23]. However, the presented concept
is triggered by the EU regulation concerning the battery
pass and therefore, the concept of logging and auditing is
reasonable.

The remaining paper is structured as followed: Section II
describes related work as a basis for a concept for authentic
batteries, which is introduced in Section III. A brief security
and performance evaluation of the presented approach is given
in Section IV. Current and future activities are summarized in
Section V.
The conference paper’s extensions comprise additional infor-
mation on the regulation concerning the Battery Passport, a
more detailed explanation of PUFs and their characteristics,
an overview of research works related to inhomogeneities and
cell-to-cell variations in lithium-ion batteries, initiatives on
the implementation of the Battery Passport, and an elaborated
explanation of the presented approach to combine the physical
battery with the Battery Passport.

II. RELATED WORK

To the best of our knowledge, the idea of a digital product pass
for single products is unique to batteries. Other applications do
have static product records or they are only implemented for
a group of products and not for single devices. Additionally,
the battery pass will be the first pass that is required by law in
the EU. The following related research results introduce only
comparable parts of the presented concept.

A. Product Passes

The general concept of product passes is not novel. Several
initiatives for passports in other domains already exist. Exem-
plary three implementations are introduced.

The International Material Data System (IMDS) is a collection
of life cycle data in the automotive industry. Original equip-
ment manufacturer (OEM) and supplier store information on
component and material data of vehicles in the IMDS to reduce
the workload and required time of life cycle assessment. The
system has been introduced in the year 2000 and is commonly
used by more than 50 OEMs and 120 000 suppliers [24].
Reusing building materials is important for a circular economy
in the civil industry. The Building Information Management
(BIM) based Material Passport shall enable Urban Mining
by comprising data on materials across the full life cycle,
e.g., of volume and geometry of multilayered components
(concrete, insulation, plaster) or assessment of demolition
acquisition [25].
The Danish ship manufacturer and logistic company Maersk
created a Cradle-to-Cradle passport for enhanced recycling
opportunities at the end-of-life of a container vessel. The
document contains information on built materials as well as
disassembly and recycling activities. This decreases the need
for new materials fostering sustainability and reducing overall
costs [26].

These initiatives show that product passes can enhance and
simplify the assessment of the life cycle and of potentials for
reuse and recycling. However, these product passports do not
take into consideration dynamic activities and modifications
of the product during life.

B. PUFs based on batteries

In [27], Vittilapuram Subramanian and Madhukar Lele de-
scribe the calculation of PUF identifiers out of a set of different
parameters: pressure drop between two sides of the battery, the
batteries natural frequency, the temperature pattern, the open
circuit voltage (OCV), or the air leak rate. The created PUF
identifier is saved as a physical tag on top of the battery or
in the battery management system’s memory. However, the
identifier can only be calculated in a dismounted state. This
method shows the possibility of a battery PUF creation in
general.
Zografopoulos and Konstantinou [28] presented a method
to authenticate an outstation in a distributed energy storage
network. This work takes advantage of the fact that the cells’
voltages differ at the same SoC. Both, the outstation and the

47

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

master station, sanitize a challenge-reply-table with continu-
ously updated measurements presenting a model of every cell.
The authentication challenge is formed out of a selection of
cells. The SoC and the voltages are measured and sent back to
the master station. If the actual measurements match with the
values in the challenge-reply-table the outstation is accepted
as authentic.

Both works demonstrate that it is feasible to use PUFs on
batteries. However, existing works use PUFs as a mechanism
to create an identity. We want to extend this to use PUFs to
derive keys.

C. Inhomogeneities and cell-to-cell variations in lithium-ion
batteries

Durbarry et al. [29] state that variations from cell to cell are
the origin of a battery’s uniqueness. Differences are noticeable
in capacity, current, impedance, open circuit voltage, and so
in the SoC [30, 31]. The origins of these inhomogeneities can
be split into intrinsic and extrinsic influences.
Intrinsic inhomogeneities: As many parts of the used ma-
terials are natural products they are subject to variations.
For example, the material used for the electrodes differs in
composition, purity, defects, and morphology. An identical
manufacturing process is also hardly achievable due to its
complexity. Differences may also arise with respect to the
production volume [32]. Even if the cells are produced iden-
tically, variations between them may also result from uneven
cell connections [30]–[32].
Extrinsic inhomogeneities: The environment of the battery
pack can also have an influence on differences between cells
as well as the pack design: Unmatched cells and asymmetric
design can result in inhomogeneous cell utilization. The same
applies to an ineffective cooling strategy and external heat
sources resulting in local temperature peaks. Finally, cells in
serial or parallel architecture lead to differences [29]–[32].

The overall result of inhomogeneous parameters leads to
inhomogeneous aging of different cell components and this
again amplifies the variations of parameters. Aging accelerates
over time [30, 31].

These research works show that significant cell-to-cell varia-
tions in lithium-ion batteries exist and are measurable. They
also demonstrate the effects of aging on these inhomogeneities,
which are mentioned later in Section III-E as one major
challenge of the presented concept.

D. Blockchain with PUFs

A common mechanism to implement digital product passes
is the use of blockchain [33, 34]. Casino et al. described a
blockchain as a ”distributed append-only timestamped data
structure” [35, p. 56] where no central and trusted authority
is involved. Exchanging assets, digital or physical, between
two blockchain participants is achieved and recorded with
transactions. They have to be validated by other participat-
ing nodes using a consensus algorithm in order to prevent
corruption or forgery of branches. Blockchains in the sector

of supply chain management can increase trust, traceability,
transparency, and accountability. They are installed for better
visibility and enhanced optimization of a supply chain [35].

Mohanty et al. [36] introduced PUFChain, which is a method
that combines blockchain with PUFs within the Internet-of-
Everything (IoE) domain where trusted nodes authenticate
IoE-data collected from client nodes. The process is divided
into three phases: During the enrollment, the client’s PUF-
CRP are calculated and stored in a secure database. The
phases of transactions consist of data collection, PUF response
generation, and hashing of both. The data and the hash are
added to the blockchain and need to be authenticated by trusted
nodes. These nodes recalculate the hash by using the client
data and the pre-calculated PUF response retrieved from the
database and validate the block if both hashes match. An
application of PUFChain in the Internet-of-Energy was given
by Asif et al. [37].
An approach to enable trust in the supply chain by tracing
was presented by Cui et al. [38]. Newly manufactured devices
need to be registered in a blockchain with a unique ID, e.g.,
a PUF. Device transfers are recorded in the blockchain. The
contractual ownership alters only after a transfer confirmation,
which is done by calculating the unique device ID of the
received device and comparing it with the ID mentioned in
the transaction payload. End users can check the device’s
authenticity by matching the computed ID with the blockchain
content.

Whereas blockchain is a popular method for storing tamper-
proofed data, we decided to use a different approach. In our
opinion, the system consists of trusted partners: A generally
trusted collaboration across the supply chain of EV batteries
has to exist already, meaning that contracts describing a trade
relationship are in place. One major motivation for using
blockchain methodology is to create a network between parties
that do not trust and know each other. Both are not applica-
ble to the application presented in this concept. Therefore,
decentralized distribution of data is not necessary and so, a
central database fits the requirements and can be hosted, e.g.,
by the EU enforcing the battery regulations. In a blockchain,
consensus mechanisms shall ensure the correctness of new
transactions. In this specific application, these mechanisms are
useful only to a limited extent as they will only perform a
proof of formal attributes of a transaction, i.e. a new record
added to the Battery Pass. A blockchain party validating a new
block cannot check the validity and legitimacy of, e.g., a new
temperature maximum or a degradation of the capacity. This
is only possible with direct access to the battery system itself.
As a summary, using a blockchain will add extra effort
without having additional advantages. The key functionality
of generating trusted and tamper-proofed data records can also
be achieved by using the methods of Certificate Transparency.

E. Initiatives working on Battery Passport

The new EU regulation concerning the Battery Passport is
expected to be mandatory within the next years. Therefore,

48

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

several initiatives for the battery pass’s implementation exist.
Due to the early phase of these projects, only introductory
content has been published and so, an assessment of the
architectural concepts is hardly possible. However, a brief
overview of existing projects is given.

The Global Battery Alliance (GBA) is a collaboration platform
consisting of more than 120 partners and organizations and
puts the focus on a sustainable supply chain in the battery
industry. It was founded at the World Economic Forum (WEF)
in 2017. The GBA published proof-of-concept pilots for a
Battery Passport at the Annual Meeting of the WEF 2023 [39].
The pilots contain information on a specific battery: EV
manufacturer, battery producer, battery cell producer, cell type,
chemistry, capacity, and other parameters are shown as well as
information on materials including the origin of raw materials.
The focus of the pilots is on ESG (environmental, social, and
corporate governance) data. Whereas the underlying architec-
ture and processes are not known so far, the proof-of-concept
pilots give an insight into a potentially implemented Battery
Passport.

A project closely related to the GBA is called Battery Pass,
which is a consortium formed by companies from the automo-
tive, battery recycling, and data processing industries [40]. It is
funded by the German Federal Ministry for Economic Affairs
and Climate Action and shall make use of the automotive
information exchange system Catena-X. A report [41] guiding
through the new EU regulation’s content relevant to the battery
passport has been published. It introduces the consortium’s
interpretation of the requirements and outlines an overview of
the possible data stored in the Battery Passport. This project
aims to give guidelines for interpreting and implementing the
EU regulation and therefore, it should be kept in view. A
demonstrator is expected to be published in 2024.

III. CONCEPT FOR AUTHENTIC BATTERIES

A. Introduction

The general aim of our method is to have one single source
of truth containing information about the battery’s life cycle
including the manufacturing process, product acceptance tests
(PAT), measures of quality control, and usage history. Tracing
materials and processes fosters consumers’ trust in the battery
and enables an easier and more precise assessment of the
batteries’ status for recycling or reusing.
The data of the life cycle record is stored in a database that can
be restricted in order to control the read and write access of
the supply chain parties involved. Access control also protects
the parties’ intellectual property (IP). It is mandatory to have
a secure binding between the life cycle record and the battery
itself ensuring the correspondence between both. The secure
binding is established by the use of certificates in combination
with PUFs that provide unique identifiers for each battery.

B. Data for battery pass’s records

Data is added to the battery pass during manufacturing,
product testing, and quality control. This data brings added

Battery
assembly

PAT
execution

Vehicle
assembly

New
min./max.

SoH
downgrade

Maint.

Vehicle
disassembly

Entering
2nd Life

Production Consumer

Recycling

Battery
Pass

Fig. 4. Battery pass as life cycle record.

value to the end user, as the user receives information on
a remarkable downgrade of, e.g., the state of health (SoH)
or capacity and on minimum and maximum temperatures,
voltages, and currents. The latter parameters are important to
assess the battery’s health for a second life application. The
data acquisition building the life cycle record is split into three
phases (see Figure 4).
Assembly and initial product testing takes place during the
production stage at the battery OEM. Information about the
manufacturer, working conditions, date of production, and
results of acceptance tests are stored in the battery pass. It
may be split into battery cell OEM and battery pack OEM
having similar data. Afterwards, the battery is transferred
to the vehicle’s OEM to be built into the intended vehicle.
Again, information about the vehicle manufacturer, working
conditions, and the vehicle including the vehicle identifica-
tion number (VIN) are stored in the record. The storage of
information concerning the working conditions shall enable a
socially acceptable supply chain, which goes along the new
EU regulation.
We are assuming the car to be delivered to the consumer
directly after production. At this stage, the battery will be
used in its intended environment of the first life. Significant
changes in the battery’s quality will be logged in the life cycle
record. These changes include temperature, voltage and current
maxima and minima, and SoH and capacity downgrade. The
collection of data at this stage is of high relevance in order
to execute a sophisticated life cycle assessment of the battery
before entering a second life.
The preparation of the second life is divided into two steps:
First, the battery is dismounted from the vehicle and the date
and the implementing company are stored in the life cycle
record. This marks the end of the first life. The activity
of entering the second life contains events like firmware
or configuration updates required for a new environment or
applications, quality tests, and maintenance activities. Again,
the battery will be transferred to a consumer. We assume an

49

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

environment in which the life cycle record can be sanitized.
Therefore, the stage of the second life equals the consumer
stage. Depending on the new area of application other or
additional data than before may be stored in the battery pass.

The format of the battery pass’s data is not defined here.
However, the JSON data format may be reasonable as it is
widely used and easy to read and process.

C. Security Requirements

The security demands for the presented concept are mainly
derived from the high-level requirements of the Battery Pass as
presented in Section I. The following security-related aspects
shall be considered:

• The battery pass and its records shall be bound to the
physical battery. This guarantees that the records are only
valid for one specific battery.

• It shall be possible to detect a manipulated battery pass.
Shaping of data towards, e.g., less charging cycles or better
historic environmental conditions, may increase the resale
value of an EV and therefore, these malicious activities must
be prevented.

• The circulation of counterfeit batteries having a stolen or
no battery pass shall be recognized as well.

• Updates of the records shall only be possible from the
battery itself or from a system that has access to the battery.
This ensures the validity of the data without the possibility
of data being added by a third party not involved in the
process.

• Trust and transparency shall be treated to foster the battery
pass’s acceptance by the user and in general a successful
assessment of second life applications.

• It shall be possible to restrict access to the data records of
the Battery Pass to a limited number of users or user groups
in general. This ensures the enforcement of the GDPR
(general data protection regulation) and the protection of
intellectual properties.

D. Security Architecture

The technical implementation of our method is based on
signed battery data whereas the keys are derived from the
battery’s PUF. Figure 5 shows the overall process of adding
data and verifying the battery’s identity. We are assuming the
process of deriving a key from the PUF has already been
carried out. As elaborated in the section on related work
(Section II), this assumption is reasonable.

The general implementation is split into four phases: In the
enrollment phase, the keys and an initial certificate are created.
It is followed by the creation and storage process of a new data
record. In this phase, the battery is the only active part, apart
from storing the certificate in the log. In the third phase, the
battery is not involved anymore, as the verification of a record
can be carried out by using only the entries of the database
and the certificate stored in the log. To verify the identity of
the battery, the battery must prove possession of the private

Battery
Data

DB

Cert

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
Log

Someone

DB

Log
Cert

Data 𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑉𝑉𝑉𝑉 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷. ,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝

UserLog
Cert 𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆𝑉𝑉𝑉𝑉 𝑅𝑅,𝐶𝐶 𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝

Battery

𝐶𝐶

b.

c.

d.

𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷.

𝑅𝑅 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐶𝐶 𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Cert

a.

Battery

𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝

𝐷𝐷𝑉𝑉𝑉𝑉𝑆𝑆𝐷𝐷𝑉𝑉𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝐾𝐾𝑉𝑉𝑉𝑉 (𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

Cert

𝐾𝐾𝑝𝑝𝑝𝑝𝑝𝑝

Fig. 5. Implementation of digital pass with certificates. a. Enrollment phase
b. Update of battery records c. Verify that the certificate belongs to records
d. Verify that the battery belongs to the certificate.

key to a user, which is comprised in the fourth phase. The four
phases introduced are outlined in the next paragraphs. Except
for the first phase, the stages do not have to be processed one
after another. The activities can be executed independently.

The first phase is to enroll a private and public key and an
initial certificate. As mentioned earlier we assume that a key
has been derived from the battery’s PUF. This key is the
private key and will never leave the battery. A public key
is calculated from the private key and added to an initial
certificate. At this stage, the certificate may contain only
metadata. However, battery-related data will be added in the
next step that immediately follows the enrollment phase in
order to fill the Battery Pass with relevant data.

The most functional part of the method is adding and updating
the data of the battery. The relevant data is described in
Section III-B. If new data is generated it will be sent to a
central database containing historic and current data of this
specific battery (Figure 5b). In the battery or more precisely
in the battery management system the data is signed with the
private key derived from the battery’s PUF. Only the signature
is added to a battery-specific certificate also containing the

50

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

public key. If a certificate already exists for the battery a
reissuing is needed and the old one has to be revoked. The
certificate itself is attached to an append-only log. We are
relying on Certificate Transparency, which is a commonly used
method developed by Google to store and handle identity
certificates in a trusted and verifiable way, which has been
introduced in Section I. Whereas the log itself does not fulfill
any functional requirement, it provides additional trust and
transparency into the certificate as it can be validated and
monitored by external and public parties.
One could argue to add the battery data to the certificate
introducing the advantage of having one single document
containing all relevant information about the battery. How-
ever, having this, the battery’s data is publicly available, and
therefore, IP may be revealed as well as the opportunity for
malicious analysis of production statistics and performance
of a battery OEM. A dedicated database can be restricted
to a reduced number of users. This is also in line with the
EU regulation concerning the definition of the Battery Pass,
presented in Section I. Test reports certifying the quality of the
battery shall only be accessible to a certain group of users.

In order to check the validity of the data in accordance with the
corresponding certificate, access to the data and the certificate
is needed. Using the public key stored in the certificate the
signatures can be verified (Figure 5c). In this context, another
opportunity to avoid disclosure of IP may be possible by
letting the signatures be checked by the database itself and
letting it deliver a summary of data not revealing IP.

In the last phase, it is checked that the certificate belongs to
the battery as described in Figure 5d. Therefore, a challenge-
response mechanism is used where the user sends a challenge
consisting of a random number to the battery. The challenge is
signed using the battery’s private key and the response is sent
back to the user. If the received signature can be verified using
the corresponding public key it is proven that the certificate
belongs to the battery as the private key is directly derived
from the battery’s PUF.

To reduce the risk of stolen or reproduced keys by an attacker
the derived key may be stored in a Hardware Security Module
(HSM), e.g., placed on the Battery Management System
(BMS). However, the cost-efficiency of HSMs in the context
of industrial applications with large quantities having high
pressure on costs has to be evaluated [42].

E. Challenges

The main challenge of the presented method is the derivation
of keys from the battery’s PUF. It is required that the keys do
not change over time. However, due to the aging of cells and
the battery pack the PUF and so, the keys may change. The
validation steps mentioned above cannot be executed anymore
resulting in a failure of the complete method. The same applies
to genuine repairs or maintenance activities of the battery.
Single cells will not be exchanged probably, but battery packs.
This would result in a new PUF and so in invalid existing

private and public keys.
To overcome both, two approaches might be appropriate: First,
using a model forecasting the cell and battery aging in order to
create static cryptographic keys. And second, if an imminent
change is foreseeable having a mechanism to modify the
existing keys, e.g., with pre-calculated challenges and a hash
chain for tracking expired keys.
Instead of using the battery’s cells to create unique identifier,
one could also use the surrounding electrical components as
an origin for physical unclonable functions. The entropy might
be enough to create cryptographic keys as there are many
components built into one battery pack. These components
do not age in the same way as cells do.

The creation of the PUF shall only be possible using the
measured data available to the BMS installed in the vehicle.
Measurements that are only obtainable under laboratory con-
ditions cannot be used for these calculations. However, in-situ
measurements reduce the opportunities to retrieve cell-to-cell
variations as stated by Prosser et al. [43]. Therefore, it has
to be analyzed if it is possible to measure the mentioned
inhomogeneities sufficiently within the BMS and if these
parameters offer enough entropy to be applied to cryptographic
applications.

Challenges also arise in the general use of the battery pass.
Standardization across companies is mandatory to enable
comparability of batteries. This also applies to the update pro-
cedure of the battery pass. Questions concerning the frequency
and the resolution of record updates have to be answered.

IV. EVALUATION

A brief analysis of the security and efficiency aspects of the
presented approach is given in the following section. It is
evaluated if the concept meets the requirements outlined in
Section III-C. The approach is also examined with regard to
its efficiency.

A. Security Analysis

The assumed model of the adversary is presented, followed
by an evaluation of the individual requirements.

Adversary Model: We assume that the attacker has read and
write access to the database. As the certificates are stored
publicly following the methods of Certificate Transparency the
adversary can also read certificates. However, the attacker can-
not read or re-create the battery’s private key as we assume that
the physical access to the battery and its related components
is restricted or destroys the physical characteristics resulting
in a modified PUF.

Binding battery pass and battery: The data of the battery
stored in the database is signed using a private key that is
derived from the components of the physical battery. The
signature itself is saved in a certificate, which is the actual
battery pass. Therefore, the physical battery and the battery
pass are distinctly linked.

51

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Detection of manipulated battery pass: Manipulation of a
battery pass can be possible in two ways: First, manipulation of
data in the database and second, manipulation of the certificate.
Data manipulation will be recognized if the signature is
verified. Signature verification should be a mandatory step
when working with these batteries, e.g., for an assessment of
the second life applications. A manipulation of the certificate
can be detected by the monitoring instances within Certificate
Transparency. However, if an attacker can calculate a signature
using a key he controls and if he can add the signature and
the corresponding public key to the certificate, a manipulated
battery pass cannot be detected by only verifying the signature.
To overcome this effect, it must be checked if the physical
battery, i.e. the private key, belongs to the public key stored
in the certificate.

However, in general manipulation or deletion of data can result
in financial and ecological damage as it is the basis for further
use of the battery. If the data is deleted, assumptions based on
statistical measures have to be consulted, which may result in
a worse assessment of the state of health.

Circulation of counterfeit batteries: If an attacker duplicates
the certificate in order to sell a counterfeit battery with a
pseudo-valid certificate, the attack may not be recognized until
the link between the certificate and the battery is verified.
Whereas the signature for the data is valid, the challenge-
response as mentioned in Section III-D will fail: The public
key stored in the certificate does not match the private key of
the battery as the public key is a derivative of the private key.
Therefore, the decrypted response will not match the initial
challenge.

Update of battery pass only with access to battery: In theory,
records can be added to the database without having access
to the battery. As we assume that the attacker has access
to the database values can be added or deleted arbitrarily.
Even a signature can be created by an attacker. However, the
signature cannot be validated correctly as the key used for
signing the data does not match the public key used to validate
the signature. The signature will be validated correctly only if
the private key derived from the battery is used. Therefore, a
valid update of the battery pass is only possible with physical
access to the battery. Nevertheless, the validation must be done
actively and continuously in order to prevent the theoretical
opportunity of adding data without access to the battery. The
monitoring feature of Certificate Transparency supports this
requirement.

Generating trust and transparency: Trust and transparency for
user’s acceptance and for trustworthy assessment of second life
applications is created with the use of cryptographic keys on
the one hand and on the other hand with the use of Certificate
Transparency where certificates can be validated by external
parties.

Several attack scenarios have been described. None of them
can be executed on their own as there need to be attacks

on multiple system parts to be successful. However, it also
showed that a continuous verification of the different links
between certificate, data, and battery is mandatory to ensure
the system’s security. Nevertheless, a complete and in-depth
security analysis will be executed in the future to strengthen
the given statements.

B. Efficiency of Data Transfer and Verification

In the current EU project MARBEL (Manufacturing and
assembly of modular and reusable Electric Vehicle battery
for environment-friendly and lightweight mobility [44]) the
efficiency of data transfer with a state-of-the-art BMS has
been analyzed in a proof-of-concept. Tests have been made
with a frequency of data transfer ranging from 5 Hz to
200 Hz sending single MQTT (Message Queuing Telemetry
Transport protocol) messages. Authentication and encryption
were established using the Transport Layer Security (TLS)
protocol adding a security-related overhead to every message.
The average message size summed up to 90 bytes, which
corresponded to a measured maximum data rate of 144 kBits/s.
The findings from these tests appear to support the assumption
of an efficient data transfer. However, a continuous stream of
battery data might not be required as the degradation of the
battery’s SoH is a slow process. Data may be also buffered
over a defined time and sent in blocks.
Data will be verified on servers that can be highly optimized.
Therefore, it is expected that the verification can be carried
out efficiently as well.

V. CONCLUSION AND FUTURE WORK

Circular economy and the fight against counterfeiting empha-
size a need for authentic products. Digital product passes are
one example to increase trust and transparency in a product’s
life cycle. Within the next years, a digital product pass will
be mandatory for all EV batteries entering the EU’s market.
This paper presented an approach to inherently bind the battery
with the pass by using certificates with PUFs. Variations from
cell-to-cell exist and therefore, it seems feasible to derive
cryptographic keys from a battery-based PUF. The certificates
are managed and validated within the environment of Cer-
tificate Transparency. Challenges arise in the inconsistency of
PUFs due to cell aging and in the availability of measurement
controls in the BMS. An initial security analysis showed that
the presented method enables traceability of and trust in the
product life cycle data and detectability of counterfeit products
and passes.
Future work includes an analysis of cell parameters usable for
a PUF directly retrievable within the BMS. An assessment of
the random data in terms of entropy is also to be done as
well as further investigations on the consistency of PUFs in
the context of EV batteries. The results will be used to create
a proof-of-concept followed by a performance and in-depth
formal security analysis in order to evaluate the functionality
and the security measures of the presented method. Other
mechanisms for detecting counterfeit electronic products will
be analyzed and set into comparison to PUFs.

52

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

This project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under grant agreement
No 963540.

We want to thank our research colleagues for
supporting us during the concept creation. We also want to
acknowledge the research group of Prof. Dr. rer. nat. Hans-
Georg Schweiger for discussions about the topic of PUFs for
batteries.

REFERENCES

[1] J. Blümke and H.-J. Hof, “Authentic Batteries: A Concept for a Bat-
tery Pass Based on PUF-enabled Certificates,” in SECURWARE 2022,
G. O. M. Yee, Ed. Wilmington, DE, USA: IARIA, 2022, pp. 77–81.

[2] European Commission, “Regulation (EU) 2021/1119 of the European
Parliament and of the Council of 30 June 2021 establishing
the framework for achieving climate neutrality and amending
Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European
Climate Law’): European Climate Law,” 2021. [Online]. Available:
http://data.europa.eu/eli/reg/2021/1119/oj [Accessed: 01.06.2023]

[3] “Lithium, Cobalt and Nickel: The Gold Rush of the 21st Century.”
[Online]. Available: https://faraday.ac.uk/get/insight-6/ [Accessed:
01.06.2023]

[4] E. Wood, M. Alexander, and T. H. Bradley, “Investigation of battery
end-of-life conditions for plug-in hybrid electric vehicles,” Journal of
Power Sources, vol. 196, no. 11, pp. 5147–5154, 2011.

[5] E. Hossain, D. Murtaugh, J. Mody, H. M. R. Faruque, M. S. Haque
Sunny, and N. Mohammad, “A Comprehensive Review on Second-Life
Batteries: Current State, Manufacturing Considerations, Applications,
Impacts, Barriers & Potential Solutions, Business Strategies, and Poli-
cies,” IEEE Access, vol. 7, pp. 73 215–73 252, 2019.

[6] L. A.-W. Ellingsen, G. Majeau-Bettez, B. Singh, A. K. Srivastava, L. O.
Valøen, and A. H. Strømman, “Life Cycle Assessment of a Lithium-Ion
Battery Vehicle Pack,” Journal of Industrial Ecology, vol. 18, no. 1, pp.
113–124, 2014.

[7] J. F. Peters, M. Baumann, B. Zimmermann, J. Braun, and M. Weil, “The
environmental impact of Li-Ion batteries and the role of key parameters
– A review,” Renewable and Sustainable Energy Reviews, vol. 67, pp.
491–506, 2017.

[8] C. Thies, K. Kieckhäfer, T. S. Spengler, and M. S. Sodhi, “Assessment
of social sustainability hotspots in the supply chain of lithium-ion
batteries,” Procedia CIRP, vol. 80, pp. 292–297, 2019.

[9] European Commission and Directorate-General for Communication,
Circular economy action plan: for a cleaner and more competitive
Europe. Publications Office, 2020.

[10] A. B. Lopez, K. Vatanparvar, A. P. Deb Nath, S. Yang, S. Bhunia, and
M. A. Al Faruque, “A Security Perspective on Battery Systems of the
Internet of Things,” Journal of Hardware and Systems Security, vol. 1,
no. 2, pp. 188–199, 2017.

[11] European Commission, “Proposal for a REGULATION OF THE
EUROPEAN PARLIAMENT AND OF THE COUNCIL concerning
batteries and waste batteries, repealing Directive 2006/66/EC
and amending Regulation (EU) No 2019/1020,” 17.03.2022.
[Online]. Available: http://data.consilium.europa.eu/doc/document/ST-
7317-2022-INIT/X/pdf [Accessed: 01.06.2023]

[12] Council of the EU, “Council and Parliament strike provisional deal
to create a sustainable life cycle for batteries,” Press release, 2023.
[Online]. Available: https://www.consilium.europa.eu/en/press/press-
releases/2022/12/09/council-and-parliament-strike-provisional-deal-to-
create-a-sustainable-life-cycle-for-batteries/ [Accessed: 01.06.2023]

[13] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proceedings of the 44th
annual Design Automation Conference, ser. ACM Conferences, S. P.
Levitan, Ed. New York, NY: ACM, 2007, p. 9.

[14] T. McGrath, I. E. Bagci, Z. M. Wang, U. Roedig, and R. J. Young,
“A PUF taxonomy,” Applied Physics Reviews, vol. 6, no. 1, p. 011303,
2019.

[15] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical Unclon-
able Functions and Applications: A Tutorial,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1126–1141, 2014.

[16] C. Mesaritakis, M. Akriotou, A. Kapsalis, E. Grivas, C. Chaintoutis,
T. Nikas, and D. Syvridis, “Physical Unclonable Function based on a
Multi-Mode Optical Waveguide,” Scientific reports, vol. 8, no. 1, p. 9653,
2018.

[17] M. Hiller, “Key Derivation with Physical Unclonable Functions,”
Dissertation, Technische Hochschule München, München, 2016.
[Online]. Available: https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:
bvb:91-diss-20161219-1311665-1-7 [Accessed: 01.06.2023]

[18] A. Scholz, L. Zimmermann, A. Sikora, M. B. Tahoori, and J. Aghassi-
Hagmann, “Embedded Analog Physical Unclonable Function System to
Extract Reliable and Unique Security Keys,” Applied Sciences, vol. 10,
no. 3, p. 759, 2020.

[19] Google, “Certificate Transparency: How CT works,” 2022. [Online].
Available: https://certificate.transparency.dev/howctworks/ [Accessed:
01.06.2023]

[20] B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,” 2013.
[Online]. Available: https://www.rfc-editor.org/info/rfc6962 [Accessed:
01.06.2023]

[21] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption
Function,” in Advances in Cryptology — CRYPTO ’87, C. Pomerance,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988, pp. 369–378.

[22] K. Huang, Y. Liu, N. Korolija, J. M. Carulli, and Y. Makris, “Recycled
IC Detection Based on Statistical Methods,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 6, pp. 947–960, 2015.

[23] U. Guin, K. Huang, D. Dimase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit Integrated Circuits: A Rising Threat in the
Global Semiconductor Supply Chain,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1207–1228, 2014.

[24] F. B. de Oliveira, A. Nordelöf, B. A. Sandén, A. Widerberg, and A.-M.
Tillman, “Exploring automotive supplier data in life cycle assessment –
Precision versus workload,” Transportation Research Part D: Transport
and Environment, vol. 105, p. 103247, 2022.

[25] M. Honic, I. Kovacic, P. Aschenbrenner, and A. Ragossnig, “Material
Passports for the end-of-life stage of buildings: Challenges and poten-
tials,” Journal of Cleaner Production, vol. 319, p. 128702, 2021.

[26] T. Adisorn, L. Tholen, and T. Götz, “Towards a Digital Product Passport
Fit for Contributing to a Circular Economy,” Energies, vol. 14, no. 8,
p. 2289, 2021.

[27] K. Vittilapuram Subramanian and A. Madhukar Lele, “A SYSTEM
AND METHOD FOR GENERATION AND VALIDATION OF PUF
IDENTIFIER OF A BATTERY PACK,” Patent WO2 022 023 280A2,
2022.

[28] I. Zografopoulos and C. Konstantinou, “DERauth: A Battery-Based
Authentication Scheme for Distributed Energy Resources,” in 2020 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2020,
pp. 560–567.

[29] M. Dubarry, C. Pastor-Fernández, G. Baure, T. F. Yu, W. D. Widanage,
and J. Marco, “Battery energy storage system modeling: Investigation
of intrinsic cell-to-cell variations,” Journal of Energy Storage, vol. 23,
pp. 19–28, 2019.

53

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[30] M. Baumann, L. Wildfeuer, S. Rohr, and M. Lienkamp, “Parameter
variations within Li-Ion battery packs – Theoretical investigations and
experimental quantification,” Journal of Energy Storage, vol. 18, pp.
295–307, 2018.

[31] K. Rumpf, M. Naumann, and A. Jossen, “Experimental investigation of
parametric cell-to-cell variation and correlation based on 1100 commer-
cial lithium-ion cells,” Journal of Energy Storage, vol. 14, pp. 224–243,
2017.

[32] D. Beck, P. Dechent, M. Junker, D. U. Sauer, and M. Dubarry, “In-
homogeneities and Cell-to-Cell Variations in Lithium-Ion Batteries, a
Review,” Energies, vol. 14, no. 11, p. 3276, 2021.

[33] M. Kouhizadeh, J. Sarkis, and Q. Zhu, “At the Nexus of Blockchain
Technology, the Circular Economy, and Product Deletion,” Applied
Sciences, vol. 9, no. 8, p. 1712, 2019.

