

The International Journal on Advances in Security is published by IARIA.

ISSN: 1942-2636

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Security, issn 1942-2636

vol. 12, no. 1 & 2, year 2019, http://www.iariajournals.org/security/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Security, issn 1942-2636

vol. 12, no. 1 & 2, year 2019, <start page>:<end page> , http://www.iariajournals.org/security/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2019 IARIA

International Journal on Advances in Security

Volume 12, Number 1 & 2, 2019

Editors-in-Chief

Hans-Joachim Hof,

- Full Professor at Technische Hochschule Ingolstadt, Germany

- Lecturer at Munich University of Applied Sciences

- Group leader MuSe - Munich IT Security Research Group

- Group leader INSicherheit - Ingolstädter Forschungsgruppe angewandte IT-Sicherheit

- Chairman German Chapter of the ACM

Birgit Gersbeck-Schierholz

- Leibniz Universität Hannover, Germany

Editorial Advisory Board

Masahito Hayashi, Nagoya University, Japan

Daniel Harkins , Hewlett Packard Enterprise, USA

Vladimir Stantchev, Institute of Information Systems, SRH University Berlin, Germany

Wolfgang Boehmer, Technische Universitaet Darmstadt, Germany

Manuel Gil Pérez, University of Murcia, Spain

Carla Merkle Westphall, Federal University of Santa Catarina (UFSC), Brazil

Catherine Meadows, Naval Research Laboratory - Washington DC, USA

Mariusz Jakubowski, Microsoft Research, USA

William Dougherty, Secern Consulting - Charlotte, USA

Hans-Joachim Hof, Munich University of Applied Sciences, Germany

Syed Naqvi, Birmingham City University, UK

Rainer Falk, Siemens AG - München, Germany

Steffen Wendzel, Fraunhofer FKIE, Bonn, Germany

Geir M. Køien, University of Agder, Norway

Carlos T. Calafate, Universitat Politècnica de València, Spain

Editorial Board

Gerardo Adesso, University of Nottingham, UK

Ali Ahmed, Monash University, Sunway Campus, Malaysia

Manos Antonakakis, Georgia Institute of Technology / Damballa Inc., USA

Afonso Araujo Neto, Universidade Federal do Rio Grande do Sul, Brazil

Reza Azarderakhsh, The University of Waterloo, Canada

Ilija Basicevic, University of Novi Sad, Serbia

Francisco J. Bellido Outeiriño, University of Cordoba, Spain

Farid E. Ben Amor, University of Southern California / Warner Bros., USA

Jorge Bernal Bernabe, University of Murcia, Spain

Lasse Berntzen, University College of Southeast, Norway

Catalin V. Birjoveanu, "Al.I.Cuza" University of Iasi, Romania

Wolfgang Boehmer, Technische Universitaet Darmstadt, Germany

Alexis Bonnecaze, Université d'Aix-Marseille, France

Carlos T. Calafate, Universitat Politècnica de València, Spain

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Zhixiong Chen, Mercy College, USA

Clelia Colombo Vilarrasa, Autonomous University of Barcelona, Spain

Peter Cruickshank, Edinburgh Napier University Edinburgh, UK

Nora Cuppens, Institut Telecom / Telecom Bretagne, France

Glenn S. Dardick, Longwood University, USA

Vincenzo De Florio, University of Antwerp & IBBT, Belgium

Paul De Hert, Vrije Universiteit Brussels (LSTS) - Tilburg University (TILT), Belgium

Pierre de Leusse, AGH-UST, Poland

William Dougherty, Secern Consulting - Charlotte, USA

Raimund K. Ege, Northern Illinois University, USA

Laila El Aimani, Technicolor, Security & Content Protection Labs., Germany

El-Sayed M. El-Alfy, King Fahd University of Petroleum and Minerals, Saudi Arabia

Rainer Falk, Siemens AG - Corporate Technology, Germany

Shao-Ming Fei, Capital Normal University, Beijing, China

Eduardo B. Fernandez, Florida Atlantic University, USA

Anders Fongen, Norwegian Defense Research Establishment, Norway

Somchart Fugkeaw, Thai Digital ID Co., Ltd., Thailand

Steven Furnell, University of Plymouth, UK

Clemente Galdi, Universita' di Napoli "Federico II", Italy

Birgit Gersbeck-Schierholz, Leibniz Universität Hannover, Germany

Manuel Gil Pérez, University of Murcia, Spain

Karl M. Goeschka, Vienna University of Technology, Austria

Stefanos Gritzalis, University of the Aegean, Greece

Michael Grottke, University of Erlangen-Nuremberg, Germany

Ehud Gudes, Ben-Gurion University - Beer-Sheva, Israel

Indira R. Guzman, Trident University International, USA

Huong Ha, University of Newcastle, Singapore

Petr Hanáček, Brno University of Technology, Czech Republic

Gerhard Hancke, Royal Holloway / University of London, UK

Sami Harari, Institut des Sciences de l'Ingénieur de Toulon et du Var / Université du Sud Toulon Var, France

Daniel Harkins , Hewlett Packard Enterprise, USA

Ragib Hasan, University of Alabama at Birmingham, USA

Masahito Hayashi, Nagoya University, Japan

Michael Hobbs, Deakin University, Australia

Hans-Joachim Hof, Munich University of Applied Sciences, Germany

Neminath Hubballi, Infosys Labs Bangalore, India

Mariusz Jakubowski, Microsoft Research, USA

Ravi Jhawar, Università degli Studi di Milano, Italy

Dan Jiang, Philips Research Asia Shanghai, China

Georgios Kambourakis, University of the Aegean, Greece

Florian Kammueller, Middlesex University - London, UK

Sokratis K. Katsikas, University of Piraeus, Greece

Seah Boon Keong, MIMOS Berhad, Malaysia

Sylvia Kierkegaard, IAITL-International Association of IT Lawyers, Denmark

Hyunsung Kim, Kyungil University, Korea

Geir M. Køien, University of Agder, Norway

Ah-Lian Kor, Leeds Metropolitan University, UK

Evangelos Kranakis, Carleton University - Ottawa, Canada

Lam-for Kwok, City University of Hong Kong, Hong Kong

Jean-Francois Lalande, ENSI de Bourges, France

Gyungho Lee, Korea University, South Korea

Clement Leung, Hong Kong Baptist University, Kowloon, Hong Kong

Diego Liberati, Italian National Research Council, Italy

Giovanni Livraga, Università degli Studi di Milano, Italy

Gui Lu Long, Tsinghua University, China

Jia-Ning Luo, Ming Chuan University, Taiwan

Thomas Margoni, University of Western Ontario, Canada

Rivalino Matias Jr ., Federal University of Uberlandia, Brazil

Manuel Mazzara, UNU-IIST, Macau / Newcastle University, UK

Catherine Meadows, Naval Research Laboratory - Washington DC, USA

Carla Merkle Westphall, Federal University of Santa Catarina (UFSC), Brazil

Ajaz H. Mir, National Institute of Technology, Srinagar, India

Jose Manuel Moya, Technical University of Madrid, Spain

Leonardo Mostarda, Middlesex University, UK

Jogesh K. Muppala, The Hong Kong University of Science and Technology, Hong Kong

Syed Naqvi, CETIC (Centre d'Excellence en Technologies de l'Information et de la Communication),Belgium

