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Abstract—Smart Services enrich many aspects of our daily lives,
such as in the Ambient Assisted Living (AAL) domain, where the
well-being of patients is automatically monitored, and patients
have more autonomy as a result. A key enabler for such services
is the Internet of Things (IoT). Using IoT-enabled devices, large
amounts of (partly private) data are continuously captured,
which can be then gathered and analyzed by Smart Services.
Although these services bring many conveniences, they therefore
also pose a serious threat to privacy. In order to provide the
highest quality of service, they need access to as many data as
possible and even reveal more private information due to in-depth
data analyses. To ensure privacy, however, data minimization is
required. Users are thus forced to balance between service quality
and privacy. Current IoT privacy approaches do not reflect
this discrepancy properly. Furthermore, as users are often not
experienced in the proper handling of privacy mechanisms, this
leads to an overly restrictive behavior. Instead of charging users
with privacy control, we introduce VAULT, a novel approach
towards a privacy-aware management of sensitive data. Since
in the IoT time series data have a special position, VAULT is
particularly tailored to this kind of data. It attempts to achieve
the best possible tradeoff between service quality and privacy
for each user. To this end, VAULT manages the data and enables
a demand-based and privacy-aware provision of the data, by
applying appropriate privacy filters which fulfill not only the
quality requirements of the Smart Services but also the privacy
requirements of users. In doing so, VAULT pursues a Privacy by
Design approach.

Keywords—time series data; privacy filters; aggregation; inter-
polation; smoothing; information emphasis; noise; data quality;
authentication; permission model; data management.

I. INTRODUCTION

This paper extends the work of Stach [1]. In this extended
version, we discuss for the first time how data are managed
in VAULT and how to determine which privacy filters are
appropriate for which Smart Service. In addition, we provide
more technical and implementation details on the privacy filters.

The ever-increasing popularity of the Internet of Things
(IoT) is both, a blessing and a curse. On the one hand, sensors
built into everyday objects enable to monitor entities (e. g., a
machine or a person) permanently and very precisely. Since the
gathered data are always tagged with a time stamp, the data of
different sources can be combined to obtain a comprehensive
chronological profile of the monitored entity. Subsequent
analyses can provide even more profound knowledge about the
entity [2]. The IoT is therefore an enabler for Smart Services
from a wide variety of domains, including Smart Homes [3],
Smart Cars [4], and Smart Health [5]. Such services are a
great benefit for the users as they facilitate their daily life [6].

On the other hand, these great capabilities of such services
pose a great danger at the same time. In particular, if the
monitored entity is a natural person, his or her privacy is at
risk. Users are often not even aware of the coherences between
gathered data and derivable insights. However, Smart Services
not only have access to the data of a single user but to the data
of a vast number of users. This even enables them to learn
from the behavior of these users and to predict future behavior
patterns of different users [7].

For this reason, the General Data Protection Regulation of
the EU (GDPR, see [8]) tries to provide guidance to meet the
interests of both, service providers (in terms of data quality)
and users (in terms of privacy requirements) [9]. Nevertheless,
the user is faced with the difficult task of balancing service
quality and privacy. The more data a user shares with a service,
the better is its service quality, as it is thereby able to perform
more precise analyses and thus establish a more profound
knowledge base. Its users, however, are fully exposed in the
process. Whereas, if a user conceals all data that could reveal
private information, his or her privacy is protected effectively—
yet, the service is practically useless as a result [10].
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Today’s privacy approaches for the IoT contribute little to
solve this dilemma, as they suffer from three critical flaws:

a) Users are often overwhelmed by these approaches, as
the coherences between gathered data and derivable
knowledge are not comprehensible. That is, if the user
grants a service access to two seemingly harmless data
sources, the combination of these two sources might
provide new insights [11], [12].

b) These privacy approaches completely ignore service
quality. They focus solely on concealing certain, possibly
private data, and as a result the service quality is often
considerably, yet unnecessarily impaired [13].

c) These privacy approaches are only applicable to certain
application scenarios and analysis methods. As a result,
users need a variety of different privacy solutions to make
all of their Smart Services privacy-aware [14].

To this end, we make the following five contributions:
(1) We introduce a privacy approach towards high-utility

time series data, called VAULT . VAULT is a concept
for the protection of personal data, which achieves a
good compromise between service quality and privacy and
optimizes both of these aspects. Furthermore, specifying
privacy requirements is still very simple for the user.

(2) We present five different privacy techniques that are
applied in VAULT. These techniques are tailored to
the analysis methods applied to time series data as
Smart Services mainly handle such data. Furthermore,
we describe how the privacy filters in VAULT which
implement these privacy techniques can be realized.

(3) We outline how the data management is realized in
VAULT. In addition to privacy-aware data handling, a
great focus is also on an efficient data provisioning.

(4) We describe how the quality and privacy requirements
are specified in VAULT and present an IoT-compliant
way of identifying Smart Services. These are prerequisites
for tailored data provisioning, which not only enables an
appropriate level of service but also respects the privacy
of users.

(5) We describe an implementation of VAULT based on
InfluxDB [15]. Yet, VAULT is completely independent
from its data source, i. e., InfluxDB can be replaced by
any data source providing time series data.

The remainder of this paper is structured as follows: In
Section II, we introduce a sample use case from the Ambient
Assisted Living (AAL) domain. Using this example, we identify
requirements a privacy system has to meet in order to be
effective for Smart Services. Section III illustrates how privacy
mechanisms operate in principle in IoT environments and why
this approach poses a problem for data quality. Then, Section IV
discusses selected and representative related work regarding
whether they meet the identified requirements. We introduce
our concept for VAULT and the applied privacy techniques
in Section V. An implementation of this concept is given in

Section VI. In Section VII, we assess VAULT according to our
identified requirements and carry out a performance analysis.
Finally, Section VIII concludes this paper and gives a brief
outlook on some future work.

II. RUNNING EXAMPLE

An application field, in which the IoT facilitates the users’
daily routines by having access to highly sensitive data, is
the healthcare domain. Sensors enable patients to monitor
themselves permanently, while their physicians and other
parties involved obtain the processed data tailored to their
requirements.

In the health context, there is an IoT application that
serves the well-being of the users in every stage of life and
every conceivable situation. These applications enable users
to achieve a permanent self-measurement [17]. Since these
applications often involve gamification aspects, users of all ages
are motivated to collect a variety of personal information on an
ongoing basis, thereby creating and maintaining a very accurate
health profile. This is called the Quantified Self movement [18].

However, the possibilities of such applications go far beyond
pure self-measurement and a Quantified Self. For instance,
the sensors in today’s commercially available smartphones
are accurate enough to process the recorded data for medical
analysis [19]. In addition, a variety of special medical metering
devices can be connected to a smartphone, e. g., via Bluetooth.
In this way, the applications have access to these health data
as well [20].

Although the health data are collected using smartphones,
the actual processing of the data often involves an online
health platform. Such platforms have three advantages: Firstly,
they have almost unlimited resources, so that comprehensive
analyses are also feasible. Secondly, data of multiple users are
available in such platforms, so that statistical analyses can also
be carried out. Finally, these platforms also enable to share data
with third parties, for instance with doctors and caregivers [21],
[22].

Figure 1 illustrates the technical structure of such an IoT
health Smart Service. In accordance with Stach et al. [16], the
components of such a service can be divided into four layers.
More about the technical characteristics of these components
can be found in Section III.

It is obvious that such a health Smart Service is highly
beneficial for both patients and physicians. Patients are able to
carry out necessary medical examinations on their own and only
need to see their physicians in emergencies. This significantly
reduces the workload of the physicians and allows them to
focus on emergency cases [23]. However, there are many other
parties that are interested in such data. For instance, insurance
companies wish to use these data to tailor insurance premiums
more dynamically [24]. In addition, these data could provide
scientists (e. g., city planners) with the information they need
to create healthier living environments [25].

However, not all of these parties need full access to all health
data. Especially since such data are highly sensitive, access
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Layer
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Layer
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Layer

Application
Layer

(e.g.,
medical
metering
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(e.g., health platforms such as Microsoft
HealthVault, Google Health, or Health by

Apple)

(e.g., physicians,
caregivers, insurance

companies, or
architects)

Figure 1. Layered Architecture of an IoT Health Smart Service (cf. [16]).

should be restricted according to the quality requirements of
the Smart Services [26].

Application Scenario

In the following, we illustrate this using an AAL use case:
Due to an aging population, the World Health Organization

has introduced the paradigm of active ageing to enable
elderly people to remain involved in social life [27]. A key
aspect in this respect is that they are not pulled from their
familiar surroundings (e. g., by accommodating them in a care
facility) and that there is no loss of autonomy. AAL achieves
this via sensors acting as permanently present but invisible
caregivers [28].

An AAL platform offers wide-ranging monitoring services.
The health data relevant for such platforms can be effortlessly
captured even by technical laymen using conventional sensors.
Besides the obvious data acquisition options, such as the use
of a GPS sensor, which can be found in every smartphone,
for localization, the geomagnetic field sensor can also be used
for this purpose as well—that way, even indoor localization
is feasible [29]. Additionally, the activity of a user can be
determined via a gyroscope and an accelerometer [30].

The consumed bread units (a measurement particularly
relevant for diabetics) can be determined with a camera and
subsequent image recognition [31]. Even a person’s mood can
be monitored with a standard microphone based on his or
her voice pitch [32], while wearables (e. g., Smart Bands) are
able to determine the stress level caused by environmental
influences [33]. In addition, special metering devices such as
continuous glucose monitoring systems enable a continuous
recording and provisioning of blood glucose levels [34]. An
example of such a continuous blood glucose monitoring over

a period of approximately six months is shown in Figure 2.
We use this real-world time series data later to demonstrate
the functionality of VAULT.

All these individual measurements can then be combined
into a health record object by joining them on their time stamp
(see Figure 3). Such a health record can be supplemented with
static data, such as annotations to the measurement data or
information about contact persons.

Physicians can retrieve these data and are then able to
adjust the medication remotely. For some of these health
parameters, they require the chronological progression with
high accuracy (e. g., blood glucose), while for others an
approximate progression is sufficient and single values are
negligible (e. g., weight). It is also possible to check remotely,
whether the required medication has been taken. Yet, this
information is not required to be transferred permanently.
It is sufficient to inform physicians if the medicine is not
taken several times in a row. Fall detection is realized via
wearables. This enables to alert a caregiver immediately if a
senior has fallen and needs help. For this purpose, the data from

2018-01-31T0054 2018-08-08T2345

Glucose Level

Figure 2. Data from a Continuous Diabetes Monitoring Device.
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Electronic
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Location Data
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Influence)

User
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(Activity)

Environmental
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(Stress Level)

Social Data
(Contacts)

Audio Data
(Mood)

Health Data
(Blood Sugar
Progression)

Figure 3. Data Model of an Annotated Electronic Health Record.

the gyroscope, the accelerometer, and the position sensor are
analyzed. In addition, the location where the fall occurred has
to be determined, e. g., if the “fall” occurred in bed, it may have
been a false alarm and the senior just went to sleep. Although
location data has to be analyzed for this purpose, the caregiver
must not be allowed to access this data. However, relatives with
guardianship should be informed of the senior’s whereabouts
(e. g., if s/he is suffering from dementia and wander around
confused and disoriented) [35].

Requirements Specification

This example illustrates that Smart Services gather a va-
riety of private data. The GDPR must thus be observed in
such use cases [36]. For instance, it requires data minimiza-
tion [Art. 5(1)(c)]. Caregivers only have to be informed when
a senior has fallen, whereas permanent access to his or her
location is not required for them. Yet, relatives need access to
this data if they are the senior’s guardian. This is regulated by
the purpose limitation [Art. 5(1)(b)]. Service providers have
to ensure the accuracy of the processed data [Art. 5(1)(d)].
To make this feasible, privacy measures must not arbitrarily
manipulate sensor data. Especially when particularly sensitive
data, such as health data, is involved, the data subject must give
explicit consent to their processing [Art. 9(2)(a)]. A solution
with respect to these legal obligations is given in Article 25:
Technical measures are postulated to ensure privacy compliance,
i. e., Smart Services monitor and regulate themselves by default
(Privacy by Design). To be effective, such a technical privacy
solution has to meet the following five requirements:
R1 Individual Privacy Enhancement. Each user has differ-

ent privacy requirements. While some people have no
concerns about sharing their location data, others consider
this kind of data as highly sensitive. Thus, every user has
to be able to decide individually what information s/he
wants to reveal, i. e., make available to a service.

R2 Utility Preservation. However, not only privacy require-
ments need to be considered. Users also have to decide

which services they want to use and what data the
respective service requires in order to operate. Only if the
service receives these data in a sufficient accuracy and
quantity, the user receives the expected service quality.

R3 Privacy and Data Quality Harmonization. Privacy and
service quality, however, are by no means independent
objectives. Enhancing privacy significantly impairs service
quality and vice versa. A privacy system therefore has to
consider both aspects equally to achieve Pareto optimality.

R4 Privacy Method Adaption. To make this possible, a
privacy system has to be able to adapt its privacy methods
to the service quality requested by a user. That is, the
privacy system has to select a method which matches a
service’s specific data quality and quantity requirements.

R5 Dynamic Policy Application. The application of the
privacy requirements has to be dynamic, i. e., before a
service gets access to data, its properties must be checked
(e. g., a relative only gets access to a senior’s location if
s/he is his or her guardian at the time of the request).

III. STATE OF THE ART

After having identified the requirements towards a technical
privacy solution for Smart Services, we now present the four
layers of an IoT Health Smart Service (see Figure 1) from a
technical point of view. In particular, we aim to specify for
each layer, which technical privacy measures can be taken in
that respective layer.

Sensor Layer

The sensor layer encompasses all components that can collect
data and thus can act as a data source for an IoT Health
Smart Service. These are generally very low-level sensors that
only serve a specific purpose, e. g., capture blood glucose
levels. Their computing power is therefore severely limited
and no additional resources such as additional memory or data
storages are available to them. As a consequence, no operations
that exceed their basic functionality can be executed on these
components. This applies especially to third-party applications.

Examples of components that are part of the sensor layer
are cameras, microphones, or GPS receivers. However, special
medical devices such as continuous blood glucose monitoring
systems also belong to this layer.

From a privacy point of view, due to hardware limitations
and a lack of capabilities to install privacy protection software
on them, users of such devices have no possibilities to control
their data unless such a function is explicitly offered by the
component. Unfortunately, this is not the case for most of
these components. The only privacy control mechanisms on
this layer are therefore special privacy-aware connectors that
are able to prevent leakage of private data [37], [38].

Nevertheless, the threat level on the Sensor Layer is compara-
tively low, since on the one hand only a very limited amount of
information is captured by each individual component, and on
the other hand the data only affects a single data subject, which
is typically the owner of the component as well. Moreover, the
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lack of capabilities to install third-party applications prevents
the installation of malware.

Edge Layer

Since the components in the Sensor Layer do not have the
required resources, they have to forward the collected data to
a device with more computing power for data preprocessing
and initial analyses. Thereby it is irrelevant whether they are
physically connected to the more powerful device, i. e., whether
the sensor is permanently installed in the device, or whether
there is a wireless connection. For instance, Bluetooth can be
used for that purpose.

Such hub devices are allocated to the Edge Layer. Besides
their significantly higher computing power, they are charac-
terized by the fact that they can store larger amounts of data
permanently. They also possess connectivity to the Internet and
can therefore connect to a health platform (hence the name
Edge Layer, as they are on the edge to the Cloud).

In principle, any kind of end-consumer product can be
considered as such a hub device. This includes smartphones,
laptops, or personal computers.

From a privacy point of view, it is both a blessing and a curse
that third-party applications can be installed on these devices
almost without any restrictions. On the one hand, this enables
users to set up privacy control mechanisms that provide a fine-
grained permission management in order to ensure that only a
bare minimum of data is shared with other applications [39],
[40]. On the other hand, however, that is an entry point for
malware. Furthermore, their connection to the Internet enables
such malware to forward sensitive data to an arbitrary endpoint.

For this reason, the threat level on the Edge Layer is very
high. However, this type of device is also characterized by
their strong connection to a single user. As a result, data on
these devices usually also refer to this single data subject, i. e.,
the data owner is in control over his or her data as long as
they do not leave the Edge Layer.

Big Data Layer

Since the computing power and storage capacity of the
devices in the Edge Layer are not sufficient for performing
comprehensive long-term analyses, they transfer the collected
data to remote servers to this end. These servers are part of
the Big Data Layer. In the Big Data Layer Cloud-based health
platforms are hosted, such as Microsoft HealthVault or Google
Health [41]. In these platforms a personal health record is
maintained for each user which is regularly updated. Besides
the simple administration of health data, these platforms also
provide continuous data analytics. Since the data of several
users are available to these platforms, they can also apply
profound data mining, machine learning, and complex event
processing techniques to recognize recurring patterns in the data
by cross-linking data from different users. That way, further
knowledge can be gained.

From a privacy point of view, the threat level is highest for
the Big Data Layer. Not only do these Cloud-based health
platforms hold a large amount of data from different users, but

they also have the capacity to store the data indefinitely. In
addition, a user no longer has any physical control over the
data once they have been transferred to the platform. Moreover,
in a Cloud-based solution, a user does not know where his or
her data are processed and stored.

Users have therefore to trust in the reliability of the platform
provider. By means of service level agreements and other
contract documents, they can protect themselves from a legal
perspective. To establish trust in their platforms and prove
their fair data usage, platform providers can additionally apply
technical privacy control mechanisms [26], [42]. However,
these mechanisms have to sustain the data quality so that the
functionality of the platform is not impaired.

Application Layer

The insights gained in the Big Data Layer are prepared for
presentations tailored to different stakeholders. This includes,
for instance, notifications when a certain pattern occurs in
real-time data (e. g., a sugar shock is imminent), aggregated
reports, or a filtered view on the data. These recipients include
physicians, caregivers, or family members of the data subjects,
among others.

The devices on which the visualization of the prepared data
are rendered belong to the Application Layer. Just like in that
Edge Layer, any kind of end-consumer product can be used
in the Application Layer, including smartphones, laptops, and
personal computers. In contrast to the devices in the Edge Layer,
these devices typically are not owned by the data subject.

Therefore, no technical privacy control mechanisms can
be applied in this layer since the data subject is not directly
connected to these devices. This makes it all the more important
that the data subject is able to specify in the Big Data Layer
to which third parties the data may be shared with.

Lessons Learned

Table I summarizes the key characteristics of each layer.
It considers whether third-party applications can be executed
(Apps), how much control the user has over the usage of his
or her data (Control), how many data can be accessed (Data),
how much computing power is available (Power), how many

Table I. Key Characteristics of the Layers of an IoT Health
Smart Service (The filling degree of the circles indicates the
influence of a certain characteristic on the respective layer.).

Sensor Edge Big Data Application
Layer Layer Layer Layer

Apps 7 3 3 3

Control

Data

Power

Storage

Threat

User � � ¯ ¯
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data can be stored persistently (Storage), how hazardous the
processing can be concerning privacy (Threat), and whether
the data of a single or multiple users are processed (User).

As can easily be concluded from the table, a technical privacy
control mechanism for IoT Health Smart Services should be
applied in the Big Data Layer.

On the one hand, this is where all the data available to
a Smart Service is gathered. If a privacy control mechanism
would be applied at an earlier stage, it would be either far
too restrictive, e. g., because privacy filters are applied several
times, or it would not be comprehensive enough as not all data
sources are known at this point. Only in the Big Data Layer
all privacy requirements on the part of the users and all quality
requirements on the part of the Smart Services are identified.

On the other hand, the Big Data Layer represents the last
line of defense before data are passed on to the Application
Layer and thus to third parties that are not necessarily known
to the data subjects and are therefore completely beyond their
control.

IV. RELATED WORK

In the following, we review current privacy approaches for
the IoT and assess them with regard to our running example.

Access Control

The most basic approach to ensure privacy is access control.
In role-based access control, each involved party is assigned
to a specific role (e. g., physician). A party can be assigned
to several roles at the same time. Access rights to certain
data sources are granted to these roles instead of individual
users. Although this approach sounds promising at first as
there are few roles (compared to the number of parties), and
thus the number of access rights which have to be specified is
reduced, it is not flexible enough for the IoT due to its fixed pre-
defined roles [43]. Assigning access rights to certain attributes
is significantly more dynamic. Attribute-based access control
validates any kind of attribute at runtime (e. g., attributes that
describe the party requesting data access or that party’s current
context). Data access is only granted if these attributes meet
the data subject’s authorization requirements [44]. This way,
it is possible to model that relatives only have access to a
senior’s location data if they currently have the guardianship.

Nevertheless, pure access control approaches are far too
restrictive and thus severely limit service quality. The user
can only make a binary decision—either s/he grants or denies
access to a data source. A fine adjustment, however, is not
possible (e. g., reduce accuracy of the data or add mock data).

Attribute-based Privacy

To address this problem, a filter can be integrated into a data
source. So, particular attributes of the data provided by that
source can be filtered out, if they reveal private information.
This enables users to specify, e. g., that their medical metering
device still provides access to their blood glucose level, but not
the blood oxygen level. Each filter can optionally be linked to a
spatiotemporal context to specify when it should be active [45].

Such a filter can also be tailored to the respective data source.
Instead of fully filtering out certain attributes, they can be
replaced by mocked but realistic data, in terms of, e. g., value
range and distribution [46].

A fundamental problem of these approaches is that they do
not take chronological aspects inherent in this kind of data
into account. Often, isolated data values do not pose a privacy
threat. Only a sequence of single values results in a privacy-
relevant pattern (e. g., a sequence of singular gyroscope and
acceleration data results in an activity pattern). Yet, users have
to filter all data of the concerning attribute in these approaches
to ensure that such patterns are concealed. As a result, services
depending on this type of data become non-functional.

Pattern-based Privacy

The intent of pattern-based privacy approaches is to conceal
complex private information from a Smart Service without
unnecessarily restricting its service quality. For this purpose,
Complex Event Processing (CEP) is used. In CEP, no individual
sensor values are considered, but higher-order events repre-
sented by a sequence of values within a given time window [47].
For instance, the event “senior leaves home” is a sequence of
location data representing a motion vector heading away from
the house. That way, users specify private patterns that must
not be revealed and public patterns that are critical in terms of
service quality. CEP is able to recognize these patterns and then
private patterns are concealed by chronologically reordering
some of the sensor values. A utility metric identifies the best
permutation in terms of maximizing both, privacy and service
quality [48].

Pattern-based privacy approaches are therefore particularly
effective for maximizing service quality. They can also conceal
patterns of any complexity consisting of sequences of individual
values. However, such an approach is ineffective with respect to
the principle of data minimization. By reordering, all individual
values are still sent to the Smart Service. As it is known what
kind of information is required by the service (via the public
patterns), data could be pre-processed accordingly (e. g., by
aggregating or tampering it) without affecting its service quality.
For instance, to detect the pattern “senior leaves home”, a
Boolean statement whether this event occurred is sufficient—
the whereabouts prior to this event are not required. Yet, this
is not considered by pattern-based privacy approaches.

Statistical Privacy

Differential privacy is applicable to the IoT, e. g., in the
context of Smart Grids [49]. There, data remains on each user’s
Smart Meter, while energy suppliers only receive aggregated
data. It is ensured that no information about an individual user
can be derived from the statistical analysis of this data.

Such an approach not only provides a zero-knowledge
privacy guarantee for individual users, but also ensures that
the accuracy of the data not compromised unnecessarily [50].
Differential privacy can be achieved for both, database sys-
tems [51] as well as data stream systems [52].
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Figure 4. Concept of and Workflow for Data Access via VAULT.

Yet, this kind of anonymization is only useful when informa-
tion about a large group of users is required. It is not applicable
to a use case like AAL, as in such a scenario sensor data must
be evaluated for each user individually.

V. VAULT CONCEPT

Our review of related work shows that none of these
approaches is by itself effective in ensuring both, privacy,
and service quality. So, we combine and extend these concepts
to provide a privacy concept that is tailored to IoT time series
data, called VAULT. According to the findings of Section III,
VAULT is positioned in the Big Data Layer.

Figure 4 shows its core concepts and workflow, which are
detailed in the following:

Step 1 A service description is mandatory that identifies
the service, e. g., the service name, its execution environment,
or the service owner. This description is used to authenticate
to VAULT. Like attribute-based access control, permissions
in VAULT are not linked to a specific service, but to a set of
its attributes. For instance, different permissions may apply to
the same service depending on the country where it is hosted.
More information on that authentication and access control can
be found in Section VI-A.

Step 2 To ensure service quality, a service also has to
define its quality requirements. These include, e. g., which
data a service requires and with what accuracy these data are
required. Thus, the quality requirements correspond to the basic
idea of the public pattern.

Step 3 In addition, a data subject specify which permissions
are assigned to a certain service. To this end, s/he provides
a high-level description of his or her privacy requirements in
natural language. Similar to the privacy patterns, s/he only
has to describe which knowledge must not be disclosed. A
model in VAULT indicates from which data this knowledge
can be derived. Based on this model, machine learning can
automatically derive permissions from these privacy require-
ments. More information on that permission management can
be found in Section VI-B.

Step 4 As VAULT provides different privacy techniques
depending on the respective service (i. e., in accordance with
its quality and privacy requirements), the time series data has

Breakfast Lunch Dinner

Glucose Level

Figure 5. Continuous Diabetes Monitoring Data over the Course of a Day.

to be initially prepared accordingly. More information on how
the data are managed in this regard is given in Section VI-D.

It has to be mentioned that Step 1 to Step 4 are
independent tasks and can be carried out in any given order.

Step 5 If a service requests data access, VAULT first checks
its service description (i. e., attributes of the service) and which
permissions (i. e., privacy requirements) are linked to it. They
are then consolidated with its quality requirements.

Step 6 Based on these two requirement specifications,
an appropriate VAULT privacy technique is selected. More
information on the privacy filters applied in VAULT can be is
given in Section VI-C.

Step 7 Subsequently, the request is executed, and the results
are sent back to the service.

VAULT relies on existing techniques, which are already used
for processing and analyzing time series data, to ensure privacy.
As a result, the impact on service quality should be negligible.
We discuss the following five such privacy techniques. For
this purpose, we use the previously introduced example of
continuous diabetes monitoring data. The data set shown in
Figure 5 is used to illustrate the respective technique.

Projection, Selection, and Aggregation

The most basic privacy technique used in VAULT is
the application of relational algebra operators. A projection
constrains the number of attributes whereas a selection filters
out certain tuples of a data source entirely. The impact of these
two operators on the result set of a database query is illustrated
in Figure 6.

As the data sources we consider in VAULT provide time
series data, a selection operator is therefore synonymous with
specifying a specific time frame. An aggregation can be used
to consolidate the analyzed data (e. g., via set operators such
as AVG or SUM). Smart Services use these operators anyway
to select the data that is relevant to them and thus reduce the
huge amount of available data. VAULT is therefore able to
restrict the available data according to the quality requirements
of a service via theses operators in order to ensure privacy. For
instance, a service gets only access to certain sensor values,
certain days, or summarized data.

Listing 1 shows how an SQL query has to be rewritten for
this purpose: If a user enters the query shown in Listing 1a,
s/he will receive all data stored in the Table “health_record”.
A projection ensures in the query shown in Listing 1b that the
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Figure 6. Impact of a Projection and a Selection on a Database Query.

user only receives the glucose data stored in the “health_record”
Table. The selection in the query shown in Listing 1c causes
that only data captured over the course of the last week are
returned. Finally, due to the aggregation in the query shown
in Listing 1d, only daily average glucose levels are returned.

Data Interpolation

When dealing with sensor data, one has to reckon that
sensors occasionally deliver no or incorrect values due to
technical problems. To ensure that the data are still processed
correctly, strategies must be implemented to deal with these
missing and incorrect readings. For this purpose, these incorrect
readings have to be substituted with artificial, yet realistic data.
On the one hand, interpolation techniques can be used to
smooth the temporal progression of the values, assuming that
the sensor signal describes a continuous function [53]. On the
other hand, it is possible to use machine learning to make
predictions regarding the progression of the values. Missing
values or outliers (in terms of values exceeding or falling below
a threshold) can then be substituted with these predictions [54].

We use these data cleansing techniques in VAULT to ensure
privacy. In certain situations, outliers have a particularly high
information value and are therefore considered as particularly
sensitive data. Figure 7 shows the time course of a blood
glucose level. It can be observed that the level rises particularly
high during lunch, which could be a sign that the data subject
has eaten dessert. Since this represents an outlier, i. e., an event
that occurs only rarely, such a data point holds a particularly
high information value. For instance, if a care provider in an
AAL program only needs to monitor whether the person is
having a meal regularly, the information about the additional
dessert can be concealed without causing any problems. To
this end, VAULT first uses outlier detection to identify data
points with high information value, deletes them, and then fills
the resulting gap via spline interpolation (red line).

1 SELECT *
2 FROM "health_record"

(a) Query over all Data.

1 SELECT "glucose"
2 FROM "health_record"

(b) Application of a Projection.

1 SELECT *
2 FROM "health_record"
3 WHERE time > now()-7d

(c) Application of a Selection.

1 SELECT AVG("glucose")
2 FROM "health_record"
3 GROUP BY "day"

(d) Application of an Aggregation.

Listing 1. Examples of how Queries can be Restricted.

Interpolated Data
Raw Data High Information Value

Breakfast Lunch Dinner

Figure 7. Application of a Spline Interpolation to Time Series Data.

Data Smoothing

While data interpolation is well-suited for eliminating a
few isolated outliers, sensor data can also be noisy as a
total. Analyzing noisy data is often difficult and leads to poor
results. So, the noise component is removed from the data
by means of filters. Especially if the examined data contains
some periodicity, which is often the case with AAL data due
to regular daily routines, Fourier transforms are well-suited for
noise reduction. This creates a band filter effect, i. e., certain
interference frequencies can be attenuated [55]. Figure 8 shows
the effect of a Discrete Cosine Transform on a noisy signal
(blue line). The output is a smoothed signal (red line).

However, this data cleansing method can also be used to
protect private data. The transform removes details from the
time series data and less information is shared with requesting
services. Nevertheless, the actual data progression is still
available to them with great accuracy. As shown in the figure,
smoothing gives a better overview of the blood glucose curve
for the six months without revealing any details about particular
readings.

Information Emphasis

Using wavelet transform, noise can even be filtered out
to such an extent that only data with a high information
value remains in the signal (e. g., peaks or turning points).
For this purpose, the data progression is compared with a basic
function, the so-called wavelet. This window function defines
the weighting of each signal value in subsequent analyses. The
Continuous Wavelet Transform constantly varies the parameters
of this mother wavelet to obtain a band of daughter wavelets.
This facilitates a particularly selective filtering and compression
of the data [55].

Raw Data
Discrete Cosine Transform

2018-01-31T0054 2018-08-08T2345

Figure 8. Application of a Fourier Transform to Time Series Data.
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Figure 9. Time-Frequency Representation of Noisy Time Series Data.

In Figure 9, the noisy sensor signal (upper half of the figure)
is converted into a time-frequency representation (lower half of
the figure) using the Mexican Hat Wavelet as mother wavelet.
Relevant data segments are exposed in this representation
(light and dark zones). For instance, if the signal represents
blood glucose levels1, these zones indicate hypoglycemia
or hyperglycemia, respectively. The information about the
occurrence of these events is sufficient to generate appropri-
ate recommendations concerning medication and treatment
schedule. The exact glucose values need not be disclosed to a
caregiver for this purpose. This increases privacy as no details
in the data are available to third parties.

Adding Noise

A completely opposite privacy approach is adding noise to
a signal on purpose. In Figure 10, Gaussian noise is added to
formerly noise-free sensor data (blue line). That is, the noise in
the resulting data is Gaussian-distributed (red line). So, actual
values are concealed in a set of corrupted values. Although
the general data progression is still noticeable, details and
characteristics of the data are hidden by the noise.

For instance, behavior patterns (e. g., “person is having a
meal”) are thus still recognizable despite the noise, whereas
characteristics on what a person has had for lunch are
concealed. For instance, food products have a fingerprint (i. e.,
a combination of unique characteristics) that can be used to
identify them. One way to identify food products which a
person has eaten is by monitoring blood sugar levels [56]. By
adding noise to the data, this is no longer possible.

While that initially sounds like a deterioration in data quality,
it can even have a positive effect on certain data analyses.
For instance, noise can cause chaotic dynamics within data.
Therefore, if deterministic chaos is to be expected in a data set
(e. g., data on the course of a disease), but it is not noticeable
as too little data are available, adding noise can be useful in
this regard to improve analysis results [57].

1For the sake of simplicity, the depicted course of blood glucose levels is
uniform and regular. However, this is only due to presentation reasons. The
assertions and findings presented in this paper also apply to other, irregular
courses.

Noisy Data
Raw Data

Breakfast Lunch Dinner

Figure 10. Adding Gaussian Noise to Time Series Data.

VI. VAULT IMPLEMENTATION

In general, there are three implementation strategies for
the realization of the VAULT concept, namely query pre-
processing, data pre-processing, and result post-processing.
Figure 11 shows how these strategies are applied.

Query Pre-Processing: Query pre-processing rewrites
queries before execution and adds further constraints to
eliminate private information from the result set. This is well-
suited for simple privacy techniques such as projection or
selection.

By using the Python module PyPika [58], queries can be
easily rewritten. Listing 2a shows how restrictions, in terms
of projections and selections, can be progressively added to a
broad incoming query (see Listing 1a). The resulting rewritten
query is shown in Listing 2b. Further restrictions, such as
aggregations, are also possible with PyPika.

Yet, such query adaptations become complex for more
advanced privacy techniques. Then, errors are likely to occur

Query Data
Consumer

Query
Rewriting Database (Materialized)

ViewObfuscation Filtering

Query Pre-Processing Data Pre-Processing Result Post-Processing

Figure 11. Implementation Strategies for the Privacy Techniques in VAULT.

1 from pypika import Query, Table, Interval
2 from pypika import functions as fn
3

4 """ initial query over all data """
5 hr = Table('health_record')
6 q = Query.from_(hr)
7

8 """ adding a projection """
9 q = q.select('glucose')

10

11 """ adding a selection """
12 q = q.where(hr.time + Interval(days=7) >

fn.Now())↪→

13 query = q.get_sql()

(a) Query Rewriting via PyPika.

1 SELECT "glucose"
2 FROM "health_record"
3 WHERE "time"+INTERVAL '7 DAY'>NOW()

(b) Result of the Query Rewriting.

Listing 2. Exemplary Query Rewriting Process in VAULT.
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when automatically rewriting queries. These errors compromise
privacy as well as service quality.

Result Post-Processing: Result post-processing enables a
thorough control of a query’s result set. That way, it can be
filtered before forwarding it to the data consumer.

However, a query can add hidden information to its result set.
For instance, if the weight of a person must not be revealed, a
data consumer could query all data entries where the weight is
x kg (without including the weight itself in the result set). Then,
s/he repeats the query and increases x successively. Thus, s/he
knows the weight for each entry implicitly, although it never
explicitly appeared in the result set. Result post-processing is
not able to detect and prevent this.

Data Pre-Processing: Due to the shortcomings of those
strategies, we use data pre-processing in VAULT. This strategy
pre-processes all data by removing or obscuring private data.
Queries are not executed on the original data, but on this
purged data. However, this data pre-processing increases the
runtime. Yet, as Smart Services often use recurring queries,
which are known due to their service descriptions, the runtime
can be improved by using materialized views to persist the
pre-processed data in advance.

Figure 13 shows how we realized the VAULT concept
following the data pre-processing strategy. VAULT introduces
a database abstraction layer to strictly isolate services from
data sources. From a service’s perspective, it therefore seems
that it directly interacts with a data source and it is not aware
of the privacy techniques applied to the data [59], [60].

Before using a service for the first time, the service provider
has to define the quality requirements of the service and the
user must specify his or her privacy requirements. As this needs
to be done only once (unless requirements change), these steps
are not shown in Figure 13.

For this specification, a knowledge model is used. An extract
of such a knowledge model is shown in Figure 12. This
visualization is based on Stach and Steimle [61].

The knowledge model is based on the principle that data,
information, and knowledge are interrelated [62]. Similar to the
DIKW Pyramid (data–information–knowledge–wisdom), our
model condenses the raw data of data sources steadily until
they become profound knowledge patterns.

Initially, all types of raw data that are available to a Smart
Service are specified at the Data Layer. As it is irrelevant
from which source these data originate, the data sources are
not modeled. For instance, an accelerometer can be integrated
in both, a Smartphone and a Smart Band. However, since the
information content of these two data sources (and thus the
potential privacy threat) is identical, we do not differentiate
between them in order to keep the knowledge model as concise
and comprehensible as possible. Moreover, at this layer, it
is not relevant whether a Smart Service actually uses these
data—it only matters which data are available. As a result,
the knowledge model becomes slightly more extensive than
necessary. That way, however, the model remains compatible
with future Smart Services that might use these data.

Available
Privacy Filters

Adding NoiseInformation
Emphasization

Type of Data

Interpretation

Derivable Pattern

Privacy Filter

Knowledge Link

Applicable Privacy

Data

Information

Glucose
Monitor

HealthActivity Location

Gyroscope Accelero-
meter GPS

Knowledge
Diagnosis
Pattern

Caregiver
Pattern

Figure 12. The VAULT Knowledge Model for a Health Record (excerpt).

Based on the Data Layer, the Information Layer describes
how the available types of data can be interpreted. For instance,
GPS data (i. e., latitude, longitude, etc.) can be interpreted as
the location of a user. Yet, this is not necessarily a 1 : 1 mapping.
Certain interpretations are only feasible by combining several
types of data. For instance, the activity of a user can only be
recognized when both, gyroscope data and accelerometer data,
are available. A single type of data can also reveal different
kinds of information. For instance, the accelerometer data can
also indicate the speed of the user—the “speed” pattern is not
modeled in Figure 12 for the sake of simplicity.

At the Knowledge Layer, the Smart Services are considered,
i. e., which knowledge patterns can be derived when the
underlying data are shared with a service. For instance, a
diagnosis pattern describes how specific health data change
when a user’s activity and location are taken into account.

Furthermore, the VAULT knowledge model specifies all
available privacy filters, which can be applied to the data
sources without concealing a certain knowledge pattern. On
the one hand, this takes into account whether the respective
filter matches the data type of the source (e. g., a filter for
numeric values cannot be applied to free text data) and, on the
other hand, whether the data quality after applying the filter
is still sufficient to meet the requirements of the services in
question.

This enables users to specify a high-level description of their
privacy requirements (at the Knowledge Layer) and VAULT is
able to identify the appropriate privacy filters and apply them
to all associated raw data [63].

Step a A registered service authenticates to VAULT with
its attributes. To prevent a service from getting too many
permissions by falsifying its attributes, Gritti, Önen, and
Molva [64] introduce a process for verifying these attributes.
This approach takes into account that the privacy of the service
has to be ensured as well, as the attributes might contain
private information about the service provider. This approach
is therefore a valuable supplement to the authentication process
of a data provisioning platform, such as VAULT [65]. More
information on this step is given in Section VI-A.

Step b If a service is authorized to use VAULT, its queries
are temporarily stored in a query buffer.
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Figure 13. Implementation of and Query Processing in VAULT.

Step c VAULT checks in the access policy which quality
requirements this service has, and which permissions are
granted to its attributes.