[34] T. K. Agrawal, V. Kumar, R. Pal, L. Wang, and Y. Chen, “Blockchain-
based framework for supply chain traceability: A case example of textile
and clothing industry,” Computers & Industrial Engineering, vol. 154,
p. 107130, 2021.

[35] F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic literature
review of blockchain-based applications: Current status, classification
and open issues,” Telematics and Informatics, vol. 36, pp. 55–81, 2019.

[36] S. P. Mohanty, V. P. Yanambaka, E. Kougianos, and D. Puthal,
“PUFchain: A Hardware-Assisted Blockchain for Sustainable Simulta-
neous Device and Data Security in the Internet of Everything (IoE),”
IEEE Consumer Electronics Magazine, vol. 9, no. 2, pp. 8–16, 2020.

[37] R. Asif, K. Ghanem, and J. Irvine, “Proof-of-PUF Enabled Blockchain:
Concurrent Data and Device Security for Internet-of-Energy,” Sensors
(Basel, Switzerland), vol. 21, no. 1, 2020.

[38] P. Cui, J. Dixon, U. Guin, and D. Dimase, “A Blockchain-Based
Framework for Supply Chain Provenance,” IEEE Access, vol. 7, pp.
157 113–157 125, 2019.

[39] Global Battery Alliance, “Battery Passport Pilot,” 2023. [Online].
Available: https://www.globalbattery.org/action-platforms-menu/pilot-
test/ [Accessed: 01.06.2023]

[40] Battery Pass, “Advancing the implementation of the battery passport
in Europe and beyond: Towards a truly sustainable and circular
battery life through digital value chains,” 2023. [Online]. Available:
https://thebatterypass.eu/ [Accessed: 01.06.2023]

[41] Battery Pass consortium, “Battery Passport Content Guidance.” [Online].
Available: https://thebatterypass.eu/assets/images/content-guidance/pdf/
2023 Battery Passport Content Guidance.pdf [Accessed: 01.06.2023]

[42] Y. Xie, Y. Guo, S. Yang, J. Zhou, and X. Chen, “Security-Related
Hardware Cost Optimization for CAN FD-Based Automotive Cyber-
Physical Systems,” Sensors (Basel, Switzerland), vol. 21, no. 20, 2021.

[43] R. Prosser, G. Offer, and Y. Patel, “Lithium-Ion Diagnostics: The First
Quantitative In-Operando Technique for Diagnosing Lithium Ion Bat-
tery Degradation Modes under Load with Realistic Thermal Boundary
Conditions,” Journal of The Electrochemical Society, vol. 168, no. 3, p.
030532, 2021.

[44] MARBEL Project, 2023. [Online]. Available: https://marbel-project.eu/
[Accessed: 01.06.2023]

54

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Survey on Secure Android Apps Development
Life-Cycle: Vulnerabilities and Tools

Mohammed El Amin TEBIB
Mariem GRAA

Oum-El-Kheir AKTOUF
Univ. Grenoble Alpes, Grenoble INP*, LCIS lab., 26000 Valence,France

*Institute of Engineering Univ. Grenoble Alpes
mohammed-el-amin.tebib@univ-grenoble-alpes.fr

mariem.graa@univ-grenoble-alpes.fr
oum-el-kheir.aktouf@univ-grenoble-alpes.fr

Pascal ANDRE

LS2N Lab
UMR 6004 CNRS, Nantes University,

F-44000 Nantes, France

pascal.andre@ls2n.fr

Abstract—Mobile devices are increasingly used in our daily
lives. To fulfill the needs of smartphone users, the development
of mobile applications has been growing at a high rate. As
developers are not necessarily aware of security concerns, most of
these applications do not address security aspects appropriately
and usually contain vulnerabilities. Therefore, it is essential to
incorporate security into the app development life-cycle. To help
development teams to address security issues, several security
integrated development environment (IDE) plugins have been
proposed. In this paper, we aim to review the effectiveness of
existing IDE plugins in detecting known Android vulnerabilities.
We developed a classification framework that highlights the
salient features related to 16 selected IDE plugins including:
(1) the analysis-based approach, (2) the vulnerabilities checks
coverage, and (3) the development stage, on which these tools
could be employed. We proceeded to a deep analysis process
where each tool effectiveness is investigated against 19 vulnera-
bilities. Each vulnerability has been demonstrated by executing
a corresponding attack scenario on the recent version 12 of
Android. The study results provide an overview of the current
state of secure Android application development and highlight
limitations and weaknesses. Limits such as: tools unavailability,
benchmarks incompleteness, and the need of dynamic analysis
approaches adoption are among the main findings of this study.
The paper synthesizes valuable information for future research
on IDE plugins for detecting Android-related vulnerabilities.

Keywords- Android; Software development; DevSec; Secure
Coding; Classification Framework; Security IDE Plugins.

I. INTRODUCTION

With the increase of mobile devices usage, a growing number
of applications have been developed to satisfy Android users’ re-
quirements. In October 2022, approximately 97000 mobile apps
were released through the Google Play Store1. However, most of
these applications are developed without integrating proper security
needs. Due to the lack of security awareness among developers,
many of these applications contain vulnerabilities. According to the
official MITRE data-source for Android vulnerabilities, Common
Vulnerabilities and Exposures (CVE) details,2 recent years witnessed
the most significant increase of Android security threats, ”1034
vulnerabilities the last couple years” , and it continues to increase
with ”34 vulnerabilities only the two first months of 2022”. These
vulnerabilities could be exploited to create harmful actions such as

1https://fr.statista.com/
2https://www.cvedetails.com/product/19997/Google-Android.html

developing malwares and stealing users private information. Thus,
many updates and patches are provided to the published applications.
Therefore, there is an urgent need to fix source code vulnerabilities at
the design and development stages and to integrate security-by-design
concepts and practices. More precisely, security verification must
belong to Integrated Development Environments (IDE), as plugins,
rather than being just external tools, otherwise developers would
often consider security as a secondary concern. Security verification
feedback should appear as syntax or type errors in the IDE to be
part of the developer’s activity. Industry and academia tools started
recently to integrate security to the software development life-cycle,
shifting from just ensuring the development speed and leaving the
security checks to external stakeholders, to employing new software
development paradigms such as development, security, and operations
(DevSecOps) [2]. In these paradigms, developers adhere to a secure
development process by means of training sessions and analysis tools.

To assist non-expert Android developers in addressing security
concerns, it is essential to provide them with an up-to-date overview
of IDE tools that can help to secure their applications. This is the
main contribution of our article. We selected a sample of IDE plugins
(tools). This sample includes the four most well-known industrial
plugins, as extracted from the OWASP list (Open Source Application
Security Project) [3]. Additionally, we included academic tools for
more comprehensive analysis.

To study these tools, we propose a classification framework
based on three dimensions: (1) the analysis-based approach (static
or dynamic); (2) the covered security vulnerabilities by each tool;
and (3) the development stage, on which these tools could be
employed. To limit the scope of our study, we consider the following
constraints: (a) Only tools usable during the development life-cycle
are considered; i.e., the tools integrated in the IDE environment.
(b) For academic tools, if the tool code is not provided, our analysis
is based only on reading the corresponding published scientific
publications and related documentations. (c) For industrial tools, only
free available ones are considered.

This classification framework allows to highlight salient features of
16 selected tools by a shallow analysis. We proceeded to a deep anal-
ysis process by running the tools on a relevant security benchmark.
Each tool effectiveness is investigated against 19 vulnerabilities. Each
vulnerability has been demonstrated by executing a corresponding
attack scenario on the recent version 12 of Android. The study
results allowed to establish a picture of the current secure Android
application development.

This article is an extended version of a paper published in
Secureware 2022 [1]. The tool information has been revisited to add
more details. New material includes a detailed presentation of the

55

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

framework in Section V, including the list of potential vulnerabilities;
a review of the security analysis approaches and a position of the
topic in the Secure Software Development Life-Cycle. The main
contribution of our work is an empirical evaluation of the IDE plugins
(16 IDE plugins) in detecting vulnerabilities (19 vulnerabilities) for
Android 12. We add new research questions in Section IV and new
experiments with methodological feedback.

The article is organised as follows. Section II introduces material to
understand the context and the comparison methodology. Section III
summarizes the existing related works in the literature, reviewing the
IDE plugins used for securing Android applications development.
We describe our work methodology in Section IV. The classification
framework is exposed in Section V. In Section VI, we overview
the 16 tools selected according to the selection criteria provided
in Section IV. Based on the proposed classification framework, we
present in Section VII the main results of the search and analysis
phases of our study methodology. We discuss the main findings of our
study in Section VIII as well as methodological limitations. Finally,
Section IX concludes the paper and provides tracks for future work.

II. BACKGROUND

This section illustrates the main concepts related to Android
applications. Android provides a layered software stack composed
of native libraries and a framework as an environment for running
Android applications. The framework exposes a set of system services
in the form of Applications Programming Interfaces (APIs). An
application uses a specific service by instantiating the interface of
the corresponding API; the framework launches a remote procedure
call to invoke the real implementation that resides on the kernel level.

Based on this software stack, developers implement different types
of Android applications: (1) native applications that restrict their
access to the APIs provided by the framework and (2) hybrid
applications that could also be web applications. Since considering
the security of hybrid applications should cover a wide range of
potential security issues related to the web, our study only covers
native Android applications (also called apps in this article).

A native Android application is built using four types of
components, categorised into two families: (1) Foreground
components such as activities, and (2) Background
components such as services, broadcast receivers, and content
providers. Activities provide graphical interfaces, which allow the
user to interact with the app to perform different tasks (following the
Model-View-Controller (MVC) pattern). The other components are
merely used to handle background processing and communications.
The core functionalities of the application are implemented through
services that are used for long-running operations. Content
providers manage the data layer (storage, read/write accesses),
they are used to share data between apps; and finally broadcast
receivers that receive and respond to Broadcasts (i.e., messages
that the Android system and Android apps send when events that
might affect the functionality of other apps occur). There are two
types of broadcasts: system broadcasts, that are delivered by the
system, and custom broadcasts, that are delivered by apps. Custom
Intent actions are defined to create a custom broadcast. There
are four ways to deliver a custom broadcast: normal, ordered, local,
sticky. Normal broadcasts are sent to all the registered receivers at
the same time, in an undefined order. Ordered broadcasts are sent
in defined order, the android: priority attribute determines
the order of the broadcast sending. If more than one receiver
with same priority are present, the sending order is random. The
intent is propagated from one receiver to the next one. A receiver
has the ability to update the intent or cancel the broadcast. Local
broadcasts are specifically sent to receivers within the same app.
On the other hand, sticky broadcasts are a unique type of broadcast
where the intent object that is sent remains in the cache even after
the broadcast has been completed. This allows other components
within the app to access and retrieve the intent at a later time. The

system may broadcast once again sticky intents to later registrations
of receivers. Unfortunately, the sticky broadcasts API suffers from
numerous security-related shortcomings. Sticky broadcasts can lead
to sensitive data exposure, data tampering, unauthorized access
to execute behavior in another app, and denial of service. The
intents manage the communication aspects between the application
components. Communications could be implicit in case the message
target is not specified. Application can pass a PendingIntent
to another application in order to allow it to execute predefined
actions. The unfilled fields of a pending intent can be modified
by a malicious app and allow access to otherwise non-exported
components of a vulnerable application.

To ensure secure execution of Android applications, two main
security artefacts are considered: sand-boxing and permissions. An
application runs within its own context or sandbox, which is an
isolation mechanism between Android applications. So applications
cannot interact with other installed applications or the Android oper-
ating system (OS) without proper permissions. Thus, the permission
system restricts the access to applications, application components
and system resources (contacts, locations, images, etc.) to those
having the required permissions. Android categorizes permissions
into different types, including install-time permissions and runtime
permissions. The install-time permissions allow an app to perform
restricted actions that minimally affect the system or other apps.
Thus, they are automatically granted when the app is installed. There
are several sub-types of install-time permissions, such as normal
permissions and signature permissions. Normal permissions allow
access to data that present very little risk to the user’s privacy. The
system assigns the normal protection level to normal permissions.
Signature permission are granted by system to an app only when the
app is signed by the same certificate as the app or the OS defining
the permission. The system assigns the signature protection level
to normal permissions. Runtime permissions give the app access to
restricted data such as private user data or allow the app to perform
restricted actions that more substantially affect the system and other
apps. Thus, runtime permissions are not automatically granted, since
their access could be given or denied by the user. The system assigns
the dangerous protection level to runtime permissions.

Permissions are declared by developers in the manifest file. Many
studies showed that the manifest file can be the source of many
security issues [4]: privilege escalation resulting from the over
declaration of permissions [5], communication issues resulting from
the use of undocumented message types of intents [6], etc.

III. RELATED WORKS

In this section, we resume the related works aiming to review or
evaluate the tools assisting developers in securing Android applica-
tions and we show how the current survey extends these works.

Significant effort has been made by the research community to
assess security analysis tools for software development in general,
and mobile applications more specifically. Recent works [7] and [8]
present general reviews of existing IDE plugins for detecting se-
curity vulnerabilities in software applications. In [8], the authors
selected plugins for the 5 main IDEs (Eclipse, Visual Studio, IntelliJ,
NetBeans, Android Studio) and specifically focused on 17 plugins
that provide support for input-validation-related vulnerabilities (as
described in the Common Weakness Enumeration (CWE) repository).
By reading documentations, they listed salient related features such
as their supported IDEs, applicable languages and their capabilities
in detecting security vulnerabilities. No experimentation is done
to assert the documentation sources. In [7], only five open-source
plugins were selected. These plugins were also studied in [8], except
FindSecBugs/SpotBugs (selected as it is more recent than Findbugs).
The authors evaluated coverage and performance by experimenting 14
CWE entries for the 10 top Open Worldwide Application Security

56

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Project (OWASP) categories, using the Juliet Test Suite3 that is a
collection of intentionally vulnerable artificial code written in C, C++,
C#, Java or PHP. They also evaluated usability by analysing the result
quality and the plugin suggestions. Both works are complementary
and present interest but none of them focuses on the Android
system, its usual programming languages (Java & Kotline) and its
vulnerabilities. In our work, we only focus on Android apps, and we
cover even a larger scope by handling a more complete and up-to-date
set of existing IDE plugins, which still miss evaluation. Consequently,
we will provide a more complete and consistent analysis by covering
a wider set of vulnerabilities and finer applicability assets.

In [9], Mejı́a et al. conducted a systematic review to establish the
state of the art of secure mobile development. They found 7 assisting
solutions for secure development. These solutions are classified
based on: 1) the type of the use (methodologies, models, standards
or strategies); and 2) the related security concern (authentication,
authorisation, data storage, data access and data transfer). After
analysing the results of this research, we consider that the number
of handled solutions is limited regarding the real existing ones in the
literature. In addition, we found that none of the presented solutions
is proposed as a tool or a plugin for secure development. In our work,
the search and the analysis processes are deeper. Indeed, we present
a higher number of assistant solutions, which are intended to be used
as IDE plugins. In addition, our classification is related to software
development life-cycle of Android applications.

Janaka S. et al. [10] presented a Systematic Literature Review
(SLR) on the Android vulnerability detection tools based on machine
learning techniques. 118 technical studies were carefully studied. The
results showed that machine learning techniques are used to increase
the security of an Android application based on three steps: 1)
considering analysing, 2) detecting, and 3) preventing vulnerabilities.
In the same line, another SLR was proposed in [11] that classifies 300
security analysis tools based on 1) the analysis dimension (malware
detection, vulnerability detection) and 2) the type of security threat
(spoofing, Denial of Service, Privilege Security, etc). Regarding these
works, the studies are too generic and there is no evaluation process
included in the study.

The closest works to our research are [12] and [13]. In [12],
Bradley et al. proposed an assessment and evaluation study of
Android applications analysis tools. The tools were categorized
based on the security issue they solve. To evaluate these tools, the
authors recruited eight computer science students with confirmed Java
programming skills for a period of 10 weeks. The students evaluated
each tool against open source applications extracted from known
benchmarks, such as DroidBench and GooglePlay. The results of each
evaluation showed the time needed to configure the requisite environ-
ment, the problem to address, the vulnerabilities to detect and the type
of analysis to perform. Many limitations related to usability, time of
execution and analysis precision were outlined as results of the study.
The assessment study proposed by Mitra et al. in [13] evaluated the
effectiveness of vulnerability detection tools for Android applications.
The authors considered 64 security analysis tools and empirically
evaluated 19 of them against the Ghera benchmarks [14]. It captures
42 known vulnerabilities, each implemented inside a single Android
application. As a result, they found that the evaluated tools for
Android applications are very limited in their ability to detect known
vulnerabilities. The sample of tools in these studies are oriented for
use by pen-testers after the application release. All of them are not
IDE plugins (except FixDroid) In addition, the evaluation process
is limited to the academic tools. In our work, we are interested in
academic and industrial free tools, which are specifically intended as
security assisting tools. We did not find existing research work that
studies precisely Android IDE plugins from a security perspective.
After analysing the existing benchmarks, we consider that Ghera
repository [14] is the most useful means for evaluating the analysis

3https://samate.nist.gov/SRD/testsuite.php

tools. Indeed, Ghera summarises a non-exhaustive list of well know
vulnerabilities related to the development of Android applications.
It provides an open source Android application implementing each
vulnerability. Moreover, having numerous test cases with single
vulnerabilities is better, in terms of evolution, than big test cases
covering several vulnerabilities. Indeed new Android releases remove
old vulnerabilities. Therefore, to conduct our study, we used the same
benchmark as Mitra et al. [13] to evaluate the list of our selected
plugins.

In summary, existing comparisons are interesting at first sight but
have limited scope or panel of tools, some are deprecated because
security evolves with the OS releases. In the next section, we propose
a new methodology to cover a large range of development and
security fields and a consistent panel of available tools.

IV. RESEARCH METHODOLOGY

This section illustrates the proposed methodology for conducting a
precise analysis and comparison study of existing tools dealing with
security concerns throughout the Android app development process.

A. Research questions
The study aims to answer the following research questions:
• RQ1 Which tools are being employed in the development of

secure Android applications? The goal is to conduct a review
of significant related works and identify tools to aid in secure
code development.

• RQ2 Is security considered in all the design activities during the
development process of Android apps? This research question
explores the coverage of security analysis solutions throughout
the entire software development life-cycle (Section V-A).

• RQ3 Which analysis techniques are being adopted by the
existing security development solutions? This research question
aims to map tools to the existing analysis techniques described
in Section V-C.

• RQ4 Are the studied IDE plugins effective in detecting known
vulnerabilities? Through this research question, we aim to
investigate the capabilities of the IDE plugins in detecting the
list of Android vulnerabilities presented in Section V-B.

B. Classification framework
A classification framework enables to structure our comparison

study by grouping the search space on axes. Four main dimensions
are explored:

• what to find as security issues;
• where to assist developers in detecting security vulnerabilities;
• when to handle the security issues during the software devel-

opment;
• how to proceed to detect security vulnerabilities.

This framework will be detailed in Section V. It serves as a
structuring basis for our analysis approach. Next, we present the
followed search methodology to identify relevant security assistance
tools. These tools will be examined to refine all the dimensions of
the presented framework.

C. Research methodology process
The proposed research methodology is depicted in Fig. 1. Three

main phases are considered in the process:
1) Tools search & selection: This phase highlights the tools used

by designers and/or developers to prevent security issues in
Android applications. To define this list, our primary source
of information were mainly:
• For academic tools, we focused on published academic

reviews [7] [8], systematic mapping studies [9] [15], and
public GitHub repositories [16] [17];

• For industrial plugins, we considered only free and
available ones such as SonarLint [18], Findbugs [19],

57

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. Proposed Research Methodology

AndroidLint [20], and Snyck [21]. We had the opportunity
to experiment them during the development of many IT
industrial projects in France. They are also listed among the
well known tools extracted from the OWASP list [3]. We also
included solutions built on top of AndroidLint [20] such as:
Lintent [22], and icc− lint [23].

• As an additional selection criteria, we included the tools that
we had the opportunity to investigate while we are building
the PermDroid tool [24] in a complementary research work.
This tool is based on formal analysis to prevent permissions
related security issues in Android applications.

To continue the selection process, we also considered the
following excluding criteria:
• Tools that are not oriented for detecting vulnerabilities during

the development process like Anadroid [25], which is used
for malware detection, and MassVet [26], which is used for
analysing packaged applications in Google-Play store;

• Tools that cannot be used within the IDE, e.g.,
ComDroid [27], which warns pen-testers of exploitable inter
applications communication errors related to the released
applications. The investigation of this kind of tools has
already been done by Ul Haq et al. in [15], and J. Mitra
in [13];

• Tools that are integrated in the IDE but are not concerned by
security vulnerabilities, like PMD [28], and CheckStyle [29].
These tools are used for checking coding standards, class
design problems, but cannot be used for identifying code
smells related to security issues;

• Industrial tools such as: Fortify [30] and Checkmarx [31],
which are well-known tools, but we were unable to install
them due to their pay access policy.

2) Shallow analysis: In this phase, we conduct an evaluation of

the IDE plugins security coverage against the list of vulner-
abilities presented in Section V-B. This analysis is shallow
because it is only performed through investigating the available
documentation and/or the published papers. Three teams are
constituted: Team1 is the first author. Team 2 is a group of
three final year students (Rémi AGUILAR, Tristan Boura and
Nicolas MEGE) of a cyber-security curriculum in Grenoble
Alpes Univ., France. Team 3 is composed of all the authors.
The dig of the documentations is performed by different teams
in three iterations. Team 2 conducted the initial investigation of
all vulnerabilities. Then, Team 1 performed a second iteration.
Finally, the results were reviewed by Team 3.

3) Deep analysis: In this phase, we perform an experimental
analysis that completes the shallow analysis. It consists of
performing an empirical evaluation of the selected tools against
a subset of vulnerabilities. The evaluation process is realized
by Team 2 led by Team 1 and reviewed by Team 3. It was
organized according to agile practices. The backlog describes
the tasks focusing on the list of vulnerabilities to check on the
plugins:
• To DO branch: contains the list of vulnerabilities to be

investigated during the week;
• Doing branch: contains the list of vulnerabilities under in-

vestigation, this helped to perform a quick feedback between
the team members;

• Review: contains the list of investigated vulnerabilities during
the week;

• Done: contains the work verified and validated.
To accomplish each task among those presented in the backlog,
we follow an ordered list of steps described in Fig. 2 and below:
a) We install the various tools and plugins on the Intellij

IDE, the goal is to check whether a tool detects a given

Fig. 2. Deep Analysis Process (experimentation part)

58

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

vulnerability in the entry application.
b) We write or modify Android applications in order to have

vulnerable applications. The vulnerabilities are those we
selected from the Ghera repository [14].

c) We check that Android 12 does not prevent the vulnerability
(the issue has not been closed yet). It is useless to require
from a tool to detect ”old” vulnerabilities.

d) Once we ensure that the vulnerability could be exploited
on the recent Android version, we analyse the vulnerable
application by the selected IDE plugins and we report the
results.

This evaluation has been conducted only with available and free
tools such as SonarLint [18], FindBugs [19], Android−Lint [20],
lint −icc [23], and FixDroid [32]. We attempted to experiment
more tools but it was not possible due to the unavailability of
the tools. We contacted the authors of PerHelper [33], 9Fix [34]
and Vandroid [35] but we did not receive an answer yet.
Consequently, we decided to perform a second iteration on
the documentation analysis for the unavailable tools instead of
experimenting them (which was not possible). Finally, as our
study focuses on vulnerabilities that could be found at the code
level (cf. Section V-B), our deep analysis could not apply to
tools such as Sema [36], PoliDroid−As [37], Page [38] because
the inputs of these tools are respectively: GUI Storyboards
for Sema [36], Textual specification of the application for
PoliDroid−As [37] and Page [38], and not the application source
code.

In the following, we present our framework in Section V, the
selected tools in Section VI and the analysis and evaluation results
in Section VII.

V. CLASSIFICATION FRAMEWORK

The classification framework is a comprehensive analysis of the
relevant criteria of security concerns in the development cycle of
Android applications. Our classification framework contains four
main dimensions as illustrated in Fig. 3.

• IDE plugins: As a first dimension the goal is to define the
IDE plugins Where the presented security vulnerabilities will
be checked. We conducted a review of significant related
works and identified tools to aid in secure code development.
We thoroughly discussed each tool, its capabilities, and the
mitigation process during development. Finally, we determined
the vulnerabilities covered by each tool.

• Design level: This dimension explores When the selected tools
could be employed regarding the entire software development
life cycle. The study in this dimension is conducted based on
the engineering phases presented in Section V-A.

• Analysis approaches: In this dimension, we manually inspected
How the selected tools behave to analyse security vulnerabil-
ities. This enabled us to figure out the adopted analysis ap-
proaches of IDE security plugins regarding the analysis methods
presented in Section V-C such as Fuzzing, Instrumentation,
Symbolic Execution, and Formal verification.

• Security vulnerabilities: In the final dimension, we examine
the selected tools effectiveness against a non exhaustive list of
vulnerabilities that we selected from the Ghera repository [14]
(cf. Section V-B). The goal is to investigate What are the well
known vulnerabilities covered by the selected tools. In addition,
we tested each vulnerability based on corresponding attack
scenarios on recent versions of the Android OS to confirm the
associated risks.

Next, we present each dimension in detail.

A. Secure Development Life-cycle (when)

Software developers are pointed out in many exploratory stud-
ies [40] [41] as the main reason of security vulnerabilities. This is
because they often consider security as an afterthought concern. Soft-
ware developers are mostly not security experts. Considering security
requirements would need many interactions with software security
experts, hence adding delays to the core software development. Con-
sequently, these interactions are not considered in the development
life cycle like many non-functional requirements, while functional
testing starts in the requirements analysis phase by providing user
scenarios that will be the source of acceptance testing. To overcome
these limitations, software organizations have recently initiated new
software development paradigms allowing to secure the SDLC [42],
[43] (see Fig. 4 borrowed from [39]). The goal is to ensure security
requirements throughout the entire software development pipeline:
requirements analysis, design, coding, testing deployment/runtime
and decommissioning. With this regards, software development and
operations (DevOps) approaches are of high interest as one of their
objectives is to improve communication and interaction between
involved actors in the software development process.

• Specification: considering security at software specification
level is recommended at the head of the 10 proactive controls

Fig. 3. Android DevSec Classification Framework

59

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

list of OWASP4. The goal is to ensure that the software
design meets security requirements and minimizes the risk
of security vulnerabilities. Potential vulnerabilities analysis,
security requirement and risk assessment become part of this
phase. Security requirements define or redefine features to solve
specific security problems or eliminate potential vulnerabilities.

• Design: At this level, security may be ensured based on the
following steps: (1) to conduct threat modeling by designing
potential security threats and vulnerabilities; and (2) to select
well known design patterns for fundamental aspects such as:
access control, encryption, etc.

• Implementation: Considering security during the coding phase
can help to identify and fix security vulnerabilities early in the
development process, before they become serious issues that
could be exploited by attackers. At this stage, security could be
ensured in many ways such as: implementing applications by
following secure coding best practices, using static and dynamic
code analysis, using secure libraries, and automate security
checks.

• Testing: considering security at the testing stage by performing
different types of structural and functional tests such as: unit,
instrumentation, fuzzing tests. Pentests or security tests should
also be applied at this stage.

• Deployment & Post-Deployment: at this stage, operational se-
curity processes and tools are needed. In particular, they include
testing build routines and user acceptance testing.

One of the first approaches that have been proposed to consider
security needs in the software development lifecycle is the Security
Development Lifecycle (SDL) by Microsoft. SDL defines twelve
stages, in which objective is to consider security throughout the whole
development process. Among these stages, education and aware-
ness, security best practices, security documentation, etc. have been
highlighted. Today, these security specific stages are implemented
throughout security practices.

OWASP has strengthened the Software Development Lifecycle
with a Software Assurance Maturity Model (SAMM) that encom-
passes security aspects throughout the development process. In the
OWASP SAMM model, security governance is considered as a
specific stage and highlights, as in the Microsoft Secure Development
Lifecycle, the importance of training and education. Traditionally, IT

4https://owasp.org/www-pdf-archive/OWASP Top 10 Proactive
Controls V3.pdf

people were in charge of security testing, once the application has
been released. Such delayed security tests are no longer sufficient in
the nowadays context, with highly interconnected applications and
numerous security breaches.

Thus, DevSecOps approaches have been introduced. At the core
of DevSecOps is the principle of keeping security as a priority and
adding security controls and practices into the DevOps cycle [44]. All
these initiatives that aim to handle security aspects put the light on
the methodological concerns including models, processes and people,
tools and automation.

In the context of Secure Android Apps Development Life-Cycle,
models are those of the vulnerabilities, actors are mobile app devel-
opers, process, tools and automation are implemented and integrated
in IDEs. We will detail these aspects in the next sections.

B. Security vulnerabilities related to the development process
(what)

This section introduces the identified vulnerabilities in the recent
Android versions and illustrates the attack scenarios we will imple-
ment.

1) Identified Vulnerabilities: In this work, we are mainly
interested in security vulnerabilities (Vi) that could be mistakenly
introduced by developers and exploited to craft attacks (Ai). Based
on available benchmarks such as Ghera [14] that contains open source
applications implementing vulnerabilities, we started by considering
vulnerabilities (V), which belong to the following class of attacks (A):
(i) privilege escalation, (ii) data injection, (iii) code injection, (iv) in-
formation leaks and (v) components hijacking. These vulnerabilities
are summarised in Fig. 5. Below, we briefly describe vulnerabilities
for each class.

1) A1. Privilege escalation (PE): this attack occurs when an appli-
cation with less permissions gains access to the components of
a higher privileged application. Situations where such an attack
can occur are mainly related to:
• A1.V1. The use of PendingIntent with empty base action:

a PendingIntent object is a token that is given to a foreign
application to allow it to execute a predefined action. When
a PendingIntent is sent, the receiver application will execute
the corresponding action using the sender permission. If a
malicious app receives a PendingIntent whose base action is
empty, then the malicious app can escalate its own privilege,

Fig. 4. Secure Software Development Life-cycle (SSDLC) [39]

60

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

set an action and execute it in the context of the benign app
that sent the PendingIntent.

• A1.V2. Fragments Dynamic Load: Java reflection is used
to dynamically load fragments into an activity, where a
fragment is a part of a user interface. But, the fragment
name could be provided by a malicious application to make
fragment injection attacks. For example, an activity that
accepts fragment names as input from other components, and
loads the fragment dynamically into the activity is vulnerable
to executing a fragment provided as input by a malicious app
on the device.

• A1.V3. High Privileged component export: If an app has the
permission to perform a particular privileged operation and
if that operation is performed via an app component that is
exported for public consumption, then a malicious app can
invoke the component method that performs the privileged
operation and make the app perform the operation on behalf
of the malicious app. This is a privilege escalation attack or
a confused deputy attack.

• A1.V4. Permission over-privilege: Android applications priv-
ileges are managed through the concept of Permissions. A
Permission is declared on the XML manifest configuration
file as an XML attribute. Declaring a Permission on the
Manifest file means that the application needs this permission
to access a system resource(s) such as: CAMERA, GPS, etc.
The security design flow here is when developer mistakenly
declares permission(s) on the manifest file that are not
necessary for the application functioning. Malware could gain
these permissions to create harmful actions.

• A1.V5. Permission Enforce: If an application uses the
method enforcePermission to grant permission at run-time,
it won’t throw a SecurityException when another component
in the same process was granted permission earlier. Thus
a malicious application could get privilege permission. The
exploit of the attack scenario related to this vulnerability does
not work on Android 12, 11 and 10 (API 29..33) but works
on Android 9 (API 28).

• A1.V6. EnfroceCallingOrSelfPermission: When the method
enforceCallingOrSelfPermission is used to grant permission,
it will not throw further SecurityException from the moment
it has already granted one permission to another application,
meaning a malicious app could ask a permission after a
benign app, and get that permission granted.

2) A2. Data injection: Data injection is a type of attack where
malicious actors are able to inject malicious data into a software
system. It has serious consequences on sensitive data, access
control, and quality of service. In Android ecosystem, this can
occur through the exploitation of various vulnerabilities, such
as:
• A2.V1. Ordered broadcasts: As mentioned in Section II, a

broadcast is a component that allows an application to send
and/or receive messages (intents) to/from the applications
and/or the system. Each component could be registered to a
broadcast to be notified whenever this broadcast is generated.
On its configuration, a broadcast receiver can be declared as
either ordered or non-ordered. In non-ordered mode, Android
will deliver all broadcasts to all receivers at the same time.
On the other hand, ordered broadcast receivers define a
priority of transmission. The receiver with higher priority
responds first and forwards it to lower priority receivers.
Hence, a malicious receiver with high priority can intercept
the broadcast, change its content, and forward the malicious
payload to the receivers with low priority.

• A2.V2. Sticky broadcasts: A sticky broadcast in Android is a
broadcast message that is saved by the system and sent to all
registered receivers. This type of broadcast can be potentially
dangerous because a malicious receiver can modify the
message and broadcast it again, causing all receivers to
receive the updated message. Sticky broadcast could be sent
using the method sendStickyBroadcast(), which is deprecated
in the latest version of Android. Starting from Android 8.0
(Oreo), the use of sticky broadcasts is discouraged.