Sarmistha Neogy, Jadavpur University, India

Mats Neovius, Åbo Akademi University, Finland

Jason R.C. Nurse, University of Oxford, UK

Peter Parycek, Donau-Universität Krems, Austria

Konstantinos Patsakis, Rovira i Virgili University, Spain

João Paulo Barraca, University of Aveiro, Portugal

Sergio Pozo Hidalgo, University of Seville, Spain

Yong Man Ro, KAIST (Korea advanced Institute of Science and Technology), Korea

Rodrigo Roman Castro, University of Malaga, Spain

Heiko Roßnagel, Fraunhofer Institute for Industrial Engineering IAO, Germany

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-

German Supercomputing Alliance, Germany

Antonio Ruiz Martinez, University of Murcia, Spain

Paul Sant, University of Bedfordshire, UK

Peter Schartner, University of Klagenfurt, Austria

Alireza Shameli Sendi, Ecole Polytechnique de Montreal, Canada

Dimitrios Serpanos, Univ. of Patras and ISI/RC ATHENA, Greece

Pedro Sousa, University of Minho, Portugal

George Spanoudakis, City University London, UK

Vladimir Stantchev, Institute of Information Systems, SRH University Berlin, Germany

Lars Strand, Nofas, Norway

Young-Joo Suh, Pohang University of Science and Technology (POSTECH), Korea

Jani Suomalainen, VTT Technical Research Centre of Finland, Finland

Enrico Thomae, Ruhr-University Bochum, Germany

Tony Thomas, Indian Institute of Information Technology and Management - Kerala, India

Panagiotis Trimintzios, ENISA, EU

Peter Tröger, Hasso Plattner Institute, University of Potsdam, Germany

Simon Tsang, Applied Communication Sciences, USA

Marco Vallini, Politecnico di Torino, Italy

Bruno Vavala, Carnegie Mellon University, USA

Mthulisi Velempini, North-West University, South Africa

Miroslav Velev, Aries Design Automation, USA

Salvador E. Venegas-Andraca, Tecnológico de Monterrey / Texia, SA de CV, Mexico

Szu-Chi Wang, National Cheng Kung University, Tainan City, Taiwan R.O.C.

Steffen Wendzel, Fraunhofer FKIE, Bonn, Germany

Piyi Yang, University of Shanghai for Science and Technology, P. R. China

Rong Yang, Western Kentucky University , USA

Hee Yong Youn, Sungkyunkwan University, Korea

Bruno Bogaz Zarpelao, State University of Londrina (UEL), Brazil

Wenbing Zhao, Cleveland State University, USA

International Journal on Advances in Security

Volume 12, Numbers 1 & 2, 2019

CONTENTS

pages: 1 - 12
Towards a Comprehensive Automotive Cybersecurity Reference Architecture
Christoph Schmittner, Austrian Institute of Technology, Austria
Martin Latzenhofer, Austrian Institute of Technology, Austria
Abdelkader Shaaban Magdy, Austrian Institute of Technology, Austria
Arndt Bonitz, Austrian Institute of Technology, Austria
Markus Hofer, Austrian Institute of Technology, Austria

pages: 13 - 28
MEADcast: Explicit Multicast with Privacy Aspects
Vitalian Danciu, Ludwig-Maximilians-Universität München, Germany
Cuong Ngoc Tran, Ludwig-Maximilians-Universität München, Germany

pages: 29 - 41
Evaluating Security Products: Formal Model and Requirements of a New Approach
Pierre-Marie Bajan, IRT SystemX; University of Paris-Saclay, France
Christophe Kiennert, Télécom SudParis, France
Hervé Debar, Télécom SudParis, France

pages: 42 - 52
Power Consumption Analysis of the New Covert Channels in CoAP
Aleksandar Velinov, Faculty of Computer Science, University “Goce Delčev”, Stip, Republic of Macedonia
Aleksandra Mileva, Faculty of Computer Science, University “Goce Delčev”, Stip, Republic of Macedonia
Done Stojanov, Faculty of Computer Science, University “Goce Delčev”, Stip, Republic of Macedonia

pages: 53 - 68
Secure Cooperation of Untrusted Components Using a Strongly Typed Virtual Machine
Roland Wismüller, University of Siegen, Germany
Damian Ludwig, University of Siegen, Germany

pages: 69 - 78
Implementation and Performance Evaluation of Eavesdropping Protection Method over MPTCP Using Data
Scrambling and Path Dispersion
Toshihiko Kato, University of Electro-Communications, Japan
Shihan Cheng, University of Electro-Communications, Japan
Ryo Yamamoto, University of Electro-Communications, Japan
Satoshi Ohzahata, University of Electro-Communications, Japan
Nobuo Suzuki, Advanced Telecommunication Research Institute International, Japan

pages: 79 - 94
Protecting Deployment Models in Collaborative Cloud Application Development
Vladimir Yussupov, Institute of Architecture of Application Systems (IAAS), University of Stuttgart, Germany
Ghareeb Falazi, Institute of Architecture of Application Systems (IAAS), University of Stuttgart, Germany
Michael Falkenthal, Institute of Architecture of Application Systems (IAAS), University of Stuttgart, Germany
Frank Leymann, Institute of Architecture of Application Systems (IAAS), University of Stuttgart, Germany

pages: 95 - 107
Synthesis of Formal Specifications From Requirements for Refinement-based Real Time Object Code Verification
Eman Al-Qtiemat, North Dakota State University, US
Sudarshan Srinivasan, North Dakota State University, US
Zeyad Al-Odat, North Dakota State University, US
Mohana Asha Latha Dubasi, North Dakota State University, US
Sana Shuja, COMSATS University, Pakistan

pages: 108 - 118
Reviewing National Cybersecurity Awareness for Users and Executives in Africa
Maria Bada, University of Cambridge, UK
Basie von Solms, University of Johannesburg, South Africa
Ioannis Agrafiotis, University of Oxford, UK

pages: 119 - 129
The Speech Interface as an Attack Surface: An Overview
Mary K. Bispham, University of Oxford, United Kingdom
Ioannis Agrafiotis, University of Oxford, United Kingdom
Michael Goldsmith, University of Oxford, United Kingdom

pages: 130 - 140
Threat Analysis using Vulnerability Databases - Topic Model Analysis using LDA and System Model Description -
Katsuyuki Umezawa, Shonan Institute of Technology, Japan
Yusuke Mishina, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Sven Wohlgemuth, Hitachi, Ltd., Japan
Kazuo Takaragi, National Institute of Advanced Industrial Science and Technology (AIST), Japan

pages: 141 - 152
Dont Wait to be Breached! Creating Asymmetric Uncertainty of Cloud Applications via Moving Target Defenses
Kennedy Torkura, Hasso Plattner Institute, University of Potsdam, Germany
Christoph Meinel, Hasso Plattner Institute, University of Potsdam, Germany
Nane Kratzke, Lübeck University of Applied Sciences, Germany