Step d Then, a utility metric is used to search for privacy
techniques that maximize both, privacy and service quality.
Basically, it compares how much information relevant to the
service is concealed and how much private data are disclosed
when a particular privacy technique is applied. Additionally,
the user can determine via a weight, whether his or her focus is
more on privacy or service quality [26], [48]. More information
on Step c and d is given in Section VI-B.

Step e We implemented each of the privacy techniques
presented in Section V as Python scripts. These scripts are
made available to VAULT in an archive. Further scripts and
thus privacy techniques can be added to the archive to extend
the functionality of VAULT. The utility metric selects the most
suitable scripts and forwards them to the Obfuscator. More
information on this step is given in Section VI-C.

Step f The Obfuscator merges the scripts and adjusts them
according to the service.

Step g It then applies the resulting script to the affected
time series data.

Step h In our prototype, we use InfluxDB. However, due
to the database abstraction any other time series database can
be used as well. The privacy-purged data are made available in
materialized views and the queries stored in the query buffer
are executed on them. More information on this step is given
in Section VI-D.

Step i Finally, the database abstraction layer—which, in
analogy to the result post-processing strategy, performs a final
audit—returns the results to the service.

Without any loss of generality, a time series database is
used in VAULT. Yet, VAULT can also be applied to a stream
processing system for time series data, such as Kapacitor [66].
It is also possible to operate a database and a stream processing
system in parallel and combine their results [67].

In the following, we provide additional details on four
selected implementation aspects, namely authentication and
access control (see Section VI-A), permission management
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Figure 14. Privacy-Aware Attribute-Based Signature [71].

(see Section VI-B), privacy filters (see Section VI-C), and data
management (see Section VI-D).

A. Authentication and Access Control

Gritti, Molva, and Önen [68] introduce a method to identify
entities in communication networks by means of their charac-
teristic attributes (e. g., its IP address). This method is based on
asymmetric encryption, in which an entity uses a private key
to sign its messages. All other participants in the network can
then verify the authenticity of the messages using the public
key of that entity.

Although this procedure is already rather lightweight, the
verification of the messages (i. e., the decryption of the
messages with the public key) still causes costs in terms of
computing effort and thus a higher power consumption. This
can be a problem especially in a resource-limited environment
such as the IoT—in particular for battery-powered IoT devices.
It is therefore advisable to outsource a large part of the
computing-intensive tasks to a Cloud infrastructure [69].

However, this reveals a lot of private information about the
entities in the network towards the Cloud infrastructure, since
the public keys are also based on their characteristic attributes.
Therefore, privacy must also be considered and preserved in
this authentication process [70].

In VAULT, we can make use of the layered architecture of
IoT health Smart Services (see Figure 1) for this purpose. In
particular, we can rely on the fact that the devices that serve
as a gateway to the Big Data Layer generally have sufficient
computing power and can therefore handle the computing-
intensive tasks effortlessly.

Figure 14 shows how we can apply the approach of Gritti,
Önen, and Molva [70] in that kind of IoT environment:

Step 1 Initially, each entity, i. e., in our context each Smart
Device, requires a public and private key. For this purpose,
a trusted authority is required. This could be a federal data
protection authority for example. This authority verifies the
attributes of the entity, generates corresponding key pairs, and
distributes the keys to all participants in the network—of course,
the private key is only sent to the respective entity itself.

Here we distinguish between full keys (depicted in black)
and delegated keys (depicted in white). If τ is the set of all
identifying attributes of an entity, then only a full key reflects
all attributes in τ . Just like private keys, full keys are sent
only to the entity itself as they contain a lot of information
about the entity in question. In contrast, delegated keys contain
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only a subset of the attributes τ ′ ( τ and can therefore also
be shared with the other participants in the network.

Step 2 Now, entities can sign their messages with their
private key. This not only verifies the authenticity of the
messages, but also enables all other participants to immediately
notice when the message has been tampered with.

Step 3 However, this approach not only ensures the
authenticity of messages. The gateway has an authentication
policy ρ . This policy ρ defines which attributes and attribute
values are mandatory for an entity in order to participate in
the network. That is, the gateway checks, whether τ satisfy ρ .
Only if this is the case, the signature is valid and therefore the
message can be considered as having integrity, i. e., it can be
approved for forwarding to the network.

Step 4 Prior to forwarding the message, however, the
gateway has to make the signature of the message privacy-
aware, i. e., it has to filter out all attributes τ \ τ ′. To this end,
the gateway uses its delegated key.

Step 5 Obviously, this reduced signature no longer satisfies
the authentication policy ρ . Therefore, an additional authenti-
cation policy ρ ′ is required that corresponds to τ ′. Using this
reduced authentication policy ρ ′ any participant of the network
can verify that the gateway has approved the message, i. e., they
are still able to verify the authenticity of a message without
gaining access to the full set of the sender’s attributes τ .

For more information on this process, please refer to
literature [64], [68]–[71].

In VAULT, we apply this approach to identify Smart
Services. A Smart Service must sign each of its queries
with its identifying attributes. The access control can then
check the signature and use the authentication policy to verify
which attribute values the service currently has. Such attribute
values can include among others the type of service or its
execution environment. That way, attribute-based access control
is enabled. In a dynamic IoT scenario, as addressed in VAULT,
an attribute-based access control is particularly suitable [72].

In the following, we take a closer look at how the permission
management in VAULT is organized, which is based on this
attribute-based access control.

B. Permission Management

In VAULT, we apply a context-based permission model. Such
a model is especially appropriate for use in an IoT scenario.
On the one hand, the inclusion of context data allows to specify
permission rules in a far more flexible manner. On the other
hand, IoT devices capture a lot of context information anyway.
This information can therefore be used for the purpose of
assigning permissions at no additional cost [73].

Figure 15 shows the permission model used in VAULT. As
shown in the figure, a VAULT policy rule consists of four key
components: the data that are to be accessed, the entity that
requests access to them (i. e., the Smart Service in question),
the context under which the access is to take place, and the
privacy constraints that apply to this access (i. e., which privacy
filters have to be applied to the data).

Policy Rule
Quality PrivacySmart

Service

Context

Constraint

Data

Inquiring
Entity

Attribute1

Attributen

…

Privacy
Filter1

Privacy
Filtern

…

Figure 15. Permission Model Applied in VAULT.

The data component represents an abstraction of the VAULT
knowledge model (see Figure 12). That is, a user can specify
his or her privacy requirements at any layer of the knowledge
model (data, information, or knowledge). Due to the knowledge
links modeled in the knowledge model, VAULT is able to
derive policy rules at a data level. In other words, the privacy
requirements are mapped to the affected data sources.

The information required for the Smart Service component
is gathered by VAULT during authentication. Since a Smart
Service has to sign all data requests with its characteristic
attributes, the originator of each request can be uniquely
identified.

In addition, the current attribute values of an inquiring entity
are also checked during authentication. These values give an
indication about the context in which a data request is made.
Using this context, a user can specify, for instance, the purpose
for which a request has to be granted. The GDPR explicitly
states in Article 9(2) that the processing of highly sensitive
data such as health data is only permissible if the data subject
has given his or her explicit consent. The specified purposes
must also be specified in this regard.

With these three components binary permissions—access
is either granted or denied—could be specified. However, in
the VAULT permission model fine-grained permissions are
envisaged. To this end, the constraint component specifies
which privacy filters should be applied to the data before they
are shared with the Smart Service. More information on how
such a privacy filter operates can be found in Section VI-C.

VAULT adopts a Privacy by Default approach as proposed
by the GDPR in Article 25. In the context of VAULT, this
means that data can only be accessed if a user has specified a
respective policy rule.

Besides the privacy requirements of the users, the VAULT
permission model also considers the quality requirements of
the Smart Services. On the one hand, the knowledge model
excludes inappropriate privacy filters, i. e., filters that either
do not match the data types in question or that impair the
data quality to such an extent that they become useless for the
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Figure 16. Confusion Matrix for the Utility Metric Applied in VAULT.

corresponding Smart Service. On the other hand, the permission
model applies a utility metric to select the filter that provides
an optimal balance between privacy and quality.

For this metric, a confusion matrix is used. Figure 16
shows such a confusion matrix. To put it simply, the matrix
compares how accurately a Smart Service operates on the data
manipulated by the VAULT privacy filters as opposed to the
original data. In other words, it determines how often a Smart
Service operates identically on both data sets (true positives T P
and true negatives T N), how often it fails to detect a pattern
in the manipulated data (false negatives FN), and how often
it incorrectly detects a pattern in the manipulated data (false
positives FP).

These measures can then be used to calculate metrics similar
to those found in the field of machine learning. For instance,
accuracy describes the closeness of the measurements to a
specific value:

ACC =
T P+T N

T P+T N +FP+FN
Another useful metric is the F1 score, which calculates the

weighted harmonic mean of precision and recall:

F1 =
2∗T P

2∗T P+FP+FN
Moreover, penalty weights can be assigned to these measures,

for instance if a false negative is considered worse in a certain
use case than a false positive [26], [48]. In our AAL scenario,
e. g., it is not as critical if a caregiver is falsely informed an
accidental fall of a helpless person as when s/he is not notified
about an actual fall.

Using these metrics, VAULT is able to select an appropriate
privacy filter. One of these filters is discussed in detail hereafter.

C. Privacy Filters

In the field of privacy preserving techniques, adding noise to
data is of special importance. On the one hand, this procedure
is very straightforward in terms of computational effort and
complexity, and on the other hand, it still conceals data reliably.
It also constitutes the foundation for many other techniques,
such as differential privacy [50]–[52]. Hence, out of the five
techniques presented in Section V, we focus on noise-based
privacy filters for VAULT in the following.

Listing 3 shows the Python code for the most basic noise-
based privacy filter possible. In it, Gaussian noise is added to

a data series. Gaussian noise generates noise that has a normal
distribution, i. e., corresponds to the following probability
density function:

r(x) =
1

σ ∗
√

2∗π
∗ e−

1
2 ∗(

x−µ

σ
)2

µ is the mean of the distribution, while σ is its standard
deviation (respectively, σ2 is its variance).

With the default parameters µ = 0.075 and σ = 0.35, we
created the noisy data shown in Figure 10 with this privacy
filter. At first sight, it seems that this prevents any detail from
being revealed from these noisy data. However, since these
data are time series data, techniques from the field of signal
processing can be applied to them [74].

One of these techniques is the Discrete Wavelet Transform.
Figure 18a illustrates this technique. In the field of signal
processing wavelet transforms are used for the compression
of signals. A signal (or in our case time series data) of length
n is split into two coefficient series each of length n/2 using
high-pass filters and low-pass filters. Similar to the Continuous
Wavelet Transform a mother wavelet is used to this end.

With each split, the high-pass filter provides detailed co-
efficients for the respective frequency band, while the low-
pass filter provides approximating coefficients, which are
further split in subsequent steps. Thereby, a Discrete Wavelet
Transform splits the signal into dlog2(n)e frequency bands2.

The result of a Discrete Wavelet Transform for the raw data
and the noisy data from the example given in Figure 10 is
presented in Figure 17a and Figure 17b. For this transform,
the Haar Wavelet was applied as a mother wavelet.

It can be seen that the raw data and the noisy data differ
only in the two uppermost frequency bands (L1 and L2). The
remaining frequency bands are almost completely unaffected
by the noise. In addition, the underlying course on frequency
band L2 can still be identified quite distinctly.

Therefore, a noise filter can be applied to these two frequency
bands L1 and L2 of the noisy data to come very close to the
frequency bands of the raw data. Using the Inverse Wavelet
Transform, as shown in Figure 18b, the frequency bands can
then be merged back into a single signal. To this end, the
detailed coefficients and the approximating coefficients are
iteratively joined.

The Savitzky-Golay filter is a digital filter which is often
used in the field of time series data for smoothing the data

2In each iteration, the number of coefficients is bisected, whereby a complete
Discrete Wavelet Transform results in dlog2(n)e discrete frequency bands.

1 import numpy as np
2

3 def add_noise(data : np.array, mu : float = 0.075,
sigma : float = 0.35):↪→

4 noise = np.random.normal(mu, sigma, len(data))
5 return data + noise

Listing 3. Simple Noise-Based VAULT Privacy Filter.
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Figure 17. Application of a Discrete Wavelet Transform to the Data Series Shown in Figure 10.

series. This filter is not only very effective, but also highly
efficient for the denoising of time series data [75].

In Algorithm 1, a method is shown how to use Discrete
Wavelet Transform and the Savitzky-Golay filter to remove
artificially generated noise. For this purpose, a time series
is first decomposed into frequency bands, then the Savitzky-
Golay filter is applied to the uppermost dlog2(n)/4e frequency
bands, and finally the time series is reconstructed using Inverse
Wavelet Transform.

Figure 19 shows the resulting time series when Algorithm 1
is applied to the noisy data given in Figure 10. As is evident
when comparing the two data series, the noise can be almost
completely removed, i. e., an almost lossless reconstruction of
the original data is possible.

Since this renders the privacy filter given in Listing 3
virtually useless, an improved method is applied in VAULT.
This improved noise technique is based on the SNIL Algorithm.
SNIL stands for “spread noise to intermediate levels of wavelet
coefficients”. This algorithm generates resilient noise in time
series data without impairing the data quality more than simply
adding Gaussian noise to the data [76], [77].

Algorithm 2 shows how the SNIL Algorithm operates. First,
the original data series is decomposed into frequency bands
using Discrete Wavelet Transform. Then, Gaussian noise is

Signal[x] ↓2

↓2

Approx[x]

Details[x] Details[x]

Approx[x]

↓2

↓2

(a) Discrete Wavelet Transform.

↑2 Approx[x]

Details[x]

↑2

Details[x]

Approx[x] Signal[x]

(b) Inverse Wavelet Transform.

Figure 18. Illustration of the Wavelet Transform Process.

added to all frequency bands between an initial level ls and
an end level le. Finally, all frequency bands are merged again
using Inverse Wavelet Transform. The resulting data series
is then made available to the respective Smart Services by
VAULT.

Our experiments have shown that ls = blog2(n)/4c and le =
dlog2(n)/2e+1 leads to the best possible result. However, this
can be freely adjusted if in other use cases this parameterization
either offers too little privacy protection or if the data quality
deteriorates too much.

Figure 20 shows the frequency bands of the time series
from our running example after applying the SNIL Algorithm.
Gaussian noise is added to the frequency bands L2 to L5. The
resulting noisy time series is shown in Figure 21. As it can be
seen, the utility of the data is preserved—with regard to the
course of the blood glucose curve—despite the resilient noise.

Listing 4 shows how the SNIL-based privacy filter is
implemented in VAULT. In it, we increase the parameter σ ,
i. e., the standard deviation, per frequency level. The wavelet
transform is performed by the PyWavelets module [78], [79].

In a similar way, VAULT implements further profound noise-
based privacy filters as well as filters for the other privacy
techniques presented in Section V. The application of these
privacy filters, however, results in many different privacy-aware
variants of each time series. How all these data are managed
by VAULT is described hereafter.

Algorithm 1: Savitzky-Golay-Based Denoising.
input : noisy time series data data
output : denoised time series

1 f req← decomposition of data into frequency bands;
2 for i← 1 to dlen( f req)/4e do
3 apply Savitzky-Golay filter to frequency level i;
4 end
5 clean← merge of filtered frequency bands;
6 return clean;
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Figure 19. Reconstructed Time Series Using Algorithm 1.

D. Data Management

Due to the increasing digitization in all areas of life enabled
by the IoT, data management systems and data analytics
systems are facing entirely new challenges when dealing with
big data. Big data are characterized by four Vs: volume, variety,
velocity, and veracity. A data management system that is
designed to provide Smart Services with a data foundation for
decision-making has therefore not only to be able to handle
very large volumes of heterogeneous data that are generated
constantly (and should be available to services in near real-
time), but it has also to ensure that the data quality of the
provided data is as good as possible. Since traditional data

Algorithm 2: Creating SNIL-Based Noise.
input : time series data data; start frequency level ls;

end frequency level le
output : time series with filter-resistant noise

1 f req← decomposition of data into frequency bands;
2 for i← ls to le do
3 foreach coefficient c in f req[i] do
4 add Gaussian noise to c;
5 end
6 end
7 noisy← merge of partially noisy frequency bands;
8 return noisy;
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L7
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Figure 20. Impact of the SNIL Algorithm on a Time Series.

Raw Data
Noisy Data

Figure 21. Adding SNIL-Based Noise to Time Series Data.

management architectures, such as Data Warehouses, cannot
cope with these new big data challenges, Data Lakes introduce
a completely new approach [80].

As Data Lakes are initially only a general concept that
requires a concrete implementation, many different perceptions
of this concept exist. Basically, the concept behind a data lake
is that it stores all acquired data, even if there is currently no
use for it. In addition, the stored data should be pre-processed
(e. g., by data wrangling) in order to increase its quality and
to be able to process queries more efficiently. Therefore, it
can be considered as a general consensus that a Data Lake
has to be flexible in order to support any kind of use case
and has to be able to provide original raw data in addition to
pre-processed data—that way, the obligation to produce proof
can be fulfilled [81].

There is also no agreement on the internal structure of such a
data lake. However, the zone models have now become widely

1 import pywt
2

3 """ selecting the Haar mother wavelet and """
4 """ determine the number of frequency levels """
5 w = pywt.Wavelet('haar')
6 maxlev = pywt.dwt_max_level(len(data), w.dec_len)
7

8 """ coefficients of each frequency level """
9 fl = []

10

11 """ stepwise decomposition of the data """
12 for i in range(maxlev):
13 (cA, cD) = pywt.dwt(cA, w, 'periodic')
14 fl.append(cD)
15

16 """ adding noise to the frequency levels """
17 for i in range(maxlev // 4 - 1, maxlev // 2 + 1):
18 s = i * 0.35
19 noise = np.random.normal(0, s, len(fl[i]))
20 fl[i] = fl[i] + noise
21

22 """ inverse wavelet transform and adjustment"""
23 noisy_data = cA
24 for i in range(maxlev):
25 if (len(noisy_data) < len(fl[maxlev-1-i])):
26 fl[maxlev - 1 - i] =

fl[maxlev-1-i][:len(noisy_data)]↪→

27 if (len(noisy_data) > len(fl[maxlev-1-i])):
28 noisy_data =

noisy_data[:len(fl[maxlev-1-i])]↪→

29 noisy_data = pywt.idwt(noisy_data,
fl[maxlev-1-i], w, 'periodic')↪→

Listing 4. SNIL-Based VAULT Privacy Filter.
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Figure 22. A Multi-Zone Data Lake Architecture for the Data Management in VAULT.

accepted. In these models there are several zones defined that
contain the data stored in the data lake. Each zone is described
by the respective degree of how the data in it is pre-processed,
e. g., “raw”, “cleansed”, or “aggregated”. Applications such
as Smart Services can thereby select the most suitable data
processing level for their purposes via the zones. While most
of these zones are rather generic and thus open for any kind
of application, special processing techniques can also be used,
which are only relevant for a few selected use cases [82].

In VAULT, similar problems have to be solved. On the one
hand, the IoT context requires the handling of big data and the
associated four Vs in terms of data management. On the other
hand, the gathered data has to be pre-processed in accordance
with the privacy requirements and made available on-demand
in accordance with the quality requirements.

To this end, we introduce a multi-zone data lake architecture
for VAULT. In this architecture data sources (e. g., IoT devices)
are isolated from data sinks (e. g., Smart Services). The data
management concept behind our architecture is based on the
zone model for data lakes by Sharma [83].

This architecture is shown in Figure 22. Grey zones are
processing zones—i. e., data are only passed through and
preprocessed for the subsequent zones—while white zones
are storage zones—i. e., data are stored there permanently and
are made available for further processing.

Incoming data from any kind of data source such as
relational data stores, sensors, and social media arrive in the
Transient Landing Zone. Here, data are temporarily buffered
and enriched with metadata. For instance, it can be annotated
from which sensor the data was captured or in which units the
measurements are presented. An initial data purging can also
be performed in this zone.

If, e. g., one of the IoT devices transmits unusually high
values while all other devices monitoring the same parameters
have not registered any abnormal values, this zone tags these
values as suspicious3. Furthermore, the data can also be split
up in this zone. For instance, if the payload of an IoT device
is composed of several measurements, it is useful to treat them
as individual measurements in the subsequent zones.

3A premature removal of such values is not intended as it cannot be
guaranteed that the detected anomaly is not a correct measurement.

The enriched data are then transferred to the Raw Data
Zone. The raw data are stored there unmodified4 as originally
received from the sources. The Raw Data Zone is the single
source of truth for all subsequent zones. Smart Services have
no direct access to data in this zone. Only internal accesses
are permitted.

In order to provide data access to Smart Services, data
have to be propagated to one of the horizontal Use Case
Zones5. In our AAL application scenario (see Section II), for
instance, the Medical Use Case Zone would contain all available
captured data almost unmodified. Smart Services of physicians
are thereby able to make diagnoses correctly. In the Insurance
Use Case Zone, all information would be available so that
an insurance company could check, for instance, whether a
person is performing health-promoting measures (e. g., sports
exercises) and thus qualifies for a bonus program (i. e., a lower
insurance premium). However, details on health data are not
available here. Finally, the Monitoring Use Case Zone contains
all data required by a care provider for remote monitoring
(e. g., alerting in case of a fall). However, these data are highly
distorted so that no unnecessary details are disclosed.

These zones are appropriately populated by the Privacy Zone.
In the Privacy Zone, one or more privacy filters can be applied
to the data (see Section VI-C) according to the specifications
in the knowledge model (see Figure 12).

Smart Services cannot access data directly, but only via the
Data Delivery Zone. This zone operates as an access control
layer. On the one hand, the verification of the signatures (i. e.,
the identification of the Smart Services, see Section VI-A) is
done in this zone. On the other hand, VAULT’s permission
model is used to select the Use Case Zone to which the
respective Smart Service should have access (see Section VI-B).

Due to this architecture it is possible to efficiently manage
the big data handled by VAULT and to provide the Smart
Services with the data they need while still taking privacy and
quality requirements into account. Moreover, all data protection

4“Unmodified” refers to the data quality and the data format. The previous
enrichment with metadata as well as the splitting into individual measurements
is of course retained.

5Vertical zones affect all data, while horizontal zones affect only a subset
of the data.
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concepts of VAULT integrate seamlessly into this architecture,
which further strengthens our Privacy by Default philosophy.

VII. EVALUATION

Having presented VAULT’s concept and implementation, we
now evaluate its effectiveness and efficiency. To this end, we
first discuss whether it meets the requirements towards a privacy
system for Smart Services (see Section II) in Section VII-A.
Then, we carry out a performance analysis for three selected
privacy filters in Section VII-B.

A. Assessment

In VAULT, each user is able to specify his or her individual
privacy requirements. Since this is done in natural language and
the mapping to actual data sources can be realized automatically,
the configuration is also user-friendly. That way, users are
enabled to specify their privacy requirements very precisely
and VAULT fulfills these requirements as good as possible (R1).

VAULT also preserves the utility of a service when it is
compatible with the privacy requirements. This is made possible
by the specification of the service’s quality requirements. This
ensures that the service receives usable data in terms of quantity
and quality. That is not the case with approaches working only
with data suppression or mock data, which have a sustainably
negative impact on these two parameters (R2).

The utility metric applied in VAULT balances privacy and
quality requirements against each other and determines the
best configuration. It aims to maximize both, the amount
of concealed private data as well as the amount of revealed
information, which is relevant to the service. As it might not
be possible to maximize both of these values at the same time,
at least Pareto optimality is achieved. The user can also weight,
which of these objectives should be preferred by VAULT (R3).

To this end, VAULT provides five different privacy techniques
that are tailored to IoT time series data. Each of these
techniques deals with different privacy aspects. Furthermore,
these techniques can be extended and combined so that a
suitable technique can be found for every use case (R4).

In VAULT, permissions (and thus the applied privacy
techniques) are not assigned to a service, but to a specific
combination of its attributes. This enables a considerably more
dynamic permission assignment (R5).

Table II. Characteristics of the Data Set Used for the Evaluation.

Metric Value

Number of Data Records 8,192,000
Data Volume 73.9 MB
Distinct Data Records 137
Mean 127.7
Standard Deviation 22.9
Minimum 101.0
Lower Percentile 111.0
Median 119.0
Upper Percentile 138.0
Maximum 256.0

Thus, VAULT fulfills all requirements towards a privacy
system for time series data as processed by Smart Services.

B. Performance Analysis

To evaluate the efficiency of VAULT’s privacy filters, we
have generated an artificial blood glucose data set. This data
set consists of more than 8 million individual blood glucose
readings. This results in a data volume of over 70 MB. Table II
summarizes the relevant metrics for the data set.

For the performance analysis, we measured how long three
privacy filters, namely a cubic-spline-based filter, a Savitzky-
Golay-based filter, and a SNIL-based filter (as representatives
of data interpolation, data smoothing, and adding noise—
see Section V) need to process the data. These filters are
chosen as they cause the highest computational effort. They are
implemented using Python 3.9.0, NumPy 1.19.0, pandas 1.1.4,
SciPy 1.5.4, and PyWavelets 1.1.1.

For the measurements, we initially generated 15 subsets
of our original data set, by progressively halving the number
of contained data records—i. e., we ended up with 15 data
sets containing between 500 and 8,192,000 data records. We
processed each of these data sets 10 times with each of the
three privacy filters, measured the required computing time,
and calculated the arithmetic mean to mitigate outliers. These
measurements were executed on a standard desktop computer
(Intel Core i7-8700 processor, 16 GB of main memory). The
results are shown in Figure 23.

Generally, the overhead caused by our filters is very low. An
increase in computing time can only be observed for 512,000
data records and above, i. e., a data volume of at least 4.61 MB.
If the number of data records is lower, only a negligible basic
workload is observable. Only the cubic-spline-based filter has
a slightly higher basic workload since the private data points
that have to be concealed must first be identified6.

For larger data sets, i. e., data sets that include more data
records, the increased computing time is noticeable. For all
three filters, however, this performance overhead increases
linearly to the number of data records that have to be processed7.
The measured computing times are shown in Table III. These
numbers imply that all three filters have a runtime of O(n).

This overhead can also be regarded as runtime overhead
for VAULT as a whole (in comparison to a data provision
without privacy features) since the privacy filters represent its

6In our performance analysis, we classified 1 % of the data points as private.
7Note that in Figure 23, we use a logarithmic scale for the x-axis.

Table III. Performance Analysis Results Overview.

Cubic Spline Savitzky-Golay SNIL

Mean Basic Workload 142.7 ms 3.6 ms 2.0 ms
512,000 Records 190.8 ms 22.9 ms 12.9 ms

1,024,000 Records 248.4 ms 47.9 ms 23.4 ms
2,048,000 Records 349.0 ms 102.1 ms 41.8 ms
4,096,000 Records 544.2 ms 223.5 ms 83.1 ms
8,192,000 Records 949.5 ms 558.2 ms 158.4 ms
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Figure 23. Computing Time Analysis of the Privacy Filters in VAULT.

most complex component in terms of computational effort.
So, VAULT is efficient—even for large data sets, filtering at
runtime is feasible. Materialized views (and the consequent
higher storage requirements) are only needed for a vast amount
of data or particularly complex privacy filters.

VIII. CONCLUSION AND FUTURE WORK

The tremendous progress that IoT-enabled devices have made
in recent years in terms of computing power, transmission speed,
and sensor technology provides the technical foundation for a
wide range of IoT applications. Such Smart Services affect all
aspects of our daily lives (e. g., Smart Homes, Smart Cars, and

Smart Health). In order to enjoy the benefits of these services,
however, users have to disclose a lot of data, some of which
revealing highly sensitive information. However, current privacy
approaches are not adapted to the specific characteristics of
time series data as processed by Smart Services, making them
unnecessarily restrictive. As a result, users have to disclose too
much private information in order to prevent that the service
quality deteriorates too much.

In this paper, we therefore introduce VAULT, a new privacy
concept for time series data. In VAULT, IoT data are managed
and provided to Smart Services on demand. In this process,
VAULT not only considers the privacy requirements of the
users but also the quality requirements of the services in order
to achieve a high level of data utility. To ensure this, VAULT
introduces four important building blocks: A. An IoT-enabled
authentication mechanism ensures that Smart Services can be
identified via their characteristic attributes. In addition, this
mechanism can also verify their current attribute values, e. g.,
in which country they are currently hosted. This allows VAULT
to apply an attribute-based access control for its managed data.
This facilitates fine-grained access rules. B. These rules are
defined in VAULT’s permission model. The model not only
takes into account which Smart Service wants to access the
data, but also the current context of that service. Furthermore,
additional restrictions can be specified whether and how the
data has to be distorted prior to being shared. The permission
management in VAULT uses a utility metric that evaluates
how much the data quality suffers from the use of a certain
privacy technique. C. VAULT introduced five different concepts
for such privacy techniques, which are tailored to the special
characteristics of time series data. Each of these concepts is able
to conceal a different kind of private information in the data.
For instance, projection, selection, and information emphasis
are suitable for data reduction, whereas data interpolation and
data smoothing can be used as noise filters or for outlier
suppression. Thus, VAULT can find a good ratio between
privacy and service quality. Different implementations of these
techniques are deployed in VAULT in the form of Python
scripts, called privacy filters. D. These three building blocks
are combined in a multi-zone architecture for the management
of big data. This architecture not only enables an efficient data
management but is also the prerequisite for the provisioning of
high-utility time series data to Smart Services. These features
render VAULT a Privacy by Design data management and
provisioning solution for the IoT as required by GDPR.

As part of future work, we aim to further evaluate the
performance of VAULT in terms of data throughput. As the
performance of such a system highly depends on the data
being processed, a conclusive evaluation has to be based on
real-world data. This is not feasible for medical data due to the
high restrictions such data involve. So, the evaluation will be
based on data from the food chemistry domain [84]. A possible
application scenario could be the provisioning of end-to-end
data about the food production chain (e. g., allergens a food
product had contact with during production) [85]. Yet, the
evaluation results based on artificial data are very promising.
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Another aim is to improve the performance of VAULT.
Our research in the field of data lakes has revealed that a
sophisticated metadata management facilitated information
retrieval [86]. In this way, we can increase the overall
performance of VAULT as well.

The quality of VAULT can also be improved. For instance,
better purging filters can be used in the Transient Landing
Zone. Litou et al. [87], [88] introduce a method to detect
misinformation. By applying this method, VAULT could tag
such data as incorrect at an early stage, which improves the
veracity of the data stock.

The trust in the data provided by VAULT can be further
enhanced. Due to the applied authentication mechanism, the
authenticity of the data and their provenance can be verified.
Yet, attackers could manipulate these data after they have
been stored in VAULT. By integrating immutable and tamper-
resistant blockchain technologies in the Raw Data Zone, an
end-to-end data authentication can be achieved [89]. To ensure
efficient access to these data, novel access structures for such
data storages are required [90].
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Abstract—Breaches of sensitive data have been occurring at an 
alarming rate to the embarrassment and expense of companies. 
It would appear that in each breach, the attack surface for the 
data has been sufficiently large to attract attackers. Reducing 
this attack surface is a way to lessen the likelihood of breaches. 
This paper presents methods for reducing the attack surface of 
the data held in the online computer systems of  organizations. 
The methods are applied to a software system’s  architecture 
early in the design process, as an approach for designing-in 
security. This work first defines the attack surface and then uses 
this definition to obtain methods for reducing the attack surface. 
The definition also leads to a formula for calculating the size of 
the attack surface. The formula incorporates the fact that 
vulnerabilities differ within the architecture. This paper further 
gives recommendations on how to apply the methods effectively 
and illustrates this application using two examples. Reducing 
the attack surface may not prevent breaches, but it will make 
them less likely to occur.  

Keywords-sensitive data; private data; breaches; attack 
surface identification; attack surface reduction. 

I.  INTRODUCTION 
This work extends Yee [1] by a) extending the application 

domain to all sensitive data, not just private data, b) 
improving the calculation of the size of the attack surface to 
account for the fact that some parts of the software 
architecture are more likely to be attacked than others, c) 
improving the explanations throughout the paper as well as 
updating the examples of breaches in Section I, d) adding a 
second application example, and e) increasing the number of 
references.  

Breaches of sensitive data held by companies and other 
types of organizations have been occurring at an alarming rate. 
In recent years, each year has been accompanied by its 
assortment of data breaches. Consider the following sampling 
of breaches in 2020 [2], the year of this work: 

• July 20, 2020: Ancestry.com, an unsecured server 
exposed sensitive data belonging to 60,000 clients of 
this family history search company. The lost data 
include email addresses, geolocation information, IP 
addresses, system user IDs, support messages and 
technical support details. 

• June 22, 2020: BlueLeaks, over 296 GB of data was 
leaked from US law enforcement agencies and fusion 

centers, and posted on an online searchable portal 
called BlueLeaks. The leaked information contained 
more than one million files, including scanned 
documents, videos, emails, audio files, some of which 
had sensitive and personal data, such as names, bank 
account numbers, and phone numbers. 

• April 20, 2020: Beaumont Health, the personal and 
medical data of more than 112,000 employees and 
patients of Beaumont Health was accessed by a 
hacker after compromising employee email accounts 
using a phishing attack. The lost data included names, 
birth dates, social security numbers, driver’s license 
numbers, medical condition information, and bank 
account data. 

• February 20, 2020: MGM Resorts, the personal 
information of over 10.6 million hotel guests who had 
stayed at MGM Resorts was found posted on a 
hacking forum. The information included names, 
home addresses, phone numbers, emails, and dates of 
birth. On July 15, 2020, researchers found 142 million 
personal records of formers guests of MGM Resorts 
hotels for sale on the Dark Web, suggesting that the 
original breach was larger than previously announced. 

Apparently, the attack surface for the data that was breached, 
or the number of ways that the data could be accessed and 
stolen, was sufficiently large and attractive to the attackers. 

Given the rate of recent data breaches, it is clear that more 
needs to be done to reduce the probability of a data breach 
occurring. The objective of this work is to derive methods for 
reducing the attack surface of sensitive data held in online 
(i.e., connected to the Internet) computer systems of 
organizations. The methods are obtained from consideration 
of the definition of the attack surface, which in turn is based 
on how an attack happens. This definition also leads to a 
straightforward formula for calculating the size of the attack 
surface, which can be used to verify that use of the methods 
does indeed reduce the attack surface. The methods focus on 
reducing the attack surface by altering the system architecture, 
rather than the deployment of add-on security appliances, such 
as firewalls and intrusion detection systems. The methods are 
meant to be applied at the early stages of design within a 
software development cycle, as part of the Design for Security 
toolset. 
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This paper is organized as follows. Section II explains 
sensitive data, attacks, and attack surface. Section III derives 
methods for reducing the attack surface. Section IV illustrates 
the methods using two application examples. Section V 
describes related work. Section VI discusses some potential 
issues. Finally, Section VII presents conclusions and future 
work. 

II. SENSITIVE DATA, ATTACKS, AND ATTACK SURFACE 
This section explains sensitive data, attacks, attack 

surface, and how to calculate the size of the attack surface. 

A. Sensitive Data, Attacks, and Attack Surface 
Sensitive data is data that needs protection and must not 

fall into the wrong hands. It includes private or personal data. 
Sensitive data also includes non-private information that may 
compromise the competitiveness of the organization if 
divulged, such as trade secrets or proprietary algorithms and 
formulas. For government organizations, non-personal 
sensitive data may include information that is vital for the 
security of the country for which the government organization 
is responsible. 

Private data, also known as personal data, is data about an 
individual, can identify that individual, and is owned by that 
individual [3]. For example, an individual’s driver license 
number, passport number, or credit card number can each be 
used to identify the individual and are therefore considered as 
private data. The individual’s privacy then refers to his/her 
ability to control the collection (what personal data and 
collected by which party), purpose of collection, retention, 
and disclosure of that data, as stated in the individual’s privacy 
preferences [3]. 

DEFINITION 1: Sensitive data (SD) is information that must 
be protected from unauthorized access in order to safeguard 
the privacy of an individual, the well-being or expected 
operation of an organization, or the well-being or expected 
functioning of an entity for which the organization has 
responsibility. 

DEFINITION 2: An attack is any action carried out against 
an organization’s computer system that, if successful, results 
in the system being compromised.  

This work focuses on attacks that compromise the SD held 
in the online systems of organizations. The attacker who 
launches an attack may be internal (inside attacker) or external 
(outside attacker) to the organization. This work applies to 
both types of attackers. An internal attacker usually has easier 
access to the targets of his/her attack and he/she may hide 
his/her attacks in the guise of normal duty.  

Salter et al. [4] give an interesting insight into what 
enables a successful attack: “Any successful attack has three 
steps: One, diagnose the system to identify some attack. Two, 
gain the necessary access. And three, execute the attack. To 
protect a system, only one of these three steps needs to be 
blocked.” Thus, an attack surface must contain a target that 
the attacker deems worthy of attack (suit his/her purpose for 
the attack) and that target must be accessible to the attacker. 
For this work, the target that is potentially worthy of attack is 

the SD that is accessible to attackers. In a computer system, 
this SD is either moving (travelling from one location to 
another), at rest (stored), or being used (by some process). 
This leads to the following definition of attack surface: 

DEFINITION 3: The attack surface for sensitive data, also 
called the data attack surface, contained in an online 
computer system is the set of all locations in the system that 
contain attacker accessible SD in the clear, where the SD is 
moving, at rest, or being processed.  

In Definition 3, “attacker accessible SD” means that the 
attacker is able to exfiltrate the SD using some agent of attack, 
such as malware against stored SD and SD being processed, 
or a man-in-the-middle attack against a link containing 
moving SD. Also, we assume that attackers would attack SD 
that is in the clear rather than SD that is encrypted. In the rest 
of this paper, by “attack surface” we mean the data attack 
surface, unless otherwise indicated. Figure 1 shows an 
example data attack surface.   

      

 
 
 
 
 
 
 
 
 
                             
 
 
 

 
 

 
 

An alternative definition of attack surface for SD 
contained in a computer system is the set of ways the attacker 
has to exfiltrate the SD. However, given the complexity of 
computer systems and the fact that the tools available to the 
attacker to use in his/her attacks are unknown to us, it is next 
to impossible to determine this set.  On the other hand, 
locations that contain attacker accessible SD are easier to 
identify.  Since an exfiltration must be from a location that 
contains SD, the set of such exfiltrations depends on the set 
of such locations. The larger the set of locations, the larger 
the set of exfiltrations. The smaller the set of locations, the 
smaller the set of exfiltrations. Therefore, Definition 3 in a 
sense includes this alternative definition, but in addition, is 
more easily applied. 

As mentioned above, in the first step of a successful 
attack, the attacker diagnoses the system to identify the attack 
[4].  A smaller attack surface will make this step more 
difficult for the attacker. Therefore, a smaller attack surface 
corresponds to higher security, which is why we wish to 
reduce the attack surface. Definition 3 also gives rise to this 
conclusion: a smaller attack surface means a smaller number 

Internet 

Computer 
System 

 

Legend: 

SD data store 

Process using SD 

Link with SD flow 
Attacker 

Figure 1. Example data attack surface consisting of the set of all 6 
attacker accessible locations in the system that contain SD in the clear.  
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of locations that contain SD, which in turn means fewer 
opportunities for exfiltration of the SD, or in other words, 
higher security.  

Definition 3 is consistent with the intuitive understanding 
of an attack surface (the usual meaning), which is “the set of 
ways in which an adversary can enter the system and 
potentially cause damage” [5]. Each “way” corresponds to a 
location in Definition 3 that in turn corresponds to methods 
for exfiltrating SD from the location.  