• A2.V3. Weak Checks On Dynamic Invocation: to invoke
any provider-defined method. Android does no permission
checking on this entry into the content provider. Whenever
the developer calls this method without doing its own permis-
sion checks, unauthorised components are allowed to interact
with the content provider. So, apps that use the call() in
the Content Provider API are vulnerable to exposing the
underlying data store to unauthorized reads and writes.

• A2.V4. Uncontrolled External Storage Reads are used to
store application data with a public share. If an application
reads from any file stored in External Storage, even if the
file is in the private storage directory, then the application
has no control over the file it is reading. If a malicious app
changes the file being read by a victim application, then this

Fig. 5. A taxonomy of Android vulnerabilities

61

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

one will unknowingly read malicious content.
3) A3. Code injection: consists of injecting potentially malicious

code that is after that interpreted/executed by the application.
Situations where such an attack can occur are mainly related
to:
• A3.V1. Dynamic code loading: Since the apps can load

classes from local archives (via PathClassLoader) or remote
archives (via URLClassLoader), malicious actors can change
such archives and affect the behavior of apps that use the
archive. So, Android apps that rely on dynamic code loading
without verifying the integrity and authenticity of the loaded
code may be vulnerable to code injection.

• A3.V2. Dynamic invocation with weak checks: Android al-
lows developers to share data across apps through the Content
Provider API. The Content provider API provides a method
call() to call any provider-defined method. But, Android has
no idea whether call will read or write data in the provider,
so it cannot enforce those individual permissions. Therefore,
malicious apps with read and without write permission can
write data through the Content Provider.

4) A4. Information leak: It occurs when an application private data
are accessed by unauthorised applications or when developers
improperly use the cipher modes (ECB, CBC) and AEAD
(Authenicated Encryption With Additional Data) cipher like
GCM (Galois Counter Mode) or by exploiting weaknesses in
random number generation (RNG) process. So, an attacker
could be able to guess the encrypted message. Situations where
such an attack can occur are mainly related to the use of:
• A4.V1. Block Cipher algorithm in Electronic Codebook

Block (ECB) mode: ECB mode leaks information about the
plaintext because identical plaintext blocks produce identical
ciphertext blocks, it does not hide data patterns well. An
attacker could be able to guess the encrypted message. So,
applications that use a block cipher algorithm in ECB mode
for encrypting sensitive information are vulnerable to leaking
sensitive data. Thus, ECB is not recommended for use in
cryptography protocols.

• A4.V2. A block cipher algorithm in cipher block chaining
(CBC) mode: The greatest advantage CBC has over ECB is
that, with CBC mode, identical blocks do not have the same
cipher. This is because the initialization vector adds a random
factor to each block; hence, the same blocks in different po-
sitions will have different ciphers. But, applications that use
a block cipher algorithm in CBC mode with a non-random
initialisation vector for encrypting sensitive information are
vulnerable to leaking sensitive data.

• A4.V3. Applications that store the encryption key in the
source code are vulnerable to leaking encrypted information.
An attacker with decompiler and static analyzer tools can
identify the encryption function and find encryption key.
Someone who has the assembly code will even be able to
call Decrypt directly, not bothering with extracting the key.

• A4.V4. Ability to load files from internal storage (private
access) to external storage (public access). Android allows
apps to save data in files. These files can be stored in Internal
Storage or in External Storage. Files stored in Internal Stor-
age are private to the app. External Storage can be accessed
by all apps that have permission to access ExternalStorage.

5) A5. Android components hijack: this attack can occur in the
following situations:
• A5.V1. Activities that start in a new task: This situation

occurs when the user can navigate from a benign activity A to
a malicious activity M by pressing the back button, instead
of navigating to an intended benign activity C. Therefore,
malicious activity M will hijack benign activity C.

• A5.V2. Applications with low priority activities: If a mali-
cious activity has a higher priority than a benign one, then it
will appear before the benign activity, making it more likely
for the user to choose the malicious activity over the benign
one.

• A5.V3. Pending Intent with implicit base intent: If base
intent is an implicit intent then, when the pending intent is
performed, it can be intercepted by a malicious application.
If the implicit intent has sensitive information in it, then it
will be leaked.

As we can see, developing Android applications without a prior
knowledge and/or a specific focus on security aspects could lead
to critical security attacks. It is worth-noting that the above list of
vulnerabilities is not exhaustive, and it is intended to be extended in
future research.

2) Attack scenario: To clearly outline the exploits utilizing these
vulnerabilities, we provided, based on Ghera repository a scenario of
attack related to each vulnerability. Each scenario was documented
using Gherkin, a language supported by Martin Fowler5 for outlining
functional software test scenarios. In this Section we describe as
an example the attack scenario related to vulnerability A1.V1. The
remaining scenarios can be found in the technical report [45].
Given A simple application called BenignApp
And BenignApp has a module called BenignAppPartner
And BenignAppPartner implements a broadcast receiver
When BenignApp sends a pending intent with empty action to the
BenignPartner
Then BenignAppPartner receives this Pending Intent, then launches
a remote service that resides on the benign app (until now, it is a
normal behavior)
When MalicousApp intercepts through its broadcast receiver the
Pending Intent sent to the BenignPartnerApp
Then MaliciousApp manipulates the empty action of this Pending
Intent
And MaliciousApp executes the action it wants into the Benign app’
service by escalating its own permission

In order to test A1.V1, we use three apps: Benign, BenignPartner,
and Malicious. Benign is a benign app that sends an empty
pending intent to BenignPartner, which has a broadcast receiver
MyReceiver.java that takes the pending intent and starts a service
MyService.java in Benign app. Malicious app has a broadcast re-
ceiver MyReceiver.java that intercepts the pending intent sent from
Benign app and starts an internal service in Benign that performs
some sensitive operation. This service is not exported and is meant
for internal use within the benign app. However, because of the
empty pending intent intercepted by the malicious broadcast re-
ceiver, Malicious app can escalate its own privilege and can start
MySensitiveService eventhough it is not supposed to.

C. Security analysis Approaches and Tooling (how)
Determining the effectiveness of each security analysis tool in de-

tecting known vulnerabilities is closely related to the analysis method
used by the tool. Hence, in order to examine the studied IDE plugins
effectiveness based on their analysis techniques, we describe in this
section common analysis approaches used in software engineering.
As summarized in Table I, these approaches are generally classified
into 3 groups: Static, Dynamic, and Hybrid analysis.

• Static analysis approaches. Static analysis inspects the pro-
gram without running it. It examines source or compiled binary
code against coding flaws. Generally, it is used to identify
potential bugs, vulnerabilities, or other security issues. Many
automated tools are able to perform static code analysis to report
security problems related to Android applications and systems,

5https://martinfowler.com/bliki/GivenWhenThen.html

62

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

such as: (1) ComDroid [27], which statically analyses DEX code
of third party Android applications to detect inter application
communication vulnerabilities: Broadcast theft, Activity and
Service hijacking, and Broadcast injection; (2) Lintent [46],
which is based on formal verification techniques (formal cal-
culus) to reason about the application behaviour and prevent
security attack surfaces from privilege escalation and commu-
nications; (3) FlowDroid [47], which tracks the flow of data
between different components of an Android app. Starting from
an Android application, it constructs a full control flow graph.
This graph can then be used to identify potential security
issues based on data tainting; (4) Arcade [48], NatiDroid [49]
and Pscout [50] that perform static analysis on the Android
framework to build a permission mapping used for detecting
over-privileged applications.
Several techniques could be used to perform static analysis in
Android application security analysis, such as formal verifica-
tion and symbolic execution:
– Symbolic Execution can be used to simultaneously explore

multiple paths that a program could take under different
inputs. This allows sound analyses that can give strong guar-
antees on the checked property. Rather than taking on fully
specified input values, the technique abstractly represents
them as symbols, resorting to constraint solvers to construct
actual instances that would cause property violations [51].
These symbols will be used along the execution path to
determine the path condition. A path condition is a first
order logic formula that describes the conditions satisfied by
the branches taken along that path. The mapping between
variables and symbolic expressions or values will be stored
to determine if the property is satisfied at the end of the
the execution path. Klee [52] is a symbolic execution tool
built on the LLVM compilation framework that automati-
cally generates test cases for high coverage of complex and
environmentally intensive programs. Symbolic Execution can
be conducted on the basis of some pre-extracted models
to ensure the reachability of some branches [53]. Many
approaches, such as: Scandroid [54], Cassandra [55], etc.,
analyse data-flow to formally check various system level
information-flow properties.

– Formal Verification. Formal methods are among the most
used techniques in Android security analysis. They cover
many application areas such as: security protocols, the im-
plementation of access control policies, intrusion detection
and even source or binary code security. Generally, they are
categorized in three families as presented in [56]: 1) Specifi-
cation and Process algebra where the approach that deals with
the system behavior is algebraic and axiomatic. 2) Model
checking or Property checking, which is a model-based spec-
ification technique that aims to develop visual models for the
specified system and analyzing their properties. 3) Theorem
proving that is an axiomatic technique, in which the system
is expressed as a set of axioms and a set of inference rules,
and the desired property is expressed as a theorem to be
proved. For Android security, this technique has been widely
adopted such as in [57] for mobile malware analysis based
on model checking. Theorem proving techniques provide
a high level of code coverage. However, they suffer from
over-approximation results.

Static analysis approaches have some limitations due to un-
decidability problems [58]. It is impossible to determine if a
program will terminate for a given input. Another limitation of
static analysis tools is the fact that they report problems that
are not really bugs in the code [59] i.e. they identify incorrect
behaviors that cannot occur during any run of the program (false
positives).

• Dynamic analysis approaches. In contrast to static analysis,
dynamic analysis is performed at run-time. The goal is to
identify problems that cannot be detected by static analysis, such
as: race condition, performance, and concurrency problems. In
comparison to static analysis, dynamic analysis provides sound
results. It does not require an access to the source code, it traces
a binary code to understand the system behaviour.
Many automated tools have been proposed to perform dynamic
security analysis on Android applications and system, such as:
TaintCheck [60], LIFT [61], Valgrind [62], just to name a few.
They instrument the bytecode to control the information flows
in the program and detect security attacks. Thus, they suffer
from significant performance overhead that does not encourage
their use in real-time applications.
Several techniques could be used to perform dynamic analysis
in Android application security analysis, such as fuzzing and
instrumentation:
– Fuzzing is an automated technique used for software testing

and security. The main idea behind fuzzing is to use randomly
generated inputs to fuzz the software under analysis in order
to find bugs or vulnerabilities. The set of inputs are called
Oracle. In software testing, fuzzing could be performed based
on different methods, such as: (1) generation-based fuzzing
that involves generating inputs from scratch; (2) mutation-
al-based fuzzing (called also feedback-based fuzzing) that
modifies the existing inputs during the testing process, in
order to redirect the execution paths; and (3) model-based
fuzzing that constructs a model for the input data, then
generates inputs that conform to that model.
Fuzzing could be conducted dynamically. It has been used
in significant works analysing security vulnerabilities and
attacks in Android applications. The results showed that it
could cover numerous boundary cases using invalid data
as application input to better ensure the absence of ex-
ploitable vulnerabilities [63]. Among the existing tools al-
lowing to apply fuzzing for Android security analysis we
found: (1) Jazzer , which is a coverage-guided fuzzer for the
Java Virtual Machine (JVM). It works on the bytecode level
and can be applied directly to compiled Java applications
and to targets in other JVM-based languages such as Kotlin
or Scala. It is composed by a native binary that links in
libFuzzer and runs a Java fuzz target through the Java Native
Interface (JNI) and by a Java agent that runs in the same
JVM as the fuzz target and applies instrumentation at run–
time. These fuzzers can often find out previously unknown
vulnerabilities [64]; (2) Dynamo [65] uses mutational based
fuzzing to provide inputs that fuzz the Android framework
code related to checking the API access control. This process
helps to construct a permission-mapping allowing developers
to identify over-privileged applications.
Despite the advantages that fuzzing can offer it suffers from
some limitations such as: 1) Low code coverage due to the
fact that the executed paths are related the selected inputs;
2) The set of inputs could be computationally intensive; and
3) Inadequate inputs generation, which can result in a high
number of false negatives.

– Instrumentation. Generally, fuzzing is combined with in-
strumentation techniques to perform dynamic analysis. In-
strumentation provides the possibility to modify a program
under analysis at run-time, and add some functionalities
such as: logging messages or new instructions in order to
understand the software behaviour.
There are several toolkits, e.g., Frida [66], ARTIST [67],
DaVinci [68] that are used for dynamic instrumentation in
Android system. Frida allows developers, reverse-engineers,
and security engineers to inject snippets of JavaScript into

63

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I
SOFTWARE ANALYSIS APPROACHES: STRENGTHS, WEAKNESSES, AND TOOLS

Approach Technique Pros Cons Tools
Static Analysis Formal Verification, Sym-

bolic Execution
Efficient, Scalable, High
Code coverage

Decidability, Low Sound-
ness

ComDroid, Lintent ,
FlowDroid, NatiDroid

Dynamic Analysis Fuzzing, Instrumentation,
Debugging

Race Condition, Concur-
rency, Performance

Time Consuming,
Resource-Intensive

Frida , Dynamo,
stowaway

native Android apps to monitor and debug running processes.
ARTIST is an open source instrumentation framework for
Android’s apps and Java middleware. It is based on the new
ART runtime and the on-device dex2oat compiler to monitor
the execution of Java and native code. ARTIST modifies code
during on-device compilation. In contrast to existing instru-
mentation frameworks, it preserves the application’s original
signature and operates on the instruction level. DaVinci is an
Android kernel module for dynamic system call analysis. It
provides pre-configured high-level profiles to easily analyze
the low level system calls.
The instrumentation adoption faces also some challenges.
First, adding some functionalities to a software system
will add significant complexity, which may cause bugs and
crashes. In addition, there is a high risk of execution in-
terference between the real and the added code. Finally,
instrumentation can have a significant impact on performance
because the added code can slowdown execution time.

The dynamic analysis limitation is that it consumes resources
and has difficulty covering all execution paths, so it generates
false negatives.

• Hybrid analysis approaches. Hybrid analysis combines and
benefits from the advantages of static and dynamic analyses.
Regarding the provided tools performing static or dynamic
analysis, fewer tools combine both of them due to the dif-
ficulty of combination. For instance, AM Detector [69] is an
automatic malware detection prototype system based on attack
tree model. This approach employs a hybrid static-dynamic
analysis method. Static analysis tags attack tree nodes based
on application capability. It filters the obviously benign appli-
cations and highlights the potential attacks in suspicious ones.
Dynamic analysis selects rules corresponding to the capability
and conducts detection according to run-time behaviours. In
dynamic analysis, events are simulated to trigger behaviours
based on application components, and hence it achieves high
code coverage.

Overall, static and dynamic analysis are complementary ap-
proaches. We presented in this section the commonly used techniques
for detecting security issues related to Android applications. Starting
from the presented strengths and weaknesses of each technique, we
investigate in the coming section the based-analysis approach of the
selected IDE plugins in order to study their effectiveness in detecting
the selected vulnerabilities.

VI. SELECTED TOOLS (RQ1)

The result of the Tools search & selection (phase 1) of the research
methodology is a set of 16 IDE plugins that match the selection
criteria provided in Section IV-C. This set is an answer to RQ1. The
list of selected tools is summarised in column 1 of TABLE II. In the
reminder of the section, we overview these plugins.

• Curbing [5] is the first proposed tool assisting developers
in utilizing least privilege principle when developing Android
applications. It notifies developers if one or more unnecessary
permission(s) is (are) declared unintentionally by the developer.
At the time when Curbing was developed in 2011, there was

no ready data-set of Android application source code. So, the
tool was analysed empirically,

• SonarLint [18] is a popular linter that is largely used in
industrial IT projects. It contains a large set of code smells
for many programming languages, including those for Android
security. The tool can also provide suggestions for remediation.
SonarLint performs static code analysis (SAST) by whether
inspecting the program AST, or using data taint propagation.
It also performs dynamic analysis (DAST) even if it is still
limited to few dynamic functionalities such as: Memory Error
Detection, Invariant Inference, Concurrency Error, which may
cause race-condition, resource/memory leak, etc. SonarLint can
also be used in many ways: IDE integration (Eclipse, IntelliJ,
Android Studio, etc.), or through DevOps pipeline (github,
jenkins, etc.),

• FindBugs [19] provides static code analysis to look for bugs
in Java code from within IntelliJ IDE. For more than 200 bug
patterns related to different topics, such as performance, cor-
rectness, bad practices, FindBugs also provides the opportunity
to investigate the code security, and detect the malicious code
vulnerability. As a code review tool, it investigates the AST of
the program against predefined rule patterns. The last available
version (2016) of FindBugs is not compatible with the final
version of IntelliJ. Since 2016, FindBugs is integrated into
FindSecBugs [70] tool.

• Snyk [21] is one of the leading industrial vulnerability analysis
tools. It has a large open-source database of the common vulner-
abilities related to different programming languages including
Java and Kotlin for Android application development.

• Android-Lint [20] (also called Lint) is the official analysis
tool provided by Google for Android application development.
It checks common issues in an Android project’s source code
and provides suggestions for improving the code’s quality and
security. Lint offers a robust API that can be utilized to create
custom Android lint checks for additional analysis rules. Several
tools based on this API have been found in the literature.
– Lintent [22] is a security analysis plug-in integrated with the

Android development tools suite. Based on a static analysis
approach, it implements a static formal calculus based analy-
sis to reason on the Android inter-component communication
API. Lintent analyzes Java source code through reasoning
about types. The goal is to statically prevent privilege esca-
lation attacks on well-typed components. Lintent also detects
over-privileged application based on the permission mapping
described on the corresponding readme description file of the
tool in github 6. To analyse the program elements, Lintent
is built on top of Android−Lint library,

– icc-lint [23] called also AndroidICC. Like Lintent and 9Fix
its security checker is based on Lint Checker. It serves to
analyse Android application source code and reveals vulner-
abilities related to inter-component-communications. These
vulnerabilities are extracted from Ghera repository. This tool
is open-source and ready for use,

– 9Fix [34] is another recent plugin supporting secure program-

6https://github.com/alvisespano/Lintent

64

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ming. It inspects the vulnerable code and instantly suggests
an alternate secure code for developers. The security proper-
ties covered by 9Fix are classified as general security code
smells related to different topics such as password stealing,
the use of vulnerable cryptography algorithms, SSL and TLS
communications, just to name a few. 9Fix is integrated as an
Android Studio plugin.

• PerHelper [33] is an IDE plugin that guides developers to
declare permissions automatically and correctly and identify
permission-related mistakes, such as over-privilege and under-
privilege permissions, unprotected APIs, etc. By inferring the
candidate permission sets, PerHelper helps to set permissions
more effectively and accurately.

• VanDroid [35] is an Analysis tool based on Model Driven
Reverse Engineering approach (MDRE). In a first step, Vandroid
analyzes the code source of the application based on its Graphi-
cal Abstract Syntax Tree (GAST), then generates a correspond-
ing security model that facilitates and improves accuracy of
the analysis. As a second step, it launches a formal verification
process that identifies security risks related to the Android com-
munication model. The formal verification in Vandroid checks
the satisfaction of specified security properties in the generated
model. Vandroid is provided as an Eclipse plugin, which limits
its adoption on the current Android development projects. We
contacted the corresponding authors of Vandroid by email in
order to gain access for experimenting the tool. The tool cannot
be used in new IDE supporting Android development such as
IntelliJ and Android Studio.

• Sema [36] is a new methodology for designing secure Android
applications from an app’s storyboards. Storyboards are used
as state-transition diagrams. The states specify the screens of
the application, and the transitions present the operations to be
launched to transit from one screen (state) to another one. The
goal of Sema is to help application designers to care about
security at the design stage. While specifying the application
functioning and designing storyboards, Sema has the ability to
check security properties at this stage based on formal analysis.
Finally, Sema is able to generate a secure source code starting
from the designed storyboards. The tool is open-source and can
be integrated in Idea IDEs such as IntelliJ and Android Studio.

• PoliDroid-As [37] is a tool allowing Android developers to
check if the created code adheres to privacy security policies.

These policies are not created by developers but by legal experts
using natural language. The main contribution of PoliDroid−As
is to automatically align the code source of the application
to the specified security policies. By using natural language
processing algorithms, PoliDroid-As maps key phrases existing
in the documentation of the used APIs to low-level technical
terminology in the API.

• Page [38] is a tool that supports developers creating natural
language privacy policies during the development process. It
is proposed as an Eclipse plugin to document privacy tasks
and notes during the construction and testing of the application.
There is no automatic alignment between the specified textual
policies and the source code of the application. The goal of
the tool is just to make an internal IDE repository to remind
the developers checking the validity of these policies after each
code evolution.

• PermitMe [71] has the same goal as Curbing, Perhelper and
Lintent . PermitMe is a code review tool (CR) used to notify
developers when they intentionally include extra permissions
in their apps. By statically investigating the program Abstract
Syntax Tree (AST). PermitMe decides whether a declared
permission is used in the program or not. If at least one
permission is not used, then the application is flagged as over-
privileged.

• Coconut [72] has been developed on 2018 as an IDE plugin for
Android Studio. It helps developers to handle privacy based on
the concepts of annotation. Through heuristics (H), Coconut de-
tects the code that handles personal data, and asks the developer
to add an annotation that describes how and why the personal
data is used. To simplify the handling of annotations, Coconut
proposes a quickfix to automatically generate an annotation
skeleton with several fields (i.e., ‘dataType‘, ‘frequency‘). These
fields could be filled automatically if they could be inferred
from the code, or manually in the opposite case. Filling out the
annotation makes the developers think to the use of private data,
such as examining the collections manipulating the private data,
checking that there is a legitimate reason to collect the private
data, etc. Coconut is available and open-source.

• FixDroid [73] is an Android Studio plugin (it is not available
on IntelliJ). It provides helpful security alerts, explanations and
quickfixes whenever possible. It is updated periodically to add
new features and fix software bugs.

TABLE II
IDE SECURITY ANALYSIS TOOLS FOR ANDROID APPLICATIONS

Tool Name Year SDLC Focus Approach Method Availability AV
Curbing 2011 Dev Permission Over-privilege Static, Manual AST No 2.2
Lintent 2013 Dev Communication Static FM Yes 4.x
PermitMe 2014 Dev Permission Over-privilege Static AST No 5.0
Page 2014 Spec Privacy policies Static NLP No -
Vandroid 2018 Design, Dev ICC Static FM No 9.0
AndroidLint 2019 Dev General Code Smells Static AST Yes all
Sema 2019 Design General Security Properties Static FM Yes 10
PerHelper 2019 Dev Permission Over-privilege Static AST No 10
PoliDroid−As 2017 Spec Privacy security policies Static NLP No 8
9Fix 2021 Dev General code smells Static AST No 12
SonarLint 2021 Dev General code smells Hybrid DAST Yes 12
Find Bugs 2016 Dev General code smells Static AST Yes 7
Cocunut 2018 Spec Privacy policies Static H No -
FixDroid 2017 Dev General Code smells Static AST Yes 7
icc− lint 2019 Dev ICC Static AST Yes 10
Snyk 2014 Dev General code smells Hybrid DAST Yes all
1 AST: Abstract Syntax Tree; CR: Code Review; FM: Formal Methods; Spec: Specification;
2 SD Stage: Software Development Stage; AV: Android Version; NLP: Natural Language Processing;
3 DAST: Dynamic Application Security Testing

65

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The following section presents the results of the analysis process.

VII. ANALYSIS AND EVALUATION RESULTS

We analysed the selected tools according to the classification
framework of section V. The results are summarised in Fig. 2, and
the technical report [45]. provides a detailed description for the
performed analysis and results. As mentioned in Section IV-C, we
proceeded in two steps, which results are exposed below.

A. Shallow analysis results
This section presents the analysis results deduced from reading

available documentation, communications and research articles. A
global overview is presented in TABLE II.

For each studied tool, we identify the software development stage
(SDLC stage), the type of covered security vulnerabilities (Focus),
the analysis approach (Approach), the analysis method (Method) and
its availability (Availability). We also identify the Android Version
(AV) attribute that represents the version upon which the tool is
constructed. This will help to measure the tools updates.

1) Considered development phases for security analysis
(RQ2): It is broadly admitted that security concerns should be
handled as early as possible during the application development
lifecycle. Secure development life-cycle (SDLC) methodologies have
been adopted by many software organisations, e.g., Microsoft through
their Microsoft Security Development Lifecycle (SDL) [74], OWASP
with their SDLC and Software Assurance Maturity Model (SAMM)
processes [75], etc. The following outcome of our work aims at
clearly identifying development phases during which studied tools
could be used, thus helping developers in hardening developed
applications with regards to security requirements. In our study,
most identified tools can be used at one or several of the following
development phases: specification, design, coding and testing, as
described below.

• Specification: during this phase, security policies are acquired
usually from natural language descriptions, stating mainly
how private data should be managed. Such descriptions could
be legal documents. As a consequence, application devel-
opers need to clearly state how applications collect, use,
and share personal information, introducing relevant security
policies in the design of the application. As shown in TA-
BLE II, PoliDoid−AS, Page, Cocunut are used in the specifi-
cation phase.

• Design: threat modelling should be part of the application
design in order to allow designers to analyse the designed
application architecture for potential security issues, that could
be then mitigated. During this phase, issues related to the use of
third-party components or libraries could also be handled. As
shown in TABLE II, Sema through storyboards, and Vandroid
through modelling are used in the design phase.

• Coding & Testing: analysis approaches could be
used during this phase to assess the application code
with regards to security vulnerabilities. As shown in
TABLE II, Curbing, Lintent , PermitMe, Vandroid, 9Fix,
AndroidLint, PerHelper , SonarLint , FindBugs, FixDroid,
icc− lint , Snyk are used in the coding and testing phases.
We combined the coding and testing phases here because we
consider only solutions integrated in the IDE. Although coding
and testing are two separate sub-processes in the software
development life-cycle, in the context of our study, testing
solutions serve only as a means of code review to identify
coding flaws within the IDE. This classification does not
include penetration tests or application post-deployment tests.

Referring to the results displayed in TABLE II, we classified the
existing plugins by development activity. Fig. 6 maps identified tools
with design phases where they can be used advantageously with
regards to security enhancement during the development life cycle.

Fig. 6. Classification Per Design Level

On the one hand, we found that most of IDE plugins are considered
at the coding phase of the development life cycle. They act as code
review tools notifying developers about their ”unconscious” security
issues. On the other hand, few works allowing security checks at
specification, design and testing phases have been proposed. As a
consequence, efforts towards filling this gap are expected and could
allow significant enhancement in tackling security issues.

2) Used security analysis approaches (RQ3): We found that
88% of the adopted analysis approaches are static. AST analysis and
formal methods are among the most used analysis methods by our
sample of plugins.

• Static AST Analysis: Most of IDE plugins investigate statically
the program Abstract Syntax Tree (AST) provided by the IDE
such as SonarQube [18], Findbugs [19] and AndroidLint [20].
The goal is to extract information that enables to check the
validity of predefined security properties patterns. Other tools,
such as PerHelper [33], PermitMe [71] and Curbing [5] also
investigate the AST to find the declared permissions in the
application and the list of API calls requiring those permissions.
The goal is to detect extra declared permissions that are not
associated to any API call.

• Formal Methods: Other tools, such as Lintent [46] analyse
the data-flow to formally check information flow with regards
to security properties. Lintent [46] uses the formal calculus for
reasoning on the Android inter-component communication API,
and type and effect to statically prevent privilege escalation
attacks on well typed components. In the same line, Sema [36]
uses formal verification of security properties in order to
generate a secure code.

As a consequence, when comparing our observations with the security
analysis methods presented in Section V-C, we found that only some
static ones are adopted by studied plugins. Dynamic and hybrid
approaches are not referred despite their advantages. We underline
this point in detail in Section VIII.

3) Considered security vulnerabilities (RQ4): The visual
matrix presented in Fig. VII-A2 summarises the plugins capabilities
in analysing the considered security vulnerabilities (cf. Section V-B).
The final results of the analysis (Fig. VII-A2) cover all the vulnerabil-
ities of all the selected IDE plugins. For each category of attacks, we
present which associated vulnerabilities are covered (or not) by the
tools. We used dark colors to specify the results obtained following
an experimental evaluations, while light colors were used to indicate
results obtained from a deep analysis of the corresponding tool’s
documentation. Green colors are associated to the True Positive (TP)
cases. This means that the tool has detected the vulnerability that
actually exists in the application. Red colors are associated to the
False Negative (FN) cases. This means that the tool has not detected
the vulnerability that actually exists in the application.

In this first analysis iteration, we classify the analysis difficulty in
three levels:

• Tools that are specialised in a specific and unique security
concern were easy to investigate. Based on the corresponding
published papers for the plugins: Curbing [5], PermitMe [71]

66

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and PerHelper [33]. They are clearly specialised in detecting
privilege escalation attacks (A1) resulting from the extra use
of permissions (V4) in the application. For other tools such as
9Fix [34], Fixdroid [73], and icc− lint [23], the list of covered
vulnerabilities was explicitly declared in the related paper. So,
it was easy to know that these tools detect A3.V1 vulnerability.

• Tools specialised in detecting a specific type of attacks but the
number of covered vulnerabilities is too large, are less easy
to investigate. As an example, Lintent [46] could theoretically
detect a large number of vulnerabilities as it formalises a notion
of safety against privilege escalation. Based on the related pub-
lished paper, it was not easy to decide whether the tool detects
the vulnerability or not as the described formal model was too
general. Fortunately, we found the list of covered vulnerabilities
mentioned in the corresponding git repository [22]. Thus, we
found that the tool covers:
– EmptyPendingIntent A1.V1 because the authors declares

explicitly that the tool covers secrecy of pending intents,
– Over-privilege application A1.V4 because it contains the

permission mapping for some Android APIs,
– The remaining vulnerabilities related to privilege escalation

A1.V2, A1.V3, A1.V5, and A1.V6 are also covered following
the github readme file where it is declared that the tool covers
attack surfaces for privilege escalation,

– It also detects A5.V3 with Vandroid related to component
hijacking.

For Page, Coconut and POLIDROID−AS, the inputs are secu-

rity requirements specified by natural languages, so they are not
specialized in detecting our list of vulnerabilities.
For Sema [36] it is explicitly declared that it covers all the vul-
nerabilities present in Ghera. However, we could not experiment
the tool as the inputs of Sema are graphical storyboards and not
source code.

• Finally, for industrial tools such as AndroidLint [20],
SonarLint [18], Snyk [21], and findbugs [19], it was hard
to investigate the covered vulnerabilities based on the docu-
mentation. The scope of these tools is too general and the
documentation is too large. We found that the following vul-
nerabilities: V1.A2, A4.V1, A4.V2, A4.V3 are covered by
SonarLint. For the remaining properties, we did not find any
information indicating whether they are covered by these tools
or not.

After performing a long analysis process of the documentation,
we decided to confirm the obtained findings by a second analysis
iteration, in the form of experimental work for the available tools. For
the unavailable tools, a second analysis iteration of the corresponding
documentation is performed by another team member. Details of this
second analysis are explained in the next subsection.

B. Deep analysis results
The objective of this part of our study is to confirm shallow analy-

sis results with an experimental evaluation using Android application
benchmarks. Compared to our previous work [1], we extended our
deep analysis process to cover all vulnerabilities related to the 5

a true positive confirmed through the tool documentation without experimentation
a true positive confirmed through the tool documentation with experimentation
a false negative confirmed through the tool documentation without experimentation
a false negative confirmed through the tool documentation with experimentation

Fig. 7. Analysis Results - IDE plugins effectiveness in detecting known vulnerabilities

67

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

attack families: Privilege escalation, information leaks, data and code
injection, and component hijacking.

We can observe that the deep evaluation confirmed that the follow-
ing tools: Curbing [5], PermitMe [71], and PerHelper [33] are specif-
ically oriented to detect over-privilege vulnerabilities (A1.V4); and
not all the other vulnerabilities. Our deep evaluation also confirmed
that none of the privilege escalation vulnerabilities are covered by
SonarLint [18], FindBugs [19], FixDroid [32] and AndroidLint [20].
For SonarLint the documentation mentions the use of least privilege
principle among the list of coding best practices to avoid A1.V4.
However, during the analysis of the over-privileged application,
SonarLint did not detect the vulnerability as shown in the technical
report [45]. For icc− lint [23], the analysis of vulnerable apps
revealed the presence of A1.V3, A1.V6, A2.V2, A4.V1, and A4.V2
vulnerabilities. In the same line, A1.V3 was also detected by icc− lint
and fixDroid .

For A1.V2 and A5.V3, we marked the result because, even though
the tool didn’t detect them during the deep analysis phase, we
found in the code two implemented rules for EmptyPendingIntent
and ImplicitPendingIntent. We assume it is not a false negative, but
rather a result explained by the fact that the tool needs maintenance.

For tools that are not available (Vandroid [35] and 9Fix [34]), an
additional careful documentation-based analysis also confirmed that
none of the privilege escalation vulnerabilities is covered.

All false negatives (FN) resulted from the shallow analysis iteration
were confirmed by the deep analysis iteration, whether through
experimental evaluation of tools or through a second round of
documentation analysis. In order to provide a rigorous and explicit
evaluation, each realized experimentation is described in details in
the technical report [45].