1

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards a Comprehensive

Automotive Cybersecurity Reference Architecture

Christoph Schmittner, Martin Latzenhofer,

Shaaban Abdelkader Magdy, Arndt Bonitz, Markus Hofer
Center for Digital Safety & Security

Austrian Institute of Technology

Vienna, Austria

Email: {christoph.schmittner | martin.latzenhofer |

abdelkader.shaaban | arndt.bonitz | markus.hofer}@ait.ac.at

Abstract— While interconnectivity, complexity, and software-

dependency are prerequisites for automated driving, they also

increase cybersecurity risks for the whole transportation

system. Information and communication technology

infrastructure is becoming a second layer for critical

transportation infrastructure. In the ongoing Austrian research

project CySiVuS, we identified stakeholders which are involved,

the services offered and consumed, as well as the risks to a

cooperative intelligent transport system (C-ITS) in a structured

manner. We collected and categorized different use cases and

developed a specific service matrix for C-ITS. Based on an

adapted security risk management process we conducted an

exemplary security risk management process, using threat

modelling. This serves as a fundamental preliminary step

towards a comprehensive automotive cybersecurity reference

architecture, which is the main objective of the CySiVuS

project. Only if all components in the information and

communication technology (ICT) infrastructure provide their

services in a sufficient quality in accordance with the required

security and safety demands, society can rely on an

interconnected automotive system.

Keywords- automotive cybersecurity; cooperative intelligent

transport system; service matrix; reference architecture; risk

management.

I. INTRODUCTION

In complex and multi-modal environments, smart urban
mobility in form of automated driving requires new
approaches, which interconnect vehicles with other road users
and the road infrastructure. The paper contribution is extended
from the authors' previous work [1], which refers to the
Austrian national security research project “Cybersecurity for
Traffic infrastructure and road operators” (CySiVuS), which
aims to tackle cybersecurity and privacy as the key challenges
for cooperative traffic infrastructures and automated driving
of interconnected cars. The project shifts the perspective from
OEMs to traffic infrastructure providers and road service
operators. The existing and future road traffic system, together
with the associated digital infrastructure is analyzed, and
different automatic driving scenarios are collected. Various
attack vectors based on different aspects of the whole
automotive system require enhanced and further matured
cybersecurity standards specific for the automotive domain.
Based on these outcomes, the objective is to work out a

comprehensive automotive cyber security reference
architecture. As a step towards this goal, we identified use
cases, their involved services and structured the services based
on stakeholder offering and consuming services. Here, all
interdisciplinary interests and objectives of stakeholders have
been addressed and existing technologies and new
technological innovations have been integrated. This article
provides an overview of the project’s approach and highlights
the urgent need for a complete reference architecture for a
(cyber) secure automotive traffic infrastructure.

Main benefits of connected vehicles are a reduction of
accidents by communicating road conditions, hazards, and
critical situations, as well as increasing traffic efficiency
through techniques like platooning or real-time traffic
monitoring and control [4]. Reliable connectivity is the
mandatory prerequisite for processing various states of the
automated vehicle and accelerating further development.
Positioning and localization, the creation of complete
situational awareness, the reduction of accidents and the
increase of comfort and efficiency depend on cooperative and
automated driving. Current approaches towards stand-alone
vehicles are sufficient for driving on highway or country
roads, but these vehicles are not yet ready for urban
environments. In our position paper, the idea of a
comprehensive automotive cybersecurity reference
architecture was postulated [1]. In this paper we included a
more detailed consideration of security aspects and additional
uses cases, collected from different sources. This leads to a
more substantial understanding of how a cooperative
intelligent transport system (C-ITS), its components and its
respective stakeholders interact with each other. A
preliminary step to develop the reference architecture was to
establish a service matrix showing the interdependencies of
services. Especially in urban environments, it is necessary to
integrate automated driving vehicles into a holistic, intelligent
transportation system to take advantage of all the potential
benefit [2]. Therefore, this paper will specify the infrastructure
and connectivity related aspects of automated driving.

Recent projects on a European level [3] identified
cybersecurity as a key challenge and risk for future
transportation systems. Like physical security and protection
for transportation infrastructure, cybersecurity of ICT
infrastructure for connected and automated vehicles cannot be
left exclusively to the private sector, as their interests and
objectives differ, as well as their scopes is restricted to their

2

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specific domain. Extensive mobility needs the cooperation of
all stakeholders, i.e., automotive original equipment
manufacturers (OEMs), infrastructure providers and road
service operators, transport facilitators, end users, physical
and ICT infrastructure providers, and authorities. All these
actors with their different perspectives, as well as all the
components together with their interrelationships are
considered as one comprehensive infrastructure system. This
system relies on extensive and reliable communication
between these elements on different tiers. The communication
should not be eavesdropped, compromised or manipulated.
This makes cybersecurity a critical requirement for a
connected automated transportation system, which is vital for
the physical transportation infrastructure and a modern
society.

This paper is divided into seven sections. After this
introduction in Section II, we first give a brief overview of the
state of the art of a road transport system. Here we argue that
there is no sustainable structured reference architecture that
supports a broad perspective on automotive cybersecurity.
Risks should be identified, assessed and addressed through an
extensive risk management approach. In order to establish a
clear reference architecture, we suggest a tailored risk
management process as discussed in Section III. Additionally,
concrete use cases provide information about the implicit
structure of a C-ITS. Consequently, we discuss typical use
case scenarios and form use case categories with the potential
affecting the security of these automotive services from the
infrastructure perspective in Section IV. Based on these
specific use cases, we define the structure of a proposed C-
ITS service matrix in Section V. We introduce the core aspects
and high-level guidelines in Section VI. The final Section VII
provides conclusions and outlooks for the near future.

II. STATE OF THE ART

For automated vehicles, the Society of Automotive
Engineers (SAE) J3016 [5] defines five levels, which give a
framework to classify automated vehicles. Currently available
mass-market systems reach up to level three. Examples of
level three are highway automation and parking assistance
systems. The best-known example is Tesla’s autopilot and
parking assistance system [6]. Higher levels, moving towards
high driving automation or even complete automation, are
already in a real-world test stage [7], but not yet publicly
available. While systems up to level three can rely on in-
vehicle sensors and generate the world model on-demand
based on local sensor data, higher levels of automation need a
pre-mapping to create a world model in which the vehicle is
placed via sensor data [8]. This implies that such vehicles
require external input to have the latest information and react
on permanent or temporary modification of the road
infrastructure. This is especially important in urban
environments where other localization approaches, relying on
Global Navigation Satellite System (GNSS) or road
infrastructure (road markings or roadway detection) are more
challenging [8].