B. Calculating the Size of the Attack Surface 
It would be useful to have a numerical value for the size 

of the attack surface, since then we could a) compare attack 
surfaces at different stages of development to see if the 
system’s security is getting better or worse, b) compare attack 
surfaces of different systems when choosing a system for 
purchase, and c) easily see if actions taken to reduce the attack 
surface have indeed reduced it.  

As mentioned above, sensitive data held in a computer 
system can be in the following three states: moving, at rest, or 
being processed. These states correspond respectively, within 
a computer system, to SD that is moving along a link, SD that 
is stored in a data store, and SD that is being processed. Thus, 
the locations in Definition 3 refer to links, datastores, and 
processes that contain attacker accessible SD. Definition 3 
then leads naturally to the following formula for calculating 
the size of the attack surface for sensitive data.  

Let N be an estimate of the size of the attack surface for 
SD. Let m, n, and k be the number of links, data stores, and 
processes, respectively, that contain attacker accessible SD in 
the clear. Then 

 
𝑁 = 𝑚 + 𝑛 + 𝑘 

 
Equation (1) says that N is found by adding up the number 

of attacker accessible locations in the system that contain SD, 
namely: the number m of links, the number n of data stores, 
and the number k of processes, all of which contain attacker 
accessible SD. This equation follows directly from Definition 
3, by simply replacing “attack surface” with “size of the attack 
surface” and “set” with “size of the set” in that definition. We 
call N an estimate because it is impossible to know all the 
vulnerabilities in a system, and hence it is impossible to have 
an accurate value of the size of the attack surface. As well, an 
estimate suffices for the three benefits mentioned at the 
beginning of this Section. In the following, unless stated 
otherwise, we use “size” to mean “estimated size”. 

Equation (1) is the minimum size of the attack surface 
because it counts the number of links, data stores, and 
processes that form the attack surface. It can only be smaller 
if one or more of these components are not part of the attack 
surface, which would contradict Definition 3. Further, (1) 
makes no distinction between links, data stores, or processes 
as locations that contain attacker accessible SD. Yet, given a 
choice between attacking a link, a data store, or a process in 
the same computer system, where the difficulty level is the 
same for all locations, the attacker will probably choose to 
attack a data store of SD as it is more likely to give the attacker 
what he/she wants. This preference for data stores is seen in 

the large number of data store breaches that have occurred. 
Thus, a data store should contribute more to the size of the 
attack surface than a link or a process. A datastore makes the 
system more vulnerable to attack and this should be reflected 
in the size of the attack surface, which is also a measure of the 
system’s vulnerability to attack.  We can reflect this in (1) by 
making the contribution of data stores to the size of the attack 
surface as Md • n where  Md is a positive integer multiplier.  In 
fact, we can have positive integer multipliers Ml for links and 
Mp for processes, and corresponding contributions Ml •m  and 
Mp • k to the size of the attack surface. Getting back to 
reflecting the greater contribution of data stores to the size, we 
can set Ml = Mp = 1 and Md = 2, which states that each data 
store contributes twice as much to the size of the attack surface 
as either a link or a process. Thus, the equation for the size of 
the attack surface with multipliers is 

 
𝑁 = 𝑀!𝑚+𝑀"𝑛 +𝑀#𝑘 

 
and with the above values of the multipliers to reflect the 
increased contribution to size of data stores, (2) becomes 

 
𝑁 = 𝑚 + 2𝑛 + 𝑘 

 
We will use (3) rather than (1), since it suits our goal and is 
closer to reality. Applying (1) to Figure 1 gives an attack 
surface of size N = m + n + k = 2 + 2 + 2 = 6. Applying (3) 
gives 8, reflecting the greater vulnerability of the system due 
to its data stores. 

We have used Ml = Mp = 1 and Md = 2 with the rationale 
that attackers are more attracted to data stores than to links and 
processes, plus the observation that there has been many 
breaches of data stores. Note that Ml = Mp = 2 and Md = 3 
would have worked as well. The effect of these values in 
reducing the attack surface is that eliminating a data store from 
the attack surface gives a greater reduction than removing a 
link or a process. This means that if a data store can be 
removed, it should be. However, the values can be anything 
so long as they relatively reflect what the contributions to size 
should be according to past history or other sources of 
information, such as the system architecture. Since we don’t 
have access to other values, we have used the ones above since 
they reflect our conviction regarding datastores. Perhaps in the 
future, these values can be refined based on studies. Note that 
whatever values are used for Ml, Md, and Mp, our attack 
surface reduction techniques will always show N decreasing 
after applying each technique. Note also that (2) treats all links 
equally, all data stores equally, and all processes equally in 
terms of their contributions to the size of the attack surface. 
To allow each location to have its own specific contribution 
would be to attempt a level of accuracy that is unwarranted in 
light of our lack of knowledge of attacker behaviour as well 
as all the vulnerabilities in the system. 

III. REDUCING THE ATTACK SURFACE 
This section derives methods for reducing the attack 

surface based on (3). 

(1) 

(2) 

(3) 
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A. Methods for Reducing the Attack Surface 
Equation (3) implies that the attack surface will decrease 

if and only if any or all of the quantities m, n, or k decrease. 
Therefore, the attack surface may be reduced by the following 
methods, where each method decreases m, n, or k.  

a) Make a SD location useless to the attacker. 
b) Combine two or more SD locations into a single SD 

location.  
c) Deny the attacker access to a SD location.  
d) Remove a SD location from the system. 
 
The following explains these methods in greater detail 

and describes how they may be carried out. 

a) Make a SD Location Useless to the Attacker 
As mentioned above, in the first step of a successful attack, 

the attacker diagnoses the system to identify an attack, or in 
our case, the SD target for the attack. In this diagnosis, it is 
reasonable to assume that the attacker will ignore any target 
that he/she finds useless for his/her purposes. Such targets 
may be removed from the attack surface. Some ways to make 
a SD target useless to an attacker are: 
• Obfuscate (e.g., encrypt) the SD at the location. The 

attacker will not want to exfiltrate SD that cannot be 
read. The computer system will need to be able to de-
obfuscate the data securely for its own purposes. 

• Anonymize the SD at the location. Again, the attacker 
will not want SD that cannot be linked to individuals, 
since it is this linking that adds value to the data, e.g., 
for advertising purposes. The computer system will 
need to be able to de-anonymize the data securely for 
its own purposes. 

Note that this method does not affect any other location, 
whereas the following methods do.   

To illustrate, obfuscating one data store and one process in 
Figure 1 results in Figure 2, where the obfuscated data store 
and the obfuscated process have been removed from the attack 
surface. It can be seen that the attack surface in Figure 2 is 
reduced (size 5) relative to the attack surface of Figure 1 (size 
8).  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

b) Combine Two or More SD Locations into a Single SD 
Location 

This method will decrease the number of SD locations 
and reduce the size of the attack surface per (3). Links 
carrying SD to/from the locations that were combined may 
need to be moved to the combined location, or they may be 
merged if they extend from the locations that were combined 
to a common endpoint. Merged SD carrying links correspond 
to a reduction of SD carrying links from the attacks surface. 
In addition, changes to the software logic may be needed for 
data stores or processes that were combined to accomplish 
reading or storing the data in the combined location (for 
combined data stores), or new processing of data in the 
combined location (for combined processes). As we have 
seen above, this method can remove SD carrying links from 
the attack surface when such links can be merged.  

To illustrate, suppose in Figure 1 that we combine two 
data stores and two processes into one data store and one 
process. Suppose also that combining the data stores allowed 
the merging of two links into one, but combining the 
processes did not change the number of links. Figure 3 shows 
the result, obtained by removing 1 data store, 1 process, and 
1 link from Figure 1 due to combining locations. We see that 
the attack surface has been reduced from size 8 (Figure 1) to 
size 4 (Figure 3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

c) Deny the Attacker Access to a  SD Location 
It may be possible to have some SD locations offline, thus 

denying the attacker access to these locations. For example, 
this may be possible for certain self-contained processing, 
such as analytics, that can be done using SD that is offline. In 
this case, all data stores, processes, and data links involved 
solely in the processing to be moved offline may be removed 
from the attack surface of the system and re-constituted into 
the offline system. It may be necessary to update the offline 
SD data stores periodically using data from the system that is 
online. This update will need to be done in a secure fashion, 
perhaps by transferring the data manually using disks, after 
making sure that no malware can infect the offline system via 
this transfer. Although the destination locations are offline, it 
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Figure 2. Resulting reduced data attack surface of size 5 after 
obfuscating locations in Figure 1.   
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Figure 3. Resulting reduced data attack surface of size 4 after combining 
(method b) or removing (method d) locations in Figure 1.   
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may still be possible for transferred malware to exfiltrate the 
offline data, e.g., hiding the data in the disks that are used for 
transfer and then transmitting the data once the disks are on 
the online part of the system. The locations moved offline are 
still vulnerable to inside attack, so they would have to be 
secured against such attack. Defending against inside attacks 
has been extensively researched, e.g., [6], [7].  

Another way to deny the attacker access to a SD location 
applies to SD links. Here, SD links are implemented on a 
hardware platform along with other components of the 
system.  An example of such a link is the communication 
channel between the CPU and the GPU implemented on a 
computer motherboard. An attacker would find it very 
difficult to access such links for an attack such as man-in-the-
middle. Given other targets that are easier to access, the 
attacker will not attack such links and they can be removed 
from the attack surface. 

As an illustration of moving some SD locations offline, 
Figure 4 shows a data store, a process, and a link taken out of 
Figure 1 and assembled into an offline system. The attack 
surface of the computer system has been reduced from size 8 
(Figure 1) to size 4 (subtracting the contributions to the attack 
surface of the moved locations). However, the offline system 
would need to be secured against inside attack.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

d) Remove a SD Location from the System 
Another way to reduce the attack surface is to remove a 

SD location from the system by deciding that the SD in the 
location is no longer required. For example, a company that 
stores the credit card information of its customers for their 
convenience may decide to stop storing this information, and 
instead, ask the customer for their credit card information 
every time the customer goes through checkout. This is in 

general a good decision, to avoid storing SD that may get 
compromised, at the cost of a little inconvenience. In this case, 
the associated credit card SD datastore would no longer be 
needed, and would be removed from the attack surface. 
Another example is the removal of a process that periodically 
sends customers the status of their order. The process uses SD 
consisting of the customer’s name and email address to send 
the status. Suppose that this process is no longer necessary 
because the customer can now use a new Web interface to 
check order status. Removal of this process from the system 
removes it from the attack surface. Interestingly, removal of a 
SD location can also result in removing other SD locations 
that are connected to the location that is removed. For 
example, the removal of a SD data store or a process that uses 
SD can result in also removing connected SD locations, such 
as the links that carry SD, or a SD data store that the removed 
process was exclusively using. Thus, removing a SD location 
not only removes that location from the attack surface but can 
also lead to removing other SD locations further reducing the 
attack surface. 

To illustrate, suppose it is decided that one of the processes 
in Figure 1 is no longer needed. Removing this process means 
that a data store and a link that were used only by this process 
are also no longer needed. Thus, the attack surface of the 
computer system in Figure 1 is reduced from size 8 to size 4, 
and the reduced system is shown in Figure 3. 

B. Applying the Methods 
Since the above methods operate on attacker accessible 

SD locations, it is recommended that they be applied in the 
second phase of two phases, where the attacker accessible SD 
locations are identified in the first phase. These phases are 
carried out on an architectural representation of the online 
system, such as a Data Flow Diagram (DFD) [8] (see the 
application examples in Section IV). The phases are as 
follows. 
• Phase 1: Identify SD locations by tracing the flow of 

sensitive data in the online computer system, looking for 
where SD enters the system, where SD flows (links), 
where it is stored (data stores), and where it is used 
(processes). Identifying the SD locations by tracing the 
flow of SD in the system implies that there are paths to 
the SD that an attacker can use to exfiltrate the SD. We 
therefore conclude that all SD locations found in this 
manner in an online system are attacker accessible SD 
locations. Given the ingenuity of attackers (the 
exfiltration could even be aided by an insider of the 
organization that owns the computer system, through 
social engineering), this conclusion is valid.  

• Phase 2: Apply the above methods to the attacker 
accessible SD locations found in Phase 1, where possible, 
while considering the potential negative effects on the 
following aspects of the system: 

— Performance 
— Reliability and dependability 
— Ease of maintenance 
— Implementation cost 

Offline 
System 

Internet 

Computer 
System 

 

Legend: 

SD data store 

Process using SD 

Link with SD flow 
Attacker 

Figure 4. Resulting reduced data attack surface of size 4 for the 
computer system after moving some locations in Figure 1 offline.   
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For example, encryption or anonymization incurs extra 
overhead, combining data stores may introduce a 
performance bottleneck since the newly combined data 
store will now need to additionally support data accesses 
that were originally shared among the data stores that 
were combined. Combining SD locations in general may 
reduce modularity and lead to extra effort needed to 
maintain the system.  

Three guiding rules for applying the methods are:  

 
1. Look for opportunities to apply a method to a data 

store since according to (3), removing a data store 
from the attack surface gives a greater reduction 
than removing either a link or a process.  

2. Look for opportunities to apply the methods where 
the potential negative effects mentioned above are 
minimal.  

3. It may be more efficient to consider method a) last, 
since the other methods can add/delete links that are 
candidates for method a). 

Carrying out the above phases clearly requires knowledge 
of the computer system in terms of identifying the SD 
locations. Some basic knowledge of security would also be 
advantageous. These skills should be found within the 
software development team responsible for developing the 
system, perhaps with a little security training if needed. 

IV. APPLICATION EXAMPLES 
This section illustrates how to apply the methods for 

reducing the attack surface for sensitive data using two 
example online computer systems: one for selling 
merchandise and the other for airline reservation. 

A. Online Seller of Merchandise 
 Suppose that the system of the online seller of 

merchandise (e.g., Amazon.com) is at the beginning stages of 
development and that the development team has produced a 
DFD showing how sensitive data will flow, be stored, and 
used in the system. This DFD is shown in Figure 5.  

The system in Figure 5 allows the customer to enter his/her 
“name”, “address”, “email”, “item selected” for purchase, and  
“credit card info” for payment. These comprise the SD for this 
example. Five processes cooperate to provide the 
functionality for the system. One datastore stores the 
customers’ sensitive data; another datastore contains 
inventory data, i.e., what items are in stock. The system is an 
online system since it is for an online seller. The SD locations 
will be found by tracing the flow of SD in the system 
(described below). All SD locations in the system are attacker 
accessible SD locations, as noted above in the description of 
Phase 1 (Section III-B).  

Applying Phase 1 in Section III-B, we trace the flow of 
sensitive data from the point where the data enters the system 
at process 1. From there, the SD passes through process 1 and 
is stored in the customer datastore. After this datastore, the SD 
is split up with the “credit card info” going to process 4 to be 
used, and the “name”, “address”, “email”, and “item selected” 

going to process 2, where the “item selected” datum is used, 
and “name” and “address” are passed to process 5 to print the 
shipping label, whereas “email” is passed to process 3 to send 
the customer the shipping status. Thus, we can identify the SD 
locations as links, datastores, and processes through which the 
SD passes, is stored, and used. Note that inventory data is not 
considered SD in this example. These attacker accessible SD 
locations are shown in Table I. 

Table I shows that there are 6 attacker accessible SD link 
locations, 1 attacker accessible SD datastore, and 5 attacker 
accessible SD processes. For Figure 5, prior to the application 
of the above methods, (3) gives the size N of the attack surface 
for sensitive data as N = m + 2n + k = 6 + 2 + 5 = 13. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

TABLE I.  ATTACKER ACCESSIBLE SD LOCATIONS IN FIGURE 5 

 Links Datastores Processes 
1 link into process 1  customer datastore process 1 
2 link out of process 1  process 2 
3 link from customer 

datastore to process 2 
 process 3 

4 link from customer 
datastore to process 4 

 process 4 

5 link into process 5  process 5 
6 link into process 3   

 
Applying Phase 2 in Section III-B, we first use the above 

methods on the attacker accessible locations in Table I, as 
follows: 

Customer 
name, address, 
email, item selected, 
credit card info 

1. 
Receive and 

store data 

name, address, 
email, item selected, 
credit card info 

Customer datastore 
3. 

Send 
shipping 

status 

shipping 
status 

credit card 
info 

name, address, 
email, item 
selected email, shipping 

status 
4. 

Charge credit 
card 

 

payment 
status 

2. 
Check 

inventory & 
ship name, 

address 
inventory 
update 

inventory 
data 5. 

Print 
shipping 

label 
Inventory datastore 

Figure 5. DFD for online seller system, showing how data 
flows, are stored, and used.  
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• Using method d), remove the customer datastore 
from the system; it was decided that storing customer 
SD was not needed (customer purchase history can 
be stored securely on the customer’s device by the 
seller’s website and later retrieved by that same 
website). Note that removing this data store also 
caused the removal of a SD link (the link between 
process 1 and this data store). This change was seen 
as acceptable, and not significantly impacting 
performance or system maintainability.  

• Using method b), combine process 3 with process 2; 
this was seen to have negligible impact on 
performance and an acceptable reduction in 
modularity. 

• Using method b), combine process 5 with process 2; 
this was also seen to have negligible impact on 
performance and an acceptable reduction in 
modularity. 

These changes result in the DFD shown in Figure 6. Table II 
gives the attacker accessible SD locations corresponding to 
Figure 6. 

Table II shows that there are 3 attacker accessible SD link 
locations and 3 attacker accessible SD processes. For Figure 
6, (3) gives the size N of the attack surface for sensitive data 
as N = m + 2n + k = 3 + 0 + 3 = 6. Thus, the application of 
methods d) and b) have reduced the attack surface from 13 to 
6. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We can further reduce the attack surface as follows: 
• Using method a), obfuscate (encrypt) the links in 

Table II; the impact on performance due to the extra 
over head is deemed acceptable. 

• Using method a), obfuscate (encrypt) the SD in the 
processes shown in Table II; here, the impact on 
performance and the cost involved for extra code to 
handle encryption/decryption were considered 
unacceptable, and this reduction method was not 
applied. This reduction may have been feasible if 
these processes could use encrypted SD, but these 
processes require SD in the clear. 

TABLE II.  ATTACKER ACCESSIBLE SD LOCATIONS IN FIGURE 6 

 Links Datastores Processes 
1 link into process 1   process 1 
2 link from process 1 to 

process 2 
 process 2 

3 link from process 1 to 
process 4 

 process 4 

 
Table III shows the remaining attacker accessible SD 
locations after applying method a) to the links in Table II. The 
new attack surface is of size N = m + 2n + k = 0 + 0 + 3 = 3. 
The application of the methods in Section III-A has improved 
the security of sensitive data in the system by reducing the size 
of the attack surface from 13 to 3. 

TABLE III.  REMAINING ATTACKER ACCESSIBLE SD LOCATIONS IN 
FIGURE 6 AFTER OBFUSCATING THE LINKS IN TABLE II 

 Links Datastores Processes 
1   process 1 
2   process 2 
3   process 4 

 
Comparing Figure 6 to Figure 5, reducing the attack 

surface required the following architectural changes to the 
system: i) eliminating the customer database, ii) reducing the 
number of processes from 5 to 3 by eliminating processes 3 
and 5, and iii) changing the functionality of processes 1 and 2. 
As noted above, the implications of these changes were 
accepted by the development team. 

The size of the attack surface obtained by applying the 
above methods may depend on which methods were applied 
and the order in which they were applied. In particular, it may 
depend on the available opportunities for applying methods d) 
and b). For example, by using only method a) (obfuscation) 
on the link and datastore locations in Table I, assuming that it 
is not advisable to apply method a) to the processes due to 
unacceptable impacts on performance and costs, we obtain an 
attack surface of size 5 (for the remaining 5 processes since 
the obfuscated links and datastore would have been removed 
from the attack surface), which is larger than the attack surface 
of size 3 obtained above by opportunistically applying 
methods d) and b) before method a). This is the rationale 
behind guiding rule 3 in the description of Phase 2 above, that 
it may be more efficient to apply method a) last. 

B. Online Airline Reservation System 
ACCURES is an online airline reservation system that has 

been awarded to a software company for development. The 
system is to consist of 3 modules: MAIN, MOD-CAN, and 
MOD-EU. MAIN and MOD-CAN operate in Canada, 

Customer 
name, address, 
email, item selected, 
credit card info 

1. 
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forward data shipping 

status 

credit card 
info 

name, address, 
email, item 
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2. 
Check inventory, 

print shipping label, 
ship, & send 

shipping status 

4. 
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update 
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Figure 6. DFD for online seller system after combining 
processes and removing the customer data store. 

payment 
status 
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whereas MOD-EU operates in Germany. MAIN 
communicates with MOD-CAN and MOD-EU to receive 
flight request details, and in turn, sends them flights assigned 
details corresponding to the requests. MOD-CAN and MOD-
EU process customer transactions, where each transaction 
consists of receiving customer identification details, flight 
request details, and payment information (e.g., credit card 
details), storing the customer information in a data store, 
processing the payment, and sending the customer his/her 
travel itinerary, which marks the end of the transaction. The 
development team creates the DFD for ACCURES shown in 
Figure 7. Note that in this DFD, all data are SD, and all 
locations are attacker accessible SD locations.  

Applying Phase 1 in Section III-B, we trace the flow of 
sensitive data from the point where sensitive customer data 
enters the system at processes 4 and 7. Sensitive data also 
enters the system in the form of “flight availability updates” 
but these updates are stored in the Flights data store and go no 
farther. Referring to Figure 7, we see that the customer SD 
flows though all locations of MOD-CAN and MOD-EU. We 
also see that the sensitive data items “flight details requested” 
and “flight details assigned” flow through all locations of 
MAIN. Thus, we can conclude that all locations in ACCURES 
are attacker accessible SD locations, as shown in Table IV. 

TABLE IV.  ATTACKER ACCESSIBLE SD LOCATIONS IN FIGURE 7 

 Links Datastores Processes 

1 link into Flights data 
store  Flights process 1 

2 link between Flights data 
store and process 1 Customer data 1 process 2 

3 link between process 1 
and process 2 Customer data 2 process 3 

4 link between process 2 
and process 3  process 4 

5 link between process 2 
and process 6  process 5 

6 link between Customer 
and process 4  process 6 

7 link between process 4 
and Customer data 1  process 7 

8 link between process 3 
and process 4  process 8 

9 link between process 3 
and Customer data 1 

  

10 link between Customer 
data 1 and process 5 

  

11 link between Customer 
and process 7 

  

12 link between process 7 
and Customer data 2 

  

13 link between process 6 
and process 7 

  

14 link between process 6 
and Customer data 2 

  

15 link between Customer 
data 2 and process 8 

  

 
Table IV shows that there are 15 attacker accessible SD 

link locations, 3 attacker accessible SD datastores, and 8 
attacker accessible SD processes. For Figure 7, prior to the 
application of the above methods, (3) gives the size N of the 

attack surface for sensitive data as N = m + 2n + k = 15 + 6 
+ 8 = 29. 
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Figure 7. DFD for ACCURES, “F.D.A.” stands for “Flight 
details assigned” – used due to lack of space. All data are SD. 
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Note that we count a 2-way communication (two arrows in 
opposite directions) as one link. An example is the 2-way 
communication between processes 1 and 2. This is because 
such a communication is considered implemented on a single 
physical cable, so it is really a single link that will be 
vulnerable to attack. 

Applying Phase 2 in Section III-B, we first use methods b) 
and d) on the attacker accessible locations in Table IV, as 
follows: 

• Using method b), combine process 5 with process 4 
so that process 4 will now take on the additional 
function of charging the payment. Similarly, 
combine process 8 with process 7 so that process 7 
additionally charges the payment. Note that these 
applications of method b) also eliminate the link 
from data store “Customer data 1” to process 5 and 
the link from data store “Customer data 2” to process 
8. These changes were not seen as impacting 
performance, reliability, or maintenance and were 
accepted. 

• Using method d), remove the two datastores 
“Customer data 1” and “Customer data 2”  from the 
system; the software company’s client decided that 
storing the customers’ sensitive private information 
in these datastores results in excessive risks that the 
data could be compromised by attackers. The system 
would still be able to function according to 
expectation without these data stores. Note that 
removing these datastores also caused the removal of 
4 SD links that were connecting to the data stores 
(two links per data store).  These changes were also 
considered feasible and accepted.  

These changes result in the DFD shown in Figure 8. Table V 
gives the attacker accessible SD locations corresponding to 
Figure 8. 

TABLE V.  ATTACKER ACCESSIBLE SD LOCATIONS IN FIGURE 8 

 Links Datastores Processes 

1 link into Flights data 
store  Flights process 1 

2 link between Flights data 
store and process 1  process 2 

3 link between process 1 
and process 2  process 3 

4 link between process 2 
and process 3  process 4 

5 link between process 2 
and process 6  process 6 

6 link between Customer 
and process 4  process 7 

7 link between process 3 
and process 4   

8 link between Customer 
and process 7 

  

9 link between process 6 
and process 7 

  

 
Table V shows that there are 9 attacker accessible SD link 

locations, 1 attacker accessible SD datastore, and 6 attacker 
accessible SD processes. For Figure 8, (3) gives the size N of 

the attack surface for sensitive data as N = m + 2n + k = 9 + 
2 + 6 = 17. Thus, the application of methods b) and d) have 
reduced the attack surface from 29 to 17. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is possible to further reduce the attack surface of Figure 

8, as follows: 
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Figure 8. DFD for ACCURES after changes, “F.D.A.” stands 
for “Flight details assigned” – used due to lack of space. All 
data are SD. 

  7. 
Charge 

payment, 
send result 

flight 
details 
requested 

flight 
details 
requested 

117

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



• Using method c), deny an attacker access to the SD 
link between process 3 and 4 by implementing 
MOD-CAN on one physical platform (see 
explanation for method c) above).  Similarly, deny 
access to the SD link between processes 6 and 7 by 
implementing MOD-EU on one physical platform. 
Finally, deny attacker access to the SD link between 
the Flights datastore and process 1 and the SD link 
between processes 1 and 2 by implementing MAIN 
on one physical platform. These changes were not 
seen as impacting performance or maintenance and 
were accepted. 

• Using method a), obfuscate the Flights data store. 
Next, obfuscate the 5 SD links that extend outside the 
modules. These links are: between “Flight data 
source” and the Flights datastore, between process 2 
and process 3, between process 2 and process 6, 
between “Customer” and process 4, and between 
“Customer” and process 7. These changes were 
deemed feasible. Consideration was also given to 
obfuscating or combining some of the processes, but 
this was not done as it would significantly impact 
performance.  

These changes do not alter the DFD in Figure 8. Table VI 
gives the remaining attacker accessible SD locations. The new 
attack surface is of size N = m + 2n + k = 0 + 0 + 6 = 6. The 
application of the methods in Section III-A has improved the 
security of sensitive data in the system by reducing the size of 
the attack surface from 29 to 6. 

TABLE VI.  REMAINING ATTACKER ACCESSIBLE SD LOCATIONS 

 Links Datastores Processes 
1   process 1 
2   process 2 
3   process 3 

4   process 4 
5   process 6 
6   Process 7 
 

V. RELATED WORK 
In this section, we refer to “attack surface” in the general 

sense.  
Most closely related to this work is this author’s previous 

work on reducing the attack surface [9][10]. However, this 
previous work differs from the current work in at least the 
following two ways: a) the previous work proposes a 
graphical model with which to identify the attack surface 
whereas the current work does not require any such model, 
and b) the previous work reduces the attack surface by 
requiring the developer to learn and modify the graphical 
model whereas the current work has no such requirement. 

Some of the following related works deal with attack 
surface identification and reduction at the code or binary 
levels, whereas this work deals with it at the architectural 
level. A few of these works reduce the attack surface by 
removing unnecessary code or features similar to the removal 

of SD locations in this work. A. Kurmus et al. [11] look at 
reducing the attack surface of commodity OS kernels by 
identifying code that is not used and removing it or 
preventing it from executing. T. Kroes et al. [12] investigate 
reducing the attack surface through dynamic binary lifting, 
removal of unnecessary features, and recompilation. R. Ando 
[13] presents work on attack surface reduction through call 
graph enumeration in which attackable call graphs are 
removed. S. N. Bukhari et al. [14] propose reducing the attack 
surface corresponding to cross-site scripting by employing 
secure coding practices. G.V. Neville-Neil [15] writes that 
“the best way to reduce the attack surface of a piece of 
software is to remove any unnecessary code”.  Obermeier et 
al. [16] propose to reduce the attack surface of next-
generation industrial control systems through the use of a 
dynamic security system that adapts the parameters of 
network and security controls according to underlying 
changes in the control system environment. This results in the  
security controls only allowing data transfer that is required 
by the control system, thus reducing the attack surface. 

The following works look only at identifying the attack 
surface. M. Sherman [17] investigates attack surfaces for 
mobile devices. This author claims that mobile devices 
exhibit attack surfaces in capabilities, such as 
communication, computation, and sensors, that are generally 
not considered in current secure coding recommendations. C. 
Theisen et al. [18] propose the use of risk-based attack 
surface approximation (RASA) which uses crash dump stack 
traces to predict what code may contain attackable 
vulnerabilities. Their goal is to help software developers 
prioritize their security efforts by providing them with an 
attack surface approximation. P. K. Manadhata and J. M. 
Wing [5] provide a much more detailed metric of attack 
surface than is defined in this work. Their metric may be 
considered as a measure of the size of the attack surface for 
all possible threats. Our definition of data attack surface may 
be considered as a subset of their definition. It is not possible 
to compare these two definitions in terms of accuracy or 
usefulness since they were defined with different purposes in 
mind. The same applies to any attempt to compare our 
definition with any other definition of attack surface.  

Software attack surface identification and reduction is 
closely related to software vulnerability analysis, where the 
greater part of research also appears to be at the code level. 
Perl et al. [19] use an SVM classifier to find vulnerabilities in 
code repositories. Li et al. [20] describe VulPecker, a tool that 
can find a specific vulnerability in source code. Pang et al. 
[21] describe predicting vulnerable software components 
using a method built on a deep neural network. Anand et al. 
[22] suggest a way of classifying security patterns based on 
the type of vulnerability they treat. Also in this vulnerabilities 
category but working at the architectural level is this author’s 
work, Yee [23], which deals with using a graphical model to 
identify and remove vulnerabilities during design. Yee [23] 
differs mainly from the current work in that it focuses on 
vulnerabilities found through risk analysis whereas the 
current work focuses on the data attack surface found by 
counting the attacker accessible SD locations in a model of 
the system such as its DFD. 
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Some works propose to increase security through attack 
surface expansion rather than attack surface reduction. For 
cloud services, T. Al-Salah et al. [24] propose three attack 
surface expansion approaches that use decoy virtual 
machines co-existing with the real virtual machines in the 
same physical host. They claim that simulation shows that 
adding the decoy virtual machines can significantly reduce 
the attackers’ success rate. For enterprise networks, K. Sun 
and S. Jajodia [25] propose a new mechanism that expands 
the attack surface, so that attackers have difficulty in 
identifying the real attack surface from the much larger 
expanded attack surface. Note that these works do not 
contradict reducing the attack surface to improve security, 
since the attack surface is not really expanded but only 
appears to be expanded due to the addition of decoys.  

VI. DISCUSSION 
It has been suggested that combining multiple SD 

locations into a single SD location using attack surface 
reduction method b) will result in a greater loss should the 
attacker target this combined location. However, recall that 
all SD locations on the data attack surface are attacker 
accessible. Therefore, the multiple locations existing prior to 
combining were all attacker accessible. But because of the 
greater attack surface prior to combining, it is more likely that 
all of those locations will be attacked than the single 
combined location. Note that prior to combining, the attacker 
will attack all the locations rather just a few, since there is no 
reason for him/her to stop until he/she gets all the SD. Thus, 
the likelihood of the single combined location being attacked 
after combining is less than the likelihood of the multiple 
locations being attacked prior to combining, and the potential 
data loss is the same both after combining and prior to 
combining. This shows the advantage of a smaller attack 
surface.  In addition, there is always the possibility of 
applying reduction method a) (make a SD location useless to 
the attacker) to the combined location, removing it from the 
data attack surface.  

Definition 3 describes the attacker accessible SD 
locations that make up the data attack surface as containing 
SD that is in the clear. It has been suggested that these 
locations can also contain encrypted SD since some attackers 
may still attack such locations, in order to obtain encrypted 
SD which they would then decrypt. While this is possible, our 
view in this work is that attackers would not attack such 
locations, since there are many other attacker accessible SD 
locations that contain SD in the clear. However, if we were 
to allow locations to contain encrypted SD, our attack surface 
reduction approach would be impacted as follows: reduction 
method a) would not be applicable to such locations, and such 
locations would remain part of the data attack surface, unless 
eliminated by methods b), c), or d). The overall impact would 
be slightly fewer opportunities to reduce the data attack 
surface.  

We admit that our choice of Ml = Mp = 1 and Md = 2 in 
Section II-B may not be accurate, but accuracy is not needed 
to show that the data attack surface is smaller after each 
reduction method is used. Nevertheless, these multiplier 
values do represent a reasonable approximation to the real 

values, which can only be ascertained with further research 
studies. Furthermore, perhaps the real values are not so 
important, since the true benefit of knowing the size of the 
data attack surface is to be able to use it for comparison and 
measurement purposes as a result of some improvement 
effort, i.e., the capabilities listed in the first paragraph of 
Section II-B, and our values already provide this benefit. 

VII. CONCLUSIONS AND FUTURE WORK 
This work has presented an easy way to identify and 

calculate the size of the attack surface for sensitive data held 
within an online computer system, based on finding attacker 
reachable SD locations in the system. This work has also 
introduced methods for reducing the attack surface that are to 
be applied at the architectural level early in the development 
cycle, prior to coding, as part of the Design for Security 
toolset.  

Applying the methods does not require developers to 
learn a new model or a new coding language. Apart from the 
methods themselves, which are straightforward, a minimal 
level of security knowledge is needed, in order to understand 
the concept of data attack surface, the purpose of the 
methods, and how they work. Knowledge of the computer 
system is the major requirement, but developers already have 
this knowledge. Although the methods themselves are 
straightforward, applying them can be challenging in terms 
of their impact on performance, ease of maintenance, and 
other factors, as mentioned above. However, the goal of 
applying the methods is not to obtain the smallest attack 
surface possible, but rather to reduce the attack surface while 
balancing the needs of performance, reliability, 
maintainability, and so on. Thus, it is quite acceptable not to 
have attained the smallest attack surface possible, so long as 
those other needs are satisfied. We expect the methods to be 
acceptable to developers and their management because of 
their practicality and ease of application.  

Future work includes improving the identification of the 
attack surface and the calculation of its size. In addition, we 
hope to refine the methods for reducing the attack surface 
from developer feedback, obtained perhaps through 
workshops and trials. Other future work consists of 
investigating new methods for reducing the attack surface 
and looking at tools that could indicate a method’s impact on 
such aspects as performance, reliability, ease of maintenance, 
and implementation costs. 
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Abstract—Measuring the security of cryptographic systems in a
simple and effective way is a difficult problem. There are several
metrics that need to be taken into account. Earlier studies have
produced one taxonomy of these different metrics, but the appli-
cability of the taxonomy and the different metrics have not been
tested. In this paper, we present a revised taxonomy of metrics
for cryptographic systems and show results of applying it in two
different scenarios: a procurement process for cryptosystems and
in evaluation of open standards, namely the TLS 1.2 and TLS
1.3 standards. Applicability and meaningfulness of a taxonomy
depends on its ability to differentiate cryptosystems and thus
enable comparisons. Our results show that the revised taxonomy
can help in differentiating systems and standards, especially when
examining implementation related metrics. Future work should
streamline the overly complex evaluation process.

Keywords–cryptography; metrics; taxonomy; evaluation

I. INTRODUCTION

Measuring the security of systems against adversarial at-
tacks is a very difficult problem. In cryptography, there exist
some measures for the security of cryptosystems, but a com-
prehensive measure is still lacking. In [1] we presented a first
version of a taxonomy of different metrics of cryptographic
systems. In this paper, we extend that work and provide a
revised taxonomy. This work is based on applications of the
metric in some use cases by measuring the cryptosystems with
the help of the metric taxonomy.

A good test for a metric is its applicability in real world use
cases. Cryptosystems are used in many different products and
protocols in modern society. Some areas, where the security of
cryptosystems is crucial, include government communications
(military and diplomatic use) and banking. In order for a
cryptographic product to be used in sensitive government ap-
plications, cryptosystems and applications need to be certified.
The certification is usually a fairly lengthy process especially
when higher confidentiality/classification levels are aspired for.

Cryptosystems are needed and used also in our everyday
communications and digital services. Without the many ad-
vances in cryptography, it would be extremely difficult to build
digital services at the scale we are seeing now. Especially

This research has been funded by Defence Forces Research Program 2017
(PVTO 2017).

public key cryptography has played a crucial role in this
development [2]. Thus, measuring also the security of the
cryptosystems that secure these communications and services
is important both to assure their trustworthiness as well as to
enable their continuous improvement.

In order to better understand different metrics and the
attributes that they measure, we need to have a taxonomy of
these. Existing efforts for providing taxonomies for crypto-
graphic metrics include e.g., Benenson et al. [3] who explored
metrics from attackers’ point of view and Jorstad et al. [4] who
studied metrics in algorithms. Several standardization efforts,
e.g., [5]–[8], have also provided guidelines or criteria for im-
plementations. To the best of our knowledge, a comprehensive
view of cryptographic metrics has been lacking until recently.
The previous work of [1] provided a comprehensive taxonomy
of metrics that gave concrete and generic measures both for
algorithms as well as for implementations. This paper revises
the taxonomy. The applicability of the metrics is increased as
standards and products can be distinguished from each other
in more accuracy. The revised taxonomy also provides new
details and clarifies definitions.

We provide results from applying this metric to six real
world use cases related to cryptographic products offering
communications confidentiality services. We also apply our
taxonomy in evaluating two different versions of the Transmis-
sion Layer Protocol (TLS). The results of these case studies
are described and analysed. The revision of the taxonomy is
based on lessons learned from these case studies.

The paper is organised in the following way. The next
section describes the background for our work including an
overview of the previous version of the taxonomy. The third
section is dedicated to our case studies that provide the
rationale for further improving the taxonomy and metrics. The
fourth section describes our revised taxonomy and fifth section
discusses our findings. Finally, we give conclusions from our
research and some future directions for further study.

II. BACKGROUND

In this section, we present the relevant background on mea-
suring cryptography and on the certification of cryptosystems
for classified communications.
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A. Measuring Security

It is noteworthy, that there are many measures and metrics
for security in general and also for cybersecurity specifically.
These can take many forms and have a number of different
dimensions. These also work on several levels of abstraction
ranging from a cybersecurity index measuring nations [9] to a
measurement of a single device or a piece of software (e.g., IoT
labels [10]). However, measuring the security of cryptosystems
does not have that many good metrics.

The terms security performance and level are commonly
used in practice to refer to the effectiveness of security coun-
termeasures, the main objective of security work and solutions.
In addition, efficiency is essential because personnel and time
resources, and costs have always constraints. In addition to
effectiveness and efficiency, correctness is a fundamental ob-
jective in security measurements. Correctness is a necessary
but not sufficient requirement for effectiveness; i.e., it is a
side effect in effectiveness, not its driver. Sufficiently effective
security countermeasures are based on sufficient risk awareness
of the target system in focus. There are various factors which
enable effectiveness in practice, such as risk-driven design of
security controls, configuration correctness, sufficiently rigor-
ous implementation and deployment of security controls and
proper security assurance activities. In practice, complexity,
limited observability, a lack of common definitions and the
difficulty of predicting security risks make it impossible to
measure security as a universal property. Therefore, the term
security metrics is misleading, yet widely used [11].