As a conclusion of the deep analysis phase, we are surprised by
the low detection rate of the selected IDE plugins against well known
Android vulnerabilities. We confirmed that none of the studied IDE
plugins covers all the vulnerabilities marked by the red color which
are related to critical security attacks such as: privilege escalation,
data and code injections, and sensitive information leaks. We consider
this as a research gap to be tackled during future research.

VIII. DISCUSSIONS

Section VII presented the analysis results, we now discuss on
lessons learnt and key findings, mitigated by validity threats of our
empirical study.

A. Key findings
Our analysis study raised some lessons:
• Lack of maintenance. Since the creation of the first version

of Android on 2008, the system and the framework levels have
shown many security improvements to protect users privacy.
A new Android version is released every 6 months. As a
consequence, most of the security assisting IDE plugins become
outdated, and not able to deal any more with new types
of application components, or new released APIs. Table III
provides an overview of some open-source tools updates on
git repositories, and considered IDEs. Four factors are of
interest when considering outdated tools: (i) the date of the last
commit (at the time of our study), (ii) the supported IDE type,
(iii) information leaks, (iv) the integration of the tools within
the last IDE versions. Besides observing that the date of the
last commit for many tools is old, most tools are still supported
by Eclipse only, which is no more used for developing Android
applications.

• Tools availability. In order to assist developers in identifying
and fixing the listed vulnerabilities, the availability of the
security analysis tools is crucial for the software community.
Indeed, among the proposed tools, only few are available for
use in real Android development projects. Hence, among the 16

TABLE III
MEASURE TOOLS UPDATES BASED ON THE LAST GIT COMMIT

Tool Name Publication Year Last Commit Supported IDE
Curbing 2011 - Ec
Lintent 2013 25/03/2013 Ec
PermitMe 2014 - Ec
Page 2014 - Ec
Vandroid 2018 - Ec
Android−Lint - - Ec, AS
Sema 2019 03/2020 AS
PerHelper 2019 - IJ
PoliDroid−AS 2019 08/2019 AS, IJ
9Fix 2022 - IJ
SonarLint - 02/2022 Ec, AS, IJ
FindBugs - 12/2018 Ec, AS, IJ
Cocunut 2018 09/2019 AS
FixDroid 2017 11/2017 IJ, AS
icc− lint 2018 07/2021 IJ, AS
Snyk - 2023 IJ, AS
1 AS: Android Studio: IJ: IntelliJ EC: Eclipse
2 - : unknown

analysed tools, 8 academic tools are not available for use (See
Table II). As an example, for over-privilege related vulnerability,
among the 16 tools, 11 tools could not detect this vulnerability.
On the other hand, the remaining 5 tools could detect it only
at theoretical level (based on the related research paper). As a
result, we do not find any solution that could effectively assist
developers in detecting over-privileged applications.

• Analysis effectiveness. Our study shows that none of the
assessed industrial plugin covers over-privilege vulnerabilities.
Furthermore, tools such as Lintent , PerHelper, PermitMe are
based on Fel et al. [76] permission mapping (PM) for detecting
over-privileged applications. This PM is outdated and does not
consider an accurate permission set. As a result, these tools
will generate more false negatives during the analysis process.
To overcome this limitation, these tools need to be updated to
consider a newer PM that covers more API calls such as the
permission mapping proposed by Dynamo [65], which is based
on dynamic analysis and provides PM for last Android versions
APIs.
On the other hand, we found that some vulnerabilities detection
rules do not conform to the Android specification. As an
example 9Fix, which does not allow any component to be
exported by changing the value of the attribut ”exported” as
false, and this to prevent any other application to access that
component.
Overall, we observed a dearth of tools capable of effectively
detecting the most of listed vulnerabilities. Among the 19
presented vulnerabilities, only 11 are covered by the set of
IDE plugins (which is the number of vulnerabilities for which
the analysis yielded at least one ’dark green’ result). No one
of the analysed IDE plugins is able to detect the following
vulnerabilities: A1.V1, A1.V2. A1.V3, A1.V4, A1.V5, A2.V3,
A2.V4, A5.V1, A5.V2. Except, for some vulnerabilities, it is
only theoretically possible based on the documentation, and may
not be practically detectable due to the tools unavailability.

• Analysis approaches for security: as observed in Section V-C,
most tools are based on a static analysis approach for extracting
information that enables to check the validity of predefined
security properties patterns. Figure 8 displays the analysis
techniques used by the sample of tools we analyzed. Among
these tools, 88% are based on static analysis techniques. Natural
language processing techniques are used to specify security
requirements in case of Page, Coconut, PoliDroid−AS. Few
other tools are based on formal verification methods. And the

68

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

remaining static based analysis tools investigate the program
AST to analyse the program structure and check if it conforms
to the specified security rules defined by the tools. On the other
hand, only 12% of the selected tools enable dynamic application
security testing, which are: sonarlint and snyk. In addition to
static analysis, they enable developers to examine a running
build and detect problems related to security.
As a first direction of improvement, static analysis effectiveness
of IDE plugin could be improved by adopting complementary
analysis techniques such as Symbolic execution, to allow sound
results in case of inter-component communication analysis. We
were surprised to observe that none of the investigated tools
takes advantage from the integrated IDE Android simulator
to perform dynamic analysis. Adopting dynamic analysis ap-
proaches could be an interesting direction to improve security
IDE plugin analysis results. This makes it possible to anal-
yse API calls performed dynamically (eg. through reflection).
Furthermore, other dynamic analysis techniques could be used
such as dynamic code instrumentation to exploit run-time source
code, and fuzzing as a software testing technique for automatic
input generation.

Fig. 8. Security Analysis Approach

• The lack of native code analysis support. We noticed a
substantial shortfall in the tools’ abilities to analyse native
code, which is crucial for detecting vulnerabilities. For instance,
overuse of permissions in Android apps cannot be accurately
detected without analyzing API calls at the native code level.
Currently, Per-Helper is the only plugin among the studied tools
that analyzes native code, using specific regular expressions for
C and C++ code. However, it only performs static analysis of the
program’s AST and does not provide a complete static analysis
process. Additionally, it cannot detect dynamic native API calls.

• Poor tools evaluation and validation. After reviewing the
tools’ validation process, we found that most tools do not focus
on the validation techniques used to confirm their ability to
detect the stated vulnerabilities. Except from icc− lint that has
a few unit tests for each detection rule, and Lintent , which
uses formal models and rigorous validation methods to assess
its analysis capabilities. None of the other tools follows a well
formalised validation process, except for testing the tool on
an open-source database of applications. However, there is no
guarantee that the vulnerabilities are present, neither that the
tool is able to detect the vulnerability.

• Vulnerability presence per Android version we showed
through the deep analysis step that most of listed vulnerabilities
(18 among 19 vulnerabilities) are prone to be exploited on last
version of Android 12 (see TABLE IV) Except A2.V4 (External
storage) where the vulnerability was automatically prevented
by the Android system under the following versions: 12, 11,
10. However, the corresponding attack scenario of A2.V4 is

successfully launched on Android 9. This information is critical
for developers of security analysis tools to target their detection
rules towards specific versions of the Android API.

TABLE IV
VULNERABILITY PRESENCE PER VERSION

Vulnerability Android Vulnerability Android
version version

A1.V1 12 A1.V2 12
A1.V3 12 A1.V4 12
A1.V5 12 A1.V6 12
A1.V7 12
A2.V1 12 A2.V2 12
A2.V3 12 A2.V4 9
A3.V1 12 A3.V2 12
A4.V1 12 A4.V2 12
A4.V3 12
A5.V1 12 A5.V2 12

• Vulnerability based vs Tool based Evaluation. We found
through deep analysis that analyzing vulnerable applications
yields positive results. However, we think that a more accurate
evaluation could be achieved by constructing more challenging
scenarios for the tool’s analysis. For certain vulnerabilities like
A1.V4, the current scenario only considers stated permissions
that have no relation to Java API calls. To properly assess
the tool’s detection capabilities, we need to enrich the attack
scenario by adding API calls, either dynamically or through
native code. This will help in evaluating the tool’s effectiveness
in better detecting over-privileged apps. The purpose here is
to move from analyzing simple vulnerable apps to analyzing a
larger attack surface sample.

• Tools documentation. Some tools do not mention the source of
some selected vulnerabilities. In addition, no scenario validating
the existence of the vulnerability was proposed. Adding a de-
tailed description for each vulnerability, with and attack scenario
demonstrating its exploitation would be a better approach to
ease the use of the tool and increase the trust of end-users.

• Benchmark availability and incompleteness: Ghera [14] is
a valuable reference for evaluating security analysis plugins
that focus on open-source projects, as it implements an open-
source application with common vulnerabilities. However, it
lacks some vulnerabilities, such as service hijacking, and other
vulnerabilities related to component hijacking. As a recom-
mended improvement, more vulnerabilities could be found in
CVE details. The goal is to enrich Ghera benchmark with new
vulnerabilities. As an example, we can implement scenarios
exploiting new vulnerabilities related to the manipulation of
customer permissions [77]. The availability of more relevant
benchmarks could lead to more comprehensive security analy-
sis.

B. Threats to validity

In this section, we discuss various potential threats to the validity
of our empirical study results, classified in the four categories of [78]
according to [79].

a) Conclusion Validity: focuses on how sure we can be that
the treatment we used in an experiment is really related to the actual
outcome we observed [79].

• The proposed classification focuses on security tools used dur-
ing: specification, design, coding and testing stages of software
development. Other main stages such as: integration, deploy-
ment, and the various steps of the DevOps pipeline can also be
investigated regarding the existing security tools.

69

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• The tools are continuously evolving. Only after we conducted
our evaluation, we found that a recent version of Vandroid2 has
been published.

• For the included tools where all the line is in red color, e.g.,
POLIDROID−AS and Findbugs, this does not mean that the
tool is not able to detect other vulnerabilities.
b) Internal Validity: focuses on how sure we can be that the

treatment actually caused the outcome [79]. The main threat focuses
on the Tools search & selection phase, detailed in Section IV-C.

• The set of analysis tools is not exhaustive. Despite we searched
in a wide space, we may miss existing tools because the search
key words differ, especially because our search target is crossing
fields of the classification framework of Fig. 3. To mitigate
this limitation, we crossed the references, we reviewed tools
studies and related work, had a look to development forums
and proceeded with snowballing to enrich the database.

• The selection (and rejection) criteria have been motivated in
Section IV-C. To fix these criteria we experimented more
plugins than those selected. All the selected tools are not
dedicated to Android, some have a more general purpose but
include Android vulnerability lookup. We may miss tools in
that intersection field. A major weakness is that most industrial
tools could not be included in the selection, and therefore some
outcomes would change, surely be improved.

• The set of security vulnerabilities is not exhaustive (complete-
ness). We based the vulnerability benchmark on the Ghera
repository, referring also to CVE details because only reference
repositories are sound for benchmarks. But security is a long
term race and new vulnerabilities are continuously discovered.

• Besides, the selected tools target neither the same Android
versions, nor the same vulnerabilities. So, we had to be very
careful while extracting related information to mitigate these
threats to validity. In particular, in the tool papers, the authors
do not have the same reference model, and further the one we
used (see also construct validity).
c) Construct Validity: focuses on the relation between the

theory behind the experiment and the observation(s) [79]. While
completeness is an internal validity criteria, consistency is a construct
validity criteria.

• The main threat here is the heterogeneity of the available
information for each tool. We can classify along a 4-level scale.
(a) The minimal information is articles or scientific publications,
this is a partial information to lead the shallow analysis. (b) The
information collected is better with tool documentations or
author answers to our queries. (c) Available and deployable
tools enable experimentation. (d) Git repositories enable deep
knowledge. Unfortunately we did not have the same information
on each approach.

• Identification failure is important construction threat. We based
the vulnerability benchmark on the Ghera repository but all
the tool providers do not use this repository. We may miss
vulnerabilities detected by one tool if the tool documentation
is not explicit enough to identify with the Ghera vulnerability.
This is a kind of homonym/synonym lexical issue. This may
affect the high rate of false negatives.

• The classification framework covers many complementary
points of view but the tools are not aligned on these projection
axes. This may affect some interpretation.

• We used the IntelliJ IDE to process the tests, because it is of
widespread use for Android development (Android Studio). But
using several IDE plugins and standalone tools would provide
different results (merely better if we select the union of the
passing tests).

• The tools were tested against simple scenarios specified in the
repository for each vulnerability. If the vulnerability could be
presented in many ways in the application code and the tool

implements a security detection rule that does not match the
specified manner in Gherkin, then the analysis results may be
inaccurate.

d) External Validity: is concerned with whether we can
generalize the results outside the scope of our study [79].

• Our observations are based on the evaluation of 16 IDE plugins
against 19 known vulnerabilities. Although it is a large set, it
does not represent the population of the analysis tools. The
study does not include commercial IDE plugins, tools that
could be used out of the IDE, etc. As a result, the above
observations should be considered only for similar IDE plugins,
and further exploration should be conducted before generalizing
the observations to all the existing tools.

• The research protocol is generic since the selected tools, the
SDLC stage and the vulnerabilities can be seen as parameters.
Selecting other data set for these parameters does not change
the methodology, it changes the outcomes.

• It can also be extended. Web apps are not in the scope but
connecting apps will extend the scope of inter-application
vulnerabilities.

• This study is evolving by nature and be replayed periodically
but also contributing to the Ghera repository.

The above threats show that outcome reproducibility is related to
time and facts that are true now may change. However, the process
itself is to be replayed periodically, just like vulnerability repositories
have to be updated continuously.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented a detailed survey of IDE plugins
used for secure Android application development. Our study was
motivated by the lack of existing research studies investigating their
effectiveness in preventing security attacks. We conducted a rigorous
and explicit evaluation process of 16 IDE plugins against 19 known
vulnerabilities. We believe that the results of the survey would be
useful in many cases including:

• Assisting developers in selecting the appropriate IDE plugin to
use for secure Android application development,

• Guiding researchers and security tools manufacturers in identi-
fying the existing limits in each tool, and in conducting further
research related to Android vulnerabilities,

• In addition, it could be employed as an educational framework
during security training sessions.

As the studied vulnerabilities are well known and already included
in the list of Common Vulnerabilities Expose (CVE), we expected to
have more true positives while conducting the analysis process. How-
ever, we were surprised by the obtained number of false negatives.
There remains much effort to achieve the transition from Android
software development life-cycle (SDLC) to Secure SDLC.

For future works, our study highlighted many observations that
could benefit from improvements. First, we aim to enrich the Ghera
repository with new vulnerabilities, as an example by implementing
scenarios exploiting new vulnerabilities related to the manipulation
of customer permissions [77]. Second, it is necessary to add more
activities to embrace the full SSDLC, especially at early specification
time -by defining threats, risks and scenarios that will be entry
points for the application development- and lately by considering
vulnerabilities at deployment time. Third, the current study focuses
on native applications. To cover the Android ecosystem, it must be
extended to analyze vulnerabilities related to hybrid applications,
e.g., web applications. More generally, our methodology could apply
to IOS applications by revisiting the identified vulnerabilities (what
axis). Finally, to better detect the vulnerabilities identified in this
survey, it is important to develop new IDE plugins that utilize
effective analysis techniques.

70

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] M. E. A. Tebib, M. Graa, O.-E.-K. Aktouf, and P. Andre, “Ide plugins
for secure android applications development: Analysis & classification
study,” in SECURWARE 2022: The Sixteenth International Conference
on Emerging Security Information, Systems and Technologies, October
2022, pp. 48–53.

[2] Z. Ahmed and S. C. Francis, “Integrating security with devsecops: Tech-
niques and challenges,” in 2019 International Conference on Digitization
(ICD). IEEE, 2019, pp. 178–182.

[3] “OWASP - Source Code Analysis Tools,” Accessed: 2021-12-25.
[Online]. Available: https://owasp.org/www-community/Source Code
Analysis Tools

[4] A. K. Jha, S. Lee, and W. J. Lee, “Developer mistakes in writing
android manifests: An empirical study of configuration errors,” in
2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 25–36.

[5] T. Vidas, N. Christin, and L. Cranor, “Curbing android permission
creep,” in Proceedings of the Web, vol. 2, no. 0, 2011.

[6] W. Ahmad, C. Kästner, J. Sunshine, and J. Aldrich, “Inter-app commu-
nication in android: Developer challenges,” in 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR). IEEE,
2016, pp. 177–188.

[7] J. Li, S. Beba, and M. M. Karlsen, “Evaluation of open-source ide
plugins for detecting security vulnerabilities,” in Proceedings of the
Evaluation and Assessment on Software Engineering, 2019, pp. 200–
209.

[8] A. Z. Baset and T. Denning, “Ide plugins for detecting input-validation
vulnerabilities,” in 2017 IEEE Security and Privacy Workshops (SPW).
IEEE, 2017, pp. 143–146.

[9] J. Mejı́a, P. Maciel, M. Muñoz, and Y. Quiñonez, “Frameworks to
develop secure mobile applications: A systematic literature review,” in
World Conference on Information Systems and Technologies. Springer,
2020, pp. 137–146.

[10] J. Senanayake, H. Kalutarage, M. O. Al-Kadri, A. Petrovski, and
L. Piras, “Android source code vulnerability detection: a systematic
literature review,” ACM Computing Surveys (CSUR), 2022.

[11] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy and quali-
tative comparison of program analysis techniques for security assessment
of android software,” IEEE Transactions on Software Engineering,
vol. 43, no. 6, pp. 492–530, 2016.

[12] B. Reaves, J. Bowers, S. A. Gorski III, O. Anise, R. Bobhate, R. Cho,
H. Das, S. Hussain, H. Karachiwala, N. Scaife et al., “* droid: As-
sessment and evaluation of android application analysis tools,” ACM
Computing Surveys (CSUR), vol. 49, no. 3, pp. 1–30, 2016.

[13] V.-P. Ranganath and J. Mitra, “Are free android app security analysis
tools effective in detecting known vulnerabilities?” Empirical Software
Engineering, vol. 25, no. 1, pp. 178–219, 2020.

[14] “Ghera,” Access 2021-12-25, https://bitbucket.org/secure-it-i/
android-app-vulnerability-benchmarks/. [Online]. Available: https:
//bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks/

[15] I. Ul Haq and T. A. Khan, “Penetration frameworks and development
issues in secure mobile application development: A systematic literature
review,” IEEE Access, 2021.

[16] “Android references,” Access 2021-12-25,
https://github.com/impillar/AndroidReferences.

[17] “Android security assessment tools,” Access 2021-12-25,
https://bitbucket.org/secure-it-i/android-app-vulnerability-benchmarks/.

[18] “Code quality and code security,” no date, accessed: 2022-03-05.
[Online]. Available: https://www.sonarqube.org/

[19] “Findbugs-idea,” no date, accessed: 2022-03-05. [Online]. Available:
https://plugins.jetbrains.com/plugin/3847-findbugs-idea

[20] “Improve your code with lint checks,” Accessed: 2022-03-05. [Online].
Available: https://developer.android.com/studio/write/lint

[21] “Developer loved, security trusted.” no date, accessed: 2023-01-21.
[Online]. Available: https://snyk.io/

[22] “Lintent: Towards security type-checking of android applications,”
no date, accessed: 2021-12-25. [Online]. Available: https://github.com/
alvisespano/Lintent

[23] P. Gadient, M. Ghafari, P. Frischknecht, and O. Nierstrasz, “Security
code smells in android icc,” Empirical Software Engineering, vol. 24,
no. 5, pp. 3046–3076, 2019.

[24] M. E. A. Tebib, P. André, O.-E.-K. Aktouf, and M. Graa, “Assisting
developers in preventing permissions related security issues in an-
droid applications,” in Dependable Computing-EDCC 2021 Workshops:
DREAMS, DSOGRI, SERENE 2021, Munich, Germany, September 13,
2021, Proceedings 17. Springer, 2021, pp. 132–143.

[25] S. Liang, A. W. Keep, M. Might, S. Lyde, T. Gilray, P. Aldous, and
D. Van Horn, “Sound and precise malware analysis for android via
pushdown reachability and entry-point saturation,” in Proceedings of
the Third ACM workshop on Security and privacy in smartphones &
mobile devices, 2013, pp. 21–32.

[26] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou,
and P. Liu, “Finding unknown malice in 10 seconds: Mass vetting for
new threats at the {Google-Play} scale,” in 24th USENIX Security
Symposium (USENIX Security 15), 2015, pp. 659–674.

[27] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” in Proceedings of the
9th International Conference on Mobile Systems, Applications, and
Services, 2011, pp. 239–252.

[28] “Pmd-idea,” no date, accessed: 2022-03-05. [Online]. Available:
https://plugins.jetbrains.com/plugin/4596-qaplug--pmd

[29] “Checkstyle-idea,” no date, accessed: 2022-03-05. [Online]. Available:
https://plugins.jetbrains.com/plugin/1065-checkstyle-idea

[30] “Fortify on demand,” no date, accessed: 2022-03-05. [Online].
Available: https://plugins.jetbrains.com/plugin/9943-fortify-on-demand

[31] “Checkmarx: Industry-leading application security testing,” no date,
accessed: 2022-03-05. [Online]. Available: https://checkmarx.com/

[32] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl,
“A stitch in time: Supporting android developers in writingsecure code,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 1065–1077.

[33] G. Xu, S. Xu, C. Gao, B. Wang, and G. Xu, “Perhelper: Helping
developers make better decisions on permission uses in android apps,”
Applied Sciences, vol. 9, no. 18, p. 3699, 2019.

[34] A.-D. Tran, M.-Q. Nguyen, G.-H. Phan, and M.-T. Tran, “Security issues
in android application development and plug-in for android studio to
support secure programming,” in International Conference on Future
Data and Security Engineering. Springer, 2021, pp. 105–122.

[35] A. Nirumand, B. Zamani, and B. T. Ladani, “Vandroid: A framework
for vulnerability analysis of android applications using a model-driven
reverse engineering technique,” Softw. Pract. Exp., vol. 49, no. 1, pp.
70–99, 2019. [Online]. Available: https://doi.org/10.1002/spe.2643

[36] J. Mitra, V.-P. Ranganath, T. Amtoft, and M. Higgins, “Sema: Extending
and analyzi storyboards to develop secure android apps,” arXiv preprint
arXiv:2001.10052, 2020.

[37] R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Krishnan, J. Bhatia,
T. D. Breaux, and J. Niu, “Toward a framework for detecting privacy
policy violations in android application code,” in Proceedings of the 38th
International Conference on Software Engineering, 2016, pp. 25–36.

[38] M. Rowan and J. Dehlinger, “Encouraging privacy by design concepts
with privacy policy auto-generation in eclipse (page),” in Proceedings of
the 2014 Workshop on Eclipse Technology eXchange, 2014, pp. 9–14.

[39] “Secure software development life-cycle,” accessed on 07.
April 2022. [Online]. Available: https://codesigningstore.com/
secure-software-development-life-cycle-sdlc

[40] R. Balebako, A. Marsh, J. Lin, J. I. Hong, and
L. Cranor, “The privacy and security behaviors of
smartphone app developers,” Jun 2018. [Online]. Avail-
able: https://kilthub.cmu.edu/articles/journal contribution/The Privacy
and Security Behaviors of Smartphone App Developers/6470528/1

[41] G. L. Scoccia, A. Peruma, V. Pujols, I. Malavolta, and D. E. Krutz,
“Permission issues in open-source android apps: An exploratory study,”
in 2019 19th International Working Conference on Source Code Analysis
and Manipulation (SCAM). IEEE, 2019, pp. 238–249.

[42] R. Fujdiak, P. Mlynek, P. Mrnustik, M. Barabas, P. Blazek, F. Borcik,
and J. Misurec, “Managing the secure software development,” in 2019
10th IFIP International Conference on New Technologies, Mobility and
Security (NTMS), 2019, pp. 1–4.

[43] A. Ramirez, A. Aiello, and S. J. Lincke, “A survey and comparison of se-
cure software development standards,” in 2020 13th CMI Conference on
Cybersecurity and Privacy (CMI) - Digital Transformation - Potentials
and Challenges(51275), 2020, pp. 1–6.

[44] R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen, “Challenges
and solutions when adopting devsecops: A systematic review,”
Information and Software Technology, vol. 141, p. 106700, 2022.

71

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0950584921001543

[45] M. Tebib et al., “IDE plugins capabilities in detecting An-
droid vulnerabilities,” 2022, https://uncloud.univ-nantes.fr/index.php/s/
mzwoC44xs5xiowN.

[46] M. Bugliesi, S. Calzavara, and A. Spanò, “Lintent: Towards secu-
rity type-checking of android applications,” in Formal techniques for
distributed systems. Springer, 2013, pp. 289–304.

[47] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[48] Y. Aafer, G. Tao, J. Huang, X. Zhang, and N. Li, “Precise android
api protection mapping derivation and reasoning,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1151–1164.

[49] C. Li, X. Chen, R. Sun, J. Xue, S. Wen, M. E. Ahmed, S. Camtepe, and
Y. Xiang, “Natidroid: Cross-language android permission specification,”
arXiv preprint arXiv:2111.08217, 2021.

[50] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security, 2012, pp. 217–
228.

[51] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” ACM Computing Surveys
(CSUR), vol. 51, no. 3, pp. 1–39, 2018.

[52] C. Cadar and M. Nowack, “Klee symbolic execution engine in 2019,”
International Journal on Software Tools for Technology Transfer, pp.
1–4, 2020.

[53] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek, “Sig-droid:
Automated system input generation for android applications,” in 2015
IEEE 26th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2015, pp. 461–471.

[54] R. Spreitzer, G. Palfinger, and S. Mangard, “Scandroid: Automated side-
channel analysis of android apis,” in Proceedings of the 11th ACM
Conference on Security & Privacy in Wireless and Mobile Networks,
2018, pp. 224–235.

[55] S. Lortz, H. Mantel, A. Starostin, and A. Weber, “A sound information-
flow analysis for cassandra,” TU Darmstadt, Tech. Rep., 2014.

[56] A. Souri, N. J. Navimipour, and A. M. Rahmani, “Formal verification
approaches and standards in the cloud computing: a comprehensive and
systematic review,” Computer Standards & Interfaces, vol. 58, pp. 1–22,
2018.

[57] G. Iadarola, F. Martinelli, F. Mercaldo, and A. Santone, “Formal methods
for android banking malware analysis and detection,” in 2019 Sixth
International Conference on Internet of Things: Systems, Management
and Security (IOTSMS). IEEE, 2019, pp. 331–336.

[58] W. Landi, “Undecidability of static analysis,” ACM Letters on
Programming Languages and Systems (LOPLAS), vol. 1, no. 4, pp.
323–337, 1992.

[59] B. Chess and G. McGraw, “Static analysis for security,” IEEE Security
& Privacy, vol. 2, no. 6, pp. 76–79, 2004.

[60] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signaturegeneration of exploits on commodity
software.” in NDSS, vol. 5. Citeseer, 2005, pp. 3–4.

[61] F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu, “Lift: A low-
overhead practical information flow tracking system for detecting secu-
rity attacks,” in 2006 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’06). IEEE, 2006, pp. 135–148.

[62] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6,
pp. 89–100, 2007.

[63] P. Oehlert, “Violating assumptions with fuzzing,” IEEE Security &
Privacy, vol. 3, no. 2, pp. 58–62, 2005.

[64] J. Viide, A. Helin, M. Laakso, P. Pietikäinen, M. Seppänen, K. Halunen,
R. Puuperä, and J. Röning, “Experiences with model inference assisted
fuzzing.” WOOT, vol. 2, pp. 1–2, 2008.

[65] A. Dawoud and S. Bugiel, “Bringing balance to the force: Dynamic
analysis of the android application framework,” Bringing Balance to the
Force: Dynamic Analysis of the Android Application Framework, 2021.

[66] O. A. V. Ravnås, “Frida: Dynamic instrumentation toolkit for developers,
reverse-engineers, and security researchers,” 2019.

[67] L. Dresel, M. Protsenko, and T. Müller, “Artist: the android runtime
instrumentation toolkit,” in 2016 11th International Conference on

Availability, Reliability and Security (ARES). IEEE, 2016, pp. 107–
116.

[68] A. Druffel and K. Heid, “Davinci: Android app analysis beyond frida
via dynamic system call instrumentation,” in International Conference
on Applied Cryptography and Network Security. Springer, 2020, pp.
473–489.

[69] S. Zhao, X. Li, G. Xu, L. Zhang, and Z. Feng, “Attack tree based
android malware detection with hybrid analysis,” in 2014 IEEE 13th
International Conference on Trust, Security and Privacy in Computing
and Communications. IEEE, 2014, pp. 380–387.

[70] “Find security bugs,” no date, accessed: 2023-02-11. [Online].
Available: https://plugins.jetbrains.com/plugin/3847-findbugs-idea

[71] E. Bello-Ogunu and M. Shehab, “Permitme: integrating android permis-
sioning support in the ide,” in Proceedings of the 2014 Workshop on
Eclipse Technology eXchange, 2014, pp. 15–20.

[72] T. Li, Y. Agarwal, and J. I. Hong, “Coconut: An ide plugin for devel-
oping privacy-friendly apps,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 4, pp. 1–35,
2018.

[73] “Fixdroid: Usable security and privacy research,” accessed: 2022-03-05.
[Online]. Available: https://plugins.jetbrains.com/plugin/9497-fixdroid

[74] “Explore the microsoft security sdl practices,” accessed on 07.
April 2022. [Online]. Available: https://www.microsoft.com/en-us/
securityengineering/sdl

[75] “Software assurance maturity model,” accessed on 07. April 2022.
[Online]. Available: https://owasp.org/www-project-samm/

[76] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference
on Computer and communications security, 2011, pp. 627–638.

[77] R. Li, W. Diao, Z. Li, S. Yang, S. Li, and S. Guo, “Android custom
permissions demystified: A comprehensive security evaluation,” IEEE
Transactions on Software Engineering, 2021.

[78] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell,
Experimentation in Software Engineering - An Introduction, ser. The
Kluwer International Series in Software Engineering. Kluwer, 2000,
vol. 6. [Online]. Available: https://doi.org/10.1007/978-1-4615-4625-2

[79] R. Feldt and A. Magazinius, “Validity threats in empirical soft-
ware engineering research - an initial survey,” in Proceedings of the
22nd International Conference on Software Engineering & Knowledge
Engineering (SEKE’2010), Redwood City, San Francisco Bay, CA,
USA, July 1 - July 3, 2010. Knowledge Systems Institute Graduate
School, 2010, pp. 374–379.

72

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SPVExec and SPVLUExec - A Novel Realtime Defensive Tool for
Stealthy Malware Infection

Nicholas Phillips
Department of Computer and Information Sciences

Towson University, Towson, MD, USA
nphill5@students.towson.edu

Aisha Ali-Gombe
Division of Computer Science and Engineering

Louisiana State University, Baton Rouge, LA, USA
aaligombe@lsu.edu

Abstract—The vicious cycle of malware attacks on
infrastructures and systems has continued to escalate
despite organizations’ tremendous efforts and resources in
preventing and detecting known threats. One reason is that
standard reactionary practices such as defense-in-depth
are not as adaptive as malware development. By utilizing
zero-day system vulnerabilities, malware can successfully
subvert preventive measures, infect its targets, establish
a persistence strategy, and continue to propagate, thus
rendering defensive mechanisms ineffective. In this paper,
we propose sterilized persistence vectors (SPVs) - a proac-
tive Defense by Deception strategy for mitigating malware
infections that leverages a benign rootkit to detect changes
in persistence areas. Our approach generates SPVs from
infection-stripped malware code and utilizes them as
persistent channel blockers for new malware infections.
We performed an in-depth evaluation of our approach on
Windows systems, versions 7 and 10, and Ubuntu Linux,
Desktop, Server, and Core 22.0.04, by infecting them with
2000 different malware samples, 1000 per OS typing, after
training the system with 2000 additional samples to fine-
tune the hashing. Based on the memory analysis of pre-and
post-SPV infections, our results indicate that the proposed
approach can successfully defend systems against new
infections by rendering the malicious code ineffective and
inactive without persistence.

Keywords— Malware; Rootkit; Reverse Engineering; Per-
sistence; Defence by Deception.

I. INTRODUCTION

Malware is a continued threat against cyber systems. Char-
acterized by stealthiness, persistence, and mutation, new-
generation malware often utilizes various system vulnerabil-
ities for infection and then leverages standard system func-
tionality to maintain persistence. With a suitable persistence
strategy, malware can remain active and prolong its existence
on a host system. One of the strengths of modern malware
development is its adaptability: methodologies mutate rapidly,
targeting areas where security measures are weaker or nonex-
istent. This is true across all systems, but specifically against
Windows and Linux platforms. Windows continues to hold
the majority of new and unique malware samples due to

its position as the most distributed OS in the marketplace,
while Linux has been seeing exponential growth, growing
646 percent in samples from 2021 to 2022 [6], as shown in
Figure 1. In both related literature and practice, many malware
defensive techniques have been proposed - (1) antiviruses and
host-based intrusion detection [33], [82], (2) integrity checking
[49], [51], (2) integrity checking [31], [42], detection [10],
[28], [40], [41], [49], [51], and (3) after-effect or post-mortem
analysis [12], [14], [34], [44], [45], [80] of modern malware.
However, as evidenced by the continued rise in stealthier attack
scenarios, new samples, and variant development [19], these
defensive approaches fall short of addressing a growing threat.