In the United States, the National Highway Traffic Safety
Administration (NHTSA) [9] currently prepares regulations,
which require connectivity for active safety features in all new

vehicles sold in the US starting from 2020. Such features
commonly referred as cooperative active safety, require a high
level of trust on outside information and communication.
Safety reasons were the primary motivation for OEMs to
establish information communication initiated by the vehicle.
Security issues – which are following a different paradigm
than safety-related ones – are a rather new challenge, currently
addressed by the different stakeholders from different
viewpoints and with different maturities. Recent hacks show
that the majority of their systems lack sufficient security
protection [10], [11]. Naturally, OEMs and manufacturers
tend to restrict their security focus on the vehicle itself and do
not follow a holistic approach, analyzing the whole
infrastructure system in which their cars are only elements.
Despite first approaches, like the H.R.701 – Security and
Privacy in Your (SPY) Car Study Act of 2017 [12],
cybersecurity issues of the vehicle are still primarily handled
by the vehicle manufacturer, not considering other
stakeholders and their security measures. Especially when
moving towards connected, intelligent and automated
transportation systems, the road traffic infrastructure needs to
be looked at in its entirety. As for the legal situation briefly
summarized, new regulations are being developed, but they
are not timely enough and significantly fragmented. In an
automated driving scenario, ICT infrastructure becomes a
second layer of critical transportation infrastructure. Hence,
the European “Directive on Security of Network and
Information Systems”, which is also known as the NIS
Directive [13] and is enforced since the end of May 2018,
applies to the road authorities responsible for traffic control
and the operators of intelligent transport systems (ITS). The
consequences for the OEMs are not yet clear, even while the
car and its communication system are a key component in the
superior ITS. There is also an ongoing effort to develop a
regulation for considering cybersecurity and cybersecurity
processes in modern vehicles through the type approval
process [14]. The European directive seeks to ensure a high
level of network and information security by improving the
common security level of the provider of critical services and
digital contents. We expect that the transport sector will
become such a critical infrastructure due to the increasing
interoperability, connectivity aspects, communication
requirements, ICT in general, and privacy issues. Hence, there
is an urgent need for full categorization and structured
development.

Autonomous and automated vehicles require detailed data
about the environment to generate a situational awareness in
real time and to ensure their safe movement. It is further
evident that automated driving scenarios are not restricted to
the vehicles as a stand-alone system. Instead, the vehicles
must interact in real-time with the other vehicles and with the
infrastructure to assess the current situation. Thus,
interoperability is the first key requisite for efficient traffic
management, co-operative functions and coordinative
autonomy [15]. Furthermore, this implies that the integrity of
all data is a prerequisite for autonomous inter-connected
driving.

Connectivity between vehicles and other traffic elements
is currently still under development, even while standards

3

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

such as 802.11p already exist [16]. While almost all new
premium cars offer connectivity via Global System for Mobile
Communication (GSM) or newer standards like long-term
evolution (LTE) to a backend system of the manufacturer
[17], the main motivation is to reduce costly recalls due to
software adaptions and updates [18], as well as to be
compliant with the European eCall initiative. Since April
2018, all new vehicles sold in Europe are obliged to be able to
automatically call the nearest emergency center in the case of
a crash and submit position and crash-related information [3].
Applications like intelligent coordination are already tested
and evaluated in real-world scenarios [19]. In such scenarios,
vehicles and infrastructure need to communicate within a
defined time frame and exchange information like traffic
status, travel times, road conditions and road works warnings.
There are higher requirements on the connectivity for the next
level of cooperation and connectivity. Although there are ITS
architecture and connectivity scenarios defined by European
Telecommunications Standards Institute (ETSI) [20]
available, it is unclear whether vehicles will possess multiple
communication systems for each service provider or if the
communication will be handled via a central data hub [21].
Different approaches to the future communication
infrastructure are presented and discussed in a report of the C-
ITS platform [6]. One conclusion is that, in order to support
interoperability, stay cost-efficient, reduce the number of
attack surfaces and support future applications, the
connectivity should follow some sort of coordinated model,
considering not only the vehicle, but the complete
infrastructure and service value chain [1].

Especially in the field of cybersecurity, multiple indicators
show that the current state of the art cannot adequately protect
the new and vital role ICT will play in transportation.
Automotive cybersecurity is slowly rising to this aspect [22]
triggered by research and governmental pressure [17], [23],
[24], [25]. Technical developments and industrial awareness
of new challenges are followed by the development of first
guidelines for tackling the issues [26]. On a higher level, the
ITS infrastructure security is also a known issue which is
addressed [27]. There is still ongoing discussion who will
control and provide the communication infrastructure [3].
Since all mobility and the complete road transportation sector
will depend on the ICT system, it is of utmost importance to
clarify responsibilities and to achieve a dependable balance
between private and public control.

As an additional security property, the protection of
personally identifiable information is also an important aspect.
A recent survey of the German consumer organization
“Stiftung Warentest” showed that almost all connectivity
solutions offered by automotive OEMs have weaknesses in
protecting privacy [28]. Personal information is exchanged
without encryption, and the excessive amounts of information
is collected and transmitted, partially without informing the
user and without explicit consent. One important discussion is
here not only the protection, but also consent to data
collection. There are first efforts to develop processes for
addressing these issues.

III. RISK MANAGMENT

There is currently no domain-specific risk management

framework available for the automotive domain [1]. First

approaches [26] are promising, but initial evaluations show

certain challenges in the application [29]. A guidebook [26]

was published at the beginning of 2012, and after being

available for half a year again set to “work in progress” status.

The International Organization for Standardization (ISO) and

SAE founded a common working group developing a

standard for the cybersecurity engineering of road vehicles

[30], but the publication is currently envisioned for 2020.

There is an ongoing effort of the UNECE WP29 - UN Task

Force on Cyber security and OTA issues (CS/OTA) to define

a minimum required cybersecurity management system

(CSMS), which includes a risk-based approach [14]. Due to

the focus of the UNECE on type approval, there is a missing

consideration of dynamic effects. Recent work focused on

dynamic risk assessments in the IoT domain [49] and showed

that traditional methods are often challenged by the dynamic

nature regarding change times and system boundaries, focus

to much on assets and not on the overall system context and

did not consider assets as potential attack vectors. In the

absence of applicable domain-specific frameworks, we

propose to tailor ISO 31000 [31] for the application in the

automotive domain. To set up the context, define the

stakeholder and the application environment, an appropriate

management framework has to be established first. A second

main part of the risk management standard proposes the steps

depicted in Figure 1.

We start by presenting the framework with suggestions on

how it can be tailored towards the area of application. The

proposed tailoring will be partially carried out on a higher

level.