In practice, there are various gaps and biases between secu-
rity effectiveness measurement objectives and practical secu-
rity measurements. In risk analyses, it is not possible to identify
and prioritize all actual risks. Difficulties in understanding well
the target system or risk situation can cause bias. Further gaps
are introduced when developing security requirements and the
actual system. Different phases of R&D cause easily additional
bias. Due to the gaps and biases, security effectiveness can be
achieved only asymptotically. In security metrics modelling,
an important goal is to minimize gaps and biases, making
the more practical security correctness objectives as close as
possible to security effectiveness objectives [11].

According to the results of the expert opinion survey re-
ported in [12], correctness, measurability and meaningfulness
are the core quality criteria for security metrics. Moreover,
usability is considered to be important, but not so essential
as the three before-mentioned dimensions. In the following,
we discuss these quality dimensions and their relationships to
more detailed quality criteria.

The term accuracy is often used instead of correctness to
emphasize the fact that all-inclusive correctness is impossible.
Using the term correctness makes it possible to differentiate
between accuracy and precision. The time dependability of
metrics can be seen partly as a sub-criterion of prediction
accuracy and partly as an independent sub-criterion of ‘gen-
eral’ correctness. The representativeness of security metrics is
crucial to their correctness in a security context. The gran-
ularity of a metric and associated measurement should be at
least at a level where adequate decision-making based on them
is possible. Contextual specificity (or, inversely, contextual
independence) is a special case of granularity. Completeness of

security metrics is related to representativeness, addressing one
or a collection of metrics. Non-intrusiveness is an important
criterion related to correctness. Security measurements and
the associated metrics should not overly affect or hinder the
actual functionality of software systems or the functions of an
organization [12].

Measurability is a prerequisite for the meaningfulness and
usability of security metrics. Attainability of measurable infor-
mation is related to measurability, while availability is a sub-
goal of attainability. Together, reproducibility and repeatability
form the precision of the measurement. Scale reliability is a
sub-criterion of reproducibility. In addition to measurability,
reproducibility, repeatability, and scale reliability are related
to correctness.

To be meaningful, the metric should answer the original
essential question that reflects the need for evidence. Clarity
is closely related to meaningfulness: the clearer the formulation
of the metric, the easier it is to understand provided that the
person interpreting it has enough knowledge about the under-
lying context. Succinctness increases clarity and thereby mean-
ingfulness. Good succinctness also increases the efficiency of
the metric, a sub-goal of usability. In order for the security
metric to be meaningful, they should incorporate applicability
to decision-making. Comparability of different measurement
results is desirable when making selection decisions among
different security controls. The ability to show progression, is
a special case of comparability [12].

Usability of security metrics is important, yet not as critical
as correctness, measurability and meaningfulness, because
poor usability is not fatal for security metrics. The criteria
related to usability include the following: efficiency, cost
effectiveness and controllability, scalability, and portability
[12].

B. Measuring Cryptography

For many years, the most prevalent measure used in
describing the security of cryptographic systems has been
the algorithm-specific key length, with recommendations from
governmental authorities as well as standardization bodies
[13], [14]. There are, however, a number of shortcomings
when using only this one metric to evaluate cryptographic
systems: firstly, the update cycle of the recommendations
may be years, and the coverage of standards only includes
the most commonly used systems. Secondly, the key length
indicates resilience in the most simplistic adversarial models
only: the so-called ”brute-force” attack, where the attacker only
tries to guess (or compute) the key. This leaves out multi-
ple implementation-level issues [15], protocol vulnerabilities,
some more niche use cases [16] of regular algorithms and
many more.

There are also cases, when new algorithms are evaluated
for completely new applications that are not covered by current
standards; in these cases, it would be preferable to have more
general set of metrics to use. Finally, there are many different
levels of abstraction and each level combines methods from
lower levels to reach the security goal of that level. Even
when a security proof exists and gives a good guideline on
how to choose the security parameter, this one parameter - the
key length - oversimplifies the complexities of implementing
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Figure 1. A life cycle for cryptographic systems and its relation to metrics.

cryptosystems. In mathematical terms, a certain key length can
be seen as a necessary, but not sufficient condition for security
of some cryptosystem in some given context, e.g., a digital
signature protocol.

One of the main uses of metrics is to compare candidate
cryptosystems for a specific purpose. In this case, it may
happen that the security features are all approximately on
the same line, but due to some conventions in the detailed
implementation, they do not perform equally well. In this case,
performance-related metrics become relevant, and we claim
that there are certain performance-related metrics that are fairly
common across the use of cryptographic primitives.

Metrics can be identified from different phases of the
life cycle of cryptographic systems (illustrated in Figure 1).
Initiation of development of new cryptography is typically
motivated by expanding adversarial capabilities, which are
measured through resources, goals, freedoms of action and
information. Acceptance of new algorithms is achieved with
theoretical security proofs as well as through standardization
by openness and verification. During the algorithm develop-
ment and standardization, developers and academic reviewers
verify and analyze the theoretical strength of algorithms using
common metrics and methodologies. These may be specific
to the use case or more generic measures accepted in the
community for measuring the cryptosystem.

For example, with hash functions there exist many differ-
ent results on potential attacks on the Merkle-Damgård type
iterative hash functions. However, not all these have been
considered serious enough to be explicitly defended against
for example in the NIST call for candidates for the SHA-3
hash function standard. This shows that there exists a some
sort of a consensus on what is considered a serious threat
to the security and what does not among the community. In
some cases, the results that show an attack can be derivative
of more fundamental attacks or properties of the system. In
the case of hash functions for example multicollision attacks
result from the underlying property of iteration irregardless

of the implementation [17], [18]. Some of these have been
generalised also to the sponge construction employed in the
current SHA-3 standard [19].

During the implementation of software or hardware prod-
ucts, the vendors test products to detect implementation fail-
ures. Developers also often expose products for certification
testing that verifies that the product fulfils the intended security
criteria. Users may also require certification before accepting
products for procurement and operational use. Independent or
national accredited testing laboratories have product certifica-
tion frameworks and programs for assuring that implementa-
tions have required functionality and behave as expected with
different inputs. During deployment and operation, the product
matures and its parameters must be adjusted to withstand
threats from evolving environment. Technologies and imple-
mentations mature within time until new disruptive adversarial
capabilities or new security requirements necessitate new al-
gorithms and products. The legacy systems and algorithms are
phased out over time. Changes in operational context - new
performance requirements or needs to certify products against
emerging threats - may also result in changing the phase of the
cryptographic system in the life cycle (illustrated with arrows
in Figure 1).

C. Certification of Cryptosystems

An important area, where metrics for cryptosystems are
needed, is the certification (or approval) of cryptographic
products. The need for certification exists in many different
areas of official use. The process of certification can be very
cumbersome and is based on evaluations. These evaluations
can be very lengthy and be based on some standards (e.g.,
Common Criteria [20]) or some more heuristic criteria set by
the certifying authority.

A comprehensive, applicable and possibly even simple
measure for the strength of a cryptosystem would make these
evaluations easier to conduct and faster. It could also help in
comparing cryptosystems designed for different purposes and
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systems certified under differing and proprietary standards. A
good metric could also be used as a guideline or threshold for
cryptosystems to be used for certain levels of classification.

Governments routinely use a well-defined evaluation and
approval process to ascertain that systems used for protecting
resources on a certain sensitivity level are actually fit for the
purpose. Due to the nature and use of cryptologic information
(i.e., for intelligence gathering), the details of these processes
are often hidden and proprietary. The usual outcome of such a
process merely answers ”yes”/”no” for questions of the type:
”Is product X fit for protecting assets on sensitivity level Y?”.
Thus, it is meaningless to compare two products on the same
level Y, which result from different certification bodies. This
also implies the need for standard metrics.

In high-security environments there may also be a discon-
nect between procurement and assurance processes. Then it
is not even expected that the Request for Information (RFI)
or Request for Quotation (RFQ) phases produce information
related to security metrics (other than what can be gleaned
from open sources and standards). Security metrics are then
evaluated with a pass/fail-grade just before actual procurement.
This type of operation is deemed necessary in environments
where there are contradicting requirements of secrecy and
information needs, and may result in sub-optimal outcomes for
the procurer, when compared to a completely open process.

There are several standards that have been developed to
support certification of cryptosystems. For example, several
ISO/IEC standards [5], [6], [21] consider the requirements
of cryptographic systems, the verification and testing of such
systems etc. These give good guidelines for certification, but
do not in general define specific metrics and values that need
to be met and measured.

D. Previous Taxonomy for Measuring Cryptosystems

The first comprehensive taxonomy for measuring cryp-
tosystems in [1] classified metrics into four main categories.
The first two categories - adversarial model and security
proof framework metrics - addressed metrics that are related
to security of the algorithms. The latter two categories -
verification and maturity as well as cost and performance
metrics - addressed feasibility and security of cryptographic
implementations.

The authors of the previous taxonomy defined a cryptosys-
tem to be any algorithm, protocol or method for providing
cryptographic guarantees with respect to some security goal.
They also defined a metric as a way to measure some part
or the totality of the security of a cryptosystem. A metric can
have numerical values or it can be a qualitative description
depending on the use case. A metric is measurable if there
is a standard convention on how the metric is measured and
this is uniform across all applications of the metric (e.g.,
kilograms for weight). A metric is semi-measurable if there
are several different conventions on how to measure the metric
and some of these are not readily comparable with each other.
The third category of metrics is non-measurable, which means
that a standard for measurement does not exist or that the
different values that the metric can have are not comparable
in meaningful ways. Note the difference to the mathematical
concept of a metric, which always has a numerical value. We

also distinguish between quantitative and qualitative metrics.
Quantitative metrics give a numerical or several numerical
values to the cryptosystem and qualitative metrics give a
description of the state of the cryptosystem.

In the original taxonomy, also the practical relevance was
represented by stating whether an attribute was theoretical or
practical. In our revised taxonomy, we have chosen not to use
this attribute. We think that this distinction is not meaningful,
as the metrics need to be actionable at all levels of abstraction.
However, it is possible that for a certain use case and scenario,
some metrics can have greater practical impact than others.

One of the major shortcomings of the previous taxonomy
is that in practical applications, many cryptosystems utilise
certain standards (e.g., TLS) and thus the values of metrics of
many implementations do not vary in meaningful ways. For
example, the adversarial model metrics are usually fixed in
any standard. Thus, these metrics cannot differentiate between
different cryptosystems against the same adversarial model.
Thus, there is a need for metrics that can provide the differ-
entiating factors.

On the other hand, it is important to measure also the adver-
sarial model metrics so that we can distinguish different levels
of security between different adversarial models. This can be
useful not only for practical implementations of cryptosystems
but also in research. By finding differences in the metrics, one
can find room for improvement and new research problems in
trying to address these.

III. REVISED TAXONOMY

Our taxonomy, which is presented in Table I, has three
main categories. The first two relate to algorithmic metrics
that involve cryptosystems independently of their realization
in code or hardware. Algorithmic metrics are here divided to
adversarial model metrics (Subsection III-A) and proof frame-
work metrics (Subsection III-B). The last category combines
different metrics that are relevant for evaluating realizations
and implementations of cryptosystems, their feasibility, matu-
rity, and costs (Subsection III-C).

We revised the original taxonomy from [1]. The main
difference is that in the highest categorization level, we now
have combined all cryptosystem implementation related met-
rics under the same main category - verification and feasibility
- as the methodologies for verifying various metrics are similar.
Refined metric taxonomy contains also some new metrics
and definitions for old metrics have been clarified based on
feedback and experience on applying the taxonomy.

One issue in the old taxonomy was the disconnect between
theoretical adversarial models and the implementation level
differences in actual threats and capabilities of adversaries. For
example, one could have a disk encryption application (e.g.,
Bitlocker [22]) and a TLS implementation using AES with
the same keylength. In a theoretical sense and in the metric
of [1] these would yield the same result in the metric. On the
practical and implementation level, there are many differences
on the information that an attacker can get on the data and
the overall threat model. These are not reflected well in the
original taxonomy. Thus, we have added new metrics to the
taxonomy. These are Side-channels and Metadata.
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TABLE I. CATEGORIES AND PROPERTIES OF DIFFERENT METRICS OF CRYPTOGRAPHIC SYSTEMS.

Main category Subcategory Metric Measurable Type

Adversarial model Degrees of freedom Observe/choose/choose adaptively yes Qualitative
Corruption power - num. of principals yes Quantitative
Corruption power - degree of corruption semi Qualitative
Security game compliance semi Qualitative

Adversarial available information Pre-crypto yes Quantitative
Post-crypto yes Quantitative
Secret key material yes Quantitative
Protocol runs semi Quantitative
Setup parameters semi Qualitative
Simulation environment semi Qualitative

Adversarial goal Goal semi Qualitative
Adversarial resources Computation power Instantiated yes Quantitative

Computation power Non-instantiated semi Qualitative
Memory Instantiated yes Quantitative
Memory Non-instantiated semi Qualitative

Proof framework Security assumptions Mathematical complexity semi Qualitative
Abstraction assumptions Type semi Qualitative

Num. of assumptions yes Quantitative
Maturity of assumptions no Qualitative

Methodology Tightness yes Quantitative
Rigor Rigor semi Qualitative

Verification and Assurance levels Assurance standard or profile no Qualitative
feasibility Evaluation assurance level yes Quantitative

Test coverage Percentage of covered areas yes Quantitative
Vulnerabilities Number yes Quantitative

Number of classified semi Quantitative
Side-channels Existence semi Qualitative
Metadata Leaked amount and type no Qualitative
Evaluator acceptance and reputation Reviews yes Qualitative
Evaluator experience Academic publications semi Quantitative

Experience in years yes Quantitative
Verification time Time since released for evaluation yes Quantitative

Size and efforts of eval. community yes Quantitative
Openness of target Software/design semi Qualitative
Readiness level Technology readiness level yes Quantitative

Integration readiness level yes Quantitative
System readiness level yes Quantitative
PETS maturity model yes Qualitative

Key length Bits for criteria compliance yes Quantitative
Time costs Execution overhead yes Quantitative

Communication overhead yes Quantitative
Memory and transmission costs Run-time memory yes Quantitative

Storage capacity yes Quantitative
Communication bandwidth yes Quantitative

Implementation complexity Size of software semi Qualitative
Dedicated hardware requirements semi Qualitative

Energy efficiency Algorithm complexity dependent joules yes Quantitative
Hardware platform dependent joules yes Quantitative

A. Adversarial Model Metrics

Cryptology and especially cryptographic theory aims to
formalize how cryptographic algorithms work and withstand
cryptanalysis. Due to the need for rigorous formalisms in
cryptographic theory, the models used need to be very detailed,
and yet general with respect to adversarial behaviour.

Algorithmic metrics are sometimes difficult to define and
may be difficult to compare, due to the close association to
actual schemes. Many qualities that are essential to one type
of cryptographic algorithm may make no sense with another.
However, there are still metrics that can be measured and that
can be used to measure cryptosystems of similar nature (e.g.,
block ciphers or digital signatures). Some of these can then
also generalise to metrics that can be used to wider varieties
of cryptosystems.

For this purpose, even in the abstract world of algorithms

and cryptography theory, it is beneficial to be able to state that
algorithm A is (X times) more secure than algorithm B. This
in turn requires some metrics, and to distinguish them from
the other metrics used in this paper.

This results in the following:

• Algorithmic metrics are used in generally accepted com-
binations, rather than picked independently. In general,
there exists good consensus which metrics form a good
and reasonable combination. On the other hand, it is
entirely possible that new cryptosystems will need to
combine these metrics in new ways. Also, new metrics
can be brought about through research.

• The exact definitions tend to be scheme specific, resulting
in different understanding of which constructs or postu-
lated goals are actually more secure than others, making
some metrics effectively incomparable with each other.
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This is one of the main difficulties in measuring and
comparing cryptosystems.

• Metrics themselves may be scheme and usage-specific:
protocol security metrics may not apply to primitives, and
asymmetric primitive security metrics not to symmetric
primitives.

• Just collecting all the possible values of the metrics ever
used, from thousands of papers is a daunting task, which
is why we only give examples of the values. This means
that a measurement using these metrics needs to be aware
of the context and also the research on the topic.

As an example, consider the combination of the metrics
in the following common concept: INDistinguishability under
Chosen Ciphertext Attack or IND-CCA [23] and existential
unforgeability under chosen-message attack, or EUF-CMA
[24]. We observe here the following independent metrics:

• Adversarial goal: distinguish between random strings and
actual ciphertext.

• Adversarially available information: a polynomial amount
of information, before and after the cryptographic trans-
formation.

• Adversarial degrees of freedom of actions include choos-
ing the ciphertext-plaintext pairs adaptively (excluding the
keys).

In addition to the three metrics above, we consider ad-
versarial resources, which the designer of the cryptosystem
expects the attackers to be able to wield. For existing attacks,
the required adversarial resources may prove to be smaller
than expected by the designers, which may break the system’s
security even in practice. The four above metrics together are
related to the adversarial model. The metrics in the category
are selected to be as independent of each other as possible.
As mentioned already earlier, these dependencies are currently
inescapable in the taxonomy work.

The adversarial resources consist of computing power and
available memory. They are mostly well-defined and accessible
metrics, with practical relevance.

Computing power is addressed here in both of its forms:
exact attack complexities, and approximate or asymptotic
complexities. Cryptographic theory rarely elaborates the adver-
sarial models down to the detail of exact number of operations
required to break the system. Instead, asymptotic estimates are
given, and often even they are described only on the level of
computational complexity classes.

In the case of exact complexities, values can be given,
e.g., as the amount of floating point operations per second
(FLOPS). In quantum computing, the unit can be based on,
e.g., the amount of universal qubits and gates in the quantum
computer or the quantum volume of the system [25]. As
adversarial time is limited, the computing power is typically
presented in relation to time, for example as CPU years
(work done by 1 GFLOP machine in a year). The exact
actual amount of computing required to break a cryptographic
algorithm is known for demonstrated attacks. For example,
finding SHA-1 collisions with 6500 CPU years or 100 GPU
years [26], factoring of RSA-512 with 1.1 TFLOPS capacity in
4 hours [27], breaking of 7.45 DES keys within a nanosecond
by custom ASICS hardware [28].

However, the exact work and time needed to break previ-
ously unbroken algorithms can be only estimated. Affecting
adversarial factors include both the sophistication of break-
ing algorithms as well the type of processor {CPU, GPU,
ASIC, quantum}. This metric is semi-measurable because
for a given algorithm known attacks can be measured, but
between different algorithms these might not be comparable. It
is also important to note that for more complex cryptosystems
breaking a single component of the protocol (e.g., a hash
function) may not constitute a full breach of the system. This
metric is also quantitative.

In the latter case, where the complexity class border is
crossed, literature usually refers to different “computational
models”, the most common being probabilistic polynomial
time (PPT) adversary corresponding to the complexity class
bounded-error probabilistic polynomial time (BPP), where
polynomially bound, probabilistic Turing machines are ex-
pected. Other notable models include bounded-error quantum
polynomial-time (BQP) for quantum computers; and statistical,
or unconditional security model, where the adversary is given
limitless computational power. This metric is semi-measurable
(as the exact relations between complexity classes are not
known) and qualitative.

Because the exact running time estimates can only be fixed
once a cryptosystem is fully instantiated and parametrized,
we consider this measure to consist of two subclasses of
the whole: instantiated and non-instantiated computing power
(asymptotic notations can be computed to exact metrics once
the parameters, such as key size, are fixed).

Memory is the amount of memory that the attack requires.
Analogously to the computing power, we divide this into two
subclasses: instantiated (measurable and quantitative) and non-
instantiated (semi-measurable and qualitative). While not so
common in cryptographic scheme design (with the exception
of memory-hard password hashing), the attacks may require
large memories expressible in complexity classes, e.g., with
time-memory trade-offs. Also, the type of the memory and
memory access can have effect on the time that the attack
takes. Memory can also have some effect on the computing
power needed for the attack. Some example memory com-
plexity classes could be logarithmic space (LOGSPACE) and
polynomial amount of space (PSPACE).

Adversarially available information is the amount and
type of data that the attack needs or is allowed for the
adversary. This can mean plaintext-ciphertext pairs, number
of connections or interactions with a server, related keys, bits
from a random generator, cryptographic parameters etc. Metric
is quantitative within one type of data, but not necessarily
across types, as this is scheme-dependent. Thus, the metric
is only semi-measurable. We distinguish here at least six
different types: pre-crypto (data before encryption, signing or
other cryptographic transformation), post-crypto, secret key-
material (symmetric or private asymmetric), protocol runs,
setup parameters and simulation environment master. The four
first ones are measured in bits, bytes or messages/keys/runs,
the last two are discussed as follows:

• The access to setup parameters becomes relevant in cryp-
tographic protocols, giving rise to, e.g., variants of Uni-
versal Composability (UC): Joint UC [29] and Global UC
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[30]. Possible value space could be {local/global,
per protocol/several runs}.

• The control of the master process, which in crypto-
graphic protocol security proofs models to what degree
the adversary is able to control the (unspecified) protocol
environment (resulting in yet other UC variants [31]).
Possible value space could be {Sim+Adv, Advonly,
Env, *}.

Technically, the scheme or protocol description and param-
eters of the system also belong to the measured adversarial
information. However, modern systems very often assume all
of them to be public, or constantly available (see Kerckhoffs’s
principle [32]), so we do not consider them here.

Adversarial goals are a complement to the security goals:
if the security goal is indistinguishability, the corresponding
adversarial goal is to distinguish (an output of cryptographic
transformation from a random string); if the adversarial
goal is a total break of the system, it suffices as a security
goal to be able to keep even one message confidential.
Thus, these two metrics are actually two sides of the same
metric. Unfortunately, to be comparable, the goals need
to be rigorously formalized, which usually results in case-
specific definitions, and almost all values for the metric
are incomparable, making it both qualitative and semi-
measurable only. An example value space for typical goals
is {Semantic deduction, Information Leak,
Local deduction, Global deduction, Total
Break}.

Adversarial degrees of freedom of action refer here to
what the adversarial model is expecting the adversary to do.
(Note: “anything” is not a rigorous enough answer to this). We
propose to divide the degrees of freedom into three: General,
Corruption power and Game compliance.

Corruption power. In interactive protocols, the adversary
is also assumed to be able to access and/or modify the private
information of some of the principals. This is called corruption,
and depending on the scheme, only a certain number of
principals are allowed to be corrupted. Sometimes even more
fine-grained “corruptive power” is allowed [33]. The example
values of this metric could include a (quantitative) percent-
age of corrupted principals and a (qualitative) description of
the degree of corruption within one principal (see [33] for
subprotocol-level detail).

For the general metrics, cryptographic formalisms differ in
the amount of principals: Single-party settings (conventional
encryption and signatures) and multiparty settings (protocols).
As we show below, the multi-party setting does not bring that
many new metrics per sé.

In the single-party setting, only one or fixed, integral set
of cryptographic transformations (a black box) are usually
considered. Thus, there is a set of black boxes (e.g., encryption
and decryption, or signing and verification), with a number
of inputs and outputs. In this case, the adversary may be
able to observe some or all of the inputs, or to choose
(possibly adaptively) some or all of them. Note that we con-
sider modification of inputs and other adversarially available
information to belong to the “choosing” process. Some of
the possible values in the single-party setting would then be

’Observe’, ’Choose’ and ’Choose adaptively’,
in increasing order.

In the multi-party setting, i.e., protocols, the situation
with adversarial behaviour appears at first sight to be more
complex, as the security models are more varied. (Dolev-
Yao model, Inexhaustible Interactive Turing Machines [34],
Reactive Simulatability [35] and others [36]). In the Dolev-
Yao model [37], the principle is that the “attacker carries the
message”, or that the adversary is free to read, modify, add
and delete protocol messages and corrupt protocol principals
(in effect stealing their private key material). Relaxations to
this model include [38], where corruption does not include
divulging private key material, which makes the corruption
probabilistic.

However, the convention we made in the single-party
setting already covers the deletion, modification and adding
of protocol messages, global setup parameters modification
and protocol environment control, since the ability to choose
message (/parameters/environment properties) for a single
party translates to all of the above. Furthermore, corruption
of principals itself (note: this does not include the number of
principals) can be thought of as a combination of adversarially
available (keying) information and the ability to choose keying
inputs to cryptographic transformations. We thus conclude
that we have not identified more metrics from the multi-party
setting.

Game compliance. Many of the formalisms in crypto-
graphic security can be divided into two: game-based ap-
proaches and simulation-based approaches. Game-based ap-
proaches are basically a protocol, which try to model the
adversarial behaviour in some commonly thought scenarios.
These approaches result in efficient schemes that are relatively
easy to prove secure. Simulation-based approaches try to en-
able showing security irrespective of the adversarial behaviour.
The best the attacker can do, is to perform the idealized, non-
cryptographic tasks assigned to replace cryptography in the
simulation (SIM) model, since all of the cryptographic tasks
are idealized to be functionally equivalent non-cryptographic
ones, but performing the tasks by other means than cryptogra-
phy. This is a very strong model, and not many constructions
can be proven secure in this.

In the metrics, we consider this distinction to be an
adversarial degree of freedom in the sense that the adversary
is either constrained to follow some security game protocol,
or not. Loosely speaking, the simulation-based security proofs
also capture the adversary’s actions within a Turing Machine,
making the proof technique similar to that of reductionist
proofs with complexity assumptions. The main difference
in the proof technique is that the degrees of freedom are
larger with the Turing Machine (basically Turing-Complete)
than with a dedicated security game. The values could be,
for example {Game-App, Game-Gen, SIM}, making a
further distinction between general security games and very
application-specific games.

B. Security Proof Framework Metrics

Proof framework is the framework in which the security
proof is conducted. This includes multiple assumptions (for
abstractions of certain functions and for the complexity of
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several mathematical problems), the rigor used (ranging from
heuristics to verified full proofs) and the proof methodology.

A metric clearly tied to the proof methodology is tightness
of the proof. This concept indicates how exactly the resource
needs for different phases of the proof are estimated. In
“loose” proofs, polynomial reductions (without stating the
actual degree of the reduction polynomial) and upper limits are
common, whereas tighter proofs uses “less margin”, resulting
in more optimistic adversarial resources and ultimately in more
efficient parameters for a scheme. This metric is measurable
and quantitative, as typical asymptotical O(f(n)) expressions
are used here.

Complexity assumptions are the foundation of many types
of cryptographic proofs especially in the realm of com-
putational security. They are assumptions on the hardness
of different mathematical problems, usually that their time-
complexity is superpolynomial in the security parameter. These
assumptions can have several metrics:

• Assumption’s time-complexity. This has relevance in
many asymmetric schemes, since the complexity is not
always exponential. The metric is measurable, quantitative
and practical, as it directly affects key size. The metric is
expressed with the Big-Oh-notation (e.g., O(f(n))).

• Assumption maturity (we consider this to be in the
verification category and not elaborated more here)

• Type, if the assumption belongs to a known sequence
of implications (e.g., Decisional Diffie-Hellman (DDH)
⇐ Computational Diffie-Hellman (CDH) ⇐ Discrete
Log (DL) problem.) A possible common labelling bor-
rows from the general ordering for several problems,
where decisional problems (DDH) are usually easier than
computational problems (CDH), and finally the primitive
inversion problem (DL): {decisional, computa-
tional/search, inversion}. This metric is semi-
measurable and qualitative.

Abstraction assumptions cover how much the proof
methodology uses abstractions, what kind of type they present
and their maturity. Typical abstractions give different functions
as ideal oracles, the most famous probably being the Random
Oracle Model (ROM, [39] with variations in [40] and [41]).
Many other oracles exist as well, e.g., the Generic Group
Model (GGM) [42], the Ideal Cipher Model (ICM) [43],
and the Common reference string model [44]. Sometimes
the oracles are implicit, such as the Dolev-Yao modelling on
encryption operations, which are assumed to be secure. If no
abstractions are used, the proof is said to be conducted in the
Standard Model.

The actual metrics are proposed as follows:

• The number of abstractions used. For a proof in the
standard model this would be zero. Different abstractions
would be weighed differently depending on their maturity
and suitability for the cryptosystem

• Assumption maturity (we consider this to be in the
verification category and not elaborated more here)

• Type. Not all of the abstraction are equal, as there
are some known relations among them (e.g., ICM and
ROM have been proven equal in some cases [45]). We
then postulate that like with the complexity assumptions,

there is a common metric able to classify abstraction
assumptions as well, but we leave it for future study.

Rigor refers to the level of detail of the proof, its compli-
ance to commonly used proof techniques and the assurance in
the validity of the proof. Many schemes outside the cryptologic
community often rely on pure heuristics, others merely state
that the scheme is essentially similar to an earlier scheme and
overlook the security proof completely. Many other systems
are too complex to contain fully rigorous proofs in single
conference papers, making the authors only outline the proofs.
Ideally, proofs should be fully detailed, and externally verified.
The value space for this metric would then be {Heuristic,
Referenced, Outlined, Full, Verified}.

C. Verification and Feasibility of Implementations

The strength and correctness as well as maturity and
feasibility of cryptographic implementations can be verified
with different verification methods and testing tools.

1) Verification Metrics: Verification is a process estab-
lishing security, correctness, compliance, or validation of
cryptographic implementation. Verification metrics describe
the coverage and effectiveness of the verification and testing
actions that the cryptographic product has passed.

Assurance Levels are measurements indicating system’s se-
curity compliance when compared against common or standard
evaluation and testing requirements. For instance, Evaluation
Assurance Level (EAL) is a seven point-scale metric used by
the Common Criteria (CC) [46] security evaluation framework
for implementations; Common Criteria’s Protection Profile is
simpler two point-scale (compliant/non-compliant) metric for
specific product categories; Cryptographic Algorithm Valida-
tion Program (CAVP) [7] defines functional and statistical tests
for algorithms with a two-point (pass-fail) scale; Cryptographic
Module Validation Program (CMVP) [47] defines validation
tests for hardware implementations in four point scale (i.e.,
FIPS 140-2 security levels); and ISO 29128 [48] Protocol
Assurance Levels define requirements for the scope and au-
tomation of formal modelling and verification of cryptographic
protocols.

In addition to the generic frameworks, there also exist
frameworks that are specific for industry field or for an area of
cryptography. For instance, the Payment Card Industry [8] has
defined its own test requirements for two point scale evaluation
of cryptographic hardware modules. National Institute of Stan-
dards and Technology (NIST) has specified [49] a large suite
for randomness testing. Randomness sources are important
for many cryptosystems as the keying usually requires some
randomness to provide security. This attribute can have values
like user-supplied, system supplied, user + system supplied
(e.g., password and a salt) and verified randomness. Verified
randomness can also be quantum randomness, but the extent
to which this improves security of a system is not necessarily
easy to quantify. Assurance levels are semi-measurable and
quantitative metrics.

Testing coverage refers to the percentage of potentially
vulnerable areas that are verified. Coverage is complete if every
area, as specified, e.g., by a particular certification criteria
or test set, is verified. The areas that can be tested include,
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e.g., symmetric algorithms, asymmetric algorithms, key man-
agement, functionality, interfaces and protocols, randomness,
susceptibility to side-channel and fault injection attacks, life-
cycle, as well as susceptibility to physical tampering and
to reversing of obfuscated functionality attacks. Existing test
suites, validation program requirements or common criteria
profiles can be utilized when estimating whether all relevant
areas are included to verification and whether all tests for
the relevant areas are executed. This metric of coverage is
measurable and quantitative.

Existing systems have often known vulnerabilities of dif-
ferent impact and consequences. A most serious vulnera-
bilities are typically patched but due to costs or backward
compatibility vulnerabilities with lower risks may remain. A
straightforward quantitative metric is the amount of known all
kinds of vulnerabilities. A little more sophisticated metric is
to classify vulnerabilities according to their seriousness and
count instances in each category, e.g., through the CVE [50]
and CVSS systems [51].

One important implementation consideration, which is of-
ten covered in verification, is the existence of side-channels.
These are possible information sources that come from outside
the adversarial model. It is noteworthy that some adversarial
models can include some side-channels and show that a system
is resistant to these. However, not many systems can be shown
to be resistant to all possible side channels.

Most common side-channels are timing and power con-
sumption, but depending on the cryptosystem there might be
others such as errors and faults, sound, heat etc. We distinguish
between the different side channels and each type of side
channel is its own attribute. This leads to a situation, where
we need to have an attribute for ”other” side channels that are
not listed in our taxonomy. This is because new side channels
can be found later on.

Side-channels are semi-measurable and qualitative. Possi-
ble values for the side channel metric are:

• known side-channel attack,
• no known attacks,
• covered by the adversarial model
• not applicable

However, it is important to note that in many cases the
applicability of different side-channels varies greatly. The not
applicable value can also be used in case the evaluation is done
on a theoretical algorithm without a specific implementation.

Another implementation consideration is the amount and
type of metadata that the system allows to the potential
attacker. This may be the length of the message, number of
recipients, the algorithms used in the cryptosystem, program-
ming languages and/or libraries used by the system. Also,
timestamps, user names, location etc. fall into this category.
This is a non-measurable and qualitative metric. This metric
can contain a lot of information about the context, where
the cryptosystem is applied. Thus, it is important to have an
understanding what is relevant to the current analysis. This
also makes it difficult to measure the different values against
each other as the context matters greatly.

Capabilities of evaluating laboratories, communities, and
individuals - skills, experience, and methods - are an indirect

measure also for the evaluated systems. The more skilled and
scrutinized reviews the product has passed, the more less likely
the system is to contain unknown and hidden vulnerabili-
ties. These capabilities can be measured, e.g., by looking at
the experience and education of evaluators. Quantitative and
measurable metrics for human verification include count of
verifiers, verifiers’ experience in years, number of performed
evaluations, as well as the scientific author metrics (number
of fresh related publications of the evaluated cryptographic
system).

Similarly, other verifiable and relevant public demonstra-
tions of expertise can be included. For example, the number
of relevant CVEs (Common vulnerabilities and exposures)
[50] submitted by the evaluators should be considered. The
evaluators’ effectiveness depends on the available software
and hardware facilities, as well as on the quality of the
processes in the evaluating community or laboratory. Qualita-
tive metrics for effectiveness include maturity and acceptance
of evaluating laboratory or method by scientific community
and organizations. Similarly, qualitative metrics for human
effectiveness includes evaluator’s reputation, which is based
on past performance. Effectiveness does not necessarily ensure
accuracy. Even though an evaluating person, laboratory, or
method detects large amount of known vulnerabilities it may
also miss many.

The openness of the source code or design (in case
of a hardware system) is a particular metric, which affects
to the effectiveness of verification. This metric is semi-
measurable and qualitative. The possible values are {open
source, closed source, auditor access}. The
last one means that the code is closed to the general public,
but is available for auditing by some parties outside the
implementors (e.g., officials or potential clients).

Verification time refers to the hours, months, or years
that have been spend on exploring the cryptographic solution
against vulnerabilities. Time accumulates from intensive prod-
uct evaluations as well as from the verification and testing
by scientific and user community during the system lifetime.
The older and more dispersed the system is, the less unknown
weaknesses it is likely to have. This is a quantitative and
measurable metric.

2) Maturity Metrics: The maturity metrics measure how
ready and suitable a cryptosystem is. This can be a metric
for a specific component as in Technology Readiness Level
(TRL) [52], its derivates such as Systems Readiness Level
(SRL) [53] and Integration Readiness Level (IRL) [54], or a
more comprehensive metric of a whole systems, such as the
Privacy Enhancing Technologies (PETs) maturity metric [55].

TRL measures the readiness of a single component. This
metric is measurable and quantitative. IRL measures the
readiness of components to be integrated to form a more
complex system. This metric is measurable and quantitative.
SRL measures the readiness of a complete system based on
the TRLs and IRLs of the different components. The metric
is measurable (if normalized) and quantitative. PETs maturity
metric is a measure for the quality and readiness of privacy
enhancing technologies. The PETs measurement is carried
out with both measurable indicators (such as the number
of papers/patents and lines of code) and a more heuristic
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evaluation by experts. There is a defined procedure on how to
reach consensus on possibly differing evaluations by experts.
In some sense, this is similar to the jury evaluation used
in some cryptographic standardisation competitions. In the
PETs maturity metric, the evaluation is open and transparent,
whereas in some cryptographic competitions this is not the
case. The PETs maturity metric is measurable and qualitative.

As already mentioned in the introduction, key length is
one of the most used metrics for cryptosystem security. In our
taxonomy, key length considers the maturity and verification
level that a cryptosystem has. It is an indicator that shows
if the security parameters of a cryptosystem are up to date
and provide wanted security against known threats. Key length
defines the upper-bound of algorithm security. As different
algorithms do not provide equivalent security, estimates on
the corresponding strength are made to enable comparisons
(e.g., 128 bit symmetric key corresponds to 2000 bit factoring
modules and 250 bit elliptic curve keys [14]). The metric is
measurable and quantitative.

3) Cost and Performance Metrics: The feasibility of cryp-
tographic products depends not only of their security strength,
but also on cost and performance. These metrics can be
calculated for the whole system in total or separately for
an individual role (e.g., decrypter, encrypter, signer, verifier).
Typically, costs are divided unevenly between different roles.
This asymmetric cost division may be beneficial, e.g., in cloud
or Internet of Things scenarios where another party has more
resources available for cryptographic operations. Costs for
attackers are estimated with the adversarial resource metrics in
Subsection III-A; this subsection focuses to defenders’ costs.

Time costs originate from the computations, such as key
generation, encryption and decryption, as well as public and
private key operations, and from communications, where cryp-
tography causes additional overhead, expands communication
and negotiations. Time costs can be estimated by counting ele-
mentary operations that a cryptographic solution implies or by
experimenting and benchmarking, see e.g., [56]. Typical units
for measurement are computing cycles per encrypted block
or throughput (bits/second) within particular CPU frequency.
Time cost is a quantitative and measurable metric.

Memory and transmission costs relate to the need for run-
time and storage memory, as well as to the communication
bandwidth. They depend on the sizes of keying material,
ciphertexts, and signatures, as well as on run-time memory
requirements of algorithms. This is a quantitative and measur-
able metric, which is typically presented as bit as bytes.

Implementation complexity relates to the size and costs
of software or hardware implementations. A key attribute
is whether the solution is suitable for standard computing
platforms (e.g., Intel x86 or ARM-based) or whether it requires
specialized hardware. An important attribute is also whether
the performance of the algorithm can be improved with special
hardware, such as parallel platforms or extended instruction
sets. Complexity can be estimated either by counting lines
of code or by counting required hardware resources like gate
counts. This is a semi-measurable (as there are many ways to
measure complexity) and qualitative metric.

Energy efficiency depends on the use of computing, mem-
ory, and communication resources and their costs in different

platforms. Hardware computing factors affecting to energy effi-
ciency include, e.g., area size, amount of gates, bit transitions
per clock cycle, cycles per algorithm execution, as well as
block size [57]. Energy efficiency is a quantitative metric that
can measured using joules/bits, watts, or in some cases through
the environmental emissions.

IV. CASE STUDIES FOR APPLYING TAXONOMY

We applied the new taxonomy to evaluate both cryp-
tographic implementations as well as standards. First, we
applied the taxonomy to six use cases, where information about
a cryptosystem was available through a formal requisition
process. All of these systems represent closed-source products,
from which all of the technical details may not be available.