The common theme of these techniques is identifying
the problem either before infection through signature or
anomaly detection or after infection through system scans.
Neither provides a general means to stop malware due to
its adaptability. These ideas of a responsive or reactionary
approach to detecting and preventing malware infections, in
many respects, play to malware’s strengths. Because of the
above mentioned limitations, we propose SPVs - a Defense
by Deception approach. Our methodology aims to drastically
reduce malware infections by reducing the available areas of
persistence for a malicious actor’s exploits, including zero-
day attacks. Our approach employs malware code segments to
defend a target system against future infection, thus serving as
a defensive mechanism. This novel technique is a drastic shift
from the conventional utilization of malware code for signature
detection and fingerprinting. In our proposed approach, we
place blockers called SPVs in critical areas of persistence on
target systems. These SPVs are persistence and deployment
elements stripped from the various malware samples analyzed.
Essentially, SPVs prevent a new malware infection by blocking
it from writing its own vector or overwriting the persistence
vector associated with already established malware. With this
approach, malware loses its ability to persist and is prevented
from executing its payloads and consequently propagating
further. Thus, in this extended version of our prior conference
paper [1], we implemented the prototype of our SPV by
manually building a library of 200 payload-stripped SPVs into
the Defense by Deception code base, which is then compiled
into a target system and deploying at system startup. The
Defense by Deception code called the SPVExec on Windows

73

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. Malware Growth By Year [6]

and SPVLUEXEC on Linux, then administered as a malware
defensive apparatus on a need basis automatically at system
runtime without user intervention. The empirical results of the
evaluation on Windows 7 and 10, as well as Ubuntu Desktop,
Server, and Core 22.0.04, for pre- and post-SPV deployment
infected with 2000 malware samples, showed that the use of
SPVs is a very effective strategy for malware defense. For 99%
of the samples in the data set, the SPV Defense by Deception
process rendered them inert - the malware sets could not
execute their payloads, persist, or propagate. These blocked
malware executables are also saved in a “quarantine” zone,
allowing for collection and utilization in additional security
tool development.

Contributions - Our proposed novel SPV strategy provides
the following salient features:

• Defense Against Malware: Developing a practical ap-
proach to preventing new malware infections by simu-
lating and inventing the perception that the system is
already infected.

• Fully Automated Deployment Process: The deployment
and rendering of the SPVs at runtime are done without
human intervention.

• Efficiency: The SPV code incurs very minimal overhead
on runtime system resources.

• Usability: The generated SPVs are reliable and seldom
flagged as malware by system defense and antiviral tools.
Furthermore, the proposed system allows legitimate pro-
grams to be installed without hindrance based on internal

whitelisting.
• Aided Defense Development: Identified samples are

saved and can be further analyzed for other security tool
deployments.

The rest of the paper is organized as follows: Section 2
reviews the related literature; Section 3 presents the problem
statement and an overview of rootkit infection; Sections 4
and 5 present the implementation of the SPV process and
evaluation of our research, respectively; Section 6 details the
future work; and Section 7 concludes the paper.

II. RELATED WORK

With the rising threat of malware, the current field of work
is constantly evolving, attempting to stem the problem and
offer an effective form of Analysis and Defense against it.
However, means of malware detection and analysis have grown
more stagnant in the last ten years. Literature and current
works can be divided into two main categories: Analysis and
Detection/Defensive Measures.

A. Malware Analysis
Means of malware analysis have grown more stagnant in

the last ten years. Windows malware analysis, in particular,
has followed the main analysis structure since the early 2000s.
As shown in Tahir, Alsmadi, and El Merabet [46], [47], [48],
most of the improvements have been focused on implementing
machine learning. This implementation is worked by classify-
ing individual features within malware samples and rejecting

74

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

non-specific elements found within a large number of malware
samples. While this is an improvement upon the standard
malware detection means, there is the limitation that they are
process intensive, both in the means of learning algorithms for
detection and in scanning the multitude of files presented to
the system. The remainder of the analysis techniques has dealt
more with means of automation of the malware analysis. These
are divided into two distinct areas of study, either generation
of automated scripting to automate the analysis and the second
is through continued utilization of machine learning to detect
similar features within the malware samples.

Current literature in the analysis of malware adheres to
a standard approach of malware analysis of a two-phased
static and dynamic analysis approach [3]. However, others,
such as Lee et al. [56], Dietz et al. [55], and Hwang et
al. [57], have developed modifications to this by creating
unique and independent analytical platforms. Mehdi et al.
proposed Imad, an in-execution analysis platform for malware
analysis. Another imported related technique proposed for
malware detection is code or system-level instrumentation
[4], [5]. Similar to the instrumentation is the development of
Sandboxing environment. Mohino et al., in their work pro-
posed MMALE - a Sandbox-like environment for automated
execution and analysis of malware. Sandbox environments are
also the focal point of Monnappa for attempts to automate
malware analysis [49], [58], [59]. As with other Sandbox-
based analysis techniques, there is the potential that malware
authors can add code elements to detect these environments
and not execute their code base. Additionally, malware authors
have segmented their code bases and only contained some
malicious elements in one download, as found in the research
study across multiple malware samples presented in Kiachidis
and Baltatzis [53]. This can cause the files in automated
environments to flag them as non-malicious, even though they
are the start of a malicious campaign.

In the area of machine-learning-based malware detection,
the work of Jeon et al. and further developed by Kim et
al., proposed deep learning for identifying similar elements
of malware structure, such as similar function calls, domain
addresses, string structures, etc., to try to determine the pos-
sibility of a newer sample being malicious [60], [54]. This
is a tremendous step forward and can potentially speed up
automated analysis. However, there is a shortcoming. These
algorithms take time and a large sample base to learn the
patterns in the malicious code. By the time they can identify
the current trend of malicious code, malware authors can find
new means to bypass these defensive measures, as shown in
the evolution study presented by Cozzi et al. [61].

The SPV code does not have several limitations in the
current analysis research elements. Instead of parsing through
many code elements to determine maliciousness, the SPVs can
target the smaller area of the malware persistence. This reduces
thousands, if not millions, of code lines to a few major persis-
tence areas. Additionally, as the SPV code is not attempting
to stop the execution of the code through the current means,

such as through the Sandbox analysis or process identification,
several malware defensive measures are not utilized. The SPVs
only need to worry about the raw malware code, not the
identification of packers or encryption; it does not need to
worry about antiVM and anti-RE capabilities. This leads to
an extensive reduction in time and resources, which would
be wasted in the analysis process. This paper presents a new
SPV Defense by Deception strategy that leverages sterilized
persistence vectors extracted from a real malware corpus to
block potential malware infections. Our system utilizes code
from malware samples, not as signatures but as defensive
strategies that stop new infections from attempting to write
into persistence regions. Compared to existing COTs and
techniques described in the literature for malware detection
and prevention, our approach is designed to be more robust
and versatile, with the ability to block malware both on bare
hardware and in virtualized environments. Additionally, our
methodology does not require a signature or agnostic of the
target malware behavior. Through an in-depth evaluation of
2000 malware samples with pre- and post-SPV infection, we
demonstrate that our proposed SPV Defense by Deception
mechanism can effectively defend systems against malware
infections with 1-3 percent CPU and memory overhead while
not limiting the ability to install legitimate programs properly.

B. Malware Detection

Malware detection methodologies can be broken down into
Host-based, Hypervisor-based, and Post-mortem analysis.

1) Host-based Detection: The more traditional tech-
nique for rootkit detection is a host-based intrusion detection
system that checks for anomalies or footprints of known
malware. For example, the System Virginity Verifier verifies
the validity of in-memory code for critical system DLLs and
kernel modules; [39] checks the legitimacy of every kernel
driver before it is loaded into the operating system; Panorama
[40] is designed to perform behavioral runtime tracking, and
SBCFI [26] detects threats by examining the control flow
integrity of the kernel code. A smaller subset of methods, such
as Autovac, utilizes forensics snapshot comparison engines to
detect the execution of malware on the system to prevent
it [38]. Other host-based rootkit detection systems include
HookFinder [40] and HookMap [36]. These techniques use
systematic approaches to detect and remove malware hooks
in target operating systems. One offshoot of the pre-infection
defensive measures proposed by Das et al. and further de-
veloped by Kedrowitsch et al. is the deployment of Docker
containers as Honeypots and analyzing the behavior of the
attacks to fine-tune defensive measures. By presenting these
areas as more appealing targets for network attacks, security
professionals can fine-tune the defensive measures on their
main network components to avoid compromise [73], [75].
Shahzad et al. presented a means of detecting running malware
on a Linux system by comparing the task structure of the Linux
processes. By loading the kernel structures of a process, they
have identified whether it is malicious or not with a minimal

75

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

impact on the system’s overhead [64]. The shortcoming of
this research is that once the specific modules have been
removed, as shown in their evaluation, the accuracy begins to
fail. Malware code has proven as it evolves to have the ability
to start targeting elements that are preventing its infection,
such as those proven in the study by Ngo et al. [81].

One major drawback of traditional host-based detection
methodologies is the ability of the malicious entity to evade
detection since it is running with the same level of privilege
as the detection systems. Given that most of these tools are
designed to probe for the rootkit signature and/or behavior,
malware can easily subvert this effort as it evolves to have
the ability to start targeting elements that are preventing its
infection, such as those proven in the study by Ngo et al. [81].
The SPV code does not scan for malware footprint or traits;
instead, it takes the more aggressive approach of hijacking the
persistence area of a potential rootkit, leaving the malware
with no place to hide. Furthermore, the SPV code is built so
the malware cannot eject or terminate its process.

2) Hypervisor-based Detection: Integrity checking is a
technique that requires continuous monitoring of the kernel
code for changes to signatures, control flow, and kernel
data structures. For kernel-level rootkits, the most practical
approach for maintaining kernel integrity is hypervisor-based
systems that leverage virtual machine introspection (VMI) [2],
[17], [18], [28], [30], [31], [42], [43]. VMI systems and tools
are built to introspect the virtual environment through the hy-
pervisor. Since the hypervisor runs at a much lower level than
the virtual OS, these mechanisms are often seen as effective
for detecting rootkits and monitoring their behavior. However,
their major limitation is that they target only virtualized
environments and cloud infrastructures and cannot be applied
to introspect real hardware-based systems. Moreover, most
kernel integrity-check-based systems are susceptible to return-
oriented rootkit attacks [17]. Asmitha and Vinod presented a
means of malware classification based on eXtended-symmetric
uncertainty. The work of [68] utilize entropy to rank features
of different classes of malware and compare them against
known features for malware identification. While promising
research with the ability to detect nearly all cases with 99%
accuracy, however, this work is limited to leveraging only the
entropy. As shown in the cases of higher-level rootkits, such
as those as part of the research in Raju et al. and Wang, newer
malware samples can corrupt these algorithms that depend
on static features [70]. Xu et al. proposed MIDAS, a real-
time behavior auditing to detect malware across IoT devices.
In their research, they developed a framework that analyzes
the individual elements of executables as they are on the
system. Once compared to the baseline, those that match the
malware are flagged as malicious [71]. This research is vital
because it checks for malicious elements as the sample run.
However, this brings about its shortcoming: against elements
of malicious code that do not match the pattern and benign
software that does match the auditing requirements. Gomez
et al., in their forensic analysis of IoT malware, found that

several samples have become adapted to masquerading as
benign programs, allowing the bypass of defensive measures
[80]. The other central research element for pre-infection is the
measurement of secure system installations. Sun et al. propose
monitoring and protection elements during the installation
phase of software deployment to minimize infection during
the software deployments [76]. While this is an excellent idea,
it comes to some of the same problems as other installation
protection items, such as Antiviruses. Malware can compro-
mise these checks and gain the access needed to complete
their installation. Even some more robust defensive engines
meant to stop improper software loading, such as SecureBoot,
have been compromised, as proven in Alrawi et al. [85].
Methods used to detect the integrity of a system have been
proven to be limited based on the existence of UEFI bootkits.
These malicious code elements work by making the operating
system accept that malicious code pieces are a legitimate
portion of the system’s code [11], [16], [27], [71]. With our
proposed SPV Defense by Deception process, the system is
designed to execute on both hardware and virtual systems, thus
circumventing this limitation.

3) Post-mortem Analysis: The last category of rootkit
detection methods is post-mortem analysis systems, designed
to analyze the after-effects of rootkit execution. These forms
of analysis are often passive and involve examining kernel
memory snapshots looking for evidence of rootkit infection,
persistence, and stealth. Disk forensics tools, such as [12],
[14], [34], [44] are used for general system incident response.
These tools can examine a target system for file modifications,
running processes, network activities, and more. In much the
same way as integrity checkers, disk forensics tools are limited
by their coverage. If malicious code hides its elements in spe-
cific system files or structures, these will generally be missed
by the post-mortem analysis [9]. With memory forensics,
post-mortem analysis is carried out on a snapshot of volatile
memory. The most widely used memory analysis framework is
the volatility framework [45]. This methodology is restricted
to current events and processes. Terminated malware behaviors
cannot be retrieved. Furthermore, modern rootkits can evade
detection from memory forensics tools by performing direct
kernel object manipulations that hide their presence from reg-
istering in major kernel structures or by altering the memory
collection or imaging process as a whole [21]. The SPV code
does not scan for malware footprint or traits; instead, it takes
the more aggressive approach of hijacking the persistence area
of a potential rootkit, leaving the malware with no place to
hide. Furthermore, the SPV code is built so the malware cannot
eject or terminate its process. Compared to a more passive
malware detection approach, our SPV process is an offensive
approach that prevents malware infections in real-time. The
SPVs are designed to block malware from executing, thus
forcing the malware to terminate its process.

III. PROBLEM STATEMENT

Malware has always had the strength of its adaptability,
which enables it to use multiple mechanisms to infect and

76

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

evade detection or bypass many of the elements of system
defense [15]. Either using out-of-date signatures, exploiting
unknown vulnerabilities, or targeting the weakest link - the
human - malware will cause the defense to fail, even if only
one falls short. Current detection and prevention tools are
significantly disadvantaged because malware evolves faster
than defense tools. Stealthy zero-day attacks are becoming
increasingly common, and it takes only a single unknown
offense or human error to bring down the whole gauntlet of
defenses [20].

Thus, we present the SPV Defense by Deception process -
a novel technique that attempts to hijack the areas in which
malware, in general, and rootkits, in particular, can land their
persistence vectors. Rootkit persistence vectors are specifically
selected in this research because they are the most common
persistence mechanism used by malware of all families [15].

The motivation to use persistence vectors stems from the
fact that, in practice, infection vectors are unpredictable,
meaning that exploits, especially zero-day exploits used to
launch malware attacks, evolve with newly found vulner-
abilities. However, the persistence vectors with which the
malware maintains a presence on a victim’s machine are
often deterministic. As such, the most effective way to curtail
rootkit infections and ultimately render them ineffective is
to place blockers in the potentially persistent channels in
the system. Long-term malware campaigns, specifically those
utilized by Advanced Persistent Threats (APTs), do not wish
to bring a targeted system down immediately. Instead, they
want to complete target profiling against the network, exfil-
trate sensitive data, and work further into the system. It can
sometimes be months before the threat actors launch their
final attack target. For this, they require a means to remain
in the system. They require persistence. One of the longest
of these types of campaigns was the Harkonnen Operation.
Malicious actors could utilize their malware persistence and
operate on a network for twelve years before they were finally
detected. During this time, the malware implanted could assist
with further target development, stealing essential data, such
as corporate financial documentation, and pilfering money for
the attackers [23]. Our approach injects the SPV code into the
system startup process and can be rendered on bare hardware
and virtualized environments. The SPV process blocks all
malware by first detecting in real-time when the malware
deploys its persistence vector. It then hijacks the malware area
of persistence by automatically selecting and overwriting the
malware code with certain SPVs. This process consistently
blocks target malware from maintaining a presence on a
defended system. Although our approach is currently limited
to the categories of malware containing persistence vectors,
“fileless” malware has only existed substantially since 2002.
It is still not utilized as substantially as persistent malware
[87], thus making this limitation minimal.

IV. THE SPV - DEFENSE BY DECEPTION PROCESS

The SPV process is a code implementation of “sterilized”
malware or malware with malicious content removed and

injected via a common infection mechanism. It is a technique
designed to prevent malware persistence on a system. SPV
process involves injecting a malware persistence vector into
a clean system to block potential malware from maintaining
access. This process combines standing entries consisting
of stripped malware persistence vectors and infection code
fragments with filler code. With SPVs, the malicious payload
code fragments are entirely stripped off while retaining the
core elements of malware, such as API hooking, process
manipulation, and service control in the SPV. Our proposed
approach’s workflow comprises the SPV development phase
and SPVExec code deployment and integration.

A. Development Phase

This phase begins with identifying and extracting malware
persistence vectors and then reprogramming the extracted
persistence code fragments into one executable module.

1) Persistence Extraction: The mechanism in this stage
requires manual extraction through detailed reverse engineer-
ing. We completed our reverse engineering via both static
and dynamic malware analysis techniques. Malicious samples
were collected from virus repositories: VirusShare [1] and
Malshare [25]. One thousand samples per main OS platform
were run through the two phases of reverse engineering. This
was completed in a series of virtualized Windows and Linux
environments. Two copies each were utilized, one for dynamic
analysis and one for static analysis. These systems were
identified as Testbed-1 for dynamic analysis and Testbed-2 for
static analysis. Each machine had two 2.4 GHz cores and 4
GB RAM. For each target malware, we ran the sample against
an unpacker for each target malware to remove any possible
common packers and cryptors, leaving behind the bare-bones
malware code that the analysis tools would evaluate. In this
initial phase, the stripped malware code was executed in
a custom-built dynamic analysis sandbox running ProcMon,
CaptureBat, CFF Explorer, API Monitor, and RegShot for the
Windows-based samples. The Linux samples were analyzed
with X tools.

This static analysis identifies a specific part of the ex-
ecutable targeted during the dynamic analysis phase. Such
code constructs include specific API invocation, non-normal
network traffic, registry modification, and file creation. We
executed the samples through a debugger and disassembler for
the dynamic analysis, specifically IDAPro and OllyDbg (GDB
for the Linux-based samples), targeting the identified elements
in static analysis. Then, utilizing the HexRay program within
IDAPro, the code section was removed and converted to a C
program snippet.

2) SPV Generation: With the elements of persistence and
infection identified and removed from the base malware code,
we developed the SPVs. Since the identified persistence code
was disassembled, we began this stage by converting the as-
sembly code into C programming language. Upon extraction,
PVs reflect specifically that individual sample of the malware,
but additionally can be utilized against the majority of the

77

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 2. Windows Extracted PV

samples of that specific malware family of that generation.
For example, an extracted persistence vector from Zeus Botnet
would identify that specific file and the different samples
in that same generation of Zeus. Specific PVs could also
be utilized against other families, dependent upon source
code sampling used by the author upon its creation. Prior
or future versions would require additional PV extractions
depending on the evolution of the malware sample. Figure
2 show the PV extracted from Necurs Rootkit. The Necurs
sample persists using multiple techniques, notably boot and
registry modification implementation. These specific PVs were
identified through our two-phased reverse engineering and
exported for inclusion in the SPV library.

These 800 individual SPV extracted from the 1000 malware
samples are loaded into the SPV Defense, including the de-
ployment code elements. These were selected as they covered
the range of persistence vectors and allowed for the broad
defense of the SPVs when deployed on the system.

To build a more robust SPV defensive process, we devel-
oped an SPV library consisting of multiple SPVs.

B. SPVExec Implementation
The proposed SPV mechanism uses the extracted PVs

to form a benign rootkit called SPVLUEXEC. Additional
persistence scanning mechanisms were added to the code to
overwrite non-whitelisted persistence modifications. Another
functionality was implemented to deploy a FAT32 file system
within the bootstrap code section of the system. This area was

used for the SPV library, whitelisting, and the SPV Defense
base code. The data remained encrypted, utilizing a 256-bit
key to protect against registering on scans.

The SPVEXEC and SPVLUEXEC were implemented as
single Windows EXE and Linux ELF executable programs
loaded alongside the essential boot files at system startup.
Each prototype is approximately 1800 lines of code in the
C programming language. It is structured as follows:

• SPV Database - SPVs randomized for deployment
across the system.

• Defensive Measures - Defensive elements to protect
SPV code base from scans and identification of malicious
code and legitimate defensive measures.

• Dynamic White- and Blacklisting - Included a listing
of approved and disallowed changes that can be imple-
mented on the system.

• Analysis Mechanism - Hash comparison against the
deployed SPVs and values found in their areas.

• SPV Launcher - Mechanism that handles the deploy-
ment of the SPVs into their specific areas of persistence.

• Quarantine Zone - Area for tagged code samples for
tool development.

After successfully loading the SPVExec, the persistence
vectors employ two scanning techniques to validate and en-
sure that an intruder has not altered the injected SPVs at
runtime. The first check utilizes time-based scans, similar to
those employed by current protective tools. In the current
implementation, this check runs a scan every second. Our

78

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

secondary scanning technique leverages API hooking to check
for malware intrusion. The SPV instances are injected into
kernel-level processes. Any attempts to access the protected
area of persistence are redirected to one of the SPV Defended
DLLs. Both scanning techniques utilize hash lookups. During
SPV code deployment, a hashmap of the injected SPVs and
the region of persistence are stored. The rewriters dynamically
replace code elements within the SPVExec codebase and are
designed to look up any changes to the injected SPVs. The
dynamically computed hashes of the injected vectors are then
compared against the SPVs expected to be in those regions.
If no match is returned, the code rewrites those SPVs as
expected.

V. EVALUATION OF THE SPV DEFENSE BY

DECEPTION PROCESS

We evaluate the effectiveness of our proposed SPV defense
mechanism by performing four major experiments that an-
swered the following questions:

• Persistence of the SPV Defense process - Can the SPV
Defense survive and persist through system restarts and
power removal?

• Defense against malware - Can the SPVs be used as an
effective strategy to block potential malware from writing
to protected areas of persistence?

• Defense Through Deception - Does the SPV Defense
identify as malware to other malware and legitimate to
legitimate programs?

• System Performance - Can the SPV Defense process be
used as an efficient apparatus for system defense without
depleting system resources?

• Whitlisting Capability - Does the SPV Defense allow
legitimate programs to install without being replaced
with SPV code?

• Defense Development - Does the SPV Defense aid with
other defensive tool development?

A. Test Environment
To test SPVs across operating systems, we generated

Testbed-3 and Testbed-4, utilizing Windows testbeds using
the same baseline operating systems as in the persistence
extraction phase, i.e., Windows for Windows and Ubuntu for
Linux. They both contain sets of virtual machines and bare
metal with two 2.4 GHz cores and 4 GB RAM. Testbed-
1 remained at the same level of security as that of the
persistence extraction environment; this removes the chance
of malware failing to infect because of patching or security
tools. Unlike in persistence extraction, however, this testbed
has most of its nonsecurity functionality restored. This allows
the system to act similarly to a standard user system that
would be part of a normal network. Testbed-2, Testbed-3, and
Testbed-4 are equipped with system security monitoring tools,
such as operating system inbuilt Defense, i.e., Host-based
Security System, and other commercial off-the-shelf antivirus
products appropriate to the respective OS. For all the testbeds,

user programs were installed to simulate a working system
on a network, and typical applications were often targeted
for compromise. To provide better containment during our
analysis and testing, we implemented FakeDNS to resolve any
network traffic.

B. Post-Mortem Analysis Environment
We leverage an in-depth analysis of the target systems’

extracted memory snapshots to evaluate the overall SPV
Defense process’s accuracy, resilience, and performance. To
perform forensic examinations of the memory dumps, we
created a separate system equipped with FTK (Linux Memory
Extractor (LIME) for Linux) and Volatility. The collection
tools were also loaded on a USB to protect the data from
being compromised after a malware infection. This allowed
the acquisition to have a limited impact on the system while
keeping the tools from being impacted by any potential built-in
anti-analysis approach.

C. Experiments
1) Experiment I: Persistence: Vital to the functionality

of the SPVExec benign rootkit is its ability to maintain persis-
tence. We took the Testbed-2 system post-SPV deployment to
test this functionality and saved it as “X-Security-TestingPost.”
We then performed a power cycle. A start-up alert was entered
into the code to present a popup if the SPV remained intact.
This alert displays the first SPV value and a “Hello World”
message. Upon powering the system, a memory collection was
completed utilizing FTK Imager. Volatility Memory Frame-
work processed the memory image with the following plugins:
psxview, malfind, ldrmodules, apihooks, dlldump, procdump,
and threads. Processes and Dynamic Link Libraries (DLLs) of
the SPVExec proved that it could maintain its persistence, and
a popup was displayed.

For the Linux-based systems, a start-up alert was entered
into the code to present a terminal displaying the first
SPV value and a “Hello World” message if the SPV
remained intact. Upon powering the system on, a memory
collection was completed utilizing LIME. Volatility Memory
Framework processed the memory image with the following
plugins: Linux psaux, Linux malfind, Linux pstree,
Linux kernel opened files, Linux hidden modules,
Linux procdump, and Linux bash. Processes and shared
objects of the SPVLUExec were found that proved that it
could maintain its persistence and a terminal with the defined
items was displayed.

Presented below in Figures 3 and 4 are the outputs from the
Malfind upon the memory collection of the respective system,
showing the SPV code still operating.

2) Experiment II-A: Defense Against Malware: The
primary functionality of the SPVExec is its ability to stop
malware attacks against the system. To provide a sufficient test
of the defensive capabilities of our approach, we conducted
this experiment with 1000 malware samples with diverse
infection and persistence vectors and varying degrees of

79

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 3. Volatility Output Windows: Malfind

Fig. 4. Volatility Output Linux: Malfind

80

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I: Regular Testing: Windows
Defense TP TN FP FN Accuracy
Symantec 987 0 1 12 98.7%
Kaspersky 986 0 0 14 98.6%
Avast 984 0 1 15 98.4%
McAfee 987 0 0 13 98.7%
ESET 985 0 1 14 98.5%
SPV 999 0 0 1 99.9%

TABLE II: Regular Testing: Linux
Defense TP TN FP FN Accuracy
Kaspersky 987 0 1 12 98.7%
BitDefender 986 0 0 14 98.6%
Avast 984 0 1 15 98.4%
McAfee 987 0 0 13 98.7%
ESET 985 0 1 14 98.5%
SPV 999 0 0 1 99.9%

stealthiness. We utilized Testbed-2, Testbed-3, and Testbed-
4 and executed the SPVExec; the image was saved as “X-
Post-SPV,” with X representing the OS. Each malware sample
was executed, and a snapshot and memory collection were
taken. The system was then reset with the “Post-SPV” images
and infected with the next malware sample. As each memory
dump was analyzed with Volatility with the plugins mentioned
above, the persistence elements of the SPV were found without
the markers of the malware surviving. This proves that the
SPV Defense prevented the malware from taking effect and
rendered it inert, on the same level as other security tools.
Comparisons of our process to standard antivirus software
indicated that our proposed approach achieves the same level
of accuracy as other COTs antiviruses as shown in Tables I
and II.

D. Experiment II-B: Reversion Testing
An additional image of Testbed-2, Testbed-3, and

Testbed-4 were generated for this experiment, titled “X-
SecurityReversion-TestingPost.” The commercial antivirus
software signature libraries were downgraded by three versions
lower, allowing newer malware to be tested as though it were
a zero-day exploit. The sample repository listed above was
run on both virtual machines. Compared to standard antivirus
detection rates, SPV Defense was able to maintain consistent
rates. However, during the zero-day detection experiment, it
doubled the detection rates of standard antivirus software, as
shown in Tables III and IV. This further proves that SPV
Defense can perform far better than commercial malware
detection tools against unknown threats because it only targets
the persistence vectors.

1) Experiment III: Deceptive Capability: For this ex-
periment, the SPVExec was run against two unique phases.
One phase determined if malware identified SPVs as similar
malware, avoiding infections. The second is if legitimate pro-

TABLE III: Regression Testing: Windows
Defense TP TN FP FN Accuracy
Symatec 500 0 25 475 50.0%
Kaspersky 475 0 90 435 47.5%
Avast 485 0 75 440 48.5%
McAfee 495 0 105 400 49.5%
ESET 480 0 120 400 48.0%
SPV 999 0 0 1 99.9%

TABLE IV: Regression Testing: Linux
Defense TP TN FP FN Accuracy
Kaspersky 500 0 25 475 50.0%
BitDefender 475 0 90 435 47.5%
Avast 485 0 75 440 48.5%
McAfee 495 0 105 400 49.5%
ESET 480 0 120 400 48.0%
SPV 999 0 0 1 99.9%

grams like Antivirus saw the SPVs as a benign code structure.
The system was reverted to a save of the SPV-defended state
presented in Testbed-1 for defense through deception testing.
The Necurs malware sample was run against the Windows
system, and The SpeakUp [84] malware sample was executed
on this Linux OS. These particular samples were chosen
because of a built-in function searching for already modified
keys signaling an infected system. A total of ten instances of
the malware were executed in attempts to infect the system;
each time, memory collections were completed. Upon analysis
of the memory samples via the Volatility analysis, no signs
of the Necurs malware were present. Benign testing was
conducted using a pool of fifteen antiviruses against the SPV
code base. All tests returned negative, indicating that none of
the antiviruses flagged the SPVs as malicious.

2) Experiment IV: System Performance: In this experi-
ment, we evaluate the effectiveness of our approach on system
resources, particularly the impact of the SPV Defense process
on memory and CPU utilization.

(i) CPU Utilization: Utilization was recorded in two sep-
arate instances to obtain a baseline for the pre- and post-
deployment system. Baseline scores for each of these system
performances were recorded. Next, multiple applications were
opened to simulate a typical user’s desktop, including two Mi-
crosoft Word documents (LibreOffice Word documents on the
Linux platforms), a single instance of Google Chrome, and one
instance of the Windows or Linux file structure, depending on
the system. The system was then left under these conditions for
10 minutes. In the same way, as most effective rootkits perform
malicious activities without overloading the system, SPVs run
in the background without exhausting CPU resources. The
CPU usage overhead is on par with that of average antivirus
software, or an IDS/IPS, which is approximately 2 percent on
average [33].

(ii) Memory Utilization The amount of memory the SPVs

81

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5. Windows CPU and Memory System Comparison

Fig. 6. Linux CPU and Memory System Comparison

82

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

utilize, specifically as they spawn processes, is also crucial.
Too much memory utilization can cause an internal denial
of service, making the method unusable. The baselines were
again compared using the same parameters as in the CPU over-
head test with the same software instances for the 10-minute
implementation. This result also showed minimal impact on
the system resources.

Figures 5 and 6 show a complete breakdown of these
individual CPU and Memory utilization tests.

3) Experiment V: Whitelisting Capability: All the ex-
periments conducted above proved the proposed method’s
ability to block future malware infections. However, this would
be moot if regular benign programs could not make low-level
system modifications and maintain their persistence. For this
experiment, we attempted to install 10 “legitimate” programs
on an SPV Defended system and determined that all were
still installed after the system restart. These programs were
PyCharm, Visual Studio, BitRise, Atom, BlueFish, CodePen,
Crimson Editor, Eclipse, Komodo Edit, and NetBeans. The
same methodology was leveraged to examine these software
programs as malware to determine the system changes made
to ensure their persistence. Individual snapshots from the
“X-Post-SPV” series had one of the above ten programs
installed. Memory collection was completed, and a snapshot
was taken, titled “XPost-SPVTool,” with X being the software
installed. Upon powering on, a second memory collection was
completed. Finally, the application was tested for functionality
by launching the program. In all instances, both the SPV
Defense and the program were operational and maintained
persistence.

4) Experiment VI: Forensic Analysis of SPV Quar-
antine: Per the SPV code base, blocked malware becomes
flagged and added to the equivalent of an antivirus “quaran-
tine” zone. SPVs can collect attacks and convert information
from these executables into regular defensive measures. To
test this functionality, we attempted the infection with ten
malware not utilized in creating the SPVs. Individually, each
sample was executed against the SPV-loaded image. After each
malware was launched, we took a forensics image of the test
machine utilizing FTK Imager loaded on a separate drive. This
process was repeated for each of the malware samples. Upon
loading the evidence files into FTK Forensic Suite, all ten files
were found inside the created quarantine zone.

VI. LIMITATIONS AND FUTURE WORKS

Our proposed SPV provides a more robust defense against
malware than the existing research. However, the current im-
plementation is limited to only core Linux and Windows OS.
Additional work can be conducted into the persistence vectors
that are different and unique to other OSes, which could
prove beneficial. Other major operating systems, specifically
Mobile OSs such as MacOS and Android, can benefit from
the defense-by-deception strategy of SPVs. Thus, as part of
future work, we plan to extend the current SPV to these
platforms, along with improvements to the automation of

the SPV generation. Additionally, research can be conducted
into merging the SPVs into a universal executable, which is
platform agnostic, and deploys SPVs based on an OS scan
upon execution.