Establishing
the Context

Risk
Assessment

Risk
Treatment

Monitoring
and Review

Communication
and Consultation

Figure 1: Risk management standard activities

4

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Establishing the Context

The previously given state of the art overview shows that

currently there is no specific regulatory or legal framework

for road traffic. Discussions are currently underway for a

legal and regulatory framework for road transport, but no

clear consensus has yet emerged. The automotive and

transportation domain is an important part of ensuring and

enabling our modern lifestyle, and therefore it should be

avoided that a cybersecurity attack entails the consequences

as described in Table I. We consider the following objectives

necessary:

TABLE I. CONSEQUENCES OF CYBERSECURITY ATTACKS

Safety
Causes immediate damage to environment or

human lives.

Privacy
Causes the loss of control over personal

information.

Finance Causes financial damage.

Operation
Negatively impacts the operation and traffic

flow.

We propose two restrictions to these statements. First, we

restrict the risk management to direct and immediate

consequences. It means that we do not consider second-level

consequences, e.g., an operational impact would also impact

emergency services and could therefore cause damage to

human lives. Our focus lies on the direct consequences.

Second, we assess the impact rating on users and society

higher than the impact on the organization. That means that

safety impacts and financial impacts for users or society are

prioritized compared with risks for individual organizations.

Society needs to trust and rely on the transportation system,

which is supported by ensuring their needs and protection

first.

B. Risk Assessment

Risk assessment includes identification, analysis and
evaluation of risks. While [32] presents examples of risk
assessment techniques, none of them are tailored for
cybersecurity in the road traffic domain. Multiple proposals
exist to extend established safety risk assessment methods
towards cybersecurity [33], [34] or to tailor cybersecurity
methods for the automotive domain [35], [36]. It should be
remarked that there is no general risk assessment
implementation, each selected methodology needs to be
justified. Depending on the abstraction level, different
methods are favored. We propose threat modelling [37] for the
analysis of risks. For risk evaluation purposes, we choose four
impact levels, divided into four categories, as shown in Table
II. This covers most forms of potential impact of attacks. This
is an abstraction of the categories proposed by SAE J3061 [26]
and EVITA [38]. Both use similar categories.

TABLE II. IMPACT LEVELS

 User / Society
Service provider

/ organization

Safety 1 -

Operational 3 4

Privacy 2 3

Financial 3 4

A critical factor for risk evaluation in cybersecurity is the

consideration of likelihood. For example, the railway domain
is discussing to consider the potential impact as only input for
risk evaluation [39]. This can lead to unlikely risks being
given higher priority. Details of the likelihood assessment we
are using are presented in [29], but in short, we propose to
evaluate the likelihood based on the following four
parameters:

• Assumed attacker capabilities

• Ease of gaining information about the systems

• Reachability and accessibility of the system

• Required equipment for an attack

C. Risk Treatment

Risk treatment is based on an assessment whether the risk
is tolerable for a specific stakeholder. CySiVuS focuses on the
society as the most relevant stakeholder, which means that
benefits of connected and automated road traffic scenarios
should outweigh the risks, especially to human lives. Unless
this is the case, we need to either modify the risk by
implementing specific technical or organizational measures or
avoid the risk altogether by deciding not to implement the
scenario. Each risk treatment needs to be followed by an
assessment of the effectiveness of the treatment, e.g., if the
remaining risk is tolerable and can be accepted. Risk treatment
assessment also includes the evaluation if the chosen
measures influence other risks or scenarios.

D. Monitoring and Review

There are currently no clear responsibilities defined for
monitoring and reviewing of risks. This is impeded by the
hierarchical silo structure which currently dominates the
automotive domain. OEMs only have a restricted system view
and are only able to identify risks on their level. Suppliers are
responsible for the implementation of risk treatment activities,
in fact mitigation measures, for their specific components and
identification of change requirements. There is no
unambiguous allocation of risk monitoring responsibilities.
Established approaches in the automotive domain mainly
follow an incident based approach, i.e., reactive behaviour.
For cybersecurity challenges, active monitoring and reaction
are necessary. We propose to assign a reporting responsibility
and develop a cyber incident response plan. In addition to that,
risk treatments need to be coordinated between all
stakeholders.

E. Communication and Consultation

As a continuous and parallel step along the risk
assessment, treatment and monitoring, the complete

5

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

management process needs to be recorded, documented and
communicated to the stakeholders. This includes capturing the
decisions, results and most importantly the justification for
decisions and actions. Only this step makes risk management
transparent and comprehensible. It should be remarked that
such records are sensitive and could be potentially misused by
attackers.

IV. USE CASES

In the CySiVuS project, we identified and collected
various use cases for typical situations that a C-ITS has to
cope with. The scoping of the use cases supports the
identification of stakeholder, roles, components,
communication types and data flows, interfaces, as well as all
critical services. Thus, they form a starting point for further
structuring the system and prepare a preliminary step to
develop a comprehensive reference architecture. In the
following we introduce the use case collection.

A. C-ITS Day 1 Use Cases

The first collection of use cases is based on the
Cooperative Intelligent Transport System C-ITS Day 1 Use
Case [40]. Day 1 refers to the first set of uses cases
implemented and evaluated in the European Corridor –
Austrian Testbed for Cooperative Systems (Eco-AT) project.
One typical use case is the Road Works Warning (RWW) use
case. This use case describes an interaction between vehicles
and cooperative roadside elements, which provide
information about short time modifications in the road
infrastructure to optimize traffic flow and driving strategy. In
Eco-AT the transmitted data will only be used as information
for the vehicle driver. We will consider the next step and
assume that in the future vehicles will automatically act based
on the received information. In addition, we will also set up a
third Vehicle to Vehicle (V2V) use case, e.g., a vehicle is
broadcasting information about position and speed to enable
other vehicles, which cannot obtain the information by their
built-in sensors to adapt their trajectories according to the
current situation.

Figure 2 depicts the introduced use cases. The Road Side
Unit (RSU) sends information to all vehicles about a temporal
change in the road shape. Vehicles A and B coordinate how
B, which is not visible to A, enters the main road and all
vehicles receive information from the traffic light system.

B. CySiVuS Use Cases

Examples of additional typical use cases in an ITS are
listed in the following subsections. We categorized them in
five different categories.

1) Normal cases: The term normal refers to the most

frequently encountered applications of an ITS or an

automated vehicle. The typical generic forms in a transport

system by using the road infrastructure and its technical

equipments are:

• Transport of people and goods from place A to place
B. Some concrete use cases for transport of people are
trips from home to work, to places for leisure

activities, to fulfill daily needs, of service providers
and time-critical blue-light emergency drives.
Examples for transport of goods are home deliveries
of daily goods, special transport of chemicals, heavy-
or money-transports and time-critical transports like
blood and organs. Another type of normal transport
use cases are maintenance drives for snow removal,
road cleaning or driving school trips.

• Departing predefined routes (e.g., sightseeing) in a
specific order or driving as a leisure activity for fun.

2) Emergency cases: Emergency cases are cases in which

the ITS needs to react on some unforseen event in order to

esnure safety of human life and avaialability of the

transportation service.