Second, we evaluated three different settings and versions
from a readily available standard, TLS, with the help of the
metric. As a simple test to the metric, we chose to limit
our sources to the TLS standards themselves and obvious
immediate references such as AES and RSA standards. It can
be argued that this is a limiting factor of our analysis. However,
it is also important to notice that these metrics should be
fairly simple to use and that having a thorough expert analysis
through all the relevant research literature on the subject is not
possible in most cases, where these metrics should be applied.

A. Measuring Closed-Source Products

We applied both the versions of the taxonomy to six closed-
source cryptographic products performing communications se-
curity and requiring separate certification before approval for
use. Our aim was to see to which extent the metrics could
differentiate products and how readily they were available. The
results can be seen in Table II.

All of the products aim to provide the same type of security
service, and represent the newest versions of their vendors. For
this reason, it should be expected that certain baselines and
standards will be identical for these products, including their
metrics. Furthermore, the metrics were originally designed to
cover many types of use cases and algorithms, but in this case
study, the products only concentrate on one or two types. Thus,
not all metrics can be considered valid for all products.

In addition, due to their closed-source nature, measurement
could only be performed with varying degrees of success, as
not all information was available, or even asked for in the first
place. We have then presented the average availability of the
metrics with six levels (1 to 6) as follows:

• Level 1: Metric explicitly stated
• Level 2: Metric implied by an open standard (including

independent research on the standard)
• Level 3: Metric implied by a closed standard
• Level 4: Metric implied otherwise
• Level 5: Metric released to evaluators only, via formalized

process
• Level 6: Metric withheld

In some cases the metric concerned such features that
were not supported, or were not at all available (not even
for the manufacturer) or requested in any part of either the
procurement or assurance process.
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TABLE II. RESULTS OF TESTING THE METRIC TAXONOMY IN A PROCUREMENT PROCESS

Main category Subcategory Metric Diff.a Avail.b Avg. diff. Avg. avail.

Adversarial model Degrees of freedom Observe/choose/choose adaptively 2 3.3
Corruption power - num. of principals 0 6.0
Corruption power - degree of corruption 1 3.4
Security game compliance 2 3.7

Adv.avail. Inform. Pre-crypto 0 2.8
Post-crypto 0 2.8
Secret key material 0 2.5
Protocol runs 1 3.2
Setup parameters 3 3.8
Simulation environment 0 N/a

Adversarial goal Goal 1 3.3
Adv. resources Computation power Instantiated 0 4.5

Computation power Non-instantiated 0 4.0
Memory Instantiated 0 4.5
Memory Non-instantiated 0 4.0 0.7 3.7

Proof framework Sec. assumptions Mathematical complexity 0 3.0
Abstr. assumptions Type 0 3.0

Num. of assumptions 0 3.0
Maturity of assumptions 0 3.0

Methodology Tightness 0 3.0
Rigor Rigor 0 3.0 0.0 3.0

Verif.&feas. Assurance levels Assurance standard or profile 6 1.0
Evaluation assurance level 6 1.0

Test coverage Percentage of covered areas 5 5.2
Vulnerabilities Number of detected vulnerabilities 2 2.7
Side-channels Existence 3 5.3
Metadata Leaked amount and type 4 2.8

Openness 3 1.0
Human efficiency Academic publications 3 5.4

Verifier experience in years 3 5.4
Verification time Time since released for evaluation 4 2.2

Size and efforts of eval. community 5 4.5
Readiness level Technology readiness level 0 -

Integration readiness level 0 -
System readiness level 0 -
PETS maturity model 0 -

Key length Bits for criteria compliance 6 1.8
Time costs Execution overhead 6 1.0

Communication overhead 5 3.7
Mem. & BW Run-time memory 5 5.2

Storage capacity 5 5.2
Communication bandwidth 6 1.0

Impl. compl. Size of software 5 5.2
Dedicated hardware requirements 3 1.5

Energy efficiency Algorithm complexity dependent joules 0 6.0
Hardware platform dependent joules 6 1.0 3.6 3.2

a How many products this metric can differentiate.b Availability of the metric (average of the values for the availability levels as specified in Section IV-A).

The first version of the taxonomy proved to be too vaguely
described in the adversarial model and security framework
parts, and could not be readily applied to product level. Thus
we applied the taxonomy fully only to the current revised ver-
sion. The three categories did not, surprisingly, have significant
differences in the availability of the metrics on behalf of the
vendors. This may be partly due to standardization, but also
due to the fact that many performance and security evaluation
details are actually company secrets. The algorithmic metrics
were slightly more difficult to obtain, due to some closed
standards prevalent in the field.

The second ”metric of a metric” we measured was how
many products (of the six) a particular metric was able to
differentiate (technically ”five” is redundant, since the sixth
could be identified by being the remaining one, but we consider
the applicability only).

According to this differentiation ability, there is a strik-

ing difference between performance and verification metrics
compared to others:

• None of the proof framework metrics could differentiate
between products (either due to standardization or to
complete unavailability)

• The adversarial model metrics could make a difference
between products only on protocol level (i.e., key ex-
change) details, not primitives (like block cipher) them-
selves.

• The verification and feasibility metrics, however, were
able to distinguish 3.6 or closer to 4 products out of
6. This may reflect the very strict control on security
features and a stable set of use cases, forcing the vendors
to compete on the performance rather than security.

Some notes for individual metrics include:

• The assumption for non-instantiated computer power
and memory for the adversary are implicitly ”PPT”

131

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



(/”PSPACE”), unless quantum security is considered. At
this point, no off-the-shelf product we looked at offered
quantum-secure constructions, thus these metrics would
not be expected to provide any difference.

• If some metric is promoted by authorities and standards,
it will usually eventually become part of public sales
brochures or public knowledge in any case. One good
example of this is the cryptographic key length: it is
probably one of the most exact and widespread metrics
in cryptography, required to be specified very ubiqui-
tously. This has led even closed standard algorithms to
divulge or leak their key lengths (e.g., BATON [58], and
Libelle [59]). This is also evidenced by our study: key
length is one of the few metrics we could pinpoint in all
of the test subjects.

The adversarial model metrics mostly concern algorithm
level issues, which are common to standardized products. The
models are developed independently and publicly inside the
cryptologic community, and although they may not be part
of a standard, they are implicitly understood to follow from
cryptographic research. Many algorithmic metrics of standards
may be difficult to locate in the cryptographic literature for a
non-expert in cryptographic theory. Thus it is advisable that the
most important standards be readily measured in a table (for
example) by a group of experts beforehand. Examples include
the UC-security of (a portion of a version of) TLS [60] and
IND-CCA security of IPSec IKEv2 [61]. Sometimes it is not
easy to see, whether a metric actually is included in another,
e.g., whether UC-security includes adaptive adversaries [62].

The main outcome of this case study is that algorithmic
best practices are usually incorporated into various standards,
which many products will follow. Thus, if the standards used
are very uniform, such as the case with AES, algorithmic
metrics are unlikely to make a difference between products.
However, in cases where a standard allows multiple solutions
(such as the planned PQC-standard), there are no standards
(many closed-market products and new innovations such as
blockchains and homomorphic encryption) or the standards are
vague (e.g., implementation details, parametrization, protocol-
level solutions), all the metrics are likely to serve a definite
purpose also from end-user perspective. This case study was
not able to weigh the proposed metrics across product types
or across standards.

B. Measuring TLS 1.2 and TLS 1.3

For TLS 1.2 [63] we evaluated one setting, which was the
ciphersuite TLS_RSA_WITH_AES_128_CBC_SHA. All TLS
1.2 implementations must support this ciphersuite according to
the standard.

We used the taxonomy in [1] and searched through the
TLS 1.2 standard for valuations of the different metrics in
the taxonomy. For many metrics the standard did not contain
suitable answers. Then also the references in the standard were
studied. In several cases we also needed to do larger searches
for example to find out about the number of vulnerabilities.

Finding the correct framing for measuring all the metrics
was not an easy task. In some cases the valuation was left
empty or Not applicable was used. For TLS this was the case

for the different readiness levels as there is no authoritative
source for this type of information.

For TLS 1.3 [64] we measured two set-
tings: TLS_AES_128_CCM_SHA256 and
TLS_AES_128_CCM_SHA256. The former was

chosen as the one closest to the TLS 1.2 ciphersuite
TLS_RSA_WITH_AES_128_CBC_SHA, although the
differences between the two versions are so vast that a perfect
match does not exist. The latter was the mandatory setting
for TLS 1.3.

The first thing we noticed when applying the metric to
the TLS cases was that the adversarial model metrics are
essentially the same for all three cases, since they are about the
freedom and powers granted to the adversary when construct-
ing the proofs for the underlying cryptographic primitives. The
documentation we were using did not provide direct answers
to these metrics, instead prior knowledge, or expert opinion,
needed to be used (or further research if we were not artificially
restricting our sources). For example, we could say that the
adversary would have ”substantial resources” to get to the
goal of ”information leak”, but that would not come from the
TLS documentation, or any of the other specifications we were
using.

Differences between standard versions are in the perfor-
mance and in the security and feasibility of implementations.
Metrics related to the performance and new metrics related to
the side-channel and metadata can capture these differences.
Further, TLS 1.3 specification mitigates some previous attacks
that were related, e.g., to renegotiation, protocol version down-
grading, and compression [64]. These advances are visible
in the verification metric category, where number of known
vulnerabilities are counted and indirectly also in the readiness
level metric where knowledge of existing vulnerabilities should
be visible as the lowered maturity evaluations. When consid-
ering the evaluation efforts, both protocols have passed similar
large scale reviews by global security community and industry.
TLS 1.2 may however seen more evaluations as it was released
for evaluation 2008, about ten years before release of TLS 1.3.
There are also some formal verification efforts related to TLS,
e.g,, in [65].

V. DISCUSSION

Measuring the security of systems is a very difficult task
even though the area has been researched for a long time and
the interest has been increasing in recent years. Measuring the
security and strength of cryptosystems seems to be even harder,
because there are so many different metrics and variables
involved and these also interact in many ways. Furthermore,
the notion of security is very much context dependent. Even
a secure cryptographic primitive used in a wrong context
provides very little security. An insecure primitive in a wrong
context provides even less security, e.g., [66].

The reason for revising the earlier taxonomy of [1] was
the difficulty in using that taxonomy in gaining actionable
information of real cryptosystems. Our new taxonomy should
alleviate this situation, but there is still room for improvement
and future work. We have focused more on metrics, which are
relevant for the development and operational phases in the life
cycle of cryptographic systems. We have given more concrete

132

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



metrics for addressing implementation specific threats, side-
channels and leaked metadata.

As stated before, correctness, measurability and mean-
ingfulness are core quality criteria for security metrics. We
investigated the metrics in use cases, giving enough contextual
specificity and same time dependability, both contributing to
correctness. Two other dimensions of correctness, granularity
and completeness are difficult to be analyzed based on the use
cases, and would require more experimentation. Most of the
metrics presented in the revised taxonomy are measurable, or
at least semi-measurable. Investigating meaningfulness of the
taxonomy’s metrics would also require more extensive studies.
However, clarity and applicability to decision-making were
driving the taxonomy development.

One key issue already pointed out in [1] is that of de-
pendencies between different metrics. For instance, feasibility
metrics, costs and performance, depend on the algorithmic
model. The revised taxonomy is still open for new inter-metric
derivatives. For instance, there are some measures that we have
chosen, due to simplicity, not to present in our taxonomy as
their own separate metrics. One is the total (monetary) cost of
an attack as a resource metric. It could be argued that this is
one of the most relevant metrics there is. On the other hand,
it is also derivative of the adversarial resource metrics that
have been included in our taxonomy. A major direction of
future improvement of these metrics will be to quantify the
relationships as well as to find more independent measures.
With independent metrics, it could be easier to produce infor-
mation on cryptosystems that is understandable and also usable
to the different stakeholders measuring cryptosystems.

As mentioned already in the beginning of this paper, the
utility of any metric is in its applicability to real use cases and
the ability to discern between different cryptosystems. Thus,
the new taxonomy needs to be applied in some use case to
determine its usefulness. Then also new improvements can be
made.

It is also important to note, that for example in the
verification metrics category there are many standards that can
be applied to cryptosystem evaluation. However, having for
example good coverage of a given testing standard, e.g., FIPS
140-2 [67], does not necessarily mean that the randomness
generation can withstand adversarial attacks [68]. Furthermore,
there are cases such as the Dual-EC, where a backdoor was in-
cluded in the standard and remained there for quite some time
[69]. Thus, even good values in this type of coverage metric
can not guarantee good security without other information or
further metrics.

One clear shortcoming of both the original metrics from
[1] and our revised version is the results of many metrics
being incomparable. This means that it is hard to get an
absolute ordering of cryptosystems and their security. With
truly independent metrics that are also all quantitatively mea-
surable, one could compute (a possibly weighed) average of
the different values and use that as the score for the system.
These could then be ordered easily. The current ensemble of
different metrics gives only a vector in a space, where distances
are not well defined or do not even exist in any meaningful
way.

VI. CONCLUSION

In this paper, we have revised the taxonomy of metrics
for cryptographic systems from [1] to a new taxonomy. We
have used this new taxonomy to evaluate both closed source
implementations and the open TLS 1.2 and TLS 1.3 standards.
Although there are some metrics where differentiation can
be achieved, the taxonomy and the different metrics in it do
not provide yet a usable tool for evaluations. The process of
evaluating the metrics and differentiating between different
implementations is fairly complex and the results are not
necessarily decisive.

For future work, there is still a great need to improve
the metrics and to find ways to simplify the measurement
process. Whether this can be achieved through revision of the
taxonomy presented here or through some different approach,
is an important venue for further study.
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Abstract—Cyber Physical Systems (CPS) are an integration of
computational and physical processes, where the cyber com-
ponents monitor and control physical processes. Cyber attacks
largely target the cyber components with the intention of disrupt-
ing the functionality of the components in the physical domain.
In this paper, we present SIMON, an Ontological design and
verification framework that captures the intricate relationship(s)
between cyber and physical components in CPS by leveraging
standard Ontologies and extending the NIST CPS framework
for the purpose of eliciting trustworthy requirements, assigning
responsibilities and roles to CPS functionalities and validating
that the trustworthy requirements are met by the designed
system. We demonstrate the capabilities of SIMON using a
vehicle to infrastructure (V2I) safety application. In addition, we
also investigate introducing resiliency measures that will ensure
compliance of physical systems to specifications.

Keywords–CPS Security; Ontology; CPS Privacy; CPS Re-
siliency; Semantic Web

I. INTRODUCTION

CPS systems consist of electronic or computer systems that
control physical systems. These systems use sensors to collect
information about the physical system and possibly other
situational inputs, process these inputs to determine appropriate
decisions and affect these decisions on the physical system
via actuators, forming a consistent feedback loop between
the physical and computational realms. Additionally, the data
collection and transmission of actions may involve the use
of communication networks. Well-known applications of CPS
systems include smart automobiles, manufacturing including
additive (3-D) manufacturing, medical monitoring equipment
and smart grids.

The increased reliance on such CPS systems in everyday
life has resulted in a corresponding increase in available venues
for attack for malicious actors. In contrast with information
security, which primarily deals with the protection of valuable
information, CPS systems offer attackers the potential to affect
the physical world through digital means. Thus, it is essential
to understand the inter-relationships between the functions of
the physical systems and the cyber (or electronic) systems,
and how an attack on one affects the other. In this paper, we
present an extension of our prior work on a design validation
framework that will enable the design of secure CPS systems
[1].

Since CPS systems can contain sensors, actuators, elec-
tronic/processing components and communication networks,
the number of sources receiving and transmitting information
is large when compared to traditional systems that fall under
a more strict cyber or physical definition, providing many
opportunities to attackers who want to impact the digital or
physical realm, or both. Real attacks have been carried out on
both power grids and interconnected industrial control systems
(ICS); such large-scale attacks are predominantly carried out

on the ”nation or state actors” [2]. Potential attacks include the
purposeful disablement or modification of connected medical
equipment vital to patient survival, disablement of smart car
brakes leading to collisions, and the sabotage of industrial
processes to bring harm to industrial production cycles and/or
human workers [2][3]. The increased number of demonstrated
and theoretical attacks has prompted a response from the
cybersecurity community to attempt to develop frameworks
and models to address CPS system security concerns [4].

A primary challenge of conceptualizing CPS system se-
curity is determining which threats and corresponding secu-
rity recommendations apply to CPS systems in general, and
which are unique to a specific domain. Another challenge is
managing the complexity that arises from CPS systems’ dual
nature of participating in both the cyber and physical realms,
referred to as its heterogeneity. Humayed et al. [2] emphasize
how CPS systems should satisfy the three traditional infor-
mation security requirements—confidentiality, integrity, and
availability—as well as safety, a fourth metric specific to the
physical nature of CPS sytems. Ashibani and Mahmoud [5]
recommend a security analysis at the perception, transmission,
and application layers of CPS systems. Such static analyses
are helpful for beginning to diagnose vulnerabilities in CPS
systems and address them through actionable steps. However,
the interconnected nature of CPS systems leaves a desire for a
modeling framework that can account for the high complexity
of CPS systems and the tendency toward human error.

To address these concerns, we advocate the use of On-
tologies to model CPS systems and the relationships between
their constituent subsystems. An Ontology is a formal de-
scription of knowledge as a set of concepts within a domain
and the relationships that hold between them [6]. To enable
such a description, we need to formally specify individuals
(instances of objects), classes, attributes, and relations as well
as restrictions, rules, and axioms. Ontologies not only enable
a shareable and reusable knowledge representation but, can
also add new knowledge about a domain [6]. Further, we
extend the NIST CPS framework [7], which includes 3 phases:
conceptualization for capturing requirements of the systems,
realization, which describes the design and implementation,
and assurance, which enables verification of requirements. In
our SIMON framework, we subdivide realization phase by
differentiating between an abstract realization and a concrete
realization levels. The abstract level translates the conceptual
requirements of CPS systems (such as functional, timing,
trustworthiness requirements) into responsibilities and roles
of system components (such as sensors, actuators, processing
elements, communication systems, computational algorithms).
The concrete realization level defines specific products used
to implement the abstract responsibilities and functionalities
(such as selecting a specific IoT system, or a communication
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device). Our Ontologies allow for common vocabularies to
describe concepts and properties of CPS systems at various
levels of the design framework. This permits for adapting best
design practices of one domain to the design of systems in
another domain.

Our prior work on using Ontologies in vulnerability as-
sessment in cloud systems [8] [9] enables us to extend those
Ontologies to address security concerns in CPS systems. Using
the NIST CPS framework as a basis for SIMON allows for a
broad and integrated view of CPS and positions trustworthi-
ness, among other aspects of CPS design. Furthermore, using
standard Ontologies like SOSA [10] will help streamline the
process of secure CPS design by considering the properties of
a CPS system like sensing and actuation.

The rest of the paper is organized as follows. Section III
describes SIMON, our proposed CPS framework. This section
also describes the various standard Ontologies, as well as
some of our new Ontologies used in the framework. Section
IV includes two case studies to show how SIMON can be
used for the design and validation of CPS systems. We show
some examples of cyber attacks and use reasoners to identify
potential compromise of design goals associated with the
physical system.

II. RELATED WORK

Extensive research has been conducted in applying Ontolo-
gies to either identify or validate the security posture of CPS
or IoT systems. Mozzaquatro et al. [11] propose a framework
that employs a model-driven approach to designing secure CPS
systems. While this may be prudential in some domains, it
fails to account for concerns from various stakeholders in a
CPS system. This is addressed by the NIST CPS framework
[7].

Fenz et al. [12] and Settas et al. [13] propose Ontological
frameworks that are complemented by Bayesian analysis to
predict threat probabilities in cloud systems. The key com-
petencies of these contributions is vulnerability assessment
and threat modeling for cyber systems in the cloud. These
frameworks are not directly applicable to CPS systems be-
cause they do not account for the physical components of
these systems. Moreover, additional vulnerabilities exist in the
intersection between cyber and physical components in a CPS
system. Modeling this interaction is essential in understanding
the impact of a potential compromise.

Gonzalez-Gil et al. [14] describe an Ontology for Machine
to Machine (M2M) data security in Internet of Things (IoT)
systems. The focus of this work is to define a semantic frame-
work to facilitate knowledge sharing and improve security of
IoT systems. The Ontology describes various data security
traits involved in data access and exchange in IoT systems.
Its purpose is to serve as a common vocabulary supporting the
description of the security mechanisms associated with data
and data exchange, which are strategic and crucial in varied
domains, such as data provisioning, service aggregation and
data processing [14]. While the knowledge sharing property of
an Ontology is leveraged in this work, the logical reasoning
property is not. Hence, the true capability of Ontologies is not
fully harnessed.

Bhandari and Gujral [15] present a semantic approach
to modeling the security posture of a network. A computer

network is a dynamic entity with a constantly changing topol-
ogy. The addition and removal of new services, hardware
components and sub networks, and modification of new user
roles contribute to the dynamic status of a network. This
work can be considered a precursor to the Structured Threat
Information Expression (STIX) Ontology that is discussed in
Section III.

Lannacone et al. [16] describe an Ontology developed from
a database of cyber security knowledge graphs. It is intended to
provide an organized framework that incorporates information
from a variety of structured and unstructured data sources.

Current research investigating the feasibility of semantic
technology for security in CPS appears to the limited to knowl-
edge reuse. Several semantic frameworks have been developed
to understand the security posture of cyber systems. While
these frameworks may provide an insight into the security
issues that plague various CPS systems, this information may
be unreliable because the frameworks do not account for
the tight coupling between cyber and physical components.
Furthermore, identifying security concerns at the design stage
of CPS systems using Ontologies has not been explored.

SIMON aims to bridge the gap between system design and
validation using cyber threat data from multiple sources. We
believe that this approach will help in the design of secure
CPS systems.

III. SIMON FRAMEWORK

The proposed framework combines (and extends) existing
standard specification Ontologies such as Semantic Sensor
Networks (SSN), and develop new ones as required by the
domain of interest. Let us take a closer look at some of the
Ontologies and frameworks used in our research.

A. NIST CPS Framework
National Institute of Standards and Technology (NIST) has

developed a framework that provides guidance in designing,
building and verifying complex CPS systems [7]. The frame-
work captures generic functionalities that CPS provide, the
activities and artifacts needed to support conceptualization, and
realization and assurance of CPS design [7]. Designing a CPS
system involves:

• Conceptualization - This involves capturing all activities
related to high-level goals, functional requirements and
organization of CPS as they pertain to what the CPS
is supposed to do. It provides a conceptual model of
the CPS system under consideration and can be used to
capture requirements from different perspectives (such as
functional, timing, trustworthiness, business).

• Realization - This involves capturing all activities sur-
rounding the detailed engineering, design, production,
implementation and operation of the desired systems.
However, to facilitate comparing Ontological models of
CPS systems, we propose bifurcating the overarching
realization phase described in the NIST CPS framework
into the following sub-phases.
◦ Abstract Realization - In this phase, design goals

are broken down into roles and responsibilities and
delegated to subsystems and interfaces. For example,
we may identify that the network communications
needed in the system will be handled by a wireless data
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Figure 1. The SIMON Ontological Framework.

communication application but not provide details on
either the specific hardware device or communication
protocols. We use Ontologies to capture the Abstract
Realization.
◦ Concrete Realization - The roles and responsibilities

identified during the abstract realization phase need
to be implemented by specific products. For exam-
ple, a Cisco ASR1002-10G-HA/K9 may be selected
as the wireless data communication role identified in
the Abstract Realization phase. We use Ontologies to
relate the products used for various functions and roles
identified in the Abstract Realization.

• Assurance - The assurance phase deals with obtaining
confidence that the system built in the realization phase
satisfies the model developed in the conceptualization
phase [7]. In our case, we use reasoners to infer and
derive assurances (or violations) that the security goals are
met. We use additional Ontologies to capture cyber threat
data so that vulnerabilities, cyber attacks and possible
mitigations can be related to the products identified in
Concrete Realization; we rely on NIST Common Platform
Enumeration (CPE) identities with specific products for
this purpose.

SIMON can be used to modify the CPS design at any of
the various phases to address any design violations discovered
by our reasoners. Figure 1 describes an abstract view of our
framework for the design and verification of CPS systems,
focusing on security and trustworthiness.

B. Role Allocation
Requirements traceability is an essential property in iden-

tifying changes/modifications to components that will improve

the security posture of a CPS system. Delegating design goals
from the conceptualization phase into roles and responsibilities
for entities identified in the two realization phases will help
achieve traceability.

The abstract realization phase involves identifying
application-level components, sans the implementation details.
Each system identified in this phase can be used to define a role
that associates a set of conceptualized functional requirements
for the underlying sub-systems to realize. In addition, each
role be assigned security responsibilities to be fulfilled. The
responsibilities from abstract realization are mapped to the
specific concrete realizations: several abstract roles may be
assigned to a single concrete component. A detailed example
is presented in Section IV.

The trustworthiness requirements as described by the NIST
CPS Framework include:

• Privacy: Addresses concerns pertaining to the prevention
of unauthorized agents gaining access to data stored in,
created by or transiting through a CPS system or its
components [7].

• Reliability: Addresses concerns related to the ability of
a CPS to deliver stable and predictable performance in
the expected conditions [7].

• Resilience: Addresses concerns related to the ability of a
CPS to withstand instability, unexpected conditions, and
gracefully return to predictable, but possibly degraded
performance [7].

• Security: Addresses concerns related to the ability of the
CPS to ensure that all of its processes, mechanism (both
cyber and physical), and services are afforded internal
or external protection from unintended and unauthorized
access, change, damage, destruction, or use [7]. Security
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can best be described through three lenses:
◦ Confidentiality: Preserving authorized restrictions on

access and disclosure.
◦ Integrity: Guarding against improper modification or

destruction of system, and includes ensuring non-
repudiation and authenticity
◦ Availability: Ensuring timely and reliable authorized

access to and use of a system.

We use several different Ontologies in our framework to
describe the concepts, properties and restrictions associated
with CPS systems at each of the design phases described in
this section.

C. Sensor-Observation-Sampling-Actuator Ontology (SOSA)
The Sensor-Observation-Sampling-Actuation Ontology

(SOSA) [10], a subset of the Semantic Sensor Network (SSN)
Ontology, presents a conceptualization of all entities, activities
and properties that typically constitute a CPS. SOSA is a
World Wide Web Consortium (W3C) standard specification.

The core structure of SOSA Ontology encompasses all
of the three modeling perspectives of sensors and actuators;
the activities of observing, sampling, and actuating [10]. Each
activity targets a feature of interest by either changing its state
or revealing its properties by following a designated procedure.
All activities are carried out by an object, also called an agent.

SOSA aims to strike a balance between the expressivity of
the underlying description logic, the ease of use of language
features and the expectations of the target audience, while
accommodating a broad range of domains and applications
[10].

D. Cyber Threat Information Ontology
The activities of observing and sampling must be followed

by communicating and processing the data to interpret the ob-
servations and making decisions on the actions. These actions
are then used to control physical systems through actuation.
The communication and processing subsystem, which is not
directly included in the SOSA Ontology, can expose the cyber
and physical components of the CPS to security attacks.
Thus, SOSA must be extended to describe the processing
and communication subsystems. This allows us to relate cyber
threat data from multiple sources to obtain insights into the
security posture of a CPS system under consideration. We have
defined an Ontology that captures Cyber Threat Information
(CTI) from three sources:

• The National Vulnerability Database (NVD) - A U.S.
government repository of standards-based vulnerability
management data [17].

• Exploit Database - An archive of public exploits and
corresponding vulnerable software, developed for use by
penetration testers and vulnerability researchers [18].

• Metasploit - A framework for developing, testing and
executing software exploits [19].

Our Ontology can easily be extended to capture CTI from
other sources. The cyber threat Ontology is underpinned by the
STIX structured language [20], that enables organizations to
share, store and analyze CTI in a consistent manner, allowing
security communities to better understand what computer-
based attacks they are most likely to see and to anticipate

and/or respond to those attacks more effectively. The STIX On-
tology utilizes twelve core concepts: Attack pattern, Campaign,
Course of Action, Identity, Indicator, Intrusion Set, Malware,
Observed Data, Report, Threat Actor, Tool and Vulnerability.

Attack Pattern describes ways that threat actors attempt
to compromise targets, and Campaign categorizes malicious
activities that occur over a period of time by identifying their
intended targets. Vulnerability describes a flaw in software (or
hardware) that can be exploited by a Threat Actor to breach a
target.

Our objective in defining the CTI Ontology is to unify
information from three sources (described earlier in this sec-
tion) and facilitate logical reasoning about the security of
CPS using Axioms. Axioms are rules used by a reasoner to
infer additional information that may be hard to define in a
knowledge representation language. To provide a perspective
of the complexity of CTI Ontology, it includes 6657 axioms
that describe CTI data. In addition to STIX, the our CTI
Ontology also inherits characteristics from two additional
Ontologies:
• Cyber Observable Expression (CybOX) - A standard-

ized language for encoding and communicating informa-
tion about cyber observables [20]. Using CybOX language
[21], relevant observable events or properties pertaining
to an attack pattern can be captured.

• Common Attack Pattern and Enumeration (CAPEC)
- Provides a dictionary of known patterns of attack
employed by adversaries to exploit known weaknesses in
cyber-enabled capabilities [22].

E. MITRE ATT&CK Framework
The CTI Ontology obtains a perspective on the com-

mon techniques and tactics used by adversaries through the
MITRE ATT&CK framework [23]. This information is useful
while assessing an organization’s cyber risk and to prioritize
threat response. The framework, which stands for Adversarial
Tactics, Techniques, and Common Knowledge, was officially
released in May 2015 but has undergone several updates
since then. Successful and comprehensive threat detection
requires understanding common adversarial techniques and
prioritize threats that may especially pose a severe risk to
an organization, in addition to detecting and mitigating these
attacks.

The ATT&CK framework is a comprehensive matrix of
tactics and techniques. The aim of the framework is to improve
post-compromise detection of adversaries by illustrating the
actions an attacker may have taken. It is vital to understand
how the attacker(s) gained access and how they migrate within
a network. This framework helps identify those problem areas
and contributes to the awareness of an organization’s security
posture at the perimeter and beyond. Organizations can use the
framework to identify holes in defenses, and prioritize them
based on risk.

ATT&CK can be extremely useful for evaluating an envi-
ronment’s level of visibility against targeted attacks with the
existing tools deployed across an organization’s endpoints. A
technique is a specific behavior to achieve a goal and is often
a single step in a string of activities employed to complete
the attacker’s overall mission. ATT&CK provides many de-
tails about each technique including a description, examples,
references, and suggestions for mitigation and detection.
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A tactic is an objective or mission of an adversary. It
describes what an attacker hopes to achieve with a specific
compromise. Each tactic contains an array of techniques that
have been used by malware or threat actor groups in known
compromises. There are 11 tactics and over 250 techniques
identified in the framework.

ATT&CK aids in the strategic response to cyber risks by
outlining the tactics, techniques and attack vectors that could
be used to compromise a CPS system. This insight, in addition
to the structure of threat intelligence offered by STIX, may
prove to be invaluable in identifying, enumerating, quantifying
and addressing risks in CPS.

Here is a brief look at some of the important characteristics
of our CTI Ontology:

• Attack: This feature is mapped to the Indicator and
Observed Data classes in the STIX Ontology and the
Observation, FeatureOfInterest and ObservableProperty
classes in the STIX Ontology. This characterizes a cyber
attack by identifying a pattern and a set of adversarial
behaviors or information observed on a system in the
network.

• Exploit: Mapped to the Vulnerability and Intrusion set
classes in the STIX Ontology and the Sensor, Actuator
and Sample classes in the SOSA Ontology, the Exploit
feature enumerates a flaw in a platform (Software or
Hardware with a CPE entry in the NVD) that can be
leveraged by an adversary to compromise a CPS system.

• Ramification: Incident response teams often desire to
know the consequences/objectives of potential adversaries
to prioritize responses to cyber attacks. In a similar vein,
threat modeling at the design phase of a CPS system will
equip CPS designers to understand the outcome of cyber
attacks and design more secure or resilient systems. At
present, threat classification is based on the Spoofing,
Tampering, Repudiation, Information disclosure, Denial
of Service and Elevation of Privilege (STRIDE) model
[24], where each type of threat is assigned its own class.
The Ramification feature maps to a class in the STRIDE
based on the nature of the threat. In addition, it also
maps to the ThreatActor, CourseOfAction and Vulnera-
bility classes in the STIX Ontology and the Actuation,
Observation, Procedure, FeatureOfInterest, Platform and
ObservableProperty classes in the SOSA Ontology.

Thus, our framework allows users to identify and enumer-
ate cyber threats that affect a CPS system of interest. We rely
on Ontologies because of the following benefits they offer:

• Knowledge Representation: The primary benefit of
using an Ontology is its ability to define a semantic model
of data within the context of an associated knowledge
domain. This can be leveraged to achieve knowledge
sharing and, more importantly, knowledge reuse, which
is discussed in the next section.

• Logical Reasoning: Reasoning in Ontologies and knowl-
edge bases is an important property. Reasoning refers
to deriving facts that are not explicitly specified in the
Ontology. Ontologies use description logic to facilitate
tractable reasoning.

• Modularity: Our framework facilitates modularity by
allowing CPS designers to use domain-specific properties
(Ontologies like SOSA). Users have the option of using

additional vocabulary, in addition to the W3C specifica-
tion to model proprietary systems.

• Extensibility: CPS systems are constantly evolving.
Advances in networking and embedded system technolo-
gies like system-on-chip (SoC) and wireless transceivers
result in the emergence of new CPS applications. The
structure of SIMON, coupled with its modular design,
supports integrating or modifying CPS characteristics,
and facilitates reasoning about the security posture of a
system.

Figure 2. The RLVW system

IV. VEHICLE TO INFRASTRUCTURE (V2I) WIRELESS
DATA INTERFACE ONTOLOGY: A CASE STUDY

As a case study to show the value of our framework,
we use the Red Light Violation Warning (RLVW) safety
application as described in the US Department of Trans-
portation document [25]. The Red Light Violation Warning
(RLVW) application enables a connected vehicle approaching
an instrumented signalized intersection to receive information
from the infrastructure regarding the signal timing and the
geometry of the intersection. The application in the vehicle
uses its speed and acceleration profile, along with the signal
timing and geometry information, to determine if it appears
likely that the vehicle will enter the intersection in violation
of a traffic signal. If the violation seems likely to occur, a
warning can be provided to the driver.

Figure 2 depicts the RLVW system. To identify the most
vulnerable areas in this system, it is vital to understand the flow
and origin of data (i.e., sensing and observation aspects of the
system). Intelligent Transportation Systems (ITS) developers
and automobile companies will be designing their CPS com-
ponents to take advantage of the upcoming 5G data networks.
Because such networks provide increased bandwidth and re-
duced latency, data will not only travel faster and in larger
packets but will also be more vulnerable to attacks. For this
case study, we developed an Ontology that highlights the data
activity around the wireless portion of the RLVW protocol.
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In addition to choosing this region, we have highlighted only
the CPS components that have either wireless capabilities or
using the data collected from the wireless components. Thus,
the Ontology highlights the wireless data interface portion of
the V2I system where our conditions are met.

The design of the Ontology itself was made with respect to
a few different factors. One of which was the component usage
of the 5G networks. Components at the top of the hierarchy had
active roles in communicating data from the Infrastructure to
the Vehicle or vice versa. Components towards the bottom had
more specific roles in acquiring and processing certain types
of data that were necessary for signal phase calculations, opti-
mal deceleration distance, and Differential Global Positioning
System (DGPS) calculations. Organizing the Ontology with
this factor in mind will allow for developers to quickly find
the affected component during an attack based on the V2I
data usage of the attacker. If the attacker had access to large
amounts of data, it is highly likely that a component making
heavy usage of the 5G network was involved. Conversely, if
the attack was less threatening and had access to a smaller
amount of data, the component involved would most likely be
at the bottom of the hierarchy.

Another factor in designing the Ontology was splitting the
components responsible for generating data into data collection
and data calculation roles. Often times, attacks involve limiting
the capabilities of components to collect data, whereas others
involve altering the calculations of the collected data. To
distinguish between the two, we organize components into
cyber and physical categories. The cyber components are
responsible for calculations, whereas the physical components
(i.e sensors, actuators) are responsible for collecting data.

Lastly, we assign data types to each of the hardware and
software components. Not only does this help understand
which components are making use of which data, but it
provides indicators in times of attacks. To elaborate, if it is
known what type of data an attack is making use of, we can
use a traceability methodology to start from the bottom of the
Ontology at that specific data type, and trace up the Ontology
until we find potential components that could be involved in
the attack. Then, modifications and countermeasures can be
taken to patch these vulnerabilities.

The flow of data in the Ontology has revealed that the
Infrastructure Wireless Data System (IWDS) and the Vehicle
Wireless Data System (VWDS), which are connected through
the V2I Wireless Data Interface, are the most vulnerable re-
gions of the entire V2I CPS, because in this data flows through
an open network. With the source and destination IP addresses
of data packets unprotected, this can lead to numerous threats
from any third party with a V2X communication handler.

Now, we describe how our framework and the Ontologies
described in Section III can be used to evaluate the RLVW sys-
tem. Our framework, which extends NIST CPS framework and
includes the Conceptualization phase, Abstract and Concrete
Realization phases, and Assurance phase.

A. Conceptualization Phase
The design goal of the Vehicle to Infrastructure (V2I)

Wireless Data Interface (WDI) system is to communicate rel-
evant data between the Infrastructure and Vehicle application
components through WDI and Application Platforms (APs).

The V2I WDI incorporates algorithms and data exchanged to
perform calculations to recognize “high-risk” situations. This
inference results in issuing driver alerts and warnings through
specific protocols. The most primitive and fundamental goal
of the V2I WDI is to calculate and communicate Signal,
Phase and Timing (SPaT) information to the vehicle with
support of driving advisories and warnings [25]. The system
is also responsible for maintaining authenticity of transmitted
data through security measures. Corrupted data can result in
compromising driver safety and information privacy. In our
view, the three primary trustworthy design goals of the V2I
WDI system are:

• Verify Incoming Data (VID): Since the system serves as
a bridge between the vehicle and infrastructure domains,
its main design goal revolves around transmitting data
between both components. Therefore, a key requirement
of this system is to verify the authenticity of incoming
data from either side of the system, to avoid Phishing and
other instances of fraudulent data transfer. This should
be accomplished through ingress filtering protocols set in
place to verify packet source headers and IP addresses.

• Verify Outbound Data (VOD): The WDI system is also
responsible for generating advisories and alerts tailored
to each nearby vehicle. With this in mind, a supporting
requirement for this design goal must be to implement
Secure Socket Layer (SSL) protocols or an alternative
cryptographic key to ensure outbound data is not tam-
pered with before reaching its destination.

• Data Routing to Proximate Vehicles (DRPV): Because
this system is involved with establishing multiple connec-
tions between the infrastructure and vehicles, there is no
generic set of messages purposed for all vehicles. Each
advisory is calculated using metrics provided by each
vehicle, thus creating a functional requirement to ensure
that each message is sent to the appropriate vehicle.
Failure of this requirement can serve fatal if metrics are
sent to the incorrect vehicle, which may result in traffic
violations or accidents.

Figure 3. The V2I Wireless Data Systems Network

B. Abstract Realization Phase
The functional requirements listed in the conceptualization

phase are purposed to describe the theoretical capabilities of
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a CPS. When moving into the application layer components
that satisfy the desired goals of the V2I WDI System, it is
important to categorize each component along the respective
requirement it resolves. This way, in the assurance phase, it can
be tested how well the design goal of each component meets
its functional requirement. Each component in the abstract
realization phase will be assigned its own role.