VII. CONCLUSION

This paper presents a new SPV Defense by Deception
strategy that leverages sterilized persistence vectors extracted
from a real malware corpus to block potential malware in-
fections. Our system utilizes code from malware samples,
not as signatures but as defensive strategies that stop new
infections from attempting to write into persistence regions.
Compared to existing COTs and techniques described in the
literature for malware detection and prevention, our approach
is designed to be more robust and versatile, with the ability to
block malware both on bare hardware and in virtualized en-
vironments. Additionally, our methodology does not require a
signature or agnostic of the target malware behavior. Through
an in-depth evaluation of 2000 malware samples with pre-
and post-SPV infection, we demonstrate that our proposed
SPV Defense by Deception mechanism can effectively defend
systems against malware infections with 1-3 percent CPU
and memory overhead while not limiting the ability to install
legitimate programs properly.

REFERENCES

[1] N. Phillips and A. Ali Gombe, “Sterilized Persistence Vectors
(SPVs): Defense Through Deception on Windows Systems,” in
Proc. CYBERWARE, 2022, pp. 56-61.

[2] I. Ahmed, A. Zoranic, S. Javaid, and G.G. Richard III, “Mod-
checker: Kernel module integrity checking in the cloud envi-
ronment,” In 2012 41st International Conference on Parallel
Processing Workshops, Sep. 2012, pp. 306-313, IEEE.

[3] A. Ali-Gombe, I. Ahmed, G.G. Richard III, and V. Roussev,
“AspectDroid: Android app analysis system,” In Proceedings of
the Sixth ACM Conference on Data and Application Security
and Privacy, pp. 145-147, 2016.

[4] A. Ali-Gombe, B. Saltaformaggio, D. Xu, and G.G. Richard III,
“Toward a more dependable hybrid analysis of Android malware
using aspect-oriented programming,” Computers & Security, vol.
73, pp. 235-248, 2018.

[5] A. Ali-Gombe, I. Ahmed, G.G. Richard III, and V. Roussev,
“Opseq: Android malware fingerprinting.” In Proceedings of the
5th Program Protection and Reverse Engineering Workshop, Dec.
2015, pp. 1-12.

[6] Z. Gittins and M. Soltys, “Malware persistence mechanisms,”
Procedia Computer Science, vol. 176, pp. 88-97. Jan. 2020.

[7] M.U. Rana, M.A. Shaha, and O. Ellahi, “Malware Persistence
and Obfuscation: An Analysis on Concealed Strategies,” In 2021
26th International Conference on Automation and Computing
(ICAC), Sep. 2021, pp. 1-6, IEEE.

[8] B.V. Prasanthi, “Cyber forensic tools: a review,” International
Journal of Engineering Trends and Technology (IJETT), vol.
41(5), pp. 266-271, 2016.

[9] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang,
“Mapping kernel objects to enable systematic integrity checking,”
In Proceedings of the 16th ACM conference on Computer and
communications security, Nov. 2009, pp. 555-565.

83

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] E. Chan, S. Venkataraman, F. David, A Chaugule, and R.
Campbell, “Forenscope: A framework for live forensics,” In
Proceedings of the 26th Annual Computer Security Applications
Conference, Dec. 2010, pp. 307-316.

[11] B.N. Flatley, “Rootkit Detection Using a Cross-View Clean
Boot Method,” AIR FORCE INST OF TECH WRIGHT-
PATTERSON AFB OH GRADUATE SCHOOL OF ENGI-
NEERING AND MANAGEMENT, Mar. 2013.

[12] S.L. Garfinkel, “Automating disk forensic processing with
SleuthKit, XML, and Python,” In 2009 Fourth International
IEEE Workshop on Systematic Approaches to Digital Forensic
Engineering, May 2009, pp. 73-84, IEEE.

[13] Z. Gu, B. Saltaformaggio, X. Zhang, and D. Xu, “Face-
change: Application-driven dynamic kernel view switching in a
virtual machine,” In 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, Jun. 2014,
pp. 491-502, IEEE.

[14] D. Byers and N. Shahmehri, ”A systematic evaluation of disk
imaging in EnCase® 6.8 and LinEn 6.1,” Digital Investigation
6.1-2, 2009, pp. 61-70.

[15] I.U. Haq, S. Chica, J. Caballero, and S. Jha, “Malware lineage
in the wild,” Computers & Security, vol. 78. pp. 347-363, Sep.
2018.

[16] O.S. Hofmann, A.M. Dunn, S. Kim, I. Roy, and E. Witchel,
“Ensuring operating system kernel integrity with OSck,” ACM
SIGARCH Computer Architecture News, vol. 39(1), pp. 279-
290, 2021.

[17] R. Hund, T. Holz, and F.C. Freiling, “Return-oriented rootk-
its: Bypassing kernel code integrity protection mechanisms,”
InUSENIX security symposium, Aug. 2009, pp. 383-398.

[18] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection
through VMM-based ‘out-of-the-box’semantic view,” In 14th
ACM Conference on Computer and Communications Security
(CCS), Alexandria, VA, Nov. 2007, pp. 128-138.

[19] A. Kapoor and R. Mathur, “Predicting the future of stealth
attacks,” In Virus Bulletin Conference, Oct. 2011, pp. 1-9.

[20] J.D. Kornblum and C.F. ManTech, “Exploiting the rootkit
paradox with Windows memory analysis,” International Journal
of Digital Evidence, vol. 5(1), pp. 1-5, 2006.

[21] T.K. Lengyel, S. Maresca, B.D. Payne, G.D. Webster, S.
Vogl, and A. Kiayias, “Scalability, fidelity, and stealth in the
DRAKVUF dynamic malware analysis system,” In Proceedings
of the 30th annual computer security applications conference,
Dec. 2014, pp. 386-395.

[22] L. Litty, H.A. Lagar-Cavilla, and D. Lie, “Hypervisor Support
for Identifying Covertly Executing Binaries,” In USENIX Secu-
rity Symposium, Jul. 2008, vol. 22, p. 70.

[23] R. Luh, S. Schrittwieser, and S. Marschalek, “TAON: An
ontology-based approach to mitigating targeted attacks,” In Pro-
ceedings of the 18th International Conference on Information
Integration and Web-based Applications and Services, Nov. 2016,
pp. 303-312.

[24] D. Patten, The evolution to fileless malware, 2017.
[25] Malshare, www.malshare.com, Oct. 2019.
[26] N.L. Petroni Jr. and M. Hicks, “Automated detection of per-

sistent kernel control-flow attacks,” In Proceedings of the 14th
ACM conference on Computer and communications security,
Oct. 2007, pp. 103-115.

[27] F. Raynal, Y. Berthier, P. Biondi, and D. Kaminsky, “Honeypot
forensics,” In Proceedings from the Fifth Annual IEEE SMC
Information Assurance Workshop, Jun. 2004, pp. 22-29. IEEE.

[28] R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention of
kernel rootkits with VMM-based memory shadowing,” In Inter-

national Workshop on Recent Advances in Intrusion Detection,
Sep. 2008, pp. 1-20, Springer, Berlin, Heidelberg.

[29] J. Rutkowska, ”System virginity verifier: Defining the roadmap
for malware detection on Windows systems,” In Hack in the Box
security conference, Sep. 2005.

[30] M. Schmidt, L. Baumgartner, P. Graubner, D. Bock, and B.
Freisleben, “Malware detection and kernel rootkit prevention
in cloud computing environments,” In 2011 19th International
Euromicro Conference on Parallel, Distributed, and Network-
Based Processing, Feb. 2011, pp. 603-610. IEEE.

[31] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity for
commodity OSes,” In Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, Oct. 2007, pp. 335-
350.

[32] M.I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-VM
monitoring using hardware virtualization,” In Proceedings of
the 16th ACM conference on Computer and communications
security, Nov. 2009, pp. 477-487.

[33] O. Sukwong, H. Kim, and J. Hoe, “Commercial antivirus soft-
ware effectiveness: an empirical study,” Computer, vol. 44(03),
pp. 63-70, Mar. 2011.

[34] S. Vömel and H. Lenz, “Visualizing indicators of Rootkit
infections in memory forensics,” In 2013 Seventh International
Conference on IT Security Incident Management and IT Foren-
sics, Mar. 2013, pp. 122-139, IEEE.

[35] J. Wang, A. Stavrou, and A. Ghosh, “Hypercheck: A hardware-
assisted integrity monitor,” In International Workshop on Re-
cent Advances in Intrusion Detection, Sep. 2010, pp. 158-177,
Springer, Berlin, Heidelberg.

[36] Z. Wang, X. Jiang, W Cui, and X. Wang, “Countering persistent
kernel rootkits through systematic hook discovery,” In Interna-
tional Workshop on Recent Advances in Intrusion Detection, Sep.
2008, pp. 21-38, Springer, Berlin, Heidelberg.

[37] M. Xu, X. Jiang, R. Sandhu, and X. Zhang, “Towards a
VMM-based usage control framework for OS kernel integrity
protection,” In Proceedings of the 12th ACM symposium on
Access control models and technologies, Jun. 2007, pp. 71-80.

[38] Z. Xu, J. Zhang, G. Gu, and Z. Lin, “Autovac: Automatically
extracting system resource constraints and generating vaccines
for malware immunization,” In 2013 IEEE 33rd International
Conference on Distributed Computing Systems, Jul. 2013, pp.
112-123, IEEE.

[39] J. Rutkowska, “System virginity verifier: Defining the roadmap
for malware detection on Windows systems,” In Hack in the Box
security conference, Sep. 2005.

[40] H. Yin, Z. Liang, and D. Song, “HookFinder: Identifying and
understanding malware hooking behaviors,” Proceedings of the
Network and Distributed System Security Symposium, NDSS
2008, San Diego, Feb. 2008

[41] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda,
“Panorama: capturing system-wide information flow for malware
detection and analysis,” In Proceedings of the 14th ACM confer-
ence on Computer and communications security, Oct. 2007, pp.
116-127.

[42] H.A. Lagar-Cavilla and L. Litty, “Patagonix: Dynamically Neu-
tralizing Malware with a Hypervisor,” 2008.

[43] Y. Oyama, T.T. Giang, Y. Chubachi, T. Shinagawa, and K.
Kato, “Detecting malware signatures in a thin hypervisor,” In
Proceedings of the 27th Annual ACM Symposium on Applied
Computing, Mar. 2012, pp. 1807-1814.

[44] O. Vermaas, J. Simons, and R. Meijer, “Open computer forensic
architecture a way to process terabytes of forensic disk images,”

84

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In Open Source Software for Digital Forensics, 2010, pp. 45-67,
Springer, Boston, MA.

[45] A. Mohanta and A. Saldanha, “Memory Forensics with Volatil-
ity,” In Malware Analysis and Detection Engineering, 2020, pp.
433-476, Apress, Berkeley, CA.

[46] R. Tahir, “A study on malware and malware detection tech-
niques,” International Journal of Education and Management
Engineering, vol. 8(2). p. 20, Mar. 2018.

[47] N. Idika and A.P. Mathur, “A survey of malware detection
techniques,” Purdue University, vol. 48(2). pp. 32-46, Feb. 2007.

[48] H. El Merabet and A. Hajraoui, “A survey of malware detection
techniques based on machine learning,” International Journal of
Advanced Computer Science and Applications, vol. 10(1), 2019.

[49] K. Monnappa, “Automating Linux malware analysis using
limon sandbox,” Black Hat Europe, 2015, IV-A.

[50] M. Alrammal, M. Naveed, S. Sallam, and G. Tsaramirsis,
“Malware analysis: Reverse engineering tools using santuko
Linux,” Materials Today: Proceedings, vol. 60, pp. 1367-1378,
2022.

[51] A. Ravi and V. Chaturvedi, “Static Malware Analysis using ELF
features for Linux-based IoT devices,” In 2022 35th International
Conference on VLSI Design and 2022 21st International Confer-
ence on Embedded Systems (VLSID), Feb. 2022, pp. 114-119,
IEEE.

[52] D. Serpanos, P. Michalopoulos, G. Xenos, and V. Ieronymakis,
“Sisyfos: A modular and extendable open malware analysis
platform,” Applied Sciences, Vol. 11(7), p. 2980, 2021.

[53] I.G. Kiachidis and D.A. Baltatzis, “Comparative Review of Mal-
ware Analysis Methodologies,” arXiv preprint arXiv:2112.04006,
2021.

[54] J. Kim, Y. Ban, G. Jeon, Y.G. Kim, and H. Cho, “LiDAR: A
Light-Weight Deep Learning-Based Malware Classifier for Edge
Devices,” Wireless Communications and Mobile Computing,
2022.

[55] C. Dietz, M. Antzek, G. Dreo, A. Sperotto, and A. Pras,
“DMEF: Dynamic Malware Evaluation Framework,” In NOMS
2022 - IEEE/IFIP Network Operations and Management Sym-
posium, Apr. 2022, pp. 1-7, IEEE.

[56] S. Lee, H. Jeon, G. Park, J. Kim, and J.M. Youn, “IoT Malware
Static and Dynamic Analysis System,” Journal of Human-centric
Science and Technology Innovation, Vol. 1(1), pp. 43-48, 2021.

[57] C. Hwang, J. Hwang, J. Kwak, and T. Lee, “Platform-
independent malware analysis applicable to Windows and Linux
environments,” Electronics, vol. 9(5), p. 793, 2020.

[58] J.J. De Vicente Mohino, J. Bermejo-Higuera, J.R. Bermejo
Higuera, J.A. Sicilia, M. Sánchez Rubio, and J.J. Martı́nez
Herraiz, “MMALE a methodology for malware analysis in Linux
environments,” 2021.

[59] S.B. Mehdi, A.K. Tanwani, and M. Farooq, “Imad: in-execution
malware analysis and detection,” In Proceedings of the 11th
Annual Conference on Genetic and evolutionary computation,
pp. 1553-1560, 2009.

[60] J. Jeon, J.H. Park, and Y.S. Jeong, “Dynamic analysis for
IoT malware detection with convolution neural network model,”
IEEE Access, vol. 8, pp. 96899-96911, 2020.

[61] E. Cozzi, “Binary Analysis for Linux and IoT Malware,”
Doctoral dissertation, Sorbonne Université, 2020.

[62] K.A. Asmitha and P. Vinod, “A machine learning approach
for Linux malware detection,” In 2014 International conference
on issues and challenges in intelligent computing techniques
(ICICT), 2014, pp. 825-830, IEEE.

[63] M. Kumar, “Scalable malware detection system using big data

and distributed machine learning approach,” Soft Computing, vol.
26(8), pp. 3987-4003, 2022.

[64] F. Shahzad, S. Bhatti, M. Shahzad, and M. Farooq, “In-
execution malware detection using task structures of Linux
processes,” In 2011 IEEE International Conference on Commu-
nications (ICC), 2011, pp. 1-6. IEEE.

[65] I. Vurdelja, I. Blažić, D. Drašković, and B. Nikolić, “Detec-
tion of Linux Malware Using System Tracers-An Overview of
Solutions,” IcEtran, 2020.

[66] S.M.P. Dinakarrao, H. Sayadi, H.M. Makrani, C. Nowzari,
S. Rafatirad, and H. Homayoun, “Lightweight node-level mal-
ware detection and network-level malware confinement in IOT
networks,” In 2019 Design, Automation and Test in Europe
Conference and Exhibition, 2019, pp. 776-781, IEEE.

[67] T. Landman, and N. Nissim, “Deep-Hook: A trusted deep
learning-based framework for unknown malware detection and
classification in Linux cloud environments,” Neural Networks,
vol. 144, pp. 648-685, 2021.

[68] K.A. Asmitha, and P. Vinod, “Linux malware detection using
eXtended–symmetric uncertainty,” In International Conference
on Security, Privacy, and Applied Cryptography Engineering,
2014, pp. 319-332, Springer, Cham.

[69] K.A. Asmitha and P. Vinod, “Linux malware detection us-
ing non-parametric statistical methods,” In 2014 International
Conference on Advances in Computing, Communications and
Informatics (ICACCI), 2014, pp. 356-361, IEEE.

[70] A. D. Raju, I. Y. Abualhaol, R.S. Giagone, Y. Zhou, and S.
Huang, “A survey on cross-architectural IOT malware threat
hunting,” IEEE Access, vol. 9, pp. 91686-91709, 2021.

[71] Y. Xu, Z. Yin, Y. Hou, J. Liu, and Y. Jiang, “MIDAS: Safe-
guarding IoT Devices Against Malware via Real-Time Behavior
Auditing,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41(11), pp. 4373-4384,
2022.

[72] A. Mishra, A. Roy, and M.K. Hanawal, “Evading Malware
Analysis Using Reverse Execution,” In 2022 14th International
Conference on COMmunication Systems & NETworkS (COM-
SNETS), 2022, pp. 1-6. IEEE.

[73] S. Das, H. Xiao, Y. Liu, and W. Zhang, “Online malware
defense using attack behavior model,” In 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), 2016, pp. 1322-
1325. IEEE.

[74] F. Shahzad, M. Shahzad, and M. Farooq, “In-execution dynamic
malware analysis and detection by mining information in process
control blocks of Linux OS,” Information Sciences, vol. 231, pp.
45-63, 2013.

[75] A. Kedrowitsch, D. Yao, G. Wang, and K. Cameron, “A first
look: Using Linux containers for deceptive honeypots,” In Pro-
ceedings of the 2017 Workshop on Automated Decision Making
for Active Cyber Defense, 2017, pp. 15-22.

[76] W. Sun, R. Sekar, Z. Liang, and V.N. Venkatakrishnan, “Ex-
panding malware defense by securing software installations,”
In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pp. 164-185, Springer,
Berlin, Heidelberg, 2008.

[77] S.M.P. Dinakarrao et al., “Adversarial attack on microarchitec-
tural events based malware detectors,” In Proceedings of the 56th
Annual Design Automation Conference, 2019, pp. 1-6.

[78] M. Zhang, A. Raghunathan, and N.K. Jha, “A defense frame-
work against malware and vulnerability exploits,” International
Journal of information security, vol. 13(5), pp. 439-452, 2014.

[79] V. Chierzi and F. Mercês, “Evolution of IoT Linux Malware:
A MITRE ATTandCK TTP Based Approach,” In 2021 APWG

85

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Symposium on Electronic Crime Research (eCrime), 2021, pp.
1-11, IEEE.

[80] J.M.C. Gómez, J.R. Gómez, J.L.M. Martı́nez, and A. del
Amo Mı́nguez, “Forensic Analysis of the IoT Operating System
Ubuntu Core,” In Journal of Physics: Conference Series, vol.
2224, no. 1, p. 012082, IOP Publishing, 2022.

[81] Q.D. Ngo, H.T. Nguyen, V.H. Le, and D.H. Nguyen, “A survey
of IoT malware and detection methods based on static features,”
ICT Express, vol. 6(4), pp. 280-286, 2020.

[82] H. Wang, W. Zhang, H. He, P. Liu, D.X. Luo, Y. Liu, and X.
Lan, “An evolutionary study of IoT malware,” IEEE Internet of
Things Journal, vol. 8(20), pp. 15422-15440, 2021.

[83] C, R. (2022, July 27), “Linux malware trends 2022
H1.” Infogram, Retrieved January 5, 2023, from
https://infogram.com/linux-malware-trends-2022-h1-
1ho16vowkmwm84n

[84] S. Popoveniuc, “Speakup: remote unsupervised voting,” Indus-
trial Track ACNS, 2010.

[85] O. Alrawi, C. Lever, K. Valakuzhy, R. Court, K.Z. Snow, F.
Monrose, and M. Antonakakis, “The Circle Of Life: A Large-
Scale Study of The IoT Malware Lifecycle,” In USENIX Security
Symposium, 2021, pp. 3505-3522.

[86] A.D. Raju, I.Y. Abualhaol, R.S. Giagone, Y. Zhou, and S.
Huang, “A survey on cross-architectural IOT malware threat
hunting,” IEEE Access, vol. 9, pp. 91686-91709, 2021.

[87] D. Patten, “The evolution to fileless malware,” 2017.
[88] T. Steffens, “Attribution of Advanced Persistent Threats,”

Springer Berlin Heidelberg, pp. 153-164, 2020.
[89] L.E.S. Jaramillo, “Malware detection and mitigation techniques:

Lessons learned from Mirai DDOS attack,” Journal of Informa-
tion Systems Engineering & Management, vol. 3(3), p. 19, 2018.

86

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Runtime Trustworthiness Evaluation of Evolving Cyber Physical Systems

Rainer Falk and Steffen Fries

Siemens AG

Technology

Munich, Germany

e-mail: {rainer.falk|steffen.fries}@siemens.com

Abstract—The integrity of Cyber Physical Systems (CPS) needs

to be protected to ensure a reliable, trustworthy operation. The

hardware and software components of a CPS must be in a

well-defined, approved configuration state. However, such

system integrity protection becomes increasingly challenging

with CPSs that are flexibly reconfigured to address evolving

demands. An approach for integrity monitoring for such

dynamic CPSs is described. Instead of preventing changes to a

CPS, the focus is on detecting changes and on analyzing and

checking whether the detected changes are in-line with a policy

defining permitted changes. A key element is a reliable device

lifecycle state attestation, so that a CPS integrity monitoring

system can determine the current configuration state of CPS

components and the way in which it was changed.

Keywords–system integrity; trustworthiness; device integrity;

attestation; lifecycle; resilience; cyber physical systems; Internet

of Things; cyber security.

I. INTRODUCTION

The integrity and resilience of Cyber Physical Systems
(CPS), e.g., technical automation and control systems, are
highly relevant security objectives [1]. Unauthorized changes
the configuration of a CPS have to be prevented as well as
detected. Related security requirements are defined by the
industrial security standard IEC62443 [2]. Such security
objectives could even be pushed by related regulative
requirements, as can be seen, e.g., in the proposed update to
the EU Network Information Security (NIS) directive [3].

A concept for enhanced integrity monitoring of overall
industrial automation and control systems, combining
integrity monitoring from physical processes up to its control
and support systems, has been described in [4]. Enhanced
attack resilience allows an operator to keep the CPS
operational, possibly with some limitations, even during an
ongoing attack [5]. Particularly challenging are CPSs with a
dynamically changing configuration as driven by the
flexibility of IIoT and Industry 4.0. Cyber systems will
become more open and dynamic to support flexible
production down to “lot size 1” by supporting plug-and-work
reconfiguration of manufacturing equipment and flexible
adaptation of production systems to changing needs, and by
increasingly adopting software-based automation and control
functions. This implies that also security has to support such
dynamically CPSs that are evolving over time in a practical
way.

In the past, CPS have been often rather static. After being
put into operation, changes to the configuration happen only
rarely, e.g., to replace a defect component, or to install
smaller upgrades during a planned maintenance window. To
cope with increasing demands for flexible production and
increased productivity, CPS will also increasingly become
more dynamic, allowing for reconfiguration during regular
operation. Such scenarios for highly adaptive production
system that can be adapted flexibly to changing production
needs have been described in the context of Industry 4.0 [6].
The flexibility starts at the device level, where smart devices
allow for upgrading and enhancing the device functionality
by user-downloadable apps, and by the increasing software-
based realization of automation and control functions.
Besides the device level, also the system of interconnected
machines is reconfigured according to changing needs.
Examples are Software Defined Networks (SDN) enabling a
fast reconfiguration of the communication infrastructure to
adapt flexibly to the communication needs and the use of
wireless communications as wireless LAN of private 5G
networks. Another example relates to manufacturing systems
(e.g., robots) in industrial automation systems, where smart
tools are attached to a robot that in turn feature also a local
communication network connecting to the robot’s network.

The focus of cyber security is protection against cyber
attacks, their detection, and the recovery from successful
cyber attacks. An increasingly important further aspect is
trustworthiness, where automated checks verify whether the
overall systems and the used components meet the explicitly
defined trustworthiness criteria. However, the concept of
trustworthiness is subjective. The presented approach checks
for changes within a CPS to determine whether the CPS
configuration is in a permitted, trustworthy state.

Section II gives an overview on related work. After
describing shortly industrial CPS in Section III, previous
work on protecting integrity of cyber physical systems and
their components is summarized in in Section IV. The
monitoring of reliable device lifecycle information based on
lifecycle state attestations is described in Sections V and VI,
extending CPS integrity monitoring information. Approaches
for analyzing detected lifecycle state attestations are
described Section VII. Section VIII evaluates the presented
approach. Section IX concludes the paper and gives an
outlook towards future research.

87

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORK

The objective of CPS system integrity and CPS resilience
is to support the trustworthiness of CPS. While not new, the
concept of trustworthiness is gaining increasing interest in
ongoing research and standardization: The standard ISO/IEC
TS 5723 [7] published in 2022 defines trustworthiness of
systems and the characteristics of trustworthiness, addressing
products, services, technologies as well as the
trustworthiness of organizations that are providing these. A
common understanding and description of trustworthiness
characteristics allows stakeholders to judge whether their
trustworthiness expectations are met. Mohammadi describes
in [8] a trustworthiness framework for CPS that covers
development phases like requirements engineering and
system design, but also run-time maintenance, and evidence-
based assurance. Also, evaluation of trustworthiness during
CPS runtime is covered by monitoring its trustworthiness
properties. Jiang proposed a data-driven vulnerability
analysis for CPS using machine learning [9]. Northern,
Burks, Hatcher, Rogers, and Ulybyshev described a
methodology to determine a hardened CPS configuration by
analyzing cyber vulnerabilities [10]. Cyber risk scores for
different CPS configurations are compared, and vulnerable
CPS components are replaced or reconfigured. Malik and
Tosh described a framework for the dynamic risk assessment
and analysis of CPS using multi-formatted knowledge bases
derived from open-source vulnerability databases [11].
M. Tapia, P. Thier, S. Gößling-Reisemann performed an
empirical study on the vulnerability and resilience of cyber-
physical power systems [12]. A resilience management
approach is proposed that targets a better handling of CPS
failures. The proposed resiliency measures address the
categories technology, organizational security policies and

procedures, human factor, and regulations. Akbarzadeh and
Katsikas described a cybersecurity risk assessment method
that addresses the interactions and interdependencies
between the cyber and the physical components using a
model of the CPS and its components [13].

Requirements related to resilience on device level have
been addressed in different standards. The Trusted
Computing Group (TCG) specified requirements for cyber
resilient modules and building blocks [14]. It describes
architectural elements on device level for resilience
(resilience target, resilience engine, resilience authority), as
well as building blocks as, e.g., storage protection and
attention signal generators. Recommendations for resiliency
of platform firmware and data have been described by [15],
supporting a rapid and secure recovery from attacks on
platform firmware of computer devices. Also, the standard
ETSI EN303 645 on baseline security requirements for
consumer IoT includes resilience-related requirements [23].

Segovia, Rubio-Hernan, Cavalli and Garcia-
Alfarometrics define a metric based on control theory to
quantify the cyber-resilience level of a CPS based on the
design, structure, stability, and performance under attack
[16]. The metric is related to the mathematically modelled
control function of a CPS. Khazraei. Hallyburton, Gao,
Wang and Pajic describe how deep learning can be applied
for vulnerability analysis of CPS control mechanisms [17].

III. INDUSTRIAL CYBER PHYSICAL SYSTEMS

A CPS, e.g., an industrial automation and control system,
monitors and controls a technical system. Examples are
process automation, machine control, energy automation,
and cloud robotics. Figure 1 shows an example of an
industrial automation and control system, comprising

Control Network

Plant Network

Automation

Component

S S A A

Automation

Component

S S A A

GW

IoT

Gateway

GW

Control Network

Automation

Component

S S A A

Automation

Component

S S A A

Automation

Component

IoT Backend

Remote IO

S S A A

Remote IO

S S A A

SCADA
Log

Server
Edge Cloud

Figure 1. Example CPS System

88

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

different control networks connected to a plant network and
a cloud backend system. Automation control equipment with
sensors (S) and actuators (A) is connected directly with
automation components, or via remote input/output modules.
The technical process is controlled by measuring its current
state using the sensors, and by determining the
corresponding actuator signals. Separation of the network is
typically used to realize distinct control networks with strict
real-time requirements for the interaction between sensors
and actuators of a production cell, or to enforce a specific
security policy within a production cell. Such an industrial
automation and control system is an example of a CPS.
Industrial automation and control systems are utilized in
various automation domains, including discrete automation
(factory automation), process automation, railway
automation, energy automation, and building automation.

Automation Component / Remote IO

RAM Flash

NW
IF

CPU

A

S

A

S
IO

Figure 2. Automation Component

Figure 2 shows the typical structure of automation
components of a CPS that monitor and control the physical
world using sensors (S) and actuators (A). The monitoring
and control functionality is defined by its firmware/software
that is executed on a central processing unit (CPU) and the
corresponding configuration data, both stored in non-volatile
memory (Flash). A network interface (NW IF) allows
communication with other devices, e.g., via Ethernet or via
wireless communications as wireless local area network
(WLAN) or a private 5th generation (5G) mobile
communication system.

In cyber physical systems, the impact of a vulnerability
in the OT system may not only affect data and data
processing as in classical IT, but it may have an effect also
on the physical world. For example, production equipment
could be damaged, or the physical process may operate
outside the designed physical boundaries, so that the
produced goods may not have the expected quality, or even
safety-related requirements could be affected.

IV. CPS SYSTEM INTEGRITY PROTECTION

Information Technology (IT) security mechanisms have
been known for many years and are applied in smart devices
(Internet of Things, Cyber Physical Systems, industrial and
energy automation systems, operation technology). Such
mechanisms target source authentication, system and
communication integrity, and confidentiality of data in
transit or at rest. System integrity takes a broader approach
where not only the integrity of individual components

(device integrity) and of network communications are
addressed, but where integrity shall be ensured at the overall
system level of multiple interconnected devices.

A. Industrial Security

Protecting industrial automation and control systems
against intentional attacks is increasingly demanded by
operators to ensure a reliable operation, and also by
regulation. The main relevant industrial security standard
that describes security from a holistic view is IEC 62443 [2].
Security requirements defined by the industrial security
standard IEC 62443 range from security processes during
development and operation of devices and systems, personal
and physical security, device security, network security, and
application security, addressing the device manufacturer, the
integrator as well as the operator of the industrial automation
and control system.

Industrial security is also called Operation Technology
(OT) security, to distinguish it from general IT security.
Industrial systems have different security priorities and
requirements compared to common IT systems. Typically,
availability and integrity of an automation system have
higher priority than confidentiality.

Specific requirements and side conditions of industrial
automation systems like high availability, planned
configuration (engineering info), scheduled maintenance
windows, long life cycles, unattended operation, real-time
operation, and communication, as well as safety
requirements have to be considered when designing an OT
security solution.

Figure 3. Prevent Detect React Cycle

Overall, security has to address the areas prevent, detect,
and react, see Figure 3. It is not sufficient to only define
security measures to protect against attacks. The cycle shows
also the need for detecting attacks, and to define measures to
react adequately once an attack has been detected. The
approach describes in this paper puts more effort on the
“detect” and “react” phases than on the “prevent” phase with
the intention to supported increased CPS productivity by
allowing for high flexibility of CPS reconfigurations.

B. Device Integrity

The objective of device integrity is to ensure that a single
device is not manipulated in an unauthorized way, ensuring
that it operates as genuine device. Integrity protection
includes the integrity of the device firmware, the integrity of

89

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the device configuration, but also its physical integrity. The
main technologies to protect device integrity are:

− Secure boot: A device loads at start-up only

unmodified, authorized firmware.

− Measured boot: The loaded software modules are

checked at the time they are loaded. Usually, a

cryptographic hash value is recorded in a platform

configuration register of a hardware of firmware

Trusted Platform Module (TPM). The configuration

information can be used to grant access to keys, or it

can be attested towards third parties.

− Protected firmware update: When the firmware of a

device is updated, the integrity and authenticity of the

firmware update is checked. The firmware update

image can be digitally signed.

− Application whitelisting: Only allowed, known

applications can be started on a device. A whitelist

defines which application binaries can be started.

− Runtime integrity checks: During operation, the device

performs a self-test of security functionality and

integrity checks to verify whether it is operating as

expected. Integrity checks can verify the integrity of

files, configuration data, software modules, and runtime

data as the process list, i.e., the list of currently

executed processes.

− Process isolation, kernel-based Mandatory Access

Control (MAC): Hypervisors or kernel-based MAC

systems can be used to isolate different classes of

software (security domains). An attack or malfunction

of one security domain does not affect other security

domains on the same device.

− Tamper evidence, tamper protection: The physical

integrity of a device can be protected, e.g., by security

seals or by tamper sensors that detect opening or

manipulation of the housing.

− Device integrity self-test: A device performs a self-test

to detect failures. The self-test is performed typically

during startup and is repeated regularly during

operation.

− Operation integrity checks: measurements on the device

can be compared with the expected behavior in the

operative environment. An example is the measurement

of connection attempts to/from the device, based on

parameters of a Management Information Base (MIB).

The established approaches to protect device integrity focus
on its IT-related functionality of a device. The main
protection objective for device integrity is to ensure that the
device’s control functionality operates as designed.
However, the integrity of input/output interfaces, sensors,
and actuators are typically out of scope. In typical industrial
environments, applying a strong tamper protection to each
control device, sensor, and actuator would not be
economically feasible. A strong physical tamper protection is
not common at device level, as it would complicate not only

the production of a devices, but also the test, service, and
repair. Therefore, protecting device integrity of used devices
alone would be too limited to achieve the goal of protection
the integrity of an overall CPS.