• The function of vehicle components is suddenly no
longer available (e.g., steering, brake, EMP). It
requires reporting to other vehicles, roadside units,
original equipment manufacturer (OEM) backend,
etc. It is necessary to transfer the vehicle to a safe
location or condition and to call for support, e.g., the
ambulance or service personnel.

• The driver is not able to interact (e.g., impaired,
unconscious, or dead);

• Occurrence of an unexpected event (e.g., mudslide,
avalanche) requires a report to the RSU. It is
necessary to transfer the vehicle to a safe location or
condition and to call for support, e.g., the ambulance
or service personnel.

• Unauthorized active or passive intervention of third
parties (e.g., hacking, targeted scattering of
misleading information) leads to a broadcast
information to other vehicles, the RSUs, OEM
backend disabling all the network functionalities of
the concerned vehicle.

• Authorized active or passive interference of third
parties (e.g., targeted manipulation of the control unit
from outside) requires verifying the authorization,
broadcasting information to other vehicles, the RSUs,
OEM backend when appropriate, applying the action
needed, transmitting the location data and to transfer
the vehicle to a safe location or condition.

• Automatic acquisition of civil vehicles for emergency
transports requires to transfer the vehicle to a safe

Figure 2: Use cases

6

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

location or condition, to verify the authorization and
the execution of the action.

3) Comfort cases: There are different perspectives of

comfort features. These features are not really necessary for

the fundamental task to transport persons or goods from A to

B, but they make the process more convenient. This could be

beneficial for the driver or passengers, for the OEM or

manufacturer, the road or infrastructure operator or for other

stakeholders. Some examples are driver assistance systems,

intelligent route planning, entertainment routes, multimodal

transport services, additional bookable driving performance

or features, etc.

4) Road safety and other special cases: These cases

concern the road operator and aim to ensure the usability of

road sections. Here cases like the distribution of information

about dangerous zones or special situations, e.g., due to

weather conditions, road works, atypical lane guidance,

unusual behavior of other road users, outage of infrastructure

elements, maintenance works, and traffic controls are

collected.

5) Traffic management cases: There are some situations

for the road operator to interfere in the traffic flow to enforce

speed limits, release service lanes as additional lanes, service

announcements with alternative routes, telematic systems for

road work areas.

V. SERVICE MATRIX

Based on the proposed risk management process described
in Section III and the collection of use cases discussed in the
previous Section IV, we set up a service matrix, where we
clarify the inherent dependencies between the services
provided by different stakeholders. Firstly, we introduce the
different stakeholders, assign the specific components to their
responsibility to finally document which stakeholder provides
essential services within a C-ITS for the other stakeholders.

A. C-ITS Stakeholder

The various stakeholders, shown in Figure 3, were
deducted from the use cases discussed in Section IV. Each
stakeholder has their own view on the C-ITS, with different
requirements, usage patterns or interests.

• Vehicle users are direct users of the transportation
system, and usually those who are transported in the
vehicle itself.

• Vehicle manufacturers (i.e., OEMs) and maintenance
providers.

• Infrastructure and road operators are typically
responsible for the construction and maintenance of
roads, road networks, bridges and tunnels and other
infrastructure elements.

• Authorities, for example, police, the ministry of
transport or delegated organizations, are responsible

for ensuring the proper functioning of the transport
system.

• Third-party service providers summarize all entities
that provide services, for example, fuel stations,
mobility clubs, insurance companies or
telecommunication providers.

• Society comprises all persons living, working and
residing in a given area.

B. C-ITS Infrastructure Components

This section identifies the components and their structural
connections. The following formulates the road transport
system, seen in Figure 4 below.

1) Communication in the Vehicle. There are various

communication requirements in the vehicle between

Electronic Control Units (ECU), sensors, and actuators.

Different communication busses help to structure the data

flow.

• Classically, the Controller Area Network bus
(CAN) is used for communication between
control units [46]. The CAN protocol was defined
in 1986. In 1991 the first vehicle with CAN was
available on the market [47]. The CAN bus was
developed as a standard vehicle protocol that
minimizes cabling effort and enables
prioritization of communication. The big amounts
of data such as generated by sensors or camera
systems can be a big challenge for a CAN
network.

• A Local Interconnect Network (LIN) [48] was
developed to a network which an increasing
number of sensors in the vehicle with the control
units. Most of the sensors have requirements with
fewer capabilities than the CAN network.
Therefore, the CAN network can be useful for
simple networks.

Figure 3: Stakeholder of a C-ITS

7

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• The Media Oriented Systems Transport (MOST)
bus was developed to enable the communication
of media content in the vehicle. It can be used, to
transmit video content to monitors in the vehicle.

2) Vehicle Interfaces: There are different types of

interfaces, which allow the transfer of data to and from

the vehicle:

• On-board diagnostics (OBD) and increasingly
USB interfaces require a physical connection.
ODB is designed for Machine-to-Machine
(M2M) communication between the diagnostic
system and the vehicle system, while USB is a
way for the user to exchange data with the
vehicle.

• WLAN, Bluetooth, and WLAN-based V2X
protocols provide medium-range wireless
communication. Normally, no additional
infrastructure is required, and the devices
communicate directly with each other. The
interfaces are intended for communication
between systems.

• The last group consists of interfaces for long-
distance communication, such as radio receivers
or mobile (cellular) radio transceivers. The radio
receiver is the only unidirectional interface.

3) Road Infrastructure Interfaces: The road

infrastructure has the following general communication

interfaces in order to provide data exchange with RSUs.

• Interfaces to internal sensors and actuators, e.g., to
traffic detectors or traffic control technology such
as variable-message signs

• Interfaces to vehicles moving on the road
infrastructure such as radio interfaces from
roadside units to vehicles

• Interfaces to third-party providers, e.g., DATEX
II Web Service

4) Backend infrastructure and services. This category

compromises all non-road specific background services,

i.e., the backend systems of the car manufacturer or

navigation service providers. Depending on the service,

Figure 4: C-ITS Overview

8

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the vehicle ECU might either be directly connected via a

cellular radio modem to a background service (for

example for accessing manufacturer updates) or use a

modem integrated to a dedicated device, i.e., a navigation

unit.

C. C-ITS Service Matrix

The types of services that can be implemented for
automated driving applications are diverse. To gain a better
overview and understanding, the identified services of the
entire road traffic system should be visualized so that not only
the actual basic components, but also their inherent
connections can be easily grasped. The service matrix
introduced in this section is one possibility which helps to get
a good overview of the complexity by showing which services
are offered by which stakeholders and which stakeholders in
turn used them. This means, the possible services should be
considered from different stakeholder perspectives, i.e.,
vehicle (user), infrastructure and road operators, vehicle
manufacturers (OEM) and maintenance providers, third party
service providers, authorities, and the society as a whole.