Since the V2I WDI system is only a portion of the entire
V2I domain, its design goal only covers data transmission.
Therefore, only the transmission capabilities and roles of the
categorized components will be discussed. Additionally, it
is important to note that the sub components of both the
infrastructure and vehicle contain similar components with
only slightly varying goals. When working with CPS systems,
the cyber and physical aspect of this CPS can be made resilient
independently. However, the current issue that Intelligent
Transportation System (ITS) developers face is maintaining
that level of security when combining both sides of the
system. This is because the integration of optimal designs
when forming the system can lose the resiliency of both the
cyber and physical aspects. To understand these challenges, we
form a general hierarchy of the V2I WDI network that maps
each component to the requirement it fulfils [25]. This will
unravel the group of threats associated at each layer of the
system. Figure 3 shows an overview of the V2I wireless data
interconnect.

1) Verify Incoming Data (VID) Associated Components:

• Infrastructure Wireless Data Systems (IWDS): The
Infrastructure Wireless Data Interface (IWDI) is respon-
sible for sending and receiving data to/from nearby ve-
hicles via the V2I Wireless Data Interface (VWDI). Its
main role is to validate passing data by making sure
position accuracy of incoming vehicles is up to the DoT
standards. Additionally, the system calculates SPaT and
Differential Global Positioning System (DGPS) metrics
to be deployed to nearby vehicles via the IWDI.
The IWDI role helps realize all activities related to com-
munication with vehicles equipped with a VWDI. In other
words, all three conceptual design goals are supported
by the IWDI role. The conceptual design goals mandate
that the security, privacy, and resiliency requirements be
associated with the IWDI role.

• Infrastructure Application Platform (IAP): The IAP
is the computational platform, which hosts the Infrastruc-
ture Application Component and provides the necessary
hardware and software interfaces enabling communication
with Infrastructure Wireless Data Systems, Infrastructure
Data Systems, Roadside Signage System, Traffic Signal
Controller, and Local/Back Office User Systems. Its main
role is to channel all data gathered by sensors and physical
systems to the cyber components. It can be considered the
bridge between the cyber and physical components of the
infrastructure side of the CPS, thus making it one of the
least resilient and most vulnerable parts of the CPS.
The IAP role is perhaps one of the most important in the
RLVW system. It facilitates the interaction between the
constituent systems in the infrastructure and the vehicle.
It is apparent from the conceptual goals that the IAP role
must meet the security, privacy, resiliency and reliability
requirements.

• Vehicle Wireless Data Systems (VWDS): This com-
ponent receives messages from the Vehicle Application
Component through the Vehicle Application Platform,
and formats and processes messages to be received by
infrastructure components. This system also transmits
data from the Vehicle Wireless Data Interface to the
deeper hardware of the vehicle. This system also obtains
GPS location and time. It may include a processor for
GPS differential correction. Its main role is to convey
information from the capture point at the Vehicle Wireless
Data Interface to the internal components below and vice
versa.
The VWDS role is essential in ensuring communication
between the sensors in the infrastructure space and the
innards of VDWI. Hence, it must support the security and
resiliency requirements outlined in the previous section.

• Vehicle Application Platform (VAP): The Vehicle Ap-
plication Platform is the computational platform, which
hosts the Vehicle Application Component and provides
the necessary hardware and software interfaces enabling
communication with Vehicle Wireless Data Systems, Ve-
hicle Data Systems, and the Driver Warning Systems. Its
main design goal is to channel all data gathered by vehicle
sensors, actuators, and On-Board Diagnostics (OBD) data
to the vehicular cyber components for processing and cal-
culations. It can be considered as the counterpart to IAP
on the infrastructure side. The security responsibilities of
VAP are identical to those of IAP.

2) Verify Outbound Data (VOD) Associated Components:
• Infrastructure Wireless Data Interface: The IWDI is

responsible for sending and receiving to nearby vehicles
via the V2I Wireless Data Interface. Its main design goal
is to refresh data transmission frequency at a configurable
pace. It is also required to be equipped with countermea-
sures in case of corrupt or tampered data transmission. In
these cases, it should issue warning messages to nearby
vehicles to terminate data transmission and calculations
using any information that comes from the Infrastructure.
IWDI defines the functional requirements pertaining to
communication with VWDI. The functional requirements
of IWDI dictate that it should support security and re-
siliency.

• Vehicle Wireless Data Interface: The VWDI is re-
sponsible for sending and receiving to nearby Industrial
Control Systems such via the V2I Wireless Data Interface.
Its main design goal is to validate incoming data and
request new packets from the infrastructure at a config-
urable frequency. It is also required to correct map and
DGPS data for the infrastructure application component
to produce the most precise RLVW metrics. In the case
of inaccurate or corrupt data, the VWDI is required to
terminate data transmission and issue alerts to the driver
information interface.
VWDI is the vehicle-side equivalent of IWDI. So, intu-
itively, this role should support the same security require-
ments as IWDI: security and privacy.

3) DRPV Associated Components:
• V2I Wireless Data Interface: Acts as a bridge for

data transmission between the entire Infrastructure and
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Vehicle components. It receives raw data from the Infras-
tructure and vehicle components. This communication is
functional over a bi-directional Dedicated Short Range
Communication (DSRC) network. Therefore, its security
protocol is effective within 1000 meters of any attacker.
Beyond that, connectivity is loose and vulnerable. Its main
design goal relative to the RLVW application is to ensure
secure data transmission between approaching vehicles
and signalized intersections.
It is evident from the description of this application that
it sustains all three design goals of the RLVW system.
Its vital importance means that this role should support
privacy, reliability, resilience and security.

C. Infrastructure Data Types and Significance
Starting with the Infrastructure, its physical components

consists of the signalized intersection sensor systems that
capture two main types of data [25].

D. SPaT
SPaT data (Signal Phase and Timing) contains information

about the behavior of the traffic controllers regarding the state
of the signal (viz., red, green or yellow), how long that state
will remain, and time until next phase change.

E. Driving Conditions
The physical component of the infrastructure also pro-

duces data that characterizes the environmental conditions
approaching vehicles may face. This data consists of weather
data, visibility data, and road conditions for the vehicle to
incorporate in its decision making computations, to improve
precision in judgement as approaching the intersection.

F. Vehicle Data Types and Significance
The vehicle’s physical components consists of the position

and stability systems, actuators, and telematic sensors that
transmit Differential GPS (DGPS) and Dynamic Telematic
Data (DTD) [25].

1) Differential GPS: DGPS data contains map data of
the vehicle’s position relative to the approaching signalized
intersection. The vehicle data systems transmit DGPS to the
infrastructure in order to alert the traffic controllers of the
instantaneous distance the vehicle is from the intersection.

2) Dynamic Telematic Data: DTD consists of information
regarding the vehicle’s speed and position, and reveals how
the vehicle is behaving internally. This data is combined with
DGPS and incoming SPaT data from the vehicles to make
calculations using DVI equations and algorithms in order to
make a precise judgement of whether the driver should increase
or decrease speed to avoid traffic violations and or accidents
at the intersection.

G. Concrete Realization Phase
Now that the baseline for the design goals and support-

ing components are established, we can identify technical
aspects of the identified components to understand how these
functional requirements are met. Mapping the hardware and
software to their respective components will help unravel the
classification of security threats, since it is at this phase where
the core data transmission occurs. Up until now, the above

layers cover high-level understandings of the V2I WDI System.
Now, we will classify core hardware and software that is
generalized for both sides of the system in order to understand
the mechanics behind V2I data transmission.

• DSRC On Board Unit (OBU): The DSRC OBU is
the dedicated communication device installed on V2X
connected vehicles. This hardware is responsible for
establishing and receiving SPaT and Roadside data at
a configurable frequency between 5.8 GHz -5.9 GHz.
It utilizes the widely adaptive ThreadX RTOS operating
system designed specifically for Internet of Things (IoT)
applications. The DSRC OBU assists in enabling the
capabilities of the Vehicle Wireless Data Interface [26].
The OBU resides in vehicles and is responsible for
implementing the VWDS, VAP and VWDI roles from the
abstract realization phase. All of the security requirements
associated with each constituent abstract-level component
must be supported by the OBU. For example, an en-
crypted communication channel will fulfill both privacy
and confidentiality requirements mandated by the roles
that this component supports.

• DSRC Roadside Unit (RSU): The RSU unit performs
identical functions but on the other end of the V2I
wireless network. It is responsible for receiving SPaT and
Roadside data from the infrastructure technical systems,
verifying the data, and transmitting it upon data request
from nearby vehicles. The RSU unit enables the capa-
bilities of the V2I Wireless Data Interface, acting as the
cyber bridge between the Vehicle and Infrastructure cyber
components.
The RSU is responsible for supporting the roles of IWDS,
IAP, and IWDI. The security requirements associated with
each of the three roles need to be supported by the RSU.

• Wireless Sensor Network (WSN): The WSN is the sen-
sor network on the infrastructure side that captures road
conditions data, infrastructure-based vehicle detection,
road conditions, speed data, visibility data, and weather
data. It utilizes sensors and actuators for the detection
aspect of the hardware and standard transceivers, anten-
nas, and receivers for the communication aspect of the
hardware [27]. The Infrastructure Wireless Data Systems
are supported by this WSN network, acting as the source
of raw data that is formatted and processed into metrics
by the Data Systems.

The WSN resides in the intersection between infrastruc-
ture and vehicle subsystems, and facilitates communication
between the IWDI and VWDI systems. It is required to support
the security requirements associated with these two roles.

H. Assurance Phase

The assurance phase deals with obtaining confidence that
the CPS system built in the concrete realization phase satisfies
the goals described in the abstract realization and conceptu-
alization phases. Validating the concrete CPS system involves
ensuring that it meets the functional and security requirements
associated with the roles that each component supports.

Figure 4 illustrates the hierarchy of role allocation in
SIMON. Evaluating the security posture of a CPS system
requires current CTI data from multiple sources. To that end,
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Figure 4. Role allocation hierarchy

SIMON’s CTI Ontology discussed in Section III-D provides
pertinent information.

Let us consider the example of an OBU running ThreadX
RTOS. The OBU is responsible for sustaining the VWDS, VAP
and VWDI roles, which necessitate the support for privacy,
security and resiliency requirements. CTI is able to formu-
late a CPE identifier for this system using information ob-
tained from the NVD. CPE:2.3:o:marvell:88w8997 firmware:-
:*:*:*:*:*:*:* identifies the ThreadX-based firmware on a Mar-
vell Avastar WiFi device. The Common Vulnerability Scoring
System (CVSS) metrics from the NVD for this CPE indicate
that the attack vector for a threat that exploits this vulnerability
would be adjacent, which means that any infected devices in
a local network could potentially compromise other devices
in the network. Furthermore, the high severity score from
the CVSS metrics indicates that a an attack that leverages
this vulnerability could be catastrophic. If the system were
to be affected by CVE-2019-6496 [28], an adversary may
be able to launch a denial of service attack on the OBU.
The vulnerability allows remote attackers to execute arbitrary
code or cause a denial of service (block pool overflow) via
malformed WiFi packets during identification of available
WiFi networks. Exploitation of the WiFi device can lead
to exploitation of the host application processor in some
cases, but this depends on several factors, including host OS
hardening and the availability of DMA.

To understand the impact of this vulnerability on the

CPS system, the requirements traceability property offered by
SIMON must be leveraged. This would show how the impact
of a potential exploitation of this vulnerability would propagate
up the three stages of design processes. Figure 5 shows various
inferences that the reasoner makes in providing the insights
presented below.

Figure 5. DoS attack inference

• In the concrete realization phase, a vulnerability in the
OBU would violate the functional requirements of both
the DSRC roadside unit and the OBU. It is desirable to
implement mitigative measures in the concrete realization
phase because it wouldn’t require a complete overhaul or
re-engineering of systems previously implemented.

• In the abstract realization phase, all the roles fulfilled by
the OBU and DSRC transceiver, VWDS, VAP, VWDI,
IWDS, IAP, IWDI are violated. The corresponding se-
curity requirements pertaining to availability are affected.
CVE-2019-6496, being a vulnerability exploited for DoS,
confidentiality and integrity requirements may not be
impacted.

• In the conceptualization phase, all three requirements
(VOD, VID and DRPV) are affected by the unavailability
of the OBU. thereby impacting the primary design goal of
the RLVW system, which is to prevent roadway fatalities
by ensuring date transmission between the infrastructure
and vehicles.

Figure 6. DoS attack on the OBU

A DoS attack on the OBU would violate the availability
requirement for all three roles supported by the OBU (VWDS,
VAP and VWDI), thereby violating the DRPV design principle
of the CPS system. Figure 6 shows the how the design goals
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of the RLVW system will be affected by such an attack on the
OBU. The knowledge reuse property of SIMON can be used to
compare various CPS systems to identify mitigative measures
from other domains that can be reused in the CPS system
under consideration. We have presented multiple examples in
our prior work [1]. These insights would be invaluable to CPS
system designers.

I. Identifying Security Threats and Protection Mechanisms

In this section, let us consider a few vulnerabilities and
potential corrective measures in the RLVW system using
SIMON. Now that the baseline for the V2I WDI region is set,
we can analyze the proposed Ontology to classify potential
threats in the flow of data.

1) V2X Remote DSRC Interjection Threat: The IWDS and
VWDS communicate through the V2I WDI over a bidirectional
DSRC network [25]. While DSRC provides a robust and low
latency connection for short distance communication [29], its
security protocol only prevents Distributed Denial of Service
(DDoS) attacks from a short distance. Therefore, a third
party with V2X communication handlers can interject data
transmission remotely through Internet Protocol and Domain
Name Service (IP/DNS) spoofing attacks to reroute outgoing
Differential GPS (DGPS) data and Dynamic Telematic Data
(DTD) from the vehicle. With this data in their possession,
unauthorized V2X handlers can track drivers and read into
vehicle logs, which creates privacy issues for the victim.
The NIST Vulnerability Database highlights a similar is-
sue with the configuration cpe:2.3:a:cisco:application-policy-
infrastructure- controller:8.31s6:*:*:*:*:*:*:* [17]. Existence
of this vulnerability suggests that this simple attack is highly
probable, if correct mitigation is not in place. A potential
start for resolving this issue may involve ITS developers
implementing a SSL certificate with outgoing data, which
requires V2X handlers to have a certain cryptographic key in
order to access the contents of the data packets [30].

Figure 7. RLVW Inference.

The CTI Ontology obtains vulnerability information for
components identified in the concrete realization phase us-
ing NIST CPE (Common Platform Enumeration) identi-
fications. In this example, let us consider one vulnera-
bility that can be exploited for privilege escalation with
NIST Common Vulnerability Enumeration (CVE) identi-
fication, CVE 2017-12352, associated with the CISCO
router with cpe:2.3:a:cisco:application-policy-infrastructure-
controller:8.31s6:*:*:*:*:*:*:* [17]. An adversary can ex-
ploit this vulnerability in certain system script files on Cisco
Application Policy Infrastructure Controllers to gain elevated
privileges and execute arbitrary commands with root privileges
on an affected host operating system [31]. The vulnerability
is due to insufficient validation of user-controlled input that is
supplied to script files of an affected system [31]. A simple fix
would be to install a software update for the application policy
infrastructure controller. However, to demonstrate the capabil-

ities of Ontological modeling and reasoning, we will assume
that no software patches are available for this component.

Figure 7 shows how the CTI Ontology uses semantic
reasoning to link vulnerabilities to the design goals identified
during the conceptualization phase. While an elevation of
privilege attack can lead to catastrophic failure of the affected
system, we will focus on adversaries potentially spoofing their
identities in this example.

The Extensible Authentication Protocol (EAP), a
certificate-based authentication scheme, can validate the
V2X handler that issues requests for DGPS and DTD data.
This prevents most spoofing attacks.

Figure 8. Comparing the Ontologies

Figure 8 illustrates how the message authentication scheme
is capable of preventing the spoofing attack identified by
the CTI Ontology. However, this scheme introduces latency,
which may impact the timing requirement listed in the con-
ceptualization phase of RLVW. Let us investigate if message
authentication scheme is a viable solution for RLVW.

Figure 9. Testing compliance

As evidenced from Figure 9, the Ontology determines that
the RLVW requirement to warn drivers well in advance of a
red light violation to provide ample stopping distance may be
violated by the latency that is introduced by the authentica-
tion scheme. Furthermore, the Ontology also infers that the
components used in this system are capable of supporting the
timing requirement as the DSRC transceiver has a range of
120 meters. To address this, the Ontology recommends that
the warning zone be increased from 80 meters before the
intersection to 100 meters, which should provide ample time
for EAP to authenticate the communication. A requirement
needs to be added in the abstract realization phase to include
an authentication scheme that also includes fail-safe measures
if authentication is inconclusive. A domain expert needs to be
consulted to ensure that all design goals are accurately captured
in the SIMON framework.

2) V2X Handler Elevation of Priviledge Threat: Unfortu-
nately, DSRC communication between V2I WDI and VWDS
is not the only insecurity of the WDI region. The performance
requirements set by the DoT do not mention any form of
security over the functionality of the IWDS and VWDS [25].
In this section, we investigate the possibility of improving
the resiliency of a CPS system against privilege escalation
attacks by implementing a fail-safe mechanism. The proposed
Ontology outlines the path of data through the Infrastructure
Application Component (IAC) and Platform (IAP) that reveals
no form of encryption on data produced by the physical
components or verification when that data is transmitted
through the cyber components. Therefore, V2X Handlers with
identical communication functionality and IP addresses can
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replace the role of the IWDS in the TCP handshake and give
false acknowledgement to the IAP. V2X Handlers can then
tamper with outbound SPaT and road data, which results in
the vehicle application component producing false metrics.
These metrics may result in a red light traffic violation or even
roadside accidents. A similar vulnerability issue is noted with
the configuration cpe:2.3:o:cisco:ios-xe:16.10.1:*:*:*:*:*:*:*
in the NIST Vulnerability Database [17], thus indicating the
possibility of this threat occurring roadside. A general solution
to this vulnerability can involve ITS developers implementing
an ingress filtering protocol that requires the VWDS to check
incoming data packets for their source headers, to ensure it
matches the one of the origin and to reject the packet if it
does not [30].

To authenticate entities within a network, Public Key
Infrastructure (PKI) encryption may be used. This requires
a Certifying Agency (CA) to generate and assign a public
key to each component in the system. The CA is maintained
by the DoT. The messages are authenticated using Message
Authentication Code (MAC). PKI is a comprehensive security
and authentication scheme requiring all entities to ensure confi-
dentiality, integrity, non-repudiation and end-to-end monitoring
and key life cycle management.

The CTI identifies the configuration of the V2X handler
and maps it to cpe:2.3:o:cisco:ios-xe:16.10.1:*:*:*:*:*:*:*. It
is able to identify vulnerability CVE 2019-1756 that can be
leveraged by adversaries to launch an elevation of privilege
attack to breach the communication channel between the IAC
and IAP. A vulnerability in Cisco IOS XE Software could
allow an authenticated, remote attacker to execute commands
on the underlying Linux shell of an affected device with root
privileges [32]. The vulnerability occurs because the affected
software improperly sanitizes user-supplied input. An attacker
who has valid administrator access to an affected device could
exploit this vulnerability by supplying a username with a
malicious payload in the web UI and subsequently making
a request to a specific endpoint in the web UI. A successful
exploit could allow the attacker to run arbitrary commands as
the root user, allowing complete compromise of the system
[32].

Figure 10. Elevation of Privilege Threat Inference

The potential impact of this vulnerability being exploited
is shown in Figure 10. The framework is able to infer that
the primary design goals of the RLVW application and the
roadside equipment may be violated as a direct result of this
vulnerability.

As discussed in the previous example, EAP and message
authentication can be also be used in this example to protect
the RLVW system. However, we are interested in identifying
possible resiliency measures that can be employed by the
RLVW system to protect against privilege escalation attack.
To identify activities that can be used in the vehicle to
detect spurious data from the infrastructure, let us consider

an autonomous vehicle that is capable of perceiving the world
around it.

We have defined a simple Ontology that models approxi-
mately 3118 attributes of an autonomous vehicle that includes
driving actions like stop and go, a collision warning system, a
lane change detection system, and so on. The insights provided
by this Ontology can be used to prevent attacks like those
discussed above by introducing resiliency into the design of
the CPS system. The inference engine compares the RLVW
system against three principles of a fully autonomous vehicle.

• Sensing the world - It is imperative for autonomous
vehicles to possess the ability to perceive the world
around them.

• Conveying intent - Assuming that other autonomous
vehicles are present in the immediate vicinity, conveying
intent such as lane change or impending change in driving
action to other vehicles (and possibly pedestrians) is
required.

• Situational awareness - Assigning a context to the
information obtained by sensing the world is essential in
making an informed decision. Comprehending events in
the environment with respect to time and space is crucial.

Figure 11. Measure to introduce resiliency into the RLVW system

The Ontology limits the inference to the design principle of
sensing the world for the RLVW system as the other principles
do not apply to it. Applying all three principles will negate the
role of the infrastructure elements in this V2I system. To that
end, the insights provided by the Ontology are shown in Figure
11.

While this is only a preliminary design of a specific
region of the V2I CPS, the potential of an Ontology-based
model is shown through the vulnerabilities it can classify. By
describing various components through their roles, data types,
and functionality, the Ontology can reason about new threats
or vulnerabilities upon the addition of an unknown component
to the system. If the properties of the unknown component,
which in this case study is a V2X handler, become known, the
Ontology can use reasoners to infer where this new component
may interject by comparing properties of the new component
with existing components in the CPS. When a match is found,
the Ontology will classify the new component in a certain
instance of the CPS. This knowledge can be used to implement
new levels of security and mitigation in existing components
to make it difficult for V2X handlers to either interject the
CPS, or play the role of a component in the CPS [33].

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an argument for modeling
CPS using Ontologies. We also presented SIMON, a frame-
work that is based on the NIST CPS framework but extends
it in several ways. We have presented an extension to our
previous work on CPS design validation using semantic infer-
ence. Reasoning about a CPS realization and validating that the
realization does not violate functional as well trustworthiness
goals is essential in improving the security posture of a CPS
system. Currently, the SIMON framework is not capable of
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automatically translating design goals into Ontological models.
We are currently exploring the possibility of extending our
work to support this function in the future.

We demonstrated that the role allocation Ontology is ca-
pable of delegating the functional and security requirements
among subsystems at various design stages of a CPS system.
It offers requirements traceability to understand the impact
of a security threat in CPS. An RLVW system was used
a case study to demonstrate the role allocation Ontology’s
capabilities. In the future, we intend to investigate other CPS
domains. We use Ontologies during each design phase of
the framework to check for compliance and provide recom-
mendations by reusing knowledge. Increased traction in CPS
adoption, their growing complexity, and heterogeneous nature
necessitates accuracy in capturing the relationship between var-
ious components in a CPS. Reasoning about a CPS realization
and validating that the realization does not violate functional
as well as trustworthiness goals is essential in improving the
security posture of a CPS system. The SIMON framework can
aid in this process. We have only described the framework at
a very high level, and we plan to integrate various Ontologies
and reasoning engines in the near future. Although Ontologies
are used extensively for knowledge representation in domains
such as healthcare and bioinformatics, we aim to leverage their
capabilities to define a domain-agnostic framework that can
be extended to various CPS domains by attributing domain-
specific properties (like SOSA).
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Abstract—Processing big data requires advanced technologies
that can extract useful information from large scale data to
support decision making. These advanced technologies are cur-
rently being offered in the form of analytic tools hosted in
the cloud, and are being developed using different techniques
such as artificial intelligence, machine learning, data mining,
and statistical analysis. However, these tools are not very secure
since the data they operate on must be in plaintext in the
cloud, thereby leaving the data vulnerable to both insider and
outsider attacks. To address these security issues when running
data analytics in the cloud, we propose DFASC, a Distributed
Framework for Analytics Security in the Cloud. At the core
of the framework is homomorphic encryption (HE), which
enables operations to be performed directly on encrypted data
without using the private decryption key. Using HE, DFASC can
distribute homomorphically encrypted data and analytics into
the nodes of a distributed system and allow the analytics to
operate on the encrypted data in each node. As a framework,
DFASC provides mechanisms to enable the incorporation of HE
libraries and data processing algorithms into the framework,
which can than be used to implement analytic tools. A funda-
mental challenge with HE is its performance overhead due to
the computationally intensive HE operations. This challenge of
accelerating individual HE operations needs to be solved before
secure big data processing in the cloud can be made practical. The
distribution of the analytics not only improves the performance
of the underlying analytic algorithms, it also helps to speed
up the underlying HE operations. To enable the sharing of the
encrypted data between parties in the cloud, DFASC incorporates
a cryptographic key management infrastructure. To analyze
feasibility of the framework, it was extended to implement a
system that classifies images using a Neural Network algorithm.
The experimental results show performance improvement of the
system, including in HE operations, as the number of nodes in
the cluster is increased.

Index Terms—Homomorphic Encryption; Cloud Computing;
Privacy; Data Analytics; Data Sharing.

I. INTRODUCTION

Recent advances in communications and networking tech-
nology have revolutionized the way information systems are
being developed and used. Cloud computing technology is a
result of these advances and provides a computing paradigm
with a large amount of computing power and storage re-
sources. Advances in cryptography are also enabling the
development of stronger security protocols for cloud-based
systems [1]. The cloud computing market is growing at a

rapid pace, and includes top cloud providers such as Amazon
Web Services, Microsoft Azure, and Google Cloud Platform.
According to the Fortune Business Insight magazine, ”The
global cloud computing market size stood at USD 199.01
billion in 2019 and is projected to reach USD 760.98 billion
by 2027” [2]. These resources are being used to develop
information systems for individuals and organizations such
as social media platforms, collaborative environments, and
Internet of Things (IoT) based systems. These information
systems are generating increasingly larger amounts of data as
they are being used by individuals and organizations, resulting
in a tremendous amount of data. For instance, the number
of Internet users was estimated to be 2.4 billion in 2014,
3.4 billion in 2016, 3.7 billion in 2017, and 4.4 billion in
June 2019. These high numbers of Internet users are reflected
in the amount of data being generated on the Internet. For
example, in 2019, Google reported 300,000 billion searches
conducted worldwide daily and FaceBook over 4.3 billion
messages posted daily.

Performing data analytics in the cloud is becoming increas-
ingly significant for organizations of all types and sizes. These
analytics are based on techniques such as artificial intelligence,
data mining, machine learning or statistical methods [3], [4],
[5]. Organizations are taking advantage of these analytic tools
to gain powerful insights out of the ever-growing pools of
organizational data. These cloud based data analytic tools are
being developed for various application domains [6], [7], [8],
[9]. However, there is also a growing concern about data
security and privacy in cloud-based systems and applications
that provide analytic tools [10], [11], [12], [13]. In particular,
cybersecurity attackers are becoming more sophisticated, and
attacks on data in large organizations are occurring more
frequently [14].

The current cybersecurity vulnerabilities in the cloud stem
from the fact that data is not protected while being manipulated
by analytic tools in the cloud, which is inherited from the
shortcomings of current cryptographic techniques for securing
data. The recommended randomized encryption schemes, such
as the Advanced Encryption Standard (AES) and Blowfish,
provide strong protection of data in transit and at rest, but do
not protect data in processing. This means that data needs to
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be decrypted in memory before processing of the data can take
place, which leaves the data vulnerable to attacks from both
internal and external attackers.

There are many examples of both insider and outsider
attacks on large organizations’ information systems. The per-
sonal data of 77 million Sony users was leaked in 2011.
Information from 38 million Adobe accounts was stolen in
2013. A major example of an insider attack was Edward
Snowden’s leakage of data from within the NSA in 2013.
Data from 110 million Target customers was also hijacked
in 2013. In 2015, US Office of Personal Management records
for more than 21.5 million people were stolen by an outsider.
Credit information on 143 million American, Canadian and
British customers was stolen from Equifax in 2017. These
attacks occurred because of a vulnerable attack surface within
the information systems of these organizations.

Another challenge is how the data can be shared securely
among parties in the cloud. For organizations outsourcing their
data in the cloud, sharing the data is an important benefit. For
instance, a medical system that manages patient health records
can be deployed in the cloud and hospitals can collaboratively
use the system to share the health records between them. This
issue of data sharing in the cloud has been significantly studied
and various techniques have been introduced. However, most
of these techniques are based on PKI, which requires a Cer-
tificate Authority (CA) to manage the cryptographic keys. The
CA is a third party entity and as such increases the complexity
of building cloud systems. Deployment and maintenance of a
PKI is complex and expensive, and certificate management can
be challenging.

To address the shortcomings of existing standard crypto-
graphic schemes, Homomorphic Encryption (HE) has been
proposed [15]. HE schemes have revolutionized data security,
as they enable computation to be performed directly on the
encrypted data without needing the private decryption keys.
Given ciphertexts as input, HE allows computation to be
performed directly on the ciphertexts to generate encrypted
results. When these encrypted results are then decrypted, they
yield the correct plaintext answer for the computation as if it
were performed entirely in plaintext. However, HE, while sig-
nificantly improving data security in untrusted environments,
comes with significant computation and storage overhead [16].
In general, the computational complexity of HE is orders of
magnitude higher than that of standard operations on plaintext.
A given ciphertext encoding is also much larger than its
corresponding plaintext. Acceleration of HE is an active area
of research, and great strides have been made to speed up the
underlying HE operations. Note that more progress still needs
to be made for HE to be practical for performing big data
analysis. Even with its significant computational overhead, HE
can still be practical today for certain types of application
domains such as interactive applications [17].

In this paper, we introduce DFASC, a distributed framework
for analytics security in the cloud. DFASC leverages HE to
provide data security for cloud analytics not only in transit

and at rest, but most importantly, when being processed.
The framework is modularized and extensible to enable the
incorporation of different types of HE schemes. The frame-
work also provides mechanisms for incorporating data analytic
tools that use HE schemes across the nodes of the distributed
framework. This enables data analytic tools to operate directly
on the encrypted data. To enable data sharing, the framework
includes a cryptographic key management infrastructure based
on the approach introduced in [18]. Using this approach, an
organization can analyze data in the cloud and share the results
with other organizations. Distributing analytic tool execution
across the nodes of the framework speeds up the expensive
operations of the HE schemes to improve the overall perfor-
mance of the tools. The framework enables tool developers
using various machine learning and data mining algorithms
to use the framework to build analytic tools, in addition to
enabling system developers to leverage these analytic tools
within their applications. The secure systems developed based
on the framework can then be made available to end-users to
analyze their data securely and privately in the cloud. Having
access to different analytics will enable end-users to trade off
between the quality of the results of the data analysis and
the time it takes to perform the analysis. Furthermore, end-
users will have the ability to share their data with other parties
securely and privately.

The paper is organized as follows. In Section II, we describe
the challenges in processing data and our proposed solution. In
Section III we describe our overall approach. In Section IV we
present our approach for data sharing within the framework.
In Section V we outline the data flow through the system. In
Section VI we discuss our implementation of the framework
and sample application. In Section VII we present the results
of experiments performed on the system. In Section VIII we
contrast our paper with related works. We end the paper with
a conclusion and future work in Section IX.

II. BACKGROUND

In this section, we take a look at how organizations make
use of data analytics in the cloud and give an overview of HE,
which can be used to provide data security in the cloud.

A. Data Analysis in the Cloud

Data analytics in the cloud, or cloud analytics, is a service
model where data analytics are pushed to the cloud to take
advantage of the cloud’s resources. A hybrid model can also
be used as a to allow analytics to be implemented partially on
the client side and connected to cloud side to form an integral
system, which can be scaled in the cloud as the need arises.
In this way, a hybrid approach can be used to split the data
analysis between the client and the server. These analytics
are developed using techniques such as artificial intelligence,
machine learning, data mining, and statistical modeling and
analysis.

Due to the benefits they are providing to organizations of all
types and sizes, cloud analytics are gaining popularity. They
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are steadily making their way into enterprise applications in
the cloud in various areas, such as customer support, fraud
detection, and business intelligence [6]. As organizations are
becoming aware of these cloud analytics, the need for them is
increasing. The major cloud service providers are responding
to this need for tools that provide data analysis and business
intelligence capabilities within the cloud by adding these
features to their cloud services [19]. Thus, the trend of organi-
zations outsourcing their Information Technology operations to
the cloud, combined with the trend of cloud service providers
adding more intelligence to their cloud services, indicates
that increasingly organizations will make use of the cloud to
analyze their large and potentially sensitive data sets.

However, the cloud is vulnerable to cyberattacks from both
internal and external attackers, and running analytics in the
cloud on organizationally sensitive data can result in loss of
data security. In [20], an analysis of the security threats in
big data analysis using MapReduce and Hadoop revealed the
complexity of securing cloud analytics. One security challenge
is related to the large amount of data to be processed, which
makes current security techniques impractical because they are
too slow to be effective [21]. Another security challenge is
related to the various sources of data to be combined and
processed in the cloud [22]. To address these vulnerabilities
of the cloud, we use HE to ensure the confidentiality of the
data that are collected, stored, and processed in the cloud.

B. Homomorphic Encryption Schemes

Homomorphic Encryption (HE) is a cryptographic scheme
that enables operations to be performed directly on encrypted
data without using decryption keys. The HE computations are
represented as either Boolean or arithmetic circuits, which
are characterized by their depth. There are different types of
HE schemes based on the types of operations they support.
Partially Homomorphic Encryption (PHE) schemes support
only one type of operation, addition or multiplication, while
Fully Homomorphic Encryption (FHE) schemes allow arbi-
trary computation on ciphertexts. Between these two extreme
cases, there are schemes that are Somewhat Homomorphic
Encryption (SHE), which support both addition and multipli-
cation but are limited in the number of operations (the depth
of the circuit) that can be executed on ciphertexts.

The existence of fully homomorphic encryption was theo-
rized in 1978 by Rivest [23]. However, it was only in 2009
that the first working Fully Homomorphic Encryption (FHE)
scheme was constructed by Gentry [15]. Gentry’s approach
involves taking a Somewhat Homomorphic Encryption scheme
and “squashing” the decryption circuit to reduce the noise in a
process called “bootstrapping” to get the Fully Homomorphic
Encryption. The security of his scheme assumes the hardness
of two problems: certain worst-case problems over ideal
lattices, and the sparse subset sum problem. However, this
process was impractical due to the required computation time.
Since then, a number of more practical FHE schemes have
been proposed.

a) FHE Scheme Based on Ring Learning With Errors:
Most of the FHE schemes that have been proposed base their
security on the hardness of the (Ring) Learning With Errors
(RLWE) problem [24]. The RLWE problem has been proven
to provide a strong security guarantee while supporting more
practical FHE schemes. Before describing some of these FHE
schemes, let us first define the RLWE problem.

Definition of RLWE: let n = 2k and choose a prime
modulus q such that q ≡ 1 mod 2n. Let the ring Rq =
Zq[x]/〈xn + 1〉, represent the set of all the polynomials over
the finite field Zq for which xn ≡ −1. Given samples of the
form (a,b = a× s+ e) ∈ Rq ×Rq where s ∈ Rq is a fixed
secret vector, an element a ∈ Rq is chosen uniformly, and e
is chosen randomly from an error distribution in Rq . Given
this definition of the RLWE problem, finding s is infeasible.

Using the RLWE problem, a message m ∈ Rq can be
encrypted by using the b element above as a one-time pad
encryption scheme [25]. The ciphertext can be represented by
c = b+m, where c ∈ Rq .

BGV Scheme Brakerski, Gentry, and Vaikuntanathan pro-
posed a Leveled FHE scheme based on the RLWE problem
and referred to the scheme as BGV [26]. It is referred
to as ”leveled” due to the fact that its parameters depend
(polynomially) on the depth of the circuits that it is capable of
evaluating. “Leveled” FHE means that the size of the public
key is linear in the depth of the circuits that the scheme can
evaluate, that is, its size is not constant. The key operation in
the scheme is the REFRESH procedure, which switches the
moduli of the lattice structure and switches the key.

C. Homomorphic Encryption Libraries

Following the constructions of the FHE schemes, software
libraries implementing the schemes are being developed. The
first of such libraries to be implemented is HElib, first released
in 2012 [27]. This first version of HElib implemented only
the Brakerski-Gentry-Vaikuntanathan (BGV) scheme, but the
latest version now includes the approximate FHE scheme
proposed by Cheon, Kim, Kim and Song (CKKS) [28], the
newest FHE scheme. Following HElib, a number of other FHE
development efforts have been launched as presented in the
survey of the current FHE libraries in [29]. Here we limit
our discussion to PALISADE [30] and Microsoft’s Simple
Encrypted Arithmetic Library (SEAL) [31].

The PALISADE library is being developed under an open-
source project that provides efficient implementations of lat-
tice cryptography building blocks and leading homomorphic
encryption schemes. PALISADE is designed for usability,
providing simpler APIs, modularity and cross-platform sup-
port. The current version of PALISADE supports the BGV,
Brakerski-Fan-Vercauteren (BFV) [32], CKKS, and FHEW
schemes and a more secure variant of the TFHE scheme,
including bootstrapping [30]. The Microsoft SEAL is also an
open-source library that provides an efficient implementation
of lattice cryptography using leading homomorphic encryption
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schemes. The current version of SEAL also supports the BGV,
BFV, and CKKS schemes. The proposed DFASC framework
integrates these two libraries: PALISADE and SEAL.

III. FRAMEWORK

In this section, we describe the architecture of the proposed
DFASC framework, the integration of HE libraries and data
processing algorithms into the framework, the data sharing
protocol used to enable clients to share encrypted data, and
the threat model of the framework.

A. Architecture

The DFASC framework is designed using a hybrid client-
server/distributed model, where clients send requests to a
remote server, and the server forwards the client’s requests
to a distributed system for processing. The results of the data
processing are returned to the remote server for storage and
to be made available to the clients. The high-level design
of the framework is presented in Figure 1. The architecture
is composed of two main components: Trusted Client and
Untrusted Cloud Environment.

The Trusted Client comprises three main sub components,
Client Manager, HE Manager, and Configurations Manager.
The Client Manager coordinates the activities of the client and
manages the interactions with the server. The HE Manager
provides support for HE operations including generation and
storage of public and private keys, encryption and decryption
of data, and keys revocation. The Configurations Manager
keeps track of the cloud resources for the clients, which change
dynamically as the system is being used. Note that system
developers will need to extend the framework to build concrete
systems for specific application domains. In addition to the
above core components, system developers need to implement
a user interface for end-users to interact with the system.

The Untrusted Cloud Environment is composed of an
Untrusted Server and an Untrusted Distributed System. All
the data sets sent by the clients to the Untrusted Cloud
Environment will remain encrypted at all times. The sub-
components of the Untrusted Server include a Service Engine
for coordinating all the activities related to distributing data
and operations into the Untrusted Distributed System; an HE
Manager for managing HE libraries stored in the HE Libraries
storage; an Analytics Manager for managing the analytic
algorithms persisted in the Libraries storage; a Sharing Man-
ager for sharing encrypted data between the clients; and a
Configurations storage for storing various cloud configura-
tions and metadata. The Service Engine communicates with
the Untrusted Distributed System to coordinate its activities,
including sending workloads and partitioning the nodes within
the cluster.