C. Cyber Physical System Integrity Monitoring

Classical approaches for protecting device and system
integrity target at preventing any changes and compare the
current configuration to a fixed reference policy. More
flexible approaches are needed to protect integrity for
flexibly reconfigurable and self-adapting CPSs. In previous
work [4], we described an integrated, holistic approach for
ensuring CPS integrity as an extensible framework to include
integrity information from IT-based functions and the
physical world of a CPS. This allows integrating integrity
information from the digital and the physical world. Trusted
physical integrity sensors can be installed as add-on to
existing automation and control systems. One-way gateways
can be used to extract integrity monitoring information from
closed control networks, while ensuring freedom from
interference for the control function.

Integrity does not only affect single devices, but also the
overall system level comprising a set of interconnected
devices. The main approaches to protect system integrity are
collecting and analyzing information at system level [4]:

− Device inventory: Complete and up-to-date list of

installed devices (including manufacturer, model, serial

number version, firmware version, current

configuration, installed software components, location)

− Centralized Logging: Devices provide log data, e.g.,

using Open Platform Communication Unified

Architecture (OPC UA) protocol, Simple Network

Management Protocol (SNMP), or syslog protocol, to a

centralized logging system for further analysis. This

may be done in a Security Information and Event

Management (SIEM) System and lead to reactions on

identified cybersecurity events.

− Runtime device integrity measurements: A device

integrity agent provides information gathered during the

operation of the device (see also subsection B above). It

collects integrity information on the device and

provides it for further analysis. Basic integrity

information includes the results of a device self-test,

and information on the current device configuration

(firmware version, patches, installed applications,

configuration). Furthermore, runtime information can

be gathered and provided for analysis (e.g., process list,

file system integrity check values, partial copy of

memory).

− Network monitoring: The network communication is

intercepted, e.g., using a network tap or a mirror port of

a network switch. A challenge is the fact that network

communication is increasingly encrypted.

− Physical Automation process monitoring: Trusted

sensors provide information on the physical world that

can be used to cross-check the view of the control

90

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system on the physical world. Adding trusted sensors to

existing installation allows for a smooth migration from

legacy systems to systems providing integrated sensors

as they can be used for plausibility checks.

− Physical world integrity: Trusted sensors (of physical
world), integrated monitoring of embedded devices and
IT-based control systems, and of the technical process
allow now quality of integrity monitoring as physical
world and IT world are checked together.

The captured integrity information can be used for
system runtime integrity monitoring to detect integrity
violations in real-time. Operators can be informed, or actions
can be triggered automatically. Furthermore, the information
is archived for later investigations. This allows that integrity
violations can be detected also later with a high probability,
so that corresponding countermeasures can be initiated (e.g.,
plan for an additional quality check of produced goods). The
integrity information can be integrated in or linked to data of
a production management system, so that it can be
investigated under which integrity conditions certain
production steps have been performed. Product data is
enhanced with integrity monitoring data related to the
production of the product. Moreover, the data may also be
used in the context of supply chain security to support
trustworthiness claims.

An intelligent analysis platform performs data analysis
(e.g., statistical analysis, big data analysis, artificial
intelligence) and triggers suitable respondence actions (e.g.,
alarm, remote wipe of a device, revocation of a device, stop
of a production site, planning for additional test of
manufactured goods). The analysis can combine monitoring
information originating from IT-related control functions,
from physical security systems, as well as from the operation
of the actual technical process.

Open Network

(Office/Internet)

Automation

Network

IoT Backend Platform:

System Integrity Monitoring Data

ID1 SD

ID2 SD

ID3 SD

ID4 SD

ID5 SD

System Integrity

Validation Service

System Integrity

Respondence

Validation

Policy

Device

wipe

alarm

ID1

ID3

ID2 GW

ID4

ID5

Figure 4. CPS Integrity Monitoring System [4]

Figure 4 shows an example for an IoT system with IoT
devices (ID1, ID2, etc.) that communicate with an IoT
backend platform. The devices provide current integrity
monitoring information to the backend platform. The devices
can be automation devices that include integrity

measurement functionality, or dedicated integrity sensor
devices. The device monitoring system itself has to be
protected against attacks, following the industrial security
standard IEC 62443.

An integrity data validation service checks the obtained
integrity measurement data for validity using a configurable
validation policy. If a policy violation is detected, a
corrective action is triggered. For example, an alarm message
can be displayed on a dashboard. Furthermore, an alarm
message can be sent to the IoT backend platform to
terminate the communication session of the affected IoT
device. Moreover, the device security service can be
informed so that it can revoke the devices access permissions
or revoke the device authentication credential.

The integrity monitoring events are analyzed using
known data analysis tools. As stated before, in industrial
environments, it is also important to have reliable
information about the system integrity of a production
system for the time period during which a certain production
batch was performed. This allows performing the
verification also afterwards to check whether during a past
production batch integrity-violations occurred.

The final decision whether a certain configuration is
accepted as correct is up to human operators. After
reconfiguration, or for a production step, the configuration is
to be approved. The approval decision can be automated
according to previously accepted decisions, or preconfigured
good configurations.

D. Resilience Under Attack

Being resilient means to be able to withstand or recover
quickly from difficult conditions [18]. It shifts the focus of
“classical” IT and OT security, which put the focus on
preventing, detecting, and reacting to cyber-security attacks,
to the aspect to continue to deliver an intended outcome
despite an adverse cyber attack taking place, and to recover
quickly back to regular operation. More specifically,
resilience of a system is the property to be resistant to a
range of threats and withstand the effects of a partial loss of
capability, and to recover and resume its provision of service
with the minimum reasonable loss of performance [19].

Risk management, the established approach to cyber
security, identifies threats and determines the risk depending
on probability and impact of a potential attack. The objective
is to put the focus of defined security measures on the most
relevant risks, reducing the probability that a successful
attack takes place, and reducing the impact of successful
attacks, e.g., by detect successful attacks by security
monitoring allowing to react, e.g., by shutting down a CPS.
Resilience, however, puts the focus on a reduction of the
impact of successful attacks, where the system can stay
operational with a degraded performance or functionality,
and to recover quickly from a successful attack. Robustness
is a further related approach that tries to keep the system
operational without a reduction of the system performance,
i.e., to withstand attacks.

Figure 5 illustrates the concept of cyber resilience: Even
if an attack is carried out, the impact on the system
operation, i.e., the performance or functionality of the

91

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system, is limited [5]. The effects of an attack are
“absorbed”, so that the system stays operational, but with
limited performance or functionality. A recovery takes place
to bring the system up to the regular operation.

t
Absorb RecoverPlan/Prepare Adapt

Attack

System
Performance /
Functionality

Figure 5. Concept of Cyber Resilience [5]

In adaptation of resilience, the system might be enhanced
to better prepare for future attacks leading to a sort of self-
healing functionality. In a cyber physical environment, a
main objective is that the CPS stays operational and that its
integrity is ensured. In the context of an industrial
automation and control system, that means that intended
actions of the system in the physical world continue to take
place even when the automation and control system of the
CPS should be attacked successfully.

V. LIFECYCLE CONFIGURATION CHANGE MONITORING

A main concept presented in this paper is an
enhancement to the system-level integrity monitoring
system, described in Section IV.C. Instead of comparing
integrity measurements describing the current configuration
status to a fixed reference policy, the changes to the CPS
components and to their configuration are validated during
CPS operation. An integrity violation is detected if changes
are detected that are not in-line with a policy on what and
how changes are applied and when. The changing
configuration of CPS components along their lifecycle in the
operation of a dynamically evolving CPS is validated to
determine whether the CPS is in a trustworthy, authorized
state (CPS system integrity).

Lifecycle state agents on the CPS components act as
integrity sensors that collect lifecycle state information of a
device and provide it in the form of a lifecycle state
attestation to the system integrity monitoring system.

Figure 6 shows the basic concept of a CPS lifecycle-
change integrity monitoring system. Devices (D) provide
Life Cycle State Attestations (LCSA) to a CPS lifecycle-
change integrity monitoring system. The CPS lifecycle-
change integrity monitoring system determines changes on
device lifecycle states based on the provided LCSA
attestations, and it validates whether the detected changes are
in-line with a lifecycle change validation policy.

CPS Lifecycle-Change Integrity Monitoring

D

LCSA

D

LCSA

D

LCSA

Change

Detection

Lifecycle Change

Validation

Validation

Policy

Respondence

Production

plan

adaptation

alarm
Validation

Engine

Change

Monitor

History

DB

Figure 6. CPS Lifecycle Change Monitoring

The lifecycle change validation policy defines which
changes are permitted so that the CPS is considered to be
still in a trustworthy configuration state. If the lifecycle
change validation policy is violated, e.g., an alarm can be
generated, or the CPS operation of the production plan can
be adapted accordingly.

VI. DEVICE LIFECYCLE STATE ATTESTATION

Different lifecycle states of industrial IoT devices can be
distinguished, including factory default state, commissioned,
operational, failure, network connected, provisioned, repair,
service, or being put out of service. The current lifecycle
state of a device can be determined based on its current
configuration data. Some security standards, e.g., ETSI
EN 303645 on Consumer IoT Security includes an example
of a device life cycle model [23]. Besides the life cycle phase
information, also the parts of the specific configuration can
be provided as part of the life cycle attestation and analyzed.
It is not assumed that a common life-cycle model is
explicitly supported by the devices, as in a real-world CPS,
different device types originating from various
manufacturers are used. Instead, the available information of
the device configuration is taken as basis to derive/estimate
the related life-cycle phase, at least if it is not provided
explicitly.

Device

LCSA

Device

Configuration

Manager

Lifecycle State

Determination and

Attestation Unit

Device

Config
Control

Function
IO

A

A

S

S

Figure 7. Control Device with Lifecycle State Attestation

A device can determine its own lifecycle state and
confirm it externally by a device lifecycle state attestation.
Figure 7 shows a device, e.g., a control device for monitoring
and controlling a technical process via sensors (S) and
actuators (A) by a control function that interacts via an input-
output unit (IO) with the sensors and actuators, according to
the device configuration established by a device
configuration manager. The lifecycle state attestation unit
determines the device lifecycle state based on the current

92

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

device configuration and creates a cryptographically
protected LCSA. Besides the current lifecycle state, also
previous lifecycle states can be kept and attested, providing a
more comprehensive information on the device lifecycle
history. Alternatively, the lifecycle state may be determined
and attested by an external add-on component, allowing that
a LCSA can be provided also for legacy devices that do not
have an integrated functionality for determining and attesting
the device lifecycle state.

The LCSA can be provided in a dedicated attestation data
structure, i.e., a data structure that describes the current
lifecycle state of the device, and that is protected by a
cryptographic checksum, i.e., a digital signature or a message
authentication code. However, it is also possible to encode
the life cycle information in a device credential, e.g., a
device authentication certificate, a device attribute
certificate, a device authentication token, or a verifiable
credential.

VII. DEVICE LIFECYCLE STATE ANALYSIS

A simple approach for validating CPS configuration
changes would be the manual analysis of detected
configuration changes and a manual approval of detected
changes by OT personnel. Manual checking and approval
would however not scale well for larger CPS that are
frequently reconfigured. Therefore, an automatic validation
of detected configuration changes is needed. The CPS
Lifecycle-change Integrity Monitoring system determines the
changes to the CPS configuration based on the obtained
device lifecycle state attestations. It validates whether
changes are in-line with a lifecycle change validation policy
that defines the permitted types of changes to the CPS
configuration. If the lifecycle change validation policy is
violated, e.g., an alarm can be generated, or the CPS
operation or a production plan can be adapted accordingly.

The lifecycle change validation policy defining permitted
changes of lifecycle states can be preconfigured. However,
this would require significant effort for explicitly defining
rules for permitted configuration changes. Therefore, an
automated learning system, based on artificial intelligence, is
proposed that learns from good examples of permitted
changes. In an initial introduction phase, good changes
(allowed changes from a system operation level) have to be
marked by the OT personnel. Over time, the system learns
from these good examples. This approach is conceptually
similar to a network firewall for which the filter policy is
determined automatically during a learning phase.

Such a self-learning of permitted changes leads to an
automated learning of what changes lead to a trustworthy
CPS. It is in real-world practice often not easy to determine
explicit rules on which specific properties make a component
or a change being considered as trustworthy. By learning
from good and bad examples, the attributes that are relevant
for the trustworthiness evaluation can also be determined
over time automatically. The system learns which attributes
of a lifecycle state attestation are relevant for determining
which changes are permitted. This self-learning approach
allows also for subjective trust policies: Different users, i.e.,
operators of similar CPSs, can give examples of what they

consider to be trustworthy or not so trustworthy. Depending
on these examples, a trustworthiness evaluation policy is
derived. In contrast to conceptually similar approaches like
the example of firewalls in learning mode, this approach is
more open as even the attributes (criteria) that are relevant
for making trust decisions do not have to be predefined. It
allows also to distinguish varying operational concepts for
CPSs that are operated by different OT operators.

VIII. EVALUATION

From the perspective of a real-world CPS, the approach
presented in Sections V, VI and VII is not self-contained, but
is an extension to other, well-established security measures
to protect a CPS. The main advantage comes by the support
for increasingly dynamic, evolving CPS. To ensure that a
CPS and its components are in a trustworthy state, it is not
ensured that the configuration corresponds to a fixed
reference, but to check whether the detected changes are
acceptable. This approach can compensate when classical,
rather strict security controls preventing heavy changes to a
CPS cannot be applied anymore in the same way as for static
CPS deployments.

The security of a cyber system can be evaluated in
practice in various approaches and stages of the system’s
lifecycle:

− Threat and Risk Analysis (TRA) of cyber system

− Checks during operation to determine key performance

indicators (e.g., check for compliance of device

configurations).

− Security testing (penetration testing)

During the design phase of a cyber system, the security
demand is determined, and the appropriateness of a security
design is validated using a TRA. Assets to be protected and
possible threats are identified, and the risk is evaluated in a
qualitative way depending on probability and impact of
threats. The effectiveness of the proposed enhanced device
authentication means can be reflected in a system TRA.

The main evaluation using security tools is performed
during secure operation, when as part of an overall
operational security management appropriate technologies
are deployed that, in combination, reduce the risk to an
acceptable level. The new approach presented in this paper
provides an additional element, integrated into the overall
system security architecture that is used to reduce the risk of
integrity violations, despite a dynamically changing CPS
configuration.

For the applicability to real-world CPS environments, the
approach allows for:

− Flexibility for updates: The device life cycle integrity

monitoring system can be updated independently from

the actual CPS. Therefore, updates can be installed also

outside the scheduled maintenance windows of the

CPS.

− It can be installed as add-on to existing automation

systems (brownfield). It can be introduced stepwise,

starting with lifecycle monitoring for most relevant

devices.

93

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

− It can be installed as an add-on system that does not

endanger the reliable operation of a CPS or invalidate

its certifications.

Such non-technical properties simplify the adoption in
real-world CPS, and they are often important factors for
acceptance by OT operators.

As long as the technology proposed in the paper has not
been proven in a real-world operational setting, it can be
evaluated conceptually by analyzing the impact that the
additional security measure would have on the identified
residual risks as determined by a TRA, and on key
performance indicators (KPI) of automation and production
systems like uptime, availability, output. Actually, the
approach of evaluation the impact of different approaches to
handle security on KPIs that are not directly security-related
is typically not done systematically in the security
community. The motivation of the lifecycle security
monitoring intends to give high flexibility to reconfigure
industrial CPS to changing needs, while still ensuring the
required level of security.

It is also an open point how to balance security controls
addressing different phases (prevent, detect, react) in an
optimized way. The approach described in this paper puts
less emphasis on restrictive security measures on the
“protect” phase but rather intends to compensate that by
automated monitoring of configuration changes (“detect")
and to use the high flexibility for CPS reconfiguration to
flexibly react also to detected security problems (“react"),
improving thereby also the resiliency. Putting these
considerations in the context of a TRA, means shifting the
focus for reducing identified risks to an acceptable level
from reducing the likelihood of a threat occurrence
(“prevent”) to reducing its impact (“detect” and “react”).

moderate

moderate

moderate

majorlikely

possible

minorunlikely

unlikely

Device communication

intercepted

Device communication

manipulated

Vulnerability in unpatched

device exploited

Device replaced by fake

device

Likelihood

moderate

Impact RiskThreat

crit ical

crit ical

Figure 8. Example Threats of a Threat and Risk Analysis

Figure 8 shows a simplified table as used typically in a
threat and risk analysis to collect and evaluate relevant treats
to a technical system or component. Some threats are shown
as examples. Actual TRAs for real-world systems and
components include usually a much longer list of threats.
The likelihood and the impact of the threat is determined by
judgement of competent personal, usually in a team
including technical experts, developers, and people
responsible for the product or system. The corresponding
risk is determined based on likelihood and impact. It has
shown to be useful to define and document explicitly the

criteria leading to the categorization of likelihood and
impact, including also the assumptions made on the
operational environment. The TRA with prioritized risks is
the basis for security design decisions, focusing on the most
critical risks. It is the basis to define a security concept that
defines suitable measures for reducing the risk to an
acceptable level.

moderate

moderate

signifi cant

signifi cant

Im
p

a
c

t

mi nor

mi nor

maj or

moderate

mi nor

n
e

g
lig

a
b

le
m

o
d

e
ra

te
c

ri
tic

a
l

Likelihood

unlikely possibl e likely

Figure 9. Risk Mapping

Figure 9 shows how the mapping of likelihood and
impact to the corresponding risk value. In the example, the
three categories unlikely, possible, and likely are used to
describe the likelihood. For the impact, the three categories
negligible, moderate, and critical are used. In practice, also
more fine-granular rankings can be used, distinguishing, e.g.,
four or five different categories. Also, the risk evaluation can
in general include further categories, e.g., disastrous. It can
be seen that a reduction of the risk can be achieved by both,
by reducing the likelihood as well as by reducing the impact.

Im
p

a
c

t

n
e

g
lig

a
b

le
m

o
d

e
ra

te
c

ri
tic

a
l

Likelihood

unlikely possibl e likely

Figure 10. Risk Reporting for the Example Threats

An overview on the determined risks can be shown in a
risk reporting as shown in Figure 10. It gives an easily
understandable graphical representation on the distribution of
risks. This representation can be useful if many risks have
been identified. In particular, the example also shows one
major threat as well as a moderate threat with critical impact.

The effect of reducing the risk by limiting the impact is
illustrated in Figure 11. As, shown in the example, the
impact of the two risks with critical impact reduces from
critical to moderate, the risk is reduced correspondingly.
Thereby, also the overall risk situation of the overall CPS in
which the considered device is used, is improved.

94

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Im
p

a
c

t

n
e

g
lig

a
b

le
m

o
d

e
ra

te
c

ri
tic

a
l

Likelihood

unlikely possibl e likely

Figure 11. Reducing risk be limiting the impact

As the evaluation in a real-world CPS requires significant
effort, and as attack scenarios cannot be tested that could
really have a (severe) impact on the physical world, a
simulation-based approach or using specific testbeds are
possible approaches, allowing to simulate or evaluate in a
protected testbed the effect on the physical world of certain
attack scenarios with compromised components. The
simulation would have to include not only the IT-based
control function, but also the physical world impact of an
attack. Using physical-world simulation and test beds to
evaluate the impact of attacks have been described by
Urbina, Giraldo et al. [24]. However, we are not aware of
research work that analyzes systematically the impact of
different security approaches on operational KPIs of a CPS,
e.g., based on simulations or by analyzing data or operational
real-world CPSs.

IX. CONCLUSION

Ensuring device and system integrity is an essential
security feature for cyber physical systems and the
(industrial) Internet of Things. This must be ensured from the
beginning using the security design principle of “defense in
depth”. It allows to support system integrity based on the
information provided from single components or devices that
build the CPS.

This paper proposed a framework for ensuring system
integrity in flexibly adaptable cyber physical systems. With
new concepts for flexible automation systems coming with
Industrial IoT / Industry 4.0, the focus of system integrity
clearly has to move from preventing changes to device and
system configuration to having transparency on the device
and system configuration and checking it for compliance.

The approaches for integrity monitoring in industrial
automation and control systems described in this paper
focuses on the operational phase by relying on lifecycle
attestations for single components building a CPS. This
approach enhances the existing systems, with an attestation
about a specific state in the lifecycle, which allows an
industrial monitoring system to evaluate the current life cycle
state with the expected one. This can be done in addition to
classical system monitoring, which verifies configuration
and system behavior against expected patterns.

Integrity in a broader sense has to cover the whole life
cycle, from development, secure procurement, secure

manufacturing, and supply chain security up to the
commissioning phase in the operational environment. This
lifecycle information can then be used to enhance the current
system state information. Due to the life cycle information
available on the device or its associated management system,
feedback to manufacturer can be provided in case of failure,
in which the problem may be traced back to a specific
production step. This also allows the manufacturer to better
react in future versions of a device. It also allows for
informing other users of the same component or systems
about potential failure scenarios or situations.

Security-critical operations of a device, e.g., use for
control operations, provisioning operational keys, or
providing sensitive commissioning data is performed only
for devices being in an expected state. A device can be used
for regular operational purposes only if, according to its
lifecycle, it is in a valid lifecycle state, and if this lifecycle
state has been established in a permitted way.

A main objective of the described approach is to support
the increase of CPS productivity that is coming with the
flexible production of industry 4.0, supporting “lot size 1”.
The described security approach supports a high flexibility of
CPS reconfigurations while still ensuring an appropriate
security level. Integrity of the CPS is not ensured by
preventing changes to the CPS configuration, but by reliably
determining performed configuration changes and by
validating whether they are permitted.

Possible future research could analyze systematically the
impact of different security approaches on operational KPIs
as productivity, defective goods, or whether tight production
schedules are met by simulating complete CPS systems
under different usage situations and under different attack
scenarios. A further approach may be the integration of
simulation into existing production environments using a
digital twin. This digital twin would then be operated under
the same conditions as the physical devices with the option
to virtually manipulate parameters of the operational
environment to stipulate extreme cases and thus better
prepare for timely reactions to potential real events. While
such analysis is considered to require some effort, it could
provide the bases to come up with security designs for
complex CPS that optimize operational KPIs while still
reliably ensuring the targeted level of security.

REFERENCES

[1] R. Falk and S. Fries, “Dynamic Trust Evaluation of Evolving
Cyber Physical Systems”, CYBER 2022, The Seventh
International Conference on Cyber-Technologies and Cyber-
Systems, pp.19-24, 2022, [Online]. Available from
http://thinkmind.org/index.php?view=article&articleid=cyber
_2022_1_30_80022 [retrieved January, 2023]

[2] IEC 62443, “Industrial Automation and Control System
Security” (formerly ISA99), available from:
http://isa99.isa.org/Documents/Forms/AllItems.aspx
[retrieved January, 2023]

[3] European Commission, “Proposal for a directive of the
European parliament and of the council on measures for a
high common level of cybersecurity across the Union,
repealing Directive (EU) 2016/1148”, COM(2020) 823 final.
2020/0359(COD), Dec. 2020, [Online]. Available from
https://eur-lex.europa.eu/legal-

95

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

content/EN/TXT/?uri=COM:2020: \ 823:FIN [retrieved
January, 2023]

[4] R. Falk and S. Fries, “System Integrity Monitoring for
Industrial Cyber Physical Systems”, International Journal On
Advances in Security, volume 11, numbers 1&2, pp. 170-179,
2018, [Online]. Available from
https://www.thinkmind.org/index.php?view=article&articleid
=sec_v11_n12_2018_14 [retrieved January, 2023]

[5] R. Falk and S. Fries, “Enhancing the Resilience of Cyber-
Physical Systems by Protecting the Physical-World
Interface”, International Journal On Advances in Security,
volume 13, numbers 1 and 2, pp. 54-65, 2020, [Online].
Available from:
http://www.thinkmind.org/index.php?view=article&articleid=
sec_v13_n12_2020_5 [retrieved January, 2023]

[6] Plattform Industrie 4.0, “Industrie 4.0 Plug-and-produce for
adaptable factories: example use case definition, models, and
implementation”, Plattform Industrie 4.0 working paper, June
2017, [Online]. Available from: https://www.plattform-
i40.de/PI40/Redaktion/DE/Downloads/Publikation/Industrie-
40-Plug-and-Produce.pdf [retrieved January, 2023]

[7] ISO/IEC TS 5723:2022 “Trustworthiness – vocabulary”, July
2022. Available from:
https://www.iso.org/standard/81608.html [retrieved January,
2023]

[8] N. G. Mohammadi, “Trustworthy cyber-physical systems: a
systematic framework towards design and evaluation of trust
and trustworthiness”, Springer, January 2019.

[9] Y. Jiang, “Vulnerability analysis of critical infrastructures”,
PhD thesis, University of Skövde, 2022, [Online]. Available
from: https://www.researchgate.net/profile/Yuning-Jiang-
7/publication/363174252_PhD_Thesis_-
_Vulnerability_Analysis_for_Critical_Infrastructures/links/63
1467bd61e4553b9564e7ff/PhD-Thesis-Vulnerability-
Analysis-for-Critical-Infrastructures.pdf
[retrieved January, 2023]

[10] B. Northern, T. Burks, M. Hatcher, M. Rogers, and D.
Ulybyshev, “VERCASM-CPS: vulnerability analysis and
cyber risk assessment for cyber-physical systems”,
Information 2021, 12(10), 408, MDPI, 2021 [Online].
Available from: https://www.mdpi.com/2078-2489/12/10/408
[retrieved January, 2023]

[11] A. A. Malik and D. K. Tosh, “Dynamic risk assessment and
analysis framework for large-scale cyber-physical systems”,
SESA 22(30):1, EAI, 2022, [Online]. Available from:
https://eudl.eu/doi/10.4108/eai.25-1-2022.172997 [retrieved
January, 2023]

[12] M. Tapia, P. Thier, and S. Gößling-Reisemann,
“Vulnerability and resilience of cyberphysical power systems
– results from an empirical-based study”, artex paper 222,
Univ. of Bremen, April 2020, [Online]. Available from:
https://www.uni-
bremen.de/fileadmin/user_upload/sites/artec/Publikationen/art
ec_Paper/222_paper.pdf [retrieved January, 2023]

[13] A. Akbarzadeh and S. K. Katsikas, “Dependency-based
security risk assessment for cyber-physical systems”,
International Journal of Information Security, Springer,
August 2022, [Online]. Available from:
https://link.springer.com/article/10.1007/s10207-022-00608-4
[retrieved January, 2023]

[14] Trusted Computing Group, “Cyber resilient module and
building block requirements”, Version 1.0 Revision 0.2, June
2022, [Online]. Available from:
https://trustedcomputinggroup.org/resource/cyber-resilient-
module-and-building-block-requirements/ [retrieved January,
2023]

[15] A. R. Regenscheid, "Platform firmware resiliency guidelines",
SP800-193, NIST, May 2018, [Online]. Available from:
https://www.nist.gov/publications/platform-firmware-
resiliency-guidelines [retrieved January, 2023]

[16] M. Segovia, J. Rubio-Hernan, A. R. Cavalli, and J. Garcia-
Alfaro, "Cyber-resilience evaluation of cyber-physical
systems," 2020 IEEE 19th International Symposium on
Network Computing and Applications (NCA), 2020, pp. 1-8.
Available from https://ieeexplore.ieee.org/document/9306741
[retrieved January, 2023]

[17] A. Khazraei. S. Hallyburton, Q. Gao, Y. Wang, and M. Pajic,
"Learning-based vulnerability analysis of cyber-physical
systems", ACM/IEEE 13th International Conference on
Cyber-Physical Systems (ICCPS), 2022. Available from:
https://cpsl.pratt.duke.edu/sites/cpsl.pratt.duke.edu/files/docs/
khazraei_iccps22.pdf [retrieved January, 2023]

[18] P. England, R. Aigner, A. Marochko, D. Mattoon, R. Spiger,
and S. Thom, “Cyber resilient platforms”, Microsoft
Technical Report MSR-TR-2017-40, Sep. 2017, [Online].
Available from: https://www.microsoft.com/en-
us/research/publication/cyber-resilient-platforms-overview/
[retrieved January, 2023]

[19] Electronic Communications Resilience&Response Group,
“EC-RRG resilience guidelines for providers of critical
national telecommunications infrastructure”, version 0.7,
March 2008, available from:
https://assets.publishing.service.gov.uk/government/uploads/s
ystem/uploads/attachment_data/file/62281/telecoms-ecrrg-
resilience-guidelines.pdf [retrieved January, 2023]

[20] ISO/IEC 27001, “Information technology – Security
techniques – Information security management systems –
Requirements”, October 2013, available from:
https://www.iso.org/standard/54534.html [retrieved January,
2023]

[21] IEC 62443-3-3:2013, “Industrial communication networks –
Network and system security – Part 3-3: System security
requirements and security levels”, Edition 1.0, August 2013.
Available from: https://webstore.iec.ch/publication/7033
[retrieved January, 2023]

[22] IEC 62443-4.2:2019, “Security for industrial automation and
control systems - Part 4-2: Technical security requirements
for IACS components”, Feb. 2019. Available from:
https://webstore.iec.ch/publication/34421 [retrieved January,
2023]

[23] EN 303 645, “Cyber Security for Consumer Internet of
Things: Baseline Requirements”, ETSI, V2.1.1 (2020-06),
June 2020. Available from:
https://www.etsi.org/deliver/etsi_en/303600_303699/303645/
02.01.01_60/en_303645v020101p.pdf [retrieved January,
2023]

[24] D. Urbina, J. Giraldo, N. O. Tippenhauer, and A. Cardenas,
“Attacking fieldbus communications in ICS: applications to
the SWaT testbed”, Singapore Cyber-Security Conference
(SG-CRC), IOS press, pp. 75–89, 2016, [Online]. Available
from: http://ebooks.iospress.nl/volumearticle/42054 [retrieved
January, 2023]

96

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Protected Establishment of a Secondary Network Access Channel

Steffen Fries, Rainer Falk

Corporate Technology

Siemens AG

Munich, Germany

e-mail: {steffen.fries|rainer.falk}@siemens.com

Abstract—Several use cases demand for the setup of a

separate, dedicated communication channel that provides a

specific quality of service or that separates communications of

different criticality. Different properties of communication

channels are, for instance, performance, latency, but may be

also security related. In several cases, a reliable association to an

already established communication channel is required.

Specifically, if a first communication channel has been securely

established, a cryptographic binding of a second communication

channel to this first communication channel is needed. One

example use case is the charging of electric vehicles. Besides the

charging control, also value-added services like software

updates for the infotainment system or other parts of the electric

vehicle or entertainment services may be provided. To avoid

interfering with the charging-related control communications, a

second, separate communication channel is established. The two

communication channels may require different quality of

service. The cryptographic binding allows to perform

authorization checks to access value-added services and maybe

also to associate the billing of consumed value-added services to

the user that has been authenticated in the setup of the first

communication channel. The paper provides an overview about

existing solutions and proposes an alternative solution that

allows establishing arbitrary communication channels of

different nature and on different communication layers of the

OSI protocol stack. The main example used is the interaction

between an electric vehicle and a charging station, but the

proposed solution is open to different applications.

Keywords–communication security; cryptographic channel

binding; quality of service; industrial automation and control

system; Internet of Things.

I. INTRODUCTION

In network communications, it is typically required to
have distinct relations between communicating endpoints,
which are defined by several parameters, like the addresses of
the communicating endpoints, security credentials connected
with the endpoints, but also by certain quality-of-service
related features. Quality-of-service (QoS) features may relate
to a specific throughput expected by the communication
channel or a specific response time or latency of the
communication, but also to specific security properties of the
communication like integrity protection or combined integrity
and confidentiality protection. These properties may be

provided on different levels of the Open System
Interconnection (OSI) protocol stack, like the utilized
transport protocol or application protocol. Another option is
to verify and enforce required properties already during
network access. Network access may be achieved using
different communication technologies such as wired access
using a classic cable installation, but also using wireless
access via wireless LAN (WLAN), 4G, or 5G mobile
communications.

Specific QoS features are required by a variety of
applications. In [1], the emphasis was placed on electric
vehicle charging as prominent example. Further applications
with specific QoS requirements are also known from real-time
applications like real-time control in industrial automation,
voice-and-video conferences, or video streaming. Specific
security applications may leverage a separate communication
channel like the provisioning of credentials using a connection
with limited access to the operational service providing
network. If the setup of a communication channel with certain
QoS features is based on a previously established
communication relation, a binding of the two communication
sessions can be leveraged in multiple ways.

The aim of this paper, as extended version of [1], is to
further elaborate the setup of a new secure secondary
communication channel that utilizes properties of a previously
established communication channel. Specifically, it will
provide further insights into the electric vehicle charging use
case and the correlation of charging related communication
and value-added related communication. As outlined, value-
added services may relate to updates of the firmware,
software, or map material for the infotainment system of an
electric vehicle.

This paper is structured in the following way. Section II
provides an enhanced overview about electric vehicle
charging as a potential target scenario. Section III investigates
existing approaches to provide distinct communication
channels with distinct properties. Section IV describes a new
approach, and section V analyzes its advantages. Section VI
concludes the paper and provides and outlook to future work.