The following service matrix in Figure 5 shows the
evaluation being carried out by the project team as a type of
expert evaluation. It shows how the importance of services
provided by a certain entity for the user of the service, i.e., the
extent to which the service user is impaired by the
discontinuation of the service in the safe execution of his tasks
and his responsibilities.

The first step of generating this matrix was to find and
define exemplary services for each combination of two of the
stakeholders. For example, services being provided by
infrastructure and road operators to vehicle users are
numerous, including but not limited to traffic flow
information, construction site warnings, traffic status
information, and route information. Less strong, for example,
is the connection between infrastructure and road operators
and third-party service providers, the only relevant services
here are traffic radio, and in some cases information for the
modification of infrastructure.

The final service matrix was derived from this
intermediate matrix with all services found and then rated for
criticality by the experts in the project consortium. The scale
used for rating goes from 0 (irrelevant), over 1 (little impact)
and 2 (impairment) up to 3 (critical). As an example, the
services provided by an infrastructure and road operator is
crucial to a vehicle user, but not to OEMs or maintenance
providers. A general observation revealed by the service
matrix is that most of the stakeholder rely on services provided
by others. This means that a C-ITS is a highly interdependent
overall system and requires a well-structured reference
architecture to be understandable by key players forming a C-
ITS like authorities, decision makers as well as the industry.

Service
 Customer

➔

Service

Providers

 V
eh

ic
le

 u
se

r

 I

n
fr

as
tr

u
ct

u
re

 a
n

d
 R

o
ad

 O
p

s

 O

E
M

,
M

ai
n

te
n
an

ce
 P

ro
v

id
er

 T

h
ir

d
 P

ar
ty

 S
er

v
ic

e
P

ro
v
id

er

 S

o
ci

et
y

 A

u
th

o
ri

ti
es

Vehicle user 2 2 2 1 0 2

Infrastructure and Road Ops 3 1 0 1 1 2

OEM, Maintenance Provider 3 1 0 2 0 2

Third Party Service Provider 0 1 1 2 1 1

Society 2 1 2 1 2 1

Authorities 3 2 2 1 2 2

Figure 5. Service provider/service user matrix

D. Security analysis example

We identify security threats based on the data flow
between vehicle A, B, and roadside units in Figure 2. We use
the threat analysis tool [36] developed by Austrian Institute of
Technology. The threat tool uses several source materials to
ensure a range of threats is considered. The following source
documents were used to develop the threats database:

• Threat Modeling for Automotive Security Analysis
[36]

• Connected cars Threats, vulnerabilities and their
impact [41]

• The ENISA Threat Landscape 2015, Top Threats
[42].

Figure 6 depicts the data flow between vehicle A, B, and
RSUs. Based on the given input to the tool, and without any
security mitigation measures, 55 threats were identified.

The threat tool classifies the detected potential threats into

six main classes according to the STRIDE model [43], i.e.,
Spoofing, Tampering, Repudiation, Information disclosure,
Denial of Service (DoS), and Elevation of privilege. Table III
summarizes the numbers of the detected threats regarding the
STRIDE model.

TABLE III. DETECTED THREATS ACCORDING TO STRIDE CLASSIFICATION

Type Numbers

Denial of Service 7

Elevation of Privilege 7

Information Disclosure 15

Repudiation 5

Spoofing 14

Tampering 7

The tool performs a risk assessment process to classify the

risk of the identified threats as an extreme, high, medium, or
low risks. Figure 7 shows statistical percentages of risks in the

9

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

identified threats. From the observed risk statistic, we see that
the highest number of risks are medium risks.

Figure 7: Statistical percentage of risks

We focus in the following on the interaction type and the
corresponding threat, seen in Table IV.

TABLE IV. DELIVER MALICIOUS UPDATES TO VEHICLE B
[PRIORITY: HIGH]

Category Spoofing

Description Deliver Malicious Updates to Vehicle B

Justification <no mitigation provided>

Attack

method
Spoofing vehicle A in order to send

malicious updates.

For connected automotive vehicles and their
corresponding brakes control and steering algorithms, the
correct and especially secure reception of safety and kinematic
related messages is of utmost importance. A manipulated
sending unit from some distance away could communicate
status information, e.g., nonexistent barriers, road works or
vehicle positions ahead leading to slow down or even stop of
the traffic culminating to accidents. To prevent such a threat,
we propose distance-bounding protocols that allow a safe
decision if the communication partner is within a certain
radius, defined as bubble [44], [45].

The adapted Table V summarizes the considerations
detailed above.

TABLE V. DELIVER MALICIOUS UPDATES TO VEHICLE B
[PRIORITY: LOW]

Category Spoofing

Description Deliver Malicious Updates to vehicle B

Justification

<no mitigation provided>

Distance bounding avoids remote attacks and

requires physical access to the environment in

order to conduct the attack

Attack

method

Spoofing vehicle A in order to send malicious

updates.

PrimitiveValueTypes

Vehicle A

Vehicle
Detection

Sensor

ECU1 Brakes

Vehicle B

ECU2
Distance

Sensor Steering

V2X Gateway

RSU

Map Update

Traffic Update

«Sensor Data»

«HTTPS»

«HTTPS»

«HTTPS»

«CAN Bus»

«CAN Bus»

«HTTPS»

«Sensor Data»

«Communication_flow»

«GPS Data»

Figure 6: Data flow model for threat assessment

10

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This capability requires the introduction of a bidirectional
communication link between Verifier (V) and Proofer (P) and
a fast processing of the challenge sent from V to P. This
reduces the evaluated attack likelihood by enforcing physical
access to conduct such attacks and reduces the risk to a
tolerable level.

VI. REFERENCE ARCHITECTURE

An automotive reference architecture for security analysis
was presented in [11]. While it includes the elements of
communication between backend and vehicle, it does not
consider all relevant scenarios for C-ITS like V2V
communication. Furthermore, it only defines the technical
elements and does not differentiate between environments,
stakeholder, objects in the architecture a division. However,
this pure technical approach is not sufficient and to apply the
reference architecture in practice, this separation is vital.

As a first approach, we divide the ITS into five clusters of
elements as shown in Figure 8. On the physical side (blue, left
side), we have vehicles, infrastructure and personal devices.
The provider’s side (green, right side) contains elements
which are maintained and operated by infrastructure operators
and road service providers offering mobility services (grey,
lower side) available to the users (yellow, upper side). All
elements are interconnected by a communication system
(orange, in the middle). It should be highlighted that these
blocks can overlap, e.g., infrastructure providers can also
provide services; and blocks can contain multiple diverse sub-
blocks, e.g., communication collects a multitude of techniques
like wireless networking (WLAN) or GSM, which can be
applied for V2V or Vehicle to Infrastructure (V2I)
communication.