The Untrusted Distributed System provides the infrastruc-
ture for distributing analytics algorithms. The inputs to the
Untrusted Distributed System include the set of data to be
processed and the software program to be executed on the

nodes of the distributed system that will process the data. At
the core of the distributed system is a Distribution Manager,
which provides the mechanisms for generating the clusters of
distributed nodes. The nodes are generated by the Distribution
Manager on demand based on the configurations provided by
developers. In addition, the Untrusted Distributed System pro-
vides an interface to enable interaction with other distributed
systems.
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Fig. 1: Distributed Framework Architecture

B. HE Library Integration

At the core of DFASC is the mechanism for incorporating
HE libraries into the framework. Like the standard crypto-
graphic algorithms, homomorphic encryption algorithms have
a well-defined set of operations. These operations include key
generation, encryption, decryption, and ciphertext operations.
To accommodate various FHE libraries, DFASC abstracts out
the common core operations of HE libraries and builds those
operations into the framework. It adopts a parameterization
approach to enable each library to provide all necessary
parameters to execute the operations. At a low-level of the
implementation, a binary operation takes as inputs two integers
A and B, and returns the result as an integer C. These
operations are abstracted out into an interface that can then be
used to integrate a given HE library. As part of the framework,
we integrated the PALISADE and SEAL libraries.

C. Data Processing Algorithm Integration

DFASC provides an extensible interface to enable devel-
opers to extend or customize DFASC to add new machine
learning and data mining algorithms into the framework.
Considering the complexity of using existing HE libraries, the
first machine learning algorithm we considered for the DFASC
framework is the linear Support Vector Machine (SVM). The
second machine learning algorithm we implemented within
the framework was an artificial neural network. In the future,
we plan on adding more machine learning algorithms into the
framework.
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1) Support Vector Machines: SVMs are supervised learning
models that can be used to analyze data based on classification
and regression analysis. The SVM serves as a non-probabilistic
binary linear classifier.

Consider a set S of sample data elements, and two subsets
SA and SB of S, where SA ∪ SB = S, and each element of
S (S1 ∈ S) is annotated as belonging to SA or SB . The SVM
training algorithm generates a mathematical model that can be
used to categorize new elements of S as belonging to SA or
SB .

First, we are given a labeled training dataset of n points of
the form (~x1, y1), . . . , (~xn, yn). This training dataset contains
both the inputs and the desired outputs. Given the training
dataset, we then compute the SVM model to be used for
classification. This model then separates the elements of S
into two classes, SA and SB , based on the classifier that was
generated from the training data. The internal operations of
the linear SVM include the dot product of vectors, addition,
and subtraction. To demonstrate the utility of the DFASC
framework, we implemented an SVM classifier on top of our
distributed framework using the PALISADE library.

2) Neural Networks: Neural networks (NN) are a learning
mechanism that model the biological brain. They consist
of a set of transformations of a signal vector throughout a
graph of nodes. Each node, called a neuron, is connected
to the next layer of neurons via edges, called links. Each
link has a weight associated with it. Each neuron processes
its input signal as a linear combination of the weights of
its input neurons according to an activation function and
produces an output signal that gets forwarded to neurons in
the next layer of the network. The training phase constructs
a model by updating the weights associated with each neuron
in the network. After being constructed, the model can be
represented by a mathematical function and used to classify
real world inputs to the neural network. In this way, neural net-
works are considered a black box machine learning approach.
Deep neural networks typically have many layers and utilize
specialized neural network architectures. Over the past few
years there has been a resurgence in neural network research
due to the success of deep neural networks when applied to
certain application domains such as object detection and image
classification. To demonstrate the applicability of the DFASC
framework to parallelize an encrypted image classification
task, we implemented a feedforward neural network classifier
on top of our distributed framework using a homomorphic
encryption library.

D. Security Model

In this section, we describe the threat model and security
properties of the framework.

1) Threat Model: We adopt the honest-but-curious adver-
sarial model. We assume that the client-side is trusted while
the cloud environment is untrusted. We assume that Cloud
Service Providers (CSP) as well as users can act as adversaries.

When users send data into the cloud, the CSP has the ability
to store the data in different locations and make use of it
without the user’s knowledge. We assume that the CSP will
not deliberately tamper with users’ data by inserting, deleting,
modifying, and truncating parts of the data. An adversarial
CSP may not provide false answers in response to user queries.
We assume that the adversarial CSP cannot obtain a user’s
secret keys.

2) Security Properties: In the DFASC framework all users
are required to register in the system to get credentials for
authentication. Only users verified through authentication can
gain access to the system. In addition to authentication, the
framework employs a policy-based authorization service to
provide access control to data. Using this service, users can
decide who can get access to what parts of their encrypted data
in the cloud. Homomorphic encryption schemes have been
proven to be very secure. All the private keys for decrypting
the data remain with clients, and only public keys are sent to
the cloud.

IV. DATA SHARING

One challenge in sharing data securely in the cloud is how
to enable recipients to access the shared data. Many different
techniques and approaches have been proposed in the literature
to address this challenge [33], [34], [35]. Most of these
approaches are based on the Public Key Infrastructure (PKI)
technology, which is used to authenticate users and devices
against information systems. PKI relies on a CA, which acts as
a trusted third party responsible for managing and certifying
public keys ownership. The CA associates a given user ID
with a public key by generating a signature referred to as a
certificate. In this approach, all users of a system can exchange
their public keys for the purpose of data sharing. In this case,
a Sender wanting to share data with a Recipient would use
the public key of the Recipient to encrypt the data. The
Recipient would use the corresponding secret key to decrypt
the data. Through the use of digital signatures, the CA can
guarantee that public keys will not be subject to impersonation,
where a malicious party could replace the public key of a
legitimate party with a compromised one.

One drawback of the PKI based data sharing is that it
requires complex computations for data encryption and de-
cryption, which can slow down systems with extensive data
sharing. Another drawback is the dependency on the trusted
third party CA, which increases the communication overhead
in a system. To address these challenges, various techniques
that combine public key and symmetric key cryptography have
been proposed. For these approaches, the symmetric keys
are used to encrypt and decrypt data and the PKI system
is used to share the symmetric keys between the users. All
sharing approaches based on PKI are exposed to the security
vulnerabilities associated with a CA. If a CA is breached, the
certificates can be compromised resulting in sending the data
to the wrong users.
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In this paper, we adopt a simple approach proposed in [18]
for data sharing in untrusted environments, which does not
require a CA. The approach makes use of a key management
system based on PKI to provide clients with mechanisms to
generate, store, distribute, and revoke public/private keys in a
distributed system. Instead of using a CA, our approach is to
exchange the private keys using an email infrastructure, where
each client is equipped with a built-in email server.

1) Access Control to Encrypted Data: There are various
identity and access management (IdAM) systems that can be
used to restrict access to resources in a system. Among other
functionalities, these systems manage, identify, authenticate,
and authorize individuals to ensure appropriate access to
resources.

2) Data Partitioning: To facilitate data sharing, each client
needs to partition its data based on its sharing policies. Each
partition will be encrypted using a different public/secret key
pair to restrict access to the data. The sharing policies define
how the data can be partitioned in such a way that the number
of keys required to encrypt the data is minimized. Let us
denote {c1, c2, . . . , cm}, the set of all clients in the system.
Let us also denote {dci1 , dci2 , . . . , dcin }, the set of data partitions
for a given client ci. Then, for each data partition dcij , a
public/secret key pair, (pkcij , skcij ), will be generated to encrypt
dcij . This will give the client a flexible approach for sharing
their data in the cloud at a fine-grained level of access control.

3) Exchanging Public Keys: For the purpose of sharing
encryption keys, each client will create a sharing public/secret
key pair (skci , pkci). The first time two clients, ci and cj ,
interact in the distributed system, they exchange their public
keys as follows. The client ci sends a message to cj containing
the tuple (Idci , pkci), where Idci represents the unique inden-
tier of ci, and the client cj replies with a message containing
the tuple (Idcj , pkcj ).

4) Sharing Data: When a sender ci wants to share a data
partition dcij with a receiver cj in the distributed system,
the sender needs to provide the receiver with the secret key
skcij corresponding to pkcij used to encrypt the data partition
dcij in order to decrypt it. To protect the secret key, the
sender encrypts it using the receiver’s sharing public key. The
sender replies with the following message containing the tuple
(Idci , Enc(skcij , pkcj )), where Enc(skcij , pkcj ) means that
the skcij is encrypted using the pkcj . This will guarantee that
only the intended receiver can decrypt the message containing
the secret key.

Figure 2 shows an example where two clients, c1 and
c2, have generated public/secret key pairs, (pkc1 , skc1 ) and
(pkc2 , skc2 ), for sharing secret encryption keys, partitioned
their data, and generated different public/secret key pairs to
encrypt each partition separately. The sharing keys for both
clients are published in the cloud through the Sharing Manager
and the homomorphically encrypted data stored in the cloud
through the Storage Manager. The example also shows the
partition dc11 and its corresponding secret key skc11 , to be used

to decrypt it, received by the client c2 and shared by the client
c1.

Fig. 2: Data Sharing Protocol

V. DFASC OPERATIONAL FLOWS

The architecture of the DFASC framework comprises a
number of components that interact to support the functionali-
ties of the framework from the perspective of both developers
and end-users. It abstracts out the complexity related to build-
ing a web-based client-server application, building a cloud-
based distributed system, and connecting the two entities. In
the following sections, we describe the operational flows of
the framework, focusing particularly on how developers can
extend the core components of the framework and instantiate
it to build concrete systems, and then discuss how end-users
can use those concrete systems.

A. Extending the Framework

For developers extending the framework, there are two main
features: adding a new HE library, and adding a new data
processing algorithm based on machine learning or data min-
ing techniques. At the design level, the framework employs a
modular design to isolate the HE libraries and data processing
algorithms. At the implementation level, the framework uses
containers to enable each HE library and each data processing
algorithm to be self-contained. To add an HE library, the
developer needs to deploy the HE library in a container and
expose an API to enable the HE manager to make use of
it. Similarly, a new data processing algorithm needs to be
implemented and made available to the analytics manager,
which will distribute it to the nodes at runtime. Both SVM
and Neural Network implementations are included in the
framework to serve as a guideline for developers to incorporate
their own algorithms into the framework.

B. Instantiating the Framework to Build A Concrete System

The framework provides building blocks that can be used
to build concrete distributed systems where analytic tools can
be run in the encrypted domain. The application domain will
determine the specific analytic tools to be applied using one
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of the available HE-enabled machine learning or data mining
algorithms. For instance, in the application we built to evaluate
the framework, both an SVM and a Neural Network were
determined to be suitable for an image classification task.
During the analysis, each data point falls in one of ten classes.
The application domain dictates the type of data and how it
needs to be encoded appropriately to ensure compatibility with
the data format of the underlying HE library. Recall that the
current HE libraries support only low level operations, such
as addition or multiplication of numbers. It is the task of the
developer to figure out how the specific data types of the
application domain can be transformed in such a way that
these low level operations of HE can be applied to the data.

C. Using the Concrete System

Once the system is completed, then it can be made available
to end users. There are two main workflows of the system for
the end user: 1) analyzing data using an analytic tool, and 2)
sharing data with other users. At a high-level, the following
operational workflow depicts the process for analyzing data in
the distributed system.

• The User opens the Client web-based GUI.
• From the Client GUI, the user uploads the raw data to

the Client local storage.
• The User selects the analytic tool to be used to process

the raw data.
• The User requests the data to be encrypted.
• The Client Engine selects the appropriate HE library, and

uses it to encrypt the data.
• The Client Engine sends the encrypted data along with

the user parameters to the Untrusted Server.
• The Untrusted Server selects the number of nodes to use

in the distributed system.
• The Untrusted Server partitions the data according to the

parameters selected by the user and pushes it to the nodes.
• The Untrusted Server notifies the User after the data has

been distributed.
• The User requests data to be processed and forwarded to

the Untrusted Server.
• The Untrusted Server delegates the workload to the

Distribution Manager.
• The Distribution Manager initiates the data processing

throughout the Untrusted Distributed System.
• After the execution is completed, the Untrusted Server

gathers the results from the Distribution Manager, and
sends them to the User.

• The Client Engine decrypts the results and displays them
on the GUI.

The following operational workflow summarizes the pro-
cess for sharing data in the distributed system. The Sharing
Manager on the Untrusted Server is responsible for sharing
encrypted data and encrypted secret keys between parties
sharing data with each other. If the recipient does not already
have the secret key to decrypt the data, then the Sharing
Manager will request the secret key from the sender, and the

sender will encrypt the secret key using the recipient’s sharing
public key and send it to the Sharing Manager, which serves
as the proxy between sender and receiver. We assume that
the user possesses a public/secret key pair to be used by the
underlying sharing protocol. We assume that each party has
the sharing public key of the receiver. We also assume the data
to be shared is stored with the Storage Manager component.

• From the Client GUI, the sender selects the set of data
to be shared, the recipients and their sharing public keys.

• The User sends the request to share the data to the
Untrusted Server.

• The Sharing Manager on the Untrusted Server passes a
message to the recipient containing a reference to the
stored encrypted data.

• The Sharing Manager notifies the recipients about the
availability of the data.

• The Recipients retrieve the shared data and use their
secret keys to decrypt the data.

VI. IMPLEMENTATION

In this section, we describe the implementation of the
DFASC framework including all the core components. We
also describe the implementation of a use case system that
instantiates the framework, referred to as Image Classifier.
The Image Classifier system includes two data analytics for
classifying images. The first analytic tool is implemented using
SVM while the second analytic is implemented using NN. As
described previously, both SVM and NN are integrated into
the framework. This Image Classifier is used to evaluate the
feasibility of the framework. We leveraged a number of open-
source projects for the implementation including the Django
web framework [36], Apache Hadoop [37], Apache Spark
[38], and Xen hypervisor [39].

A. Framework Implementation

The implementation of the framework is broken down
into three main subsystems: Client, Cloud, and Distributed
Computation.

The Client subsystem is implemented as a web service,
which includes a template for the web-based client interface,
a web server for managing all the client services, and a
database for storing encryption/decryption keys, plaintext data,
ciphertext, and cloud configuration. We used the Django web
framework to implement this Client subsystem to connect all
the client modules. The Django Rest Framework allows for
quick development of web based REST APIs.

The Cloud subsystem implements various modules corre-
sponding to the core component of the framework to support
its various services in the cloud. These services include
managing HE libraries, data processing algorithms, analytics,
cloud configurations, and data sharing among users. REST
APIs allow developers to extend DFASC to build concrete
applications, such as adding new HE libraries and data pro-
cessing algorithms.
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We used Apache Spark as the basis to implement the dis-
tributed system. Spark is highly modularized, which simplifies
its integration with other systems. Spark is an ideal distribution
framework for DFASC, as it enables the distribution of data
as well as programs for execution on the cloud nodes.

As mentioned previously, we selected the PALISADE and
SEAL HE libraries as the first libraries to be integrated
with the DFASC framework. Both PALISADE and SEAL are
implemented using C++ and provide a simple interface to
access their basic functionality. The integration of these HE
libraries into our framework required building a C++ wrapper
to interact with the Django web server written in Python as
well as the Spark interfaces used for the distribution.

We used the Xen hypervisor to deploy a local instance of a
cloud infrastructure as a service (IaaS). This local cloud serves
as the testbed to generate and manage virtual machines for the
distributed system. We used this local cloud instance to deploy
and test our distributed framework.

B. Use Case: Image Classification

To analyze the feasibility and performance of the overall
DFASC framework, we designed and implemented an image
classification system using the framework. Image classification
deals with labeling of images into predefined classes and
training a classifier to classify a given image in one of those
classes. Various machine learning classifiers such as SVM, K-
Nearest Neighbors, and Decision Tree, or deep learning classi-
fiers like Convolutional Neural Networks and Artificial Neural
Networks, can be used to classify images. Image classification
is useful in various application domains including autonomous
driving, labeling x-ray images, and recognizing human faces
for security purposes.

For our image classification system, we used the two avail-
able machine learning algorithms in the DFASC framework,
SVM and NN, to implement two classifiers. As mentioned pre-
viously, DFASC includes two versions for each of the machine
learning algorithms, corresponding to PALISADE and SEAL.
In the following section, we describe the implementation of
NN. To learn how we implemented SVM, refer to our prior
publication [1].

1) NN Implementation: The specific NN we implemented
is the Feedforward Neural Network, which we trained on the
sklearn Digits Dataset [40], a reduced version of the MNIST
handwritten digit dataset. Each input to the network is a 64
value array representing one of the 8 by 8 images in the
dataset. The network was trained on plaintext data and then
adapted to predict on encrypted data. The neural network
consists of 4 layers. The input layer contains 64 neurons,
with each neuron taking in one value from the 64-value input
array. The second and third layers each consist of 128 neurons.
This value was selected because it provided accurate prediction
results on plaintext data but can be changed to optimize the
calculation speed and accuracy of encrypted prediction results.
The fourth and final layer is our output layer. The neuron with

the highest activation in this layer is the Neural Network’s
final prediction. The sigmoid activation function was chosen
since it can be adapted to operate on encrypted functions by
representing it as a polynomial function. The following is the
approximation function used:

f(x) = 0.500781+0.14670403x+0.001198x2−0.001006x3

This function is described in [41]. We use cross-entropy
to measure the distance between the predicted and actual
probability distributions, which is then used in back- prop-
agation to adjust the network’s weights and biases. Once the
network is trained, encrypted data can be fed through the
network using the sigmoid approximation function described
above. The output can then be decrypted to see the network’s
prediction. In order to speed up the calculations, multiple
inputs are distributed across the Spark cluster such that each
node performs one prediction and returns the results.

2) Implementation of Image Classification Application:
Reusing the Software Defined Radios Link Analyzer system
we introduced in [1], we implemented the Image Classifica-
tion system with two clients, User Client and Administrator
Client. Through the Administrator Client GUI, among other
functionalities, the administrator can create nodes (VMs) and
list the resources available on the distributed system. Likewise,
through the User Client GUI, users can upload data, encrypt
and decrypt data, and send encrypted data to the cloud for
processing. During the operation of the application, after
uploading the data, the user will have a set of standard machine
learning algorithms to choose from to process the data. Cur-
rently, the framework provides two algorithms, SVM and NN.
Once selected, the distributed machine learning algorithm with
the HE implementation will be run on the distributed system,
which will then return the answer in encrypted form to be
decrypted when needed.

VII. EXPERIMENTS

In this section, we describe the experiments we performed
to analyze the performance of the overall framework. The
first part of the experiments focused on analyzing how the
distributed system can improve the performance of the homo-
morphic encryption operations. The second part of the experi-
ments looked at the trade-offs between computation overheads
of cloud analytics and the accuracy of their estimations.

A. Experiments Setup

As described in the implementation section, the current
version of the DFASC framework includes two HE libraries,
PALISADE and SEAL. Each of these two libraries implements
a number of HE schemes including BGV, CKKS, and The
Brakerski-Fan-Vercauteren (BFV) [32]. For these experiments,
we used the BGV scheme as it is the most matured HE
scheme. In addition, we incorporated two machine learning
algorithms, SVM and NN, using both of the HE libraries,
PALISADE and SEAL. To analyze the feasibility of the
framework, we implemented an image classification system,
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which classifies images using both SVM and NN. We use this
image classification system to perform the experiments.

For the experiments, we selected the sklearn Digits Dataset
and used it as inputs for the two versions of the image
classification tool, one for SVM and one for NN. The sklearn
Digits Dataset is a popular standard dataset for classification
written by scikit-learn [40]. It is made up of 1797 8x8 images,
where each image is of a hand-written digit. In order to use
this dataset in our experiments, we first transformed it into a
feature vector with length 64, which defines its dimensionality.
Overall, the dataset includes 10 classes, 180 samples per class
with a total of 1797 images. The relevant features are integers
from 0 to 16.

This dataset was uploaded into the Image Classification
system through its GUI. We then encrypted the data homomor-
phically, and sent it to the distributed system for processing.
For both algorithms, SVM and NN, we performed multiple
runs by varying the dataset sizes and the numbers of nodes
used in the distributed system.

B. Results of Experiments

Based on the above setup, we performed multiple experi-
ments to analyze the performance of the DFASC framework
in running the SVM and NN based analytic tools against
the encrypted dataset. Specifically, we looked at the overhead
incurred by the framework due to the expensive HE operations
for both PALISADE and SEAL. During the experiment, the
data was grouped into varying numbers of clusters as follows:
300, 600, 900, 1200, 1500, 1800. The distributed system was
configured with varying numbers of nodes as follows: 1, 16,
32, 48, 64. Then, we ran the two analytic tools with each
cluster size on each node configuration. Note that the times
reported are execution times for the classifier and do not
include the time taken to train the model.

1) Performance Analysis of the Distributed Framework:
In this experiment, we analyzed the performance of the
distributed framework as we increase the number of nodes
for a given workload. The following four tables and figures
summarize the results of the experiments.

Image Classification using SVM Implemented with PAL-
ISADE In this experiment, we ran the Image Classifier tool
using SVM implemented with PALISADE. Table I shows the
average running time of the classifier as we vary both the
number of images and the number of nodes in the distributed
system. The data from Table I is plotted in Figure 3. Note
that, when running on a single node, the range of the running
time is between 5 and 45 seconds for all six clusters of images.
Figure 3 shows that, for a given cluster of images, the running
time of the Image Classifier is decreasing exponentially as we
increase the number of nodes in the distributed system (from
1 to 64). The largest gain in performance is when going from
one node to thirty two nodes. Beyond thirty two nodes, the
running time does not decrease further.

TABLE I: Image Classifier using SVM, Implemented with
PALISADE (data in seconds)

Images 1 16 32 48 64 Total
300 7.57 1.30 1.20 1.20 1.60 12.87
600 15.10 1.80 1.80 1.90 2.10 22.70
900 22.78 2.30 2.00 2.50 2.80 32.38

1200 30.58 3.00 2.60 2.60 3.30 42.08
1500 37.57 3.80 3.40 3.10 3.60 51.47
1800 45.42 4.40 3.60 4.00 4.10 61.52
Total 159.02 16.60 14.60 15.30 17.50 223.02

Fig. 3: Image Classifier using SVM, Implemented with PALISADE

Image Classification using NN Implemented with PAL-
ISADE In this experiment, we ran the Image Classifier tool
using NN implemented with PALISADE. Table II shows the
average running time of the classifier as we vary both the
number of images and the number of nodes in the distributed
system. The data from Table II is plotted in Figure 4. Note that,
when running on a single node, the range of the running time
is between 15 and 100 seconds for all six clusters of images.
Figure 4 shows that, for a given cluster of images, the running
time of the Image Classifier is decreasing exponentially as we
increase the number of nodes in the distributed system (from
1 to 64).

Image Classification using SVM Implemented with
SEAL In this experiment, we ran the Image Classifier tool
using SVM implemented with SEAL. Table III shows the av-

TABLE II: Image Classifier using NN, Implemented with
PALISADE (data in seconds)

Images 1 16 32 48 64 Total
300 16.08 2.10 1.60 1.70 1.70 23.18
600 31.87 3.00 2.70 2.70 3.10 43.37
900 47.95 3.90 2.80 3.60 3.60 61.85

1200 64.03 4.80 4.20 3.50 4.50 81.03
1500 79.80 6.30 5.30 4.60 5.50 101.50
1800 96.18 8.10 5.00 6.00 5.90 121.18
Total 335.92 28.20 21.60 22.10 24.30 432.12
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Fig. 4: Image Classifier using NN Implemented with PALISADE

TABLE III: Image Classifier using SVM, Implemented with
SEAL (data in seconds)

Images 1 16 32 48 64 Total
300 13.93 1.60 1.50 2.70 4.30 24.03
600 27.83 2.00 2.40 3.60 4.90 40.73
900 41.62 2.80 2.90 4.10 5.40 56.82
1200 55.30 3.50 3.60 4.80 6.00 73.20
1500 69.37 4.20 4.20 5.30 6.60 89.67
1800 83.98 9.60 4.80 6.10 7.10 111.58
Total 292.03 23.70 19.40 26.60 34.30 396.03

erage running time of the classifier as we vary both the number
of images and the number of nodes in the distributed system.
The data from Table III is plotted in Figure 5. Note that, when
running on a single node, the range of the running time is
between 15 and 85 seconds for all six clusters of images.
Figure 5 shows that, for a given cluster of images, the running
time of the Image Classifier is decreasing exponentially as we
increase the number of nodes in the distributed system (from
1 to 64).

Image Classification using NN Implemented with SEAL
In this experiment, we ran the Image Classifier tool using NN
implemented with SEAL. Table IV shows the average running
time of the classifier as we vary both the number of images
and the number of nodes in the distributed system. The data
from Table IV is plotted in Figure 6. Note that, when running
on a single node, the range of the running time is between
30 and 175 seconds for all six clusters of images. Figure 6
shows that, for a given cluster of images, the running time of
the Image Classifier is decreasing exponentially as we increase
the number of nodes in the distributed system (from 1 to 64).

For a given cluster of images, as the number of nodes is
increased, the time taken to execute the classifier is reduced.
However, the optimal value is between 32 and 48 nodes.

Fig. 5: Image Classifier using SVM, Implemented with SEAL

TABLE IV: Image Classifier using NN, Implemented with
SEAL (data in seconds)

Images 1 16 32 48 64 Total
300 29.05 2.50 2.40 3.90 6.20 44.05
600 57.48 2.80 3.40 4.70 6.50 74.88
900 86.15 3.90 3.80 5.30 7.20 106.35

1200 115.22 4.60 4.90 5.80 8.00 138.52
1500 144.13 5.80 5.80 6.90 8.80 171.43
1800 172.47 11.00 6.20 7.40 8.90 205.97
Total 604.50 30.60 26.50 34.00 45.60 741.20

As the number of nodes is increased beyond 48, the time
taken increases again. This is true for both classification
algorithms and both HE libraries. One possible explanation
for this is that, since all of the nodes were implemented
as virtual machines on one physical machine, the overhead
associated with each running virtual machine competed with
the speedup gained from parallelizing the algorithm across
multiple virtual machines. As the number of virtual machines
was increased and then exceeded the number of physical
cores on the machine, significant context switching overhead

Fig. 6: Image Classifier using NN, Implemented with SEAL
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was introduced, which countered any performance gains from
increasing parallelism.

2) Trade-off Between Computation Overhead and Accu-
racy: In this experiment, we compared the performance of
SVM and NN in classifying the images in the dataset. We used
the combination of the selected six clusters of images (300,
600, 900, 1200, 1500, 1800) and five clusters of cloud nodes
(1, 16, 32, 48, 64). This combination resulted in 30 different
sets of data to be used as inputs for the two analytics. The
results of running the two analytics against the 30 datasets
are summarized in the previous four tables. Figure 7 shows a
graph of a snapshot of these experiments, where the number of
nodes is fixed to 16 and the number of datasets varied through
all six clusters. As can be seen, the SVM based analytic
ran exponentially faster than the NN based analytic. On the
other side, the SVM based analytic was less accurate than
the NN based analytic. The average accuracy after running all
experiments was 85.44% for SVM based analytic and 94.65%
for NN based analytic. From these results, we can observe that
there is a tradeoff between the computation overhead and the
accuracy of the analytics.

Fig. 7: SEAL and SVM based Image Classifier with 16 Nodes

Storage Overhead This experiment focused on analyzing
the storage overhead associated with the ciphertext. The size
of each image in the dataset is 780 bytes. After the image
is encrypted homomorphically, the size of the cipher image
expands to 29,367,027 bytes for PALISADE and 467,807
bytes for SEAL. The difference between PALISADE and
SEAL resides in the techniques used by each library to encode
the ciphertext.

3) Performance of Sharing: As described earlier, we use
an email-based protocol for exchanging private keys to enable
secure data sharing between users of the system. The email
server provides an external channel to be used to securely
share decryption keys. For this experiment we analyze the
performance of the sharing protocol. The protocol includes
exchanging public keys for sharing, sharing decryption keys,
retrieving the shared encrypted data from the cloud, and

decrypting the data. We executed this sharing protocol multiple
times for both, SVM and NN, and computed the average
execution time. We observed that the average time for both
(0.90 seconds for SVM and 0.81 for NN) is less than a second.
For data sharing purposes, this delay is not very noticeable to
the user.

VIII. RELATED WORK

Different techniques have been proposed for securing cloud
analytics to increase their adoption [42]. These techniques in
general use a combination of deterministic and randomized
encryption, where a trade-off between the two is employed.
Deterministic encryption supports a limited form of queries to
be performed on the encrypted data, but is less secure, while
randomized encryption is very secure, but does not support any
operation on the encrypted data. Provably secure searchable
encryption is an example of such techniques.

Provably secure searchable encryption (SE), including
searchable symmetric encryption (SSE) and public key en-
cryption with keyword search (PEKS), enables limited queries
to be performed on encrypted data using encrypted keywords
[43], [44]. SE techniques are in general expensive in terms
of their computation and storage overhead. These techniques
include trade-offs between security, efficiency, and function-
ality [45]. However, as observed in [43], regardless of SE
schemes efficiency drawbacks, there is a noticeable lack of
query expressiveness that hinders deployment in practice. With
homomorphic encryption based security techniques, there is
no limit on the number or type of operations that can be
performed on the encrypted data.

Using HE to enable machine learning algorithms, including
deep learning, to process data securely has gained attention in
the research community in recent years [46], [47], [48], [49].
Many of the proposed approaches focus on using a given HE
scheme to implement a specific machine learning algorithm. In
[47], the authors show that it is possible to use a SHE scheme
to implement a linear SVM to classify images for facial
recognition. They extended Gentry’s SHE scheme to work
with low-degree polynomial functions, which are not limited
by Hamming distance or linear projection. In [50], the authors
went further by proposing an approach for implementing a
non-linear SVM for classifying images in general using a SHE
scheme. CryptoNets [51] uses the Microsoft SEAL HE library
to implement deep learning algorithms. HE parallelization is
limited to SIMD operations provided by the HE scheme. Faster
CryptoNets [52] improves the performance of CryptoNets by
leveraging the sparse representations throughout the neural
network to optimize the HE operations and improve their
performance. MSCryptoNet [53], based on multi-scheme FHE,
protects the evaluation of the classifier, where the inputs can
be encrypted with different encryption schemes and different
keys. More information on current trends in using HE to
process big data can be found in [54]. Unlike the above
approaches, we are proposing a general framework for se-
curing cloud analytics. We focus particularly on improving
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the performance of analytic tools, implemented with HE, by
distributing their executions in the cloud and providing a key
management infrastructure for sharing the encrypted data.

HE schemes have also been considered as a means for
securing statistical computations [55]. In [56], the authors
demonstrate the feasibility of using HE in approximating
conventional statistical regression methods. This approach
takes advantage of the fact that estimation and prediction can
both be performed in the encrypted domain; bootstrapping can
be avoided even for moderately large problems; and scales
linearly with the number of predictors. In [57], HE is used
to develop a secure system that protects both the training and
prediction data in logistic regression. Despite the non-linearity
of both the training and prediction in logistic regression, this
paper showed that it is feasible to use HE since only the
addition operation is needed, which significantly improves
performance compared to FHE. Our approach differs in that
it provides a framework to enable developers to use a variety
of analytic tools, which can be based on statistical analysis or
other analytic techniques.

Privacy-preserving data splitting is another approach pro-
posed to preserve data privacy in the cloud. In this approach,
sensitive data is split in such a way that any partition by
itself is not sensitive, and is stored separately. However, the
techniques proposed are not very secure as they either don’t
support encryption or they support only limited operations to
take place in the encrypted domain [58], [59]. Furthermore,
these techniques are focusing more on preserving privacy of
the data at rest rather than in processing.

Other proposed techniques for securing machine learn-
ing algorithms are based on multiparty computation (MPC)
[60]. Fundamentally, MPC requires interactive communica-
tions among the different nodes to perform the computations,
whereas our approach using HE allows computations to be
performed independently by the nodes. In addition, since HE
enables the computations to be performed without any key
exchange, there is no overhead of secret sharing as in MPC.
HE allows for empowering a single party to take advantage of
the cloud to securely analyze and share their data with other
parties.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose DFASC, a distributed framework
for secure computing in the cloud, to enable the development
of secure distributed systems. Secure distributed systems de-
veloped using this framework allow for analytic tools to be
implemented using HE and distributed throughout the nodes
of the distributed system. These systems will provide a high
level of data security for the analytic tools since data will
remain encrypted during transit to and from the cloud, and
during storage and processing in the cloud. In addition, the
framework provides a simple but flexible technique for sharing
encrypted data among users. This approach of using HE to
provide data security during data processing addresses the
shortcomings of standard cryptographic schemes such as the

Advanced Encryption Standards and Blowfish, and addresses
some of the vulnerabilities of outsourcing data to the cloud.
This approach will enable organizations of all types and
sizes to take advantage of large pools of computing resources
available in the cloud without giving up the privacy of their
data.

The challenge with the existing HE schemes resides in the
computation and storage overheads they incur. We addressed
the computation overhead by distributing the HE computations
across multiple nodes to reduce the computation time. For
future work, we plan on combining the high level distribution
of HE libraries and the low level parallelization of the HE
operations themselves proposed in the literature. For instance,
one proposed technique is to use General-Purpose Graphics
Processing Units (GPGPUs) to speed up the underlying opera-
tions of the HE libraries [61]. Combining these two approaches
has the potential to significantly speed up the HE operations
executed within the DFASC framework.

Currently, our framework includes two HE libraries, which
both implement the BGV and CKKS HE scheme. To improve
the validation of the framework, we plan to incorporate
additional HE libraries with additional HE schemes into the
framework. We will extend the framework to facilitate a trade-
offs analysis of these libraries and schemes.
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Abstract—In the Open Data approach, governments and other
public organisations want to share their datasets with the public,
for accountability and to support participation. Data must be
opened in such a way that individual privacy is safeguarded.
The Privacy Funnel is a mathematical approach that produces
a sanitised database that does not leak private data beyond a
chosen threshold. The downsides to this approach are that it does
not give worst-case privacy guarantees, and that finding optimal
sanitisation protocols can be computationally prohibitive. These
problems are tackled by using differential privacy metrics, and by
considering local protocols that operate on one entry at a time. It
is shown that under both the Local Differential Privacy and Local
Information Privacy leakage metrics, one can efficiently obtain
optimal protocols. Furthermore, Local Information Privacy is
more closely aligned to the privacy requirements of the Privacy
Funnel scenario, and optimal protocols satisfying Local Infor-
mation Privacy are more efficiently computable. This paper also
considers the scenario where each user has multiple attributes,
for which a side-channel resistant privacy criterion is defined,
and efficient methods to find protocols satisfying this criterion,
while still offering good utility, are given. Finally, Conditional
Reporting is introduced, an explicit LIP protocol that can be used
when the optimal protocol is infeasible to compute. Experiments
on real-world and synthetic data confirm the validity of these
methods. The main output of this paper consists of methods to
compute optimal privacy protocols, and explicit privacy protocols
when the former are unfeasible computationally.

Keywords—Privacy funnel; local differential privacy; in-
formation privacy; database sanitisation; complexity.

I. INTRODUCTION

This paper is an extended version of [1]. Under the Open
Data paradigm, governments and other public organisations
want to share their collected data with the general public.
This increases a government’s transparency, and it also gives
citizens and businesses the means to participate in decision-
making, as well as using the data for their own purposes.
However, while the released data should be as faithful to the
raw data as possible, individual citizens’ private data should
not be compromised by such data publication.

Let X be a finite set. Consider a database ~X =
(X1, . . . , Xn) ∈ Xn owned by a data aggregator, containing a
data item Xi ∈ X for each user i (For typical database settings,
each user’s data is a vector of attributes Xi = (X1

i , . . . , X
m
i );

this will be considered in more detail in Section VI). This
data may not be considered sensitive by itself, but it might
be correlated to a secret Si. For instance, Xi might contain
the age, sex, weight, skin colour, and average blood pressure

Sensitive
Data

S1

S2

...

Sn

Database

X1

X2

...

Xn

Sanitised
Database

Y1

Y2

...

Yn

Q

Q

Q

Hidden from public

Figure 1. Model of PF with local protocols.

of person i, while Si is the presence of some medical condi-
tion. To publish the data in a privacy-preserving manner, the
aggregator releases a sanitised database ~Y = (Y1, . . . , Yn),
obtained from applying a sanitisation mechanism R to ~X . In
this setting, privacy is considered to be the extent to which one
is unable to infer information about the Si from the sanitised
database ~Y . One way to formulate this is by measuring the
privacy leakage as the mutual information I(~S; ~Y ), and utility
as the mutual information I( ~X; ~Y ). This leads to the Privacy
Funnel (PF) problem:

Problem 1. (Privacy Funnel, [2]) Suppose the joint probability
distribution of ~S and ~X is known to the aggregator, and let
M ∈ R≥0. Then, find the sanitisation mechanism R such that
I( ~X; ~Y ) is maximised while I(~S; ~Y ) ≤M .

There are two difficulties with this approach:
1) Finding and implementing good sanitisation mechanisms

that operate on all of ~X can be computationally pro-
hibitive for large n, as the complexity is exponential in
n [3][4].

2) Taking mutual information as a leakage measure has as
a disadvantage that it gives guarantees about the leakage
in the average case. If n is large, this still leaves room
for the sanitisation protocol to leak undesirably much
information about a few unlucky users.

To deal with these two difficulties, two changes are made
to the general approach. First, the focus is on local data
sanitisation, i.e., optimisation protocols Q : X → Y are
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considered, for some finite set Y , and Q is applied to each
Xi individually; this situation is depicted in Figure 1. Local
sanitisation can be implemented efficiently. In fact, this ap-
proach is often taken in the PF setting [5][3]. Second, to ensure
strong privacy guarantees even in worst-case scenarios,stricter
notions of privacy are considered, based on Local Differential
Privacy (LDP) [6]. For these metrics, methods are developed
to find optimal protocols. Furthermore, for situations where
the optimal protocol is computationally unfeasible to find,
a new protocol is introduced, Conditional Reporting (CR),
that takes advantage of the fact that only Si needs to be
protected. Determining CR only requires finding the root of
a onedimensional increasing function, which can be done fast
numerically.

A. New contributions

In this paper, two Differential Privacy-like privacy metrics
are adapted to the PF situation, namely ε-LDP [6] and Local
Information Privacy (ε-LIP) [7][8]. These metrics are modified
so that they measure leakage about the underlying S rather
than X itself (for notational convenience, S,X, Y rather than
Si, Xi, Yi is used throughout the rest of this paper). For a
given level of leakage, the aim is to find the privacy protocol
that maximises the mutual information between input Xi and
output Yi. Adapting methods from [9] on LDP and [10] on
perfect privacy, the following Theorem is proven:

Theorem 1 (Theorems 2 and 3 paraphrased). Suppose X
and S are discrete random variables on sets of size a and c,
respectively. Suppose that their joint distribution and a privacy
level ε ≥ 0 are given.

1) The optimal ε-LDP protocol can be found by enumerating
the vertices of a polytope in a2 − a dimensions defined
by a(c2 − c) inequalities.

2) The optimal ε-LIP protocol can be found by enumerating
the vertices of a polytope in a− 1 dimensions defined by
2ac inequalities.

This theorem gives us methods to get data sanitisation
protocols that give strong privacy guarantees, and optimal
utility under these guarantees. This is important in settings
where worst-case guarantees for privacy leakage are needed,
rather than a bound on the average user’s privacy.

Since the complexity of the polytope vertex enumeration
depends significantly on both its dimension and the number of
defining inequalities [11], finding optimal LIP protocols can be
done significantly faster than finding optimal LDP protocols.
Furthermore, it will be argued that LIP is a privacy metric that
more accurately captures information leakage than LDP in the
PF scenario. For these two reasons only LIP is considered in
the remainder of the paper, although many results can also be
formulated for LDP.