II. ELECTRIC VEHICLE CHARGING

The number of electric vehicles as bicycles, motorcycles,
and cars has increased in the recent years significantly. They
are connected to the Digital Smart Grid for charging. Besides
basic charging, also the development of bidirectional charging

97

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is ongoing, which allows to utilize electric vehicles as energy
storage system and to feedback energy to the power grid when
necessary. Depending on the charging interface between the
electric vehicle and the infrastructure, the charging may be
accomplished within minutes, or it may need up to several
hours. While connected to a charging station, the vehicle
exchanges constantly control data with the charging station to
provide data like locally measured energy consumption on the
vehicle side or charging commands with parameter
adaptations from the charging station. This connection time
may also be used to provide value-added services by utilizing
the connection already established between the electric
vehicle and the charging station.

As depicted in Figure 1, a multitude of potential
communication options exists involving different actors
within the charging system. The communication channel
established between the electric vehicle and the charging
station may be setup using different standards like ISO/IEC
15118 [2] or CHaDemo [3]. The focus in this paper is placed
on ISO/IEC 15118.

The communication is accomplished using power line
communication when the vehicle is connected via a wired
interface. Alternatively, a wireless interface like WLAN is
typically employed when inductive charging is performed. In
this case, the charging station provides a WLAN access point
to facilitate the communication. According to ISO/IEC 15118,
access to the charging station is not protected on the WLAN
access layer, but on higher communication layers. This avoids

a specific WLAN access configuration of electrical vehicles
for a specific charging station. The communication performed
in the context of ISO/IEC 15118 allows to provide charging
parameter information, billing relevant information. To do
this in a secure manner, mutual authentication of the electric
vehicle and the charging station can be performed at the
beginning of a charging session. The security of ISO/IEC
15118-2 has been studied from the early beginning of
standardization (cf. for example [4]) of the vehicle to grid
interface. Meanwhile, the standard has been completed, and a
revision will be published soon as Edition 2.

The communication channel between the electric vehicle
and the charging station is part of the bigger Digital Grid
picture as shown in Figure 1. Besides the pure charging
relevant communication. Value-added service providers may
utilize the communication channel as well but may be
independent of the charging point operator.

The energy distribution network as critical infrastructure
relies on the availability of the information infrastructure.
Therefore, the information infrastructure must be managed
and operated according to the same level of reliability as
required for the stability of the power system infrastructure to
prevent any type of outage or disturbance. The immediately
apparent security needs target the reliable operation of the
power grid and prevention of financial fraud. Especially the
interaction between new market participants and value-added
services has been investigated and is also addressed in
ISO/IEC 15118.

Figure 1. Electric Vehicle Communication Connections

98

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Common to both editions, 1 and 2, of the standard
ISO/IEC 15118 is the security approach and specifically the
security setup between the electric vehicle and the charging
infrastructure. It relies on the establishment of a secured
communication channel based on Transport Layer Security
(TLS). TLS, version 1.2 specified in IETF RFC 5246 [5] is
used in Edition 1 of ISO/IEC 15118-2, while TLS version 1.3
specified as IETF RFC 8446 [6] is used in edition 2. During
the communication establishment, it requires that the charging
station authenticates towards the electric vehicle using an
X.509 certificate as part of the TLS handshake. In turn, if the
electric vehicle uses plug-and-charge, or if it wants to
consume value-added services, it authenticates with an own
X.509 certificate that is bound to the charging contract. This
charging contract has been established between the electric
vehicle owner and the mobility operator of his choice. It
allows for a seamless charging experience for the vehicle
owner, similar to roaming in the mobile communication
domain. In addition, it allows to access value-added services
after connecting to the charging station.

The value-added service communication is performed
separately from the control and measurement communication
channel. This is to avoid any interference with the charging
related control communication. ISO/IEC 15118 facilitates this
by establishing a separate communication channel that is
bound to the initial authentication of both peers and outlined
in section III.D below.

The following section Investigates different options of
providing an authenticated channel that is bound to a mutual
authentication between the electric vehicle and the charging
station.

III. EXISTING APPROACHES FOR COMMUNICATION

CHANNEL PROTECTION AND CHANNEL BINDING

Communication channel protection can be performed in
different ways. The probably simplest way is the usage of a
virtual private network (VPN) to protect arbitrary higher layer
communication protocols in a transparent way. Transparent
means here that the protected application (layer protocol) is
not affected by the VPN. This may be achieved by approaches
like a cryptographic VPN (see subsection III.A), SOCKS (see
sub section III.B), or a virtual local area network (VLAN) (see
subsection III.C). In contrast, an application may also be
aware of the underlying security channel and signal it to the
user as in case of, for instance, browser-based communication
using the Hypertext Transfer Protocol (HTTP) over TLS
resulting in HTTPS. The “S” indicates the establishment of a
secure tunnel towards the user. The approach in TLS is
described in subsections III.D and III.E. The latter also
provides insights into the cryptographic binding of TLS
sessions or TLS channels.

The concept of cryptographic channel binding is described
in IETF RFC 5056 [7] and relates to the binding of a lower
layer communication to a higher layer communication. In the
context of this document, channel binding is also used to refer
to a binding between two network access sessions to ensure
that they involve the same peers and also that they have been
established in a specific order.

The following subsections investigate into approaches for
setting up a communication channel, which can be bound to
another communication channel supporting certain security
properties like the authentication of a single peer or of both
peers.

A. Cryptographic Virtual Private Networks–- VPN

A cryptographic virtual private network is a
communication connection that can be setup between a client
(endpoint) and a service providing network, or between two
networks. To ensure security properties like peer
authentication, communication integrity and confidentiality
(to ensure privacy of the communication), cryptographic
protocols are used to setup and protect this connection.

Cryptographic VPNs may be built on different layers of
the OSI protocol stack. Typical are OSI Layer 3 VPNs. A
prominent protocol supporting the establishment of such a
VPN is the IP Security Protocol (IPSec, IETF RFC 4301 [9].
Alternatives are for instance OpenVPN [10] or the much
younger WireGuard [11]. The latter bases on the noise
protocol framework [12] and focuses on simplifications in the
configuration and in a more restrictive definition of utilized
cryptographic algorithms to offer a streamlined protection.

Cryptographic VPNs may also be established on OSI layer
2 and support the security of Virtual LANs (see subsection
III.C below). Moreover, they may also use OSI layer 4 by
utilizing TLS as security protocol. They are referred to as SSL
VPNs or TLS-VPNs. In contrast to IPSec, the cryptographic
protection is established per application connection and not
resulting in a network coupling as in the case of IPSec.

B. Socket Secure – SOCKS

SOCKS [13] is an internet protocol that allows
applications (client or server) to connect through proxies in an
application layer independent way. This is done by using a
SOCKS proxy that creates a TCP connection to the target
server on behalf of the client. As SOCKS operates on layer 5,
it can handle different application protocols like HTTP, the
Simple Mail Transfer Protocol (SMTP), or the File Transfer
Protocol (FTP). It allows a client to open a connection from
behind a firewall to an external server in an authenticated and
authorized way. SOCKS5 allows for different authentication
methods, in which the client authenticates towards the
SOCKS server. It may also be used in conjunction with TLS.
After authentication and authorization check by the SOCKS
server, the application protocol is tunneled over the
established connection and forwarded to the external target
server.

The authentication is done between the requesting client
and the SOCKS server, and the tunneling of the application
protocol binds to this authentication. However, the server is
not aware of this authentication and needs to authenticate the
client by other means. As the tunnel is provided on an
application base, multiple tunnels for different applications
are necessary, all with an own, independent security setup.

C. Virtual LAN – VLAN

VLAN or virtual local area networks are defined in IEEE
802.1Q [14]. The standard defines a logical network and

99

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

allows the separation of different communication channels on
layer 2. Different properties may be assigned in addition to
this virtual LAN like performance or throughput. To achieve
this, infrastructure components like managed switches are
used, supporting the differentiation of traffic according to
VLANs. A peer sending information in this VLAN (unicast or
multicast) will only reach other peers that are part of the same
VLAN.

Two basic approaches exist for VLANs. The first
approach is a port-based VLAN in which the association to a
logical LAN is done by attaching the client to a dedicated
physical port of a managed switch. The second approach is a
tagged VLAN, in which the Ethernet frames are tagged with
a specific VLAN identifier (VLAN ID). Based on this VLAN
tag, a switch can forward the Ethernet frame according to its
configuration.

With this, VLANs themselves provide a way to separate
traffic, which is also a step towards improved security. The
definition of this separation is not done on cryptographic
means, as stated before. Therefore, it is recommended to
provide additional protection of the communication.
Examples are IEEE 802.1X [15], providing port-based access
control. With this, a client authenticates to the infrastructure
(typically a RADIUS or DIAMETER server) via the
infrastructure access network switch using different means,
e.g., based on the Extensible Authentication Protocol (EAP)
[16]. EAP allows for authentication with username and
password, but also for a certificate-based authentication
employing a client’s X.509 certificate. In addition, MAC
security (MACSec), specified in IEEE 802.1AE [17], can be
used to provide integrity and/or confidentiality protection for

the traffic between the device and the network switch in a hop-
by-hop fashion.

Security for VLAN can be provided using additional
security means like IEEE 802.1X as outlined on OSI Layer 2.
Another prominent protocol for securing VLANs is IPSec as
described in subsection III.A. If associated to a dedicated
VLAN, quality of service parameter may be assigned.

D. Transport Layer Security Features

Transport Layer Security (TLS) is a protocol defined in
IETF RFC 5246 as version 1.2 [5]. Meanwhile, it evolved to
version 1.3 in IETF RFC 8446 [6]. While version 1.3 is being
increasingly adopted [21], version 1.2 is still widely used. TLS
is probably the most commonly used security protocol to
protect TCP-based communications. The most prominent
application is the protection of web-based communication
over http. Also, other TCP-based protocols leverage the bump
in the wire properties of TLS, like ISO/IEC 15118. ISO/IEC
15118-20 mandates the support of TLS v1.3, while TLSv1.2
may still be used.

TLSv1.3 features a re-designed handshake, which is not
backward compatible to TLSv1.2. The version handling in
TLS allows to fall back to TLSv1.2, if TLSv1.3 is not
supported yet. The handshake is encrypted, except for the very
first message, to better protect the privacy of client certificate
information that is thereby already send encrypted. Moreover,
the handshake may already transmit application data, which
can accelerate the communication setup. This feature is called
0-RTT (zero round-trip time), but the use requires careful
review.

Figure 2. TLS v1.3 Session Establishment with full handshake

100

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The full handshake of TLSv1.3 is depicted in Figure 2.
TLS supports different authentication options:

- server-side authentication (mainly used in web traffic)
using X.509 certificates;

- mutual authentication involves the client to
authenticate using an X.509 certificate in addition to
server authentication;

- authentication based on a pre-shared key, which is
applied also within TLS as described below;

- authentication based on raw public keys.
Besides the peer authentication, the TLS handshake is

used to negotiate further session parameters like the cipher
suite for protecting communication integrity and
confidentiality. A cipher suite is a statement regarding the
utilized algorithms for the protection of the communication
session.

TLS with mutual authentication is applied in
ISO/IEC 15118-20 for plug-and-charge and for access to
value-added services. This ensures that billing-relevant
charging and service consumption can be associated with a
dedicated account.

Besides the establishment of a protected channel, TLS
defines further operations for the management of this secured
channel, beyond them the update of session parameters during
an ongoing session, like the utilized cryptographic key. One
important functionality is the so-called session resumption.
Session resumption allows a previously established and closed
session to be resumed, based on the security parameters
negotiated in the initial session. This saves the asymmetric
cryptographic operations during the TLS handshake, and it
utilizes a pre-shared key included in a ticket from the initial
handshake. Note that there is a timely limitation how long a
closed session may be resumed, depending on the TLS
version. While TLSv1.2 recommends 24 hours, TLSv1.3
limits the validity time in the tickets used for resumption to
seven days.

Besides the re-establishment of a closed connection, TLS
session resumption may also be used to “clone” an existing
session. This can be achieved by opening a TLS connection to
a different port on the target host than the original one used

and referencing the existing session. Using this, a separate
TLS-protected TCP communication channel is established.
As the second communication channel relies on the security
parameters of the first one and thus is cryptographically bound
to it, it implicitly provides the assurance of mutual
authentication to both participants.

ISO/IEC 15118 utilizes this feature to allow the
establishment of value-added service communication
channels. Note that these are currently restricted to TCP-based
communications.

In general. there also exists a protocol similar to TLS to
protect UDP/IP traffic by the Datagram Transport Layer
Security protocol (DTLS, IETF RFC 9147, [18]). It could be
used to protect, e.g., media traffic, which is often transmitted
via UDP. Note that interactions between both (TLS and
DTLS) are not considered in ISO/IEC 15118, as the protection
of the actual value-added service data is left to the value-added
service itself. ISO/IEC 15118 mainly handles the secure
establishment of a further communication session between the
electric vehicle and the charging station to facilitate the value-
added service communication.

As shown in Figure 3, a second session is opened between
the electric vehicle and the charging station using TLS session
resumption. This saves communication overhead and
provides a cryptographic binding to the initial, authenticated
TLS channel, which protects the charging control session.
Note that while TLSv1.3 has specific optimizations like
sending application data already in the resumed handshake
(called 0-RTT), this feature is not allowed in ISO/IEC 15118-
20 to avoid replay attacks of application data.

Port forwarding is used at the charging station to forward
the traffic to the intended value-added service provider. The
security of the communication channel to the value-added
service provider is out of scope of ISO/IEC 15118 and needs
to be defined and setup by the value-added service separately.
For protecting UDP-based traffic between the electric vehicle
and the charging station, OpenVPN is mentioned but nothing
is specified. Note that this missing definition may have an
influence on real-time services (like voice and video over IP
or streaming services).

Figure 3. TLS Session Resumption to establish second communication channel

101

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. TLS Channel Binding

IETF RFC 5929 [19] describes a binding of a higher layer
communication protocol to a negotiated TLS channel.
Different approaches are specified. The most versatile is the
definition of the tls-unique value. The tls-unique value is
essentially the first “Finish Message” sent in the latest TLS
handshake. The finish message contains a hash over all
messages exchanged during the handshake phase.

This definition makes this parameter specific to a
negotiated session. When a session is resumed or renegotiated
(only for TLS 1.2), the tls-unique value will change
accordingly. This has to be obeyed by the applying
application. Using tls-unique in an application provides a
direct linkage to the properties negotiated during the TLS
handshake and applied in the ongoing TLS session.

An example is the application in the context of Enrollment
over Secure Transport (EST, IETF RFC 7030, [20]), a
certificate enrollment protocol executed over TLS. In this
protocol, the client sends a certification request object (here, a
PKCS#10 request) to enroll a new X.509 client certificate.
The certification request is signed with the private key of the
freshly generated key pair. This provides a proof-of-
possession to the receiver, that the sender, i.e., the client,
knows the private key corresponding to the contained public
key. Part of the certification request can be a tls-unique value.
As in case of EST, the TLS handshake may be performed with
mutual authentication. Therefore, the receiver in addition gets
the proof-of-identity of the client, due to the link to the utilized
client certificate in the TLS handshake. This linkage is
provided through the inclusion of the tls-unique value.

IV. DEPENDENT SECURE COMMUNICATION CHANNELS

As discussed in section I, the goal of this paper is to
propose a solution for setting up an additional (wireless)
communication channel or more specific an additional access
path that utilizes security properties of a previously
established communication channel to specifically gain and
apply derivations of the original security parameters. The
existing solutions discussed in section III provide elements

that are partly used in the approach. The solution is described
in the context of the initially provided example of electric
vehicle charging and additionally as option in the context of
dependent monitoring in the following subsections.

A. Alternative Handling of Value-Added Services

communication during electric vehicle charging

The following description proceeds with the example of
electric vehicle charging as in section II and provides an
alternative solution. This described solution specifically
allows for multiple connections between a value-added
service provider and an electric vehicle, which are all bound
to an existing charging session. These multiple channels may
be of different nature like TCP/IP or UDP/IP traffic. This
enhances the currently provided functionality for securing
TCP/IP based value-added service communication.
Therefore, the alternative may also be used in situation in
which, e.g., video streaming or conferencing is provided,
typically relying on UDP/IP for the real-time part.

Figure 4 provides an overview of the solution. According
to ISO/IEC 15118-20, a TLS connection is established
between the electric vehicle EV1 and the charging station CS1
via a well-known service-set identifier (SSID) of the charging
station. The well-known SSID may be either preconfigured,
or it may be broadcasted using Bluetooth beacons in the
vicinity of the charging station. The connection is established
based on the authentication of CS1 as server towards EV1.
The EV1 authentication can be carried out over the already
TLS protected link to protect the identity information of EV1.

The client-side authentication in the first communication
channel may be done based on an X.509 certificate but also
using other methods on application layer like HTTP digest
authentication or based on a token, like for instance when
using the OAuth 2.0 framework [22]. Specific for the electric
vehicle charging, the owner of the EV may also authenticate
directly towards the charging station, avoiding any
information to be transmitted over the communication link. In
each case, a binding to the originally established TLS
connection is required.

SS
ID

:

p
u

b
lic

Charging Station (CS1)Electric Vehicle (EV1)

Establishment of V2G
Communication to well-

known port over TLS 1

Construction of temporary SSID: h(EV1EVSE1vas1),
Extraction of tls_unique from TLS1,

Derivation of password for WPA2 for EV1EVSE1vas1

SS
ID

:

h
(E

V
1E

V
SE

1V
A

S
1)

Establishment of Communication to VAS Provider VAS1

Se
cu

re
 a

cc
e

ss
 t

o
 V

A
S

p
ro

vi
d

e
r

(V
A

S1
)

d
ep

e
n

d
s

o
n

 h
is

 s
e

cu
ri

ty

p
o

lic
y

Value-Added Service

Provider (VAS1)

Figure 4. Application of tls-unique to protect second WLAN establishment

102

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To achieve this, the tls-unique value is extracted, which is
intended as means to provide the binding to the originally
established TLS channel for further connections to be opened.
This extraction equals to the TLS channel binding described
in section III.E.

Over the established TLS channel, an information is
provided to the electric vehicle regarding available value-
added services offered by the charging station, which can be
consumed during the charging period. These value-added
services may be software updates for the infotainment system,
normal web access, gaming, or videos to bridge the charging
time.

While in section II, the additional communication channel
for value-added services in ISO/IEC 15118 is opened using
TLS session resumption on a different port than the one for
the charging communication, the following describes an
alternative, which can be used more versatile for different
types of data exchange. It essentially provides a second access
point thus allowing to perform further connections on OSI
layer 2.

When the EV selects a value-added service, it will receive
the additional configuration information for setting up a
second, temporary WLAN access to the charging station for
the electric vehicle. The configuration information shall be
specific to the charging session between EV1 and CS1 and a
specific value-added service provider VAS1. This allows for
correct billing of consumed services (if necessary), based on
the association.

For setting up a temporary access point, a second network
access policy needs to be provided, which may comprise
information regarding protection means or quality of service
parameter. In case of WLAN, a temporary network name
(SSID) and a pre-shared key for access protection to the
temporary WLAN are also required to utilize WPA2 or WPA3
for access protection to the temporary WLAN.

Instead of providing this information directly, it can be
derived locally by the communication peers based on the
already existing charging control communication session as
following:

Temporary SSID = Hash (EV ID | CS ID | VAS ID)

In the example in Figure 4, this will result in the hashed
value of “EV1CS1VAS1”. Depending on the utilized hash
function, e.g., SHA-256, the result can be truncated to, e.g.,
20 Bytes. With the goal to bind the temporary WLAN to the
already existing charging session, the temporary WLAN
access credentials in terms of a shared secret are derived
incorporating the tls-unique value of the initial TLS session as
following:

Temp. SSID PW = Hash (tls-unique | EV ID | VAS ID)

The derivation may consist of further parameter besides
the EV identifier and the VAS identifier. In addition to the
VAS ID, the name of the value-added service may be
provided, e.g., as fully-qualified domain name (FQDN).

Depending on the security policy of the charging station
operator, the temporary WLAN access for the value-added
services may be terminated as soon as the charging session
ends. There may be cases for leaving the session open for a
grace period, e.g., for ending a specific transaction. This

option may also be part of the contract a customer has with a
specific charging station operator.

As described, the approach can be generalized to provide
the binding also to other network access methods like 4G or
5G. It may also be leveraged to setup VLANs for separating
the communication, utilizing derived parameters for VLAN
name and access credentials.

B. Utilizing dependent security channels for device

monitoring

In the previous section, the existence of an established
secure session was used to open a second network path to
provide value-added services during electric vehicle charging
as example use case.

The approach to have a specific network access for a
function allows for better maintaining quality of service
characteristics for this communication channel or for a
dependent communication channel. This can also be
leveraged and applied in other types of communication. A
further example is provided in this subsection based on the
monitoring of industrial device operation.

In industrial use cases like process automation, factory
automation, or also energy automation, there are often strict
boundary conditions with respect to the expected real-time
behavior. This relates to strict processing and transmission
time specification in applications like protection in electrical
networks. As the communication between protection devices
has been changed from a per wire communication to Ethernet
based communication, the timing of the direct wiring needs to
be ensured also for the Ethernet-based communication to
ensure reliability for the power provisioning but most
importantly for safety. The protection device essentially
resembles the same functionality as an electrical fuse, known
from typical household applications. Protocols used in this
context are defined for instance in IEC 61850 with Generic
Object-Oriented Substation Events (GOOSE), and Sample
Values (SV) using plain Ethernet-based communication in
substation environments.

Following mechanisms are used to ensure the specified
transmission speed and reliability:

— GOOSE data is directly embedded into Ethernet data

packets and works on publisher-subscriber mechanism

on multicast or broadcast MAC (Media Access Control)

addresses

— GOOSE uses VLAN and priority tagging as per IEEE

802.1Q to have a separate virtual network within the

same physical network and to set an appropriate message

priority level

— Enhanced retransmission mechanisms – the same

GOOSE message is retransmitted with varying and

increasing re-transmission intervals.

IEC 61850-5 [24] defines message types and their

performance classes as:

— P1 applies typically to a distribution bay (or where low

requirements can be accepted),

— P2 applies typically to a transmission bay (or if not

otherwise specified by the customer),

103

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

— P3 applies typically to a top performance transmission

bay.

The following table shows the different message types and
their timing requirements based on IEC 61850-5 [24].

TABLE I. GOOSE TRANSFER TIMES

Type Definition Timing Requirements

1 Fast messages contain a

simple binary code

containing data, command or
simple message, examples

are: “Trip”, “Close”, etc.

See Type 1a and 1 b below

1A TRIP – most important

message

- P1: Transfer time shall be

in the order of half a cycle.
→ 10 ms

- P2/3: Transfer time shall

be below the order of a

quarter of a cycle. → 3 ms

1B OTHER – Important for the

interaction of the automation

system with the process but
have less demanding

requirements than trip.

- P1: Transfer time < 100ms

- P2/3: Transfer time shall

be below the order of one

cycle. → 20 ms

2 Medium speed messages are

messages where the time at

which the message originated
is important but where the

transmission time is less

critical.

- Transfer time < 100ms

3 Low speed messages are

used for slow speed auto-

control functions,
transmission of event

records, reading or changing

set-point values and general

presentation of system data.

- Transfer time < 500ms

The definition of transfer time, according to IEC 61850-5,

is shown in Figure 5 below. The transfer time includes the
complete transmission of a message including necessary
handling at both ends.

Figure 5. Transfer Time [24]

The security for GOOSE and also SV communication is
specified in IEC 62351-6 [25] and defines an extension
applicable to both protocols to carry integrity information for
the exchanged information based on independently negotiated
security parameters.

An alternative approach to protocol inherent security may
be the setup of a dependent security association between the
GOOSE and the SV communication. This on one hand

supports the direct assignment of QoS parameters to the
communication channel. In addition, if the communication is
performed using different network technologies, a related
security attack on one (physical or logical) network can be
directly related to the communication on the other and
appropriate measures can be derived.

As described, the approach can be generalized to provide
the binding also to other network access methods like 4G or
5G. It may also be leveraged to setup VLANs for separating
the communication, utilizing derived parameters for VLAN
name and access credentials.

V. EVALUATION

The evaluation of the proposed solution is done based on
the concept only, as it has not been implemented, yet. In
general, the security of an industrial system can be evaluated
in practice in various approaches and stages of the system’s
lifecycle:

− A Threat and Risk Analysis (TRA, also abbreviated as

TARA) is typically conducted at the beginning of the

concept definition, as for ISO/IEC 15118, product design

or system development, and updated after major design

changes, or to address a changed threat landscape. In a

TRA, possible attacks (threats) on the system are

identified. The impact that would be caused by a

successful attack and the probability that the attack

happens are evaluated to determine the risk of the

identified threats. The risk evaluation allows to prioritize

the threats, focusing on the most relevant risks and to

define corresponding security measures. Security

measures can target to reduce the probability of an attack

by preventing it, or by reducing the impact.

− Security checks can be performed during operation or

during maintenance windows to determine key

performance indicators (e.g., check compliance of

device configurations) and to verified that the defined

security measures are in fact in place.

− Security testing (penetration testing, also called

pentesting for short) can be performed for a system that

has been built, but that is currently not in operation. A

pentest can usually not be performed on an operational

automation and control system, as the pentest could

affect the reliable operation auf the system. Pentesting

can be performed during a maintenance window when

the physical system is in a safe state or using a separate

test system.

As long as the solution proposed in the paper has not been
proven in a real-world operational setting, it can be evaluated
conceptually by analyzing the impact that the additional
security measure would have on the identified residual risks
as determined by a TRA. The main objective is to determine
the specific benefits that are relevant for the selection of a
suitable protection approach. The main aspects relevant for
the evaluation of the proposed solution are:

104

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a. the level of isolation of different types of

communications (charging control communication;

value added services communication);

b. the scope of protection, i.e., what exactly is protected

concerning integrity and or confidentiality, and

c. the flexibility to use it for various protocols used by

different value-added services.

These aspects can be evaluated qualitatively as follows:

a. The control communication for charging control and the

communication of value-added services are taking place

on separate layer 1 / layer 2 communication links. While

a reliable traffic isolation can be implemented also on a

logical level, the isolation realized by having separate

layer 1 / layer 2 communication links ensures by design

a strong isolation, avoiding logical interference between

these different types of communications. Moreover, this

separation offers the option to not only provide different

protection options for the communication links, but also

to assign different quality of services classes to ensure

for instance a dedicated throughput or latency.

b. The proposed solution protects all communications,

including, e.g., dynamic host configuration by DHCP or

iPv6 auto configuration, or DNS requests. Thereby, also

user privacy protection is increased, as meta-data of

communication as, e.g., network addresses, cannot be

intercepted as all communication is protected on layer 2.

Also, active manipulations by 3rd parties, e.g., injected

false DNS responses, can be avoided.

c. The solution can be used with any types of

communication, including UDP datagram

communication. So, it can be flexibly applied also for

value-added services using UDP-based communications

(e.g., multi-media communications based on RTP).

VI. CONCLUSION

This paper provides a new generic approach for setting up
a temporary network access channel allowing to assign
specific quality of service parameter to the new network
access, which is cryptographically bound to an already
established communication channel. The approach is
discussed in the context of electric vehicle charging combined
with value-added services. A further example from the power
automation domain is described. The approach as such is not
limited to these examples and may be applied also in other
domains.

The advantage of the proposed approach is the ability to
be applied in an application layer protocol independent way.
It preserves the privacy of user credentials for observers of the
network applied on higher layers. This is especially important
for wireless communication as the exchanged communication
can be easily accessed. Note that in the design of TLS 1.3, the
privacy requirements have already been considered in the
redesign phase. In TLS 1.3, only the initial message is sent in
clear, while the remaining part of the handshake, including the
client-side authentication, is encrypted. Note that there are
ongoing discussions in the IETF standardization on securing

the initial TLS handshake message to further protect the
privacy of the communication [26].

The proposed approach in this paper is available as
concept and needs to be implemented a proof of concept,
which would be a future intended step. Such a proof of
concept can leverage already specified base mechanisms like
tls-unique extraction. Moreover, in the context of
ISO/IEC15118 it would align with the approach not sending
the client authentication (here the client is the electric vehicle)
in clear over the network.

REFERENCES

[1] S. Fries and R. Falk, “Secure and Flexible Establishment of
Temporary WLAN Access”, Securware 2022, July 2022,
https://www.thinkmind.org/articles/securware_2022_1_40_30
013.pdf, [retrieved: May, 2023]

[2] ISO/IEC 15118-20: Road vehicles — Vehicle-to-Grid
Communication Interface — Part 20: Network and application
protocol requirements, Work in Progress

[3] CHAdeMO, https://www.chademo.com/, [retrieved: May,
2023]

[4] R. Falk and S. Fries, “Electric Vehicle Charging Infrastructure
– Security Considerations and Approaches”, Internet 2012,
June 2012, ISBN: 978-1-61208-204-2, pp.58-64

[5] T. Dierks and E. Rescorla, IETF RFC 5246, “Transport Layer
Security (TLS) Protocol v1.2, 08/2008,
https://tools.ietf.org/html/rfc5246, [retrieved: May, 2023]

[6] E. Rescorla, IETF RFC 8446, “Transport Layer Security (TLS)
Protocol v1.3”, 08/2018, https://tools.ietf.org/html/rfc8446,
[retrieved: May, 2023]

[7] N. Williams, IETF RFC 5056, “On the Use of Channel
Bindings to Secure Channels”, 11/2007,
https://tools.ietf.org/html/rfc5056, [retrieved: May, 2023]

[8] ISO/IEC 7498-1:1994, Information technology — Open
Systems Interconnection — Basic Reference Model: The Basic
Model, November 1994,
https://www.iso.org/standard/20269.html, [retrieved: May,
2023]

[9] S. Kent and K. Seo, IETF RFC 4301, “Security Architecture
for the Internet Protocol”, https://tools.ietf.org/html/rfc4301,
December 2005, [retrieved: May, 2023]

[10] OpenVPN, https://openvpn.net/, [retrieved: May, 2023]

[11] Wireguard, https://www.wireguard.com/, [retrieved: May,
2023]

[12] Noise Protocol Framework, http://www.noiseprotocol.org/,
[retrieved: May, 2023]

[13] M. Leech et al., IETF RFC 1928, „SOCKS Protocol Version 5,
03/1996, https://tools.ietf.org/html/rfc1928, [retrieved: May,
2023]

[14] IEEE 802.1Q, “IEEE Standard for Local and Metropolitan
Area Networks – Bridges and Bridged Networks”, 2018,
https://standards.ieee.org/ieee/802.1Q/6844/, [retrieved: May,
2023]

[15] IEEE 802.1X, “IEEE Standard for Local and Metropolitan
Area Networks – Port-Based Access Control”, 2020,
https://ieeexplore.ieee.org/document/9018454, [retrieved:
May, 2023]

[16] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and
H.Levkowetz., IETF RFC 3748, “Extensible Authentication
protocol (EAP)”, 06/2004, https://tools.ietf.org/html/rfc3748,
[retrieved: May, 2023]

[17] IEEE 802.1AE “IEEE Standard for Local and Metropolitan
Area Networks – Media Access Control (MAC) Security”,

105

International Journal on Advances in Security, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/security/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2018, https://ieeexplore.ieee.org/document/8585421,
[retrieved: May, 2023]

[18] E. Rescorla, H. Tschofenig, and N. Modadugu, IETF RFC
9147, “The Datagram Transport Layer Security (DTLS)
Protocol Version 1.3”, April 2022
https://datatracker.ietf.org/doc/html/rfc9147, [retrieved: May,
2023]

[19] J. Altman and N. Williams, IETF RFC 5929, TLS channel
binding, July 2010, https://tools.ietf.org/html/rfc5929,
[retrieved: May, 2023]

[20] M. Pritikin, P. Yee, and D. Harkins, IETF RFC 7030,
“Enrollment over Secure Transport “, 10/2013,
https://tools.ietf.org/html/rfc7030, [retrieved: May, 2023]

[21] SSL Puls: TLS Dashboard, continuously updated,
https://www.ssllabs.com/ssl-pulse/, [retrieved: May, 2023]

[22] D. Hardt, IETF RFC 6749, “The OAuth 2.0 Authorization
Framework”, October 2012,
https://tools.ietf.org/html/rfc6749, [retrieved: May, 2023]

[23] D. Hardt, A.Parecki, and T. Lodderstedt, IETF Draft, “The
OAuth 2.1 Authorization Framework”, March 2023,
https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-1/,
[retrieved: May, 2023]

[24] IEC 61850-5 – “Communication networks and systems for
power utility automation - Part 5: Communication
requirements for functions and device models”, March 2022,
https://webstore.iec.ch/publication/64584, [retrieved: May,
2023]

[25] IEC 62351-6 – “Power systems management and associated
information exchange - Data and communications security -
Part 6: Security for IEC 61850”, October 2020,
https://webstore.iec.ch/publication/63742, [retrieved: May,
2023]

[26] E. Rescorla, K. Oku, N. Sullivan, and C. A. Wood, IETF Draft
“TLS Encrypted Client Hello”, April 2023,
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/, [retrieved:
May, 2023]