A common scenario is that a user’s data X consists of
multiple attributes, i.e., X = (X1, . . . , Xm). Here one can
consider an attacker model where the attacker has access to
some of the Xj . In this situation ε-LIP does not accurately

reflect a user’s privacy. Because of this, a new privacy condi-
tion called Side-channel Resistant LIP is introduced that takes
such sidechannels into account, and methods to find optimal
protocols that satisfy this privacy condition are described.

Finding the optimal protocols can become computationally
unfeasible for large a and c. In such a situation, one needs
to resort to explicitely given protocols. In the literature there
is a wealth of protocols that satisfy ε-LDP w.r.t. X . These
certainly work in the PF situation, but they might not be ideal,
because these are designed to obfuscate all information about
X , rather than just the part that relates to S. For this reason,
Conditional Reporting (CR) is introduced, a privacy protocol
that focuses on hiding S rather than X . Finding the appropriate
CR protocol for a given probability distribution and privacy
level can be done fast numerically.

The structure of this paper is as follows. In Section II, an
overview is given of related work on PF, LDP, and finding
optimal protocols. The mathematical setting of this paper is
formalised in Section III. In Sections IV and V, Theorem 1 is
proven for LDP and LIP, respectively. In Section VI privacy
in the multiple attribute scenario is discussed. Section VII is
dedicated to Conditional Reporting and its privacy properties.
In Section VIII, he methods and protocols discussed above
are tested on both synthetic and real data. Compared to [1],
new contents in this extended paper are Section VII, the
experiments on real data, and the extended literature review.

II. RELATED WORK

The PF setting was introduced in [5], to provide a frame-
work for obfuscating data in such a way that the obfuscated
data remains as faithful as possible to the original, while
ensuring that the information leakage about a latent variable
is limited. PF is related to the Information Bottleneck (IB)
[12], a problem from machine learning that seeks to compress
data as much as possible, while retaining a minimal threshold
of information about a latent variable. In PF as well as IB,
both utility and leakage are measured via mutual information.
Many approaches to finding the optimal protocols in PF also
work for IB and vice versa [13][3]. A wider range of privacy
metrics for PF, and their relation to Differential Privacy, is
discussed in [8].

LDP was introduced in [6]. It is an adaptation of Differential
Privacy (DP) [14] to a setting where there is no trusted central
party to obfuscate the data. As a privacy metric, it has the
advantage that it offers a privacy guarantee in any case, not
just the average case, and that it does not depend on the
data distribution. On the downside, it can be difficult to fulfill
such a stringent definition of privacy, and many relaxations
of (L)DP have been proposed [15][16][17][18]. Of particular
interest to this paper is LIP [7][8], also called Removal Local
Differential Privacy [19]. LIP retains the worst-case guarantees
of LDP, but is less restrictive, and can take advantage of
a known distribution. In the context where only part of the
data is considered secret, many privacy metrics fall under the
umbrella of Pufferfish Privacy [20].
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In [9], a method was introduced for finding optimal LDP-
protocols for a wide variety of utility metrics, including mutual
information. The method relies on finding the vertices of
a polytope, but since this is the well-studied Differential
Privacy polytope, its vertices can be described explicitly [21].
Similarly, [10] uses a vertex enumeration method to find the
optimal protocol in the perfect privacy situation, i.e., when the
released data is independent of the secret data. The complexity
of vertex enumeration is discussed in [22][11].

One can conclude that PF and LDP are both well-studied,
and so are methods to find optimal LDP protocols. However,
LDP-like metrics so far have not been applied to the PF
scenario. The aim of this paper is to do so, and to find optimal
PF protocols that satisfy LDP-like privacy requirements.

III. MATHEMATICAL SETTING

The database ~X = (X1, . . . , Xn) consists of a data item
Xi for each user i, each an element of a given finite set
X . Furthermore, each user has sensitive data Si ∈ S , which
is correlated with Xi; again S is assumed to be finite (see
Figure 1). Each (Si, Xi) is assumed to be drawn independently
from the same distribution pS,X on S × X that is known to
the aggregator through observing (~S, ~X) (if one allows for
non-independent Xi, then differential privacy is no longer an
adequate privacy metric [15][8]). The aggregator, who has
access to ~X , sanitises the database by applying a sanitisation
protocol (i.e., a random function) Q : X → Y to each Xi,
outputting ~Y = (Y1, . . . , Yn) = (Q(X1), . . . ,Q(Xn)). The
aggregator’s goal is to find a Q that maximises the information
about Xi preserved in Yi (measured as I(Xi;Yi)) while leaking
only minimal information about Si.

Without loss of generality X ,Y,S are identified with the
sets {1, . . . , a}, {1, . . . , b}, {1, . . . , c}, respectively, for inte-
gers a, b, c. The subscript i from Xi, Yi, Si is omitted as no
probabilities depend on it, and probabilities are written as px,
ps, px|s, etc., which form vectors pX , pS|x, etc., and matrices
pX|S , etc.

As noted before, instead of looking at the mutual infor-
mation I(S;Y ), two different, related measures of sensitive
information leakage known from the literature are considered.
The first one is an adaptation of LDP, the de facto standard in
information privacy [6]:

Definition 1. (ε-LDP) Let ε ∈ R≥0. say that Q satisfies ε-
LDP w.r.t. S if

∀y ∈ Y,∀s, s′ ∈ S :
P(Y = y|S = s)

P(Y = y|S = s′)
≤ eε. (1)

Most literature on LDP considers LDP w.r.t. X , i.e., for all
y, x, x′ it holds that

P(Y = y|X = x)

P(Y = y|X = x′)
≤ eε. (2)

This is a stricter requirement, because under this definition
all data needs to be protected, rather than just the underlying
sensitive data. This typically comes at a cost in utility [10].

ε-LDP

2ε-LDP

ε-LIP

I(S;Y ) ≤ ε

ε-SRLIP

Multiple attributes,
see Section VI

Figure 2. Relations between privacy notions. The multiple attributes setting
is discussed in Section VI.

Throughout the present paper, ε-LDP always means ε-LDP
w.r.t. S, unless otherwise specified.

The LDP metric reflects the fact that in the PF scenario one
is only interested in hiding sensitive data, rather than all data;
it is a specific case of what has been named Pufferfish Privacy
[20]. The advantage of LDP compared to mutual information
is that it gives privacy guarantees for the worst case, not just
the average case. This is desirable in the database setting, as
a worst-case metric guarantees the security of the private data
of all users, while average-case metrics are only concerned
with the average user. Another useful privacy metric is Local
Information Privacy (LIP) [7][8], also called Removal Local
Differential Privacy [19]:

Definition 2. (ε-LIP) Let ε ∈ R≥0. The protocol Q satisfies
ε-LIP w.r.t. S if

∀y ∈ Y, s ∈ S : e−ε ≤ P(Y = y|S = s)

P(Y = y)
≤ eε. (3)

Compared to LDP, the disadvantage of LIP is that it depends
on the distribution of S; this is not a problem in the PF
scenario, as the aggregator, who chooses Q, has access to the
distribution of S. The advantage of LIP is that is more closely
related to an attacker’s capabilities: since

P(Y = y|S = s)

P(Y = y)
=

P(S = s|Y = y)

P(S = s)
, (4)

satisfying ε-LIP means that an attacker’s posterior distribution
of S given Y = y does not deviate from their prior distribution
by more than a factor eε. The following lemma outlines
the relations between LDP, LIP and mutual information (see
Figure 2).

Lemma 1. (See [8]) Let Q be a sanitisation protocol, and let
ε ∈ R≥0.

1) If Q satisfies ε-LDP, then it satisfies ε-LIP.
2) If Q satisfies ε-LIP, then it satisfies 2ε-LDP, and

I(S;Y ) ≤ ε.

Remark 1. One gets robust equivalents of LDP and LIP
by demanding that Q satisfy ε-LIP (ε-LDP) for a set of
distributions pS,X , instead of only a single distribution [20].
Letting pS,X range over all possible distributions on S × X
yields LIP (LDP) w.r.t. X .

164

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



In this notation, instead of Problem 1 the following problem
is considered:

Problem 2. Suppose pS,X is known to the aggregator, and
let ε ∈ R≥0. Then, find the sanitisation protocol Q such
that I(X;Y ) is maximised while Q satisfies ε-LDP (ε-LIP,
respectively) with respect to S.

Note that this problem does not depend on the number of
users n, and as such this approach will find solutions that are
scalable w.r.t. n.

IV. OPTIMIZING Q FOR ε-LDP

The goal is now to find the optimal Q, i.e., the protocol
that maximises I(X;Y ) while satisfying ε-LDP, for a given
ε. Any sanitisation protocol can be represented as a matrix
Q ∈ Rb×a, where Qy|x = P(Y = y|X = x). Then, ε-LDP is
satisfied if and only if

∀x :
∑
y

Qy|x = 1, (5)

∀x, y : 0 ≤ Qy|x, (6)
∀s, s′, y : (QpX|s)y ≤ eε(QpX|s′)y. (7)

As such, for a given Y , the set of ε-LDP-satisfying sanitisation
protocols can be considered a closed, bounded, convex poly-
tope Γ in Rb×a. This fact allows us to efficiently find optimal
protocols.

Theorem 2. Let ε ∈ R≥0. Let Q : X → Y be a ε-LDP
protocol that maximises I(X;Y ), i.e., the protocol that solves
Problem 2 w.r.t. LDP.

1) One can take b = a.
2) Let Γ be the polytope described above, for b = a. Then

the optimal Q corresponds to one of the vertices of Γ.

Proof. The first result is obtained by generalising the results
of [9]: there this is proven for regular ε-LDP (i.e., w.r.t. X),
but the arguments given in that proof hold just as well in this
situation; the only difference is that their polytope is defined
by the ε-LDP conditions w.r.t. X , but this has no impact on
the proof. The second statement follows from the fact that
I(X;Y ) is a convex function in Q; therefore, its maximum on
a bounded polytope is attained in one of the vertices.

This theorem reduces the search for the optimal LDP
protocol to enumerating the set of vertices of Γ, a a(a − 1)-
dimensional convex polytope. Note that the only property of
I(X;Y ) used in the proof is the fact that it is convex in Q.
Therefore, the theorem holds for any convex utility metric.

One might argue that, since the optimal Q depends on
pS,X , the publication of Q might provide an aggregator with
information about the distribution of S. However, information
on the distribution (as opposed to information of individual
users’ data) is not considered sensitive [23]. In fact, the reason
why the aggregator sanitises the data is because an attacker
is assumed to have knowledge about this correlation, and
revealing too much information about X would cause the
aggregator to use this information to infer information about S.

V. OPTIMIZING Q FOR ε-LIP

If one uses ε-LIP as a privacy metric, one can find the
optimal sanitisation protocol in a similar fashion. To do this,
a sanitisation protocol Q is again described as a matrix, but
this time a different one. Let q ∈ Rb be the probability mass
function of Y , and let R ∈ Ra×b be given by

Rx|y = P(X = x|Y = y); (8)

its y-th row is denoted by RX|y ∈ Ra. Then, a pair (R, q)
defines a sanitisation protocol Q satisfying ε-LIP if and only
if

∀y : 0 ≤ qy, (9)
Rq = pX , (10)

∀y :
∑
x

Rx|y = 1, (11)

∀x, y : 0 ≤ Rx|y, (12)
∀y, s : e−ε ps ≤ ps|X RX|y ≤ eε ps . (13)

Note that (13) defines the ε-LIP condition, since for a given
s, y one has

ps|X RX|y

pS
=

P(S = s|Y = y)

P(S = s)
=

P(Y = y|S = s)

P(Y = y)
. (14)

(In)equalities (11–13) can be expressed as saying that for every
y ∈ Y one has that RX|y ∈ ∆, where ∆ is the convex closed
bounded polytope in RX given by

∆ =

v ∈ RX :

∑
x vx = 1,

∀x : 0 ≤ vx,
∀s : e−ε ps ≤ ps|X v ≤ eε ps

 . (15)

As in Theorem 2, this polytope can be used to find optimal
protocols:

Theorem 3. Let ε ∈ R≥0, and let ∆ be the polytope above.
Let V = {v1, . . . , vM} be its set of vertices. For vi ∈ V , let
H(vi) be its entropy, i.e.

H(vi) = −
∑
x∈X

vi,x ln(vi,x). (16)

Let α̂ be the solution to the optimisation problem

minimiseα∈RM
M∑
i=1

H(vi)αi (17)

subject to ∀i : αi ≥ 0,
M∑
i=1

αivi = pX .

Then the ε-LIP protocol Q : X → Y that maximises I(X;Y )
is given by

Y = {i ≤M : α̂i > 0}, (18)
qi = α̂i, (19)

Rx|i = vi,x, (20)

for all i ∈ Y ⊆ {1, . . . ,M} and all x ∈ X . One has b ≤ a.
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Proof. This was proven for ε = 0 (i.e., when S and Y are
independent) in [10], but the proof works similarly for ε > 0;
the main difference is that the equality constraints of their (10)
will be replaced by the inequality constraints of this paper’s
(13), but this has no impact on the proof presented there.

Since linear optimisation problems can be solved fast, again
the optimisation problem reduces to finding the vertices of
a polytope. The advantage of using LIP instead of LDP is
that ∆ is a (a− 1)-dimensional polytope, while Γ of Section
IV is a(a − 1)-dimensional. The time complexity of vertex
enumeration is linear in the number of vertices [22], while the
number of vertices can grow exponentially in the dimension of
the polyhedron [11]. Together, this means that the dimension
plays a huge role in the time complexity, hence the optimum
under LIP is expected to be found significantly faster than
under LDP.

VI. MULTIPLE ATTRIBUTES

An often-occuring scenario is that a user’s data consists of
multiple attributes, i.e.,

X = (X1, . . . , Xm) ∈ X = X 1 × · · · × Xm. (21)

This can be problematic for this paper’s approach for two
reasons:

1) Such a large X can be problematic, since the computing
time for optimisation both under LDP and LIP will
depend heavily on a.

2) In practice, an attacker might sometimes utilise side
channels to access some subsets of attributes Xj

i for some
users. For these users, a sanitisation protocol can leak
more information (w.r.t. to the attacker’s updated prior
information) than its LDP/LIP parameter would suggest.

To see how the second problem might arise in practice,
suppose that X1

i is the height of individual i, X2
i is their

weight, and Si is whether i is obese or not. Since height is
only lightly correlated with obesity, taking Yi = X1

i would
satisfy ε-LIP for some reasonably small ε. However, suppose
that an attacker has access to X2

i via a side channel. While
knowing i’s weight gives the attacker some, but not perfect
knowledge about i’s obesity, the combination of the weight
from the side channel, and the height from the Yi, allows the
attacker to calculate i’s BMI, giving much more information
about i’s obesity. Therefore, the given protocol gives much
less privacy in the presence of this side channel.

To solve the second problem, a more stringent privacy no-
tion called Side-channel Resistant LIP (SRLIP) is introduced,
which ensures that no matter which attributes an attacker
has access to, the protocol still satisfies ε-LIP with respect
to the attacker’s new prior distribution. One could similarly
introduce SRLDP, and many results will still hold for this
privacy measure; nevertheless, since it has been concluded that
LIP is preferable to LDP, the focus is on SRLIP. For any subset
J ⊆ {1, . . . ,m}, the notation X J is used for the set

∏
j∈J X j ,

and its elements are written as xJ .

Definition 3. (ε-SRLIP). Let ε > 0, and let X =
∏m
j=1 X j .

The protocol Q satisfies ε-SRLIP if for every y ∈ Y , for every
s ∈ S, for every J ⊆ {1, . . . ,m}, and for every xJ ∈ X J one
has

e−ε ≤ P(Y = y|S = s,XJ = xJ)

P(Y = y|XJ = xJ)
≤ eε. (22)

In terms of Remark 1, Q satisfies ε-SRLIP if and only if it
satisfies ε-LIP w.r.t. pS,X|xJ for all J and xJ . Taking J = ∅
gives us the regular definition of ε-LIP, proving the following
Lemma:

Lemma 2. Let ε > 0. If Q satisfies ε-SRLIP, then Q satisfies
ε-LIP.

While SRLIP is stricter than LIP itself, it has the advantage
that even when an attacker has access to some data of a
user, the sanitisation protocol still does not leak an unwanted
amount of information beyond the knowledge the attacker
has gained via the side channel. Another advantage is that,
contrary to LIP itself, SRLIP satisfies an analogon of the
concept of privacy budget [14]:

Theorem 4. Let X =
∏m
j=1 X j , and for every j, let

Qj : X j → Yj be a sanitisation protocol. Let εj ∈ R≥0
for every j. Suppose that for every j ≤ m, for every
J ⊆ {1, . . . , j − 1, j + 1, . . . ,m}, and every xJ ∈ X J , Qj
satisfies εj-LIP w.r.t. pS,X|xJ . Then

∏
j Qj : X →

∏
j Yj

satisfies
∑
j ε
j-SRLIP.

The proof is presented in Appendix A. This theorem tells
us that to find a ε-SRLIP protocol for X , it suffices to find a
sanitisation protocol for each X j that is ε

m -LIP w.r.t. a number
of prior distributions. Unfortunately, the method of finding an
optimal ε-LIP protocol w.r.t. one prior pS,X of Theorem 3 does
not transfer to the multiple prior setting. This is because this
method only finds one (R, q), while by (10) a different (R, q)
is needed for each prior distribution. Therefore, an approach
similar to the one in Theorem 2 is adopted. The matrix
Qj (given by Qjyj |xj = P(Qj(xj) = yj)) corresponding to
Qj : X j → Yj satisfies the criteria of Theorem 4 if and only
if the following criteria are satisfied:

∀xj :
∑
yj

Qjyj |xj = 1, (23)

∀xj , yj : 0 ≤ Qjyj |xj , (24)

∀J, xJ , s, yj : e−ε/m(Qj pXj |xJ )yj ≤ (Qj pXj |s,xJ )yj , (25)

∀J, xJ , s, yj : (Qj pXj |s,xJ )yj ≤ eε/m(Qj pXj |xJ )yj . (26)

Similar to Theorem 2, the optimal Qj satisfying these
conditions can be found by finding the vertices of the polytope
defined by (23–26). In terms of time complexity, the com-
parison to finding the optimal ε-LIP protocol via Theorem
3 versus finding a ε-SRLIP protocol via Theorem 4 is not
straightforward. The complexity of enumerating the vertices of
a polytope is O(ndv), where n is the number of inequalities, d
is the dimension, and v is the number of vertices [22]. For the
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∆ of Theorem 3 one has d = a−1 and n = a+2c. By contrast,
the polytope defined by (23–26) satisfies d = aj(aj − 1) and
n = (aj)2 + 2c

∏
j′ 6=j(a

j′ + 1). Finding v for both these
polytopes is difficult, but in general v ≤

(
n
d

)
. Since this grows

exponentially in d, Theorem 4 is expected to be faster when
the aj are small compared to a, i.e., when m is large. This
will be investigated experimentally in Section VIII.

VII. EXPLICIT PROTOCOLS

The methods of Sections IV and V allow us to find the
optimal LDP and LIP protocols. The complexity depends
heavily on a and c, and can become computationally infeasible
for large a and c. For such datasets, one has to rely on prede-
termined privacy algorithms. Two approaches are introduced:
as a benchmark, Section VII-A discusses how ‘standard’ LDP
protocols can be applied to the PF situation, and a new
method, Conditional Reporting, that is meant to address the
shortcomings of standard LDP protocols, is introduced in
Section VII-B. As in the previous section, the focus is on
LIP, but much of the discussion carries over to LDP as well.

A. Standard LDP protocols

In the literature, there are many examples of protocols
Q : X → Y , depending on a privacy parameter α, whose
output satisfies α-LDP with respect to X; for an overview
see [24]. Such a protocol automatically satisfies α-LDP, hence
certainly α-LIP, with respect to S. However, because X is only
indirectly correlated with Y , such a protocol’s actual LIP value
may be better. The privacy of such a protocol Q is found by

LIP(Q) = max
y∈Y,s∈S

∣∣∣∣ln
∑
xQy|x px|s∑
xQy|x px

∣∣∣∣ ; (27)

then Q satisfies ε-LIP if and only if LIP(Q) ≤ ε.
This paper considers two LDP protocols. The first one is

Generalised Rapid Response (GRR) [25]. The key strength of
GRR is that for large enough α it maximises I(X;Y ) [9].
Given α, GRR is a privacy protocol GRRα : X → X given
by

GRRα
y|x =

{ eα
eα+a−1 , if x = y,

1
eα+a−1 , if x 6= y.

(28)

A direct calculation then shows that

LIP(GRRα) = max
x,s

∣∣∣∣ln 1 + (eα − 1) px|s

1 + (eα − 1) px

∣∣∣∣ . (29)

For GRR to satisfy ε-LIP, the equation LIP(GRRα) = ε needs
to be solved for α. Since LIP(GRRα) is increasing in α, this
can be done fast computationally.

The second protocol that is relevant to this paper is Opti-
mised Unary Encoding (OUE) [26]. This protocol is notable
for being one of the protocols that has the least known variance
in frequency estimation [26]. For a choice of α as privacy
parameter, and an input x, the output of OUEα : X → 2X is
a vector of independent Bernoulli variables Ex′ for x′ ∈ X ,
satisfying

P(Ex′ = 1) =

{
1
2 , if x′ = x,

1
eα+1 , if x′ 6= x.

(30)

In other words, If a y ∈ 2X is identified with a subset of X
(so #y denotes its cardinality), one gets

OUEαy|x =

{
e(a−#y)α

2(eα+1)a−1 , if x ∈ y,
e(a−#y−1)α

2(eα+1)a−1 , if x /∈ y.
(31)

It follows that

LIP(OUEα) = max
y,s

∣∣∣∣∣ln 1 + (eα − 1)
∑
x∈y px|s

1 + (eα − 1)
∑
x∈y px

∣∣∣∣∣ . (32)

B. Conditional Reporting

In general, a generic LDP protocol will not be ideal for
the PF scenario, since these are designed to obscure all
information about X , rather than just the part that holds
information about S. To address this shortcoming, the protocol
Conditional Reporting (CR) is introduced in Algorithm 1. This
mechanism needs both S and X as input; hence it differs from
the other protocols discussed in this paper, which only have X
as input. The value of S is masked by Randomised Response.
If the output s̃ equals S, the algorithm returns the true value
of X . If not, it outputs a random one, whose probability
distribution is given by pX|s̃.

Algorithm 1: Conditional Reporting (CRα)
Input : Privacy parameter α; Probability distribution

pS,X ; input (s, x) ∈ S × X
Output: y ∈ X
Sample s̃ ∈ S with

P(s̃ = s′) =

{
eα

eα+#S−1 , if s′ = s,
1

eα+#S−1 , otherwise
if s̃ = s then

y ← x;
else

Sample x̃ ∈ X with P(x̃ = x′) = px′|s̃;
y ← x̃;

end

CRα certainly satisfies α-LDP, hence α-LIP, w.r.t. S. How-
ever, if S and X are not perfectly correlated, better privacy
can be achieved, as outlined by the proposition below.

Proposition 1. Given a probability distribution pX,S and a
α ≥ 0, define

L(α) = max
x,s

∣∣∣∣∣ln (eα − 1) px|s +
∑
s′ px|s′

(eα − 1) px +
∑
s′ px|s′

∣∣∣∣∣ . (33)

Then CRα satisfies ε-LIP if and only if ε ≥ L(α).

The proof is presented in Appendix A. One can use this
proposition to find the α needed to have CRα satisfy ε-LDP,
by solving L(α) = ε. At the very least one has the following
upper bound:

Proposition 2. The protocol CRα satisfies α-LDP. In partic-
ular, it satisfies α-LIP, and L(α) ≤ α.
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(a). ε-LDP vs ε-LIP
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(b). ε/2-LIP vs ε-LDP

Figure 3. Comparison of computation time and I(X;Y ) for LDP protocols found via Theorem 2 and LIP protocols found via Theorem 3, for random pS,X
with c = 2, a = 5, and ε ∈ {0.5, 1, 1.5, 2}.

Proof. For all y ∈ X and s ∈ S one has, following equation
(48) in Appendix A, that

P(CRα(X,S) = y|S = s) = 1
eα+c−1

(
eα py|s +

∑
s′ 6=s

py|s′
)
.

(34)
It follows that

P(CRα(X,S) = y|S = s)

P(CRα(X,S) = y|S = s′)

=
eα py|s +py|s′ +

∑
s′′ 6=s,s′ py|s′′

py|s +eαpy|s′ +
∑
s′′ 6=s,s′ py|s′′

(35)

≤ max

{
1,

eα py|s +py|s′

py|s +eαpy|s′

}
(36)

≤ eα.

VIII. EXPERIMENTS

The feasibility of the different methods is tested by per-
forming small-scale experiments on synthetic data and real-
world data. All experiments are implemented in Matlab and
conducted on a PC with Intel Core i7-7700HQ 2.8GHz and
32GB memory.

A. Synthetic data: LDP vs LIP

The computing time for finding optimal ε-LDP and ε-LIP
protocols was compared for c = 2 and a = 5 for 10 random
distributions pS,X , obtained by generating each ps,x uniformly
from [0, 1] and then normalising. The LDP/LIP privacy pa-
rameter ε is taken to be in {0.5, 1, 1.5, 2}; the results are in
Figure 3(a). As one can see, Theorem 3 gives significantly
faster results than Theorem 2; the average computing time
for Theorem 2 for ε = 0.5 is 133s, while for Theorem 3
this is 0.0206s. With regards to the utility I(X;Y ), since ε-
LDP implies ε-LIP, the optimal ε-LIP protocol will have better
utility than the optimal ε-LDP protocol. However, as can be
seen from the figure, the difference in utility is relatively low.
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Figure 4. Comparison of computation time and I(X;Y ) for
ε-(SR)LIP-protocols found via Theorems 3 and 4, for random pS,X with

c = 2, a1 = a2 = 3, a3 = 4, and ε ∈ {0.5, 1, 1.5, 2}.

Note that for bigger ε, both the difference in computing time
and the difference in I(X;Y ) between LDP and LIP become
less. This is because of the probabilistic relation between S
and X , for ε large enough, any sanitisation protocol satisfies
ε-LIP and ε-LDP. This means that as ε grows, the resulting
polytopes will have fewer defining inequalities, hence they will
have fewer vertices. This results in lower computation times,
which affects LDP more than LIP. At the same time, the fact
that every protocol is both ε-LIP and ε-LDP will result in the
same optimal utility.

In Figure 3(b), optimal ε
2 -LDP protocols are compared to

to optimal ε-LIP protocols. Again, LIP is significantly faster
than LDP. Since ε-LIP implies ε

2 -LDP, the optimal ε2 -LDP has
higher utility; again the difference is low.

B. Synthetic data: LIP vs SRLIP

Similar comparisons are perfomed for multiple attributes,
for c = 2, a1 = a2 = 3 and a3 = 4, comparing the methods
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(a). S = marital status, X = education (b). S = occupation, X = education

(c). S = marital status, X = relationship (d). S = occupation, X = relationship

(e). S = marital status, X = sex (f). S = occupation, X = sex

Figure 5. Experiments on the adult-dataset.

of Theorems 3 and 4. The results are presented in Figure 4. As
one can see, Theorem 4 is significantly slower, with Theorem
3 being on average 476 times as fast. There is a sizable
difference in utility, caused on one hand by the fact that ε-
SRLIP is a stricter privacy requirement than ε-LIP, and on the
other hand by the fact that Theorem 4 does not give us the
optimal ε-SRLIP protocol.

C. Adult-dataset

The utility of Conditional Reporting (CR) is tested both
on real world data and synthetic data. The real world data
is from the well-known adult-dataset [27], which contains

demographic data from the 1994 US census. For these exper-
iments S is taken to be in {marital status, occupation} (with
c = 7 and c = 15, respectively) and X is taken to be in
{education, relationship, sex} (with a = 16, 6, 2). Based on
the findings in the previous sections, LIP is taken as a privacy
measure, and I(X;Y ) as a utility measure. CR is compared
on the one hand with the optimal method (Opt-LIP) found in
Section V, and on the other hand with the established LDP
protocols GRR and OUE. The results are shown in Figure
5. For X = education, the mutual information for OUE
was infeasible to compute. Similarly, for S = occupation,
some cases of Opt-LIP failed to compute within a reasonable
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(a). a = 5, c = 2 (b). a = 2, c = 5

(c). a = 5, c = 5 (d). a = 3, c = 5

(e). a = 5, c = 7 (f). a = 7, c = 5

Figure 6. Experiments on synthetic data. For each value of a and c, the average utility is taken over 100 randomly generated probability distributions. Bar
size denotes standard deviation.

timeframe. Nevertheless, it can concluded that GRR and CR
both perform somewhere between Opt-LIP and OUE. As the
LIP value ε grows larger, GRR and CR grow close to Opt-LIP.
At the same time, OUE falls off for large ε, having 1

2 H(X) as
its limit. This is because OUE by design only has probability
1
2 transmitting the true X (as element of the set Y ). The
difference between GRR and CR is less clear, and it appears
to depend on the joint distribution pX,S which protocol gives
the best utility.

D. Synthetic data: GRR vs CR

To investigate the difference between GRR and CR, both
methods are applied to synthetic data. OUE is disregarded as
it performs worse than the other two protocols, especially in
the low privacy regime. For a fixed choice of a and c, 100
probability distributions are drawn from the Jeffreys prior on
S×X , i.e., the symmetric Dirichlet distribution with parameter
1
2 . A set of LIP values ε is fixed, and for each of these and each
probability distribution, equations (29) and (33) are solved,
setting the left hand side equal to ε and solving for αGRR

and αCR. The mutual information I(X;Y ) is then calculated,
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which is normalised by dividing by H(X). The resulting
averages and standard deviations are displayed in Figure 6.
On the whole, it can be seen that the larger a is compared to
c, the more utility CR provides compared to GRR. However,
this does not tell the whole story, as the difference between
datasets has more impact on the utility than the difference
between methods.

E. GRR and CR parameter α

To investigate what property of the probability distribution
pXS causes CR to outperform GRR, the parameters αCR and
αGRR that govern the privacy protocols CR and GRR are
considered. Both of these have the property that the higher
their value, the less ‘random’ the protocols are, resulting in a
better utility. Since these α are found from ε through different
equations, the difference in utility of GRR and CR for different
probability distributions may be explained by a difference
in α. This assertion is tested for 100 randomly generated
distributions in Figure 7. As can be seen, the difference in
mutual information can for a large part be explained by a
difference in α (ρ = 0.9815, ρ = 0.9889, and ρ = 0.9731,
respectively). In Figure 8, the relation between α and the LIP
value ε for the experiments in 5(b) and 5(d) is shown. The
fact that αGRR > αCR in 8(a) corresponds to the fact that
GRR outperforms CR in 5(b), and the opposite relation holds
between 8(b) and 5(d).

Unfortunately, we were not able to relate the differ-
ence in parameter α to other properties of the distribution.
Without presenting details we mention that the properties
I(X;S),maxx,s px,s,maxx px and maxs ps do not appear to
have an impact on the difference in utility between GRR and
CR.

IX. CONCLUSIONS AND FUTURE WORK

Local data sanitisation protocols have the advantage of
being scalable for large numbers of users. Furthermore, the
advantage of using differential privacy-like privacy metrics
is that they provide worst-case guarantees, ensuring that the
privacy of every user is sufficiently protected. For both ε-LDP
and ε-LIP methods are derived to find sanitisation protocols
that maximise mutual information between input and output,
solving the PF problem for these metrics.

Within this setting, it can be observed that ε-LIP has two
main advantages over ε-LDP. First, it fits better within the PF
setting, where the distribution pS,X is (at least approximately)
known to the estimator. Second, finding the optimal protocol
is significantly faster than under LDP, especially for small ε.
If one nevertheless prefers ε-LDP as a privacy metric, then it
is still worthwile to find the optimal ε

2 -LIP protocol, as this
can be found significantly faster, at a low utility penalty.

In the multiple attributes setting, it is shown that ε-SRLIP
provides additional privacy guarantees compared to ε-LIP,
since without this requirement a protocol can lose all its
privacy protection in the presence of side channels. Unfor-
tunately, however, experiments show that this is paid for both
in computation time and in utility.

(a). ε = 1

(b). ε = 1.5

(c). ε = 2

Figure 7. Difference in α versus difference in utility for 100 randomly
generated probability distributions, for a = c = 5.

With regard to the specific protocols, it is found that the
newly introduced protocol, CR, generally outperforms OUE,
especially for high values of ε-LIP. This can be explained
from the fact that by design the utility of OUE is capped at
1
2 H(X). CR behaves more or less similar to GRR, and which
of these two protocols performs best depends on properties
of the joint distribution pX,S . In particular, it largely depends
on which of the two protocols has the highest value of their
governing parameter α. Also, it can be seen that CR performs
better on average if a is large compared to c.

For further research, a number of important avenues remain
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(a) S = occupation, X = education (b) S = occupation, X = relationship

Figure 8. Value of GRR and CR parameter α for different values of ε for the adult-dataset.

to be explored. First, the aggregator’s knowledge about pS,X
may not be perfect, because they may learn about pS,X
through observing (~S, ~X). Incorporating this uncertainty leads
to robust optimisation [28], which would give stronger privacy
guarantees.

Second, it might be possible to improve the method of
obtaining ε-SRLIP protocols via Theorem 4. Examining its
proof shows that lower values of εj may suffice to still ensure
ε-SRLIP. Furthermore, the optimal choice of (εj)j≤m such
that

∑
j ε
j = ε might not be εj = ε

m . However, it is
computationally prohibitive to perform the vertex enumera-
tion for many different choices of (εj)j≤m, and as such a
new theoretical approach is needed to determine the optimal
(εj)j≤m from ε and pS,X .

Third, it would be interesting to see if there are other ways
to close the gap between the theoretically optimal protocol,
which may be hard to compute in practice, and general LDP
protocols, which do not see the difference between sensitive
and non-sensitive information. This is relevant because CR
needs both S and X as input, and there may be situations
where access to S is not available.

Finally, although CR outperforms GRR and OUE for some
datasets, it does not do so consistently. More research into the
properties of distributions where CR fails to provide a signif-
icant advantage might lead to improved privacy protocols.
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[1] Milan Lopuhaä-Zwakenberg. “The Privacy Funnel from
the Viewpoint of Local Differential Privacy”. In: Four-
teenth International Conference on the Digital Society
(ICDS) (2020), pp. 19–24.

[2] Flavio du Pin Calmon, Ali Makhdoumi, Muriel Médard,
Mayank Varia, Mark Christiansen, and Ken R Duffy.
“Principal inertia components and applications”. In:
IEEE Transactions on Information Theory 63.8 (2017),
pp. 5011–5038.

[3] Ni Ding and Parastoo Sadeghi. “A Submodularity-based
Agglomerative Clustering Algorithm for the Privacy
Funnel”. In: arXiv:1901.06629 (2019). Preprint, ac-
cessed 2020.11.8.

[4] Fabian Prasser, Florian Kohlmayer, Ronald Lauten-
schlaeger, and Klaus A. Kuhn. “Arx-a comprehen-
sive tool for anonymizing biomedical data”. In: AMIA
Annual Symposium Proceedings. Vol. 2014. American
Medical Informatics Association. 2014, p. 984.

[5] Ali Makhdoumi, Salman Salamatian, Nadia Fawaz, and
Muriel Médard. “From the information bottleneck to
the privacy funnel”. In: 2014 IEEE Information Theory
Workshop (ITW 2014). IEEE. 2014, pp. 501–505.

[6] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi
Nissim, Sofya Raskhodnikova, and Adam Smith. “What
can we learn privately?” In: SIAM Journal on Comput-
ing 40.3 (2011), pp. 793–826.

[7] Bo Jiang, Ming Li, and Ravi Tandon. “Local Infor-
mation Privacy with Bounded Prior”. In: ICC 2019-
2019 IEEE International Conference on Communica-
tions (ICC). IEEE. 2019, pp. 1–7.

[8] Salman Salamatian, Flavio du Pin Calmon, Nadia
Fawaz, Ali Makhdoumi, and Muriel Médard. “Privacy-
Utility Tradeoff and Privacy Funnel”. In: http:// www.
mit . edu / ∼salmansa / files / privacy TIFS . pdf (2020).
Preprint, accessed 2020.11.8.

[9] Peter Kairouz, Sewoong Oh, and Pramod Viswanath.
“Extremal mechanisms for local differential privacy”.
In: Advances in neural information processing systems.
2014, pp. 2879–2887.

[10] Borzoo Rassouli and Deniz Gunduz. “On perfect pri-
vacy”. In: 2018 IEEE International Symposium on In-
formation Theory (ISIT). IEEE. 2018, pp. 2551–2555.

172

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org
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APPENDIX A
PROOFS

Proof of Theorem 4. For J ⊆ {1, . . . ,m} and j ∈
{1, . . . ,m}, define J [j] := J ∩ {1, . . . , j − 1}. Furthermore,
write X \J =

∏
j /∈J X j , and its elements as x\J . Define

ε :=
∑
j ε
j . Then

py|s,xJ =
∑
x\J

py|x px\J |s,xJ (37)

= pyJ |xJ
∑
x\j

∏
j /∈J

pyj |xj

 px\J |s,xJ (38)

= pyJ |xJ
∑
x\j

∏
j /∈J

pyj |xj pxj |s,xJ[j] (39)

= pyJ |xJ
∏
j /∈J

∑
xj

pyj |xj pxj |s,xJ[j] (40)

= pyJ |xJ
∏
j /∈J

pyj |s,xJ[j] (41)

≤ pyJ |xJ
∏
j /∈J

eε
j

pyj |xJ[j] (42)

≤ eε pyJ |xJ
∏
j /∈J

pyj |xJ[j] (43)

= eε py|xJ . (44)

The fact that e−ε py|xJ ≤ py|s,xJ is proven analogously.

Proof of Proposition 1. Write Qy|x,s = P(CRα(x, s) = y).
Then

Qy|x,s =
∑
s′

P(CRα(x, s) = y|s̃ = s′)P(s̃ = s′|S = s)

(45)

=
eα

eα + c− 1
+

1

eα + c− 1

∑
s′ 6=s

py|s′ , (46)

where δx=y is the Kronecker delta. It follows that

P(CRα(X,S) = y|S = s)

=
∑
x

Qy|x,s px|s (47)
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=
eα

eα + c− 1
py|s +

1

eα + c− 1

∑
s′ 6=s

py|s′ (48)

=
eα − 1

eα + c− 1
py|s +

1

eα + c− 1

∑
s′

py|s′ , (49)

P(CRα(X,S) = y)

=
∑
s

P(CRα(X,S) = y|S = s) ps (50)

=
eα

eα + c− 1
py +

1

eα + c− 1

∑
s

∑
s′ 6=s

py|s′ ps (51)

=
eα

eα + c− 1
py +

1

eα + c− 1

∑
s′

py|s′
∑
s6=s′

ps (52)

=
eα

eα + c− 1
py +

1

eα + c− 1

∑
s′

(py|s′ −py,s′) (53)

=
eα − 1

eα + c− 1
py +

1

eα + c− 1

∑
s′

py|s′ . (54)

It follows that

L(α) = max
y,s

∣∣∣∣ln P(CRα(X,S) = y|S = s)

P(CRα(X,S) = y)

∣∣∣∣ , (55)

hence CRα satisfies ε-LIP if and only if ε ≥ L(α).
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