Figure 9: Clustering of elements in the transportation system

Moreover, the approach described above offers a

relatively high-level view on the system, which is, to a certain
degree, architecture independent. As it is discussed in [6] and
[21], it is still in discussion how the connectivity architecture
will finally look like, but all discussed architectural variants
fit in the presented structural model. Such a structural model
helps to identify the involved parties, allows assigning risk
mitigations to technical elements and assigns the
responsibility of implementing and maintaining these risk

mitigations to involved parties. To be practically applicable,
the identified risk mitigation measure is implemented in
infrastructure and vehicle, conducted by system OEM and
infrastructure providers, which is shown in Figure 9.

A possible solution approach is a structured multi-tiered

reference architecture. However, a consistent risk
management methodology is a critical success factor for
developing a unified architecture across all perspectives. Our
approach is to take the widely accepted risk management
standard ISO 31000 [31] as a basis and tailor it to the
automotive requirements.

We discuss the five main steps of the risk management
process when we apply it to a road traffic system. It is crucial
to restrict the proposed approach to direct risks only and to
weight the impacts differently depending on the
consequences. The risk management analysis steps are

essential to finding an appropriate mixture of applicable
methods to form a reliable methodology for the assessment.
Additionally, the evaluation of the likelihood and the handling
of uncertainty needs to be solved. Risk treatment in a complex
and interconnected environment must consider different
actors.

VII. CONCLUSION AND OUTLOOK

In this paper we analyze the technological and legal state
of the art of automated driving for smart urban mobility. We
conclude that the current state of the art is not yet sufficient
with the complex requirements of such an environment. We
identified four current challenges to a comprehensive traffic
road system: The interoperability of the components among
the vehicles as well as the infrastructure elements,
connectivity and communication tasks especially for
interacting and cooperation of the different components, ICT
in general and cybersecurity issues to address security threats,
and privacy finally aspects which subsume protection
requirements of personal data of the vehicle drivers. There are
efforts to form a compliant legal and technological
framework, but all these considerations are not yet completed.
By considering a tailored risk management process and
collecting and categorizing different use cases, we initially
identified stakeholders and components. Based on this, we
developed a C-ITS service matrix to visualize the service
usage between the five stakeholder groups and to reveal their
interdependencies among each other. This is a potential
starting point for future cyber security investigations.

Infrastructure

Vehicles

Personal Devices

Communication

Service Provider

Infrastructure
Operators

System OEMs

User

Services

Figure 8: Application of the structural model

11

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Considering the challenges for cybersecurity risk
management in dynamic environments like Internet of Things
we already consider some of the challenges [49], [50]. By
following a model-based approach we are able to
automatically re-asses the system and our risk evaluation
already considers assets as potential attack vectors. The
model-based approach is challenged by systems with unclear
boundaries or composition, e.g., new risks due to a change in
system composition are difficult to measure.

The primary task of the CySiVuS research project is to
develop a wide-ranging model on all necessary perspective
levels, which the rough approach introduced in this article
could be a starting point. By conducting the risk management
process and developing the reference architecture, we show
the multidimensional nature of a road traffic system. The main
upcoming challenges are a concrete in-depth-analysis of risk
assessment by applying adapted risk management methods.
The next step is to develop a comprehensive automotive
reference architecture based on the considerations introduced
in the previous section. The main objective is to determine an
appropriate layered visualization taking the different
stakeholders, components, services into account.

ACKNOWLEDGMENT

The research project “Cybersicherheit für
Verkehrsinfrastruktur- und Straßenbetreiber” (CySiVuS, in
English: „Cyber security for transport infrastructure and road
operators“) (Project-Nr. 865081) is supported and partially
funded by the Austrian National Security Research Program
KIRAS (Federal Ministry for Transport, Innovation and
Technology (BMVIT) and Austrian Research Promotion
Agency (FFG) 2017).

REFERENCES

[1] C. Schmittner, M. Latzenhofer, S. Abdelkader, and M. Hofer,

“A Proposal for a Comprehensive Automotive Cybersecurity

Reference Architecture,” in VEHICULAR 2018, The Seventh

International Conference on Advances in Vehicular Systems,

Technologies and Applications, Venice, 2018, pp. 30–36

[2] Q. Xu, K. Hedrick, R. Sengupta, and J. VanderWerf, “Effects

of vehicle-vehicle/roadside-vehicle communication on

adaptive cruise controlled highway systems,” in Proceedings

IEEE 56th Vehicular Technology Conference, Vancouver, BC,

Canada, 2002, vol. 2, pp. 1249–1253

[3] C-ITS Platform, “Working Group 6 Access to in-vehicle

resources and data,” Dec. 2015.

[4] European Telecommunications Standards Institute (ETSI),

“ETSI TR 102 638 V1.1.1; Intelligent Transport Systems

(ITS); Vehicular Communications; Basic Set of Applications;

Definitions.” Jun-2009 [Online]. Available:

https://www.etsi.org/deliver/etsi_tr/102600_102699/102638/0

1.01.01_60/tr_102638v010101p.pdf [Accessed: 28-05-2019]

[5] SAE, “J3016 Taxonomy and Definitions for Terms Related to

Driving Automation Systems for On-Road Motor Vehicles,”

2016.

[6] M. Dikmen and C. M. Burns, “Autonomous Driving in the

Real World: Experiences with Tesla Autopilot and Summon,”

in Proceedings of the 8th International Conference on

Automotive User Interfaces and Interactive Vehicular

Applications, 2016, pp. 225–228

[7] M. Aeberhard et al., “Experience, Results and Lessons

Learned from Automated Driving on Germany’s Highways,”

IEEE Intelligent Transportation Systems Magazine, vol. 7, no.

1, pp. 42–57, 2015.

[8] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous

Localization and Mapping: A Survey of Current Trends in

Autonomous Driving,” IEEE Transactions on Intelligent

Vehicles, vol. 2, no. 3, pp. 194–220, Sep. 2017.

[9] NHTSA, “NHTSA | National Highway Traffic Safety

Administration.” [Online]. Available: https://www.nhtsa.gov/

[28-05-2019]

[10] A. Greenberg, “The Jeep Hackers Are Back to Prove Car

Hacking Can Get Much Worse.”, Wired, 08.01.16 [Online].

Available: https://www.wired.com/2016/08/jeep-hackers-

return-high-speed-steering-acceleration-hacks/ [Accessed: 28-

05-2019]

[11] J. Brückmann, T. Madl, and H. J. Hof, “An Analysis of

Automotive Security Based on a Reference Model for

Automotive Cyber Systems,” SECURWARE 2017 : The

Eleventh International Conference on Emerging Security

Information, Systems and Technologies [Online]. Available:

https://www.researchgate.net/publication/319932479_An_An

alysis_of_Automotive_Security_Based_on_a_Reference_Mo

del_for_Automotive_Cyber_Systems [Accessed: 28-05-2019]

[12] Library Congress, “H.R.701 - 115th Congress (2017-2018):

SPY Car Study Act of 2017.” [Online]. Available:

https://www.congress.gov/bill/115th-congress/house-

bill/701/text [Accessed: 28-05-2019]

[13] European Union, Directive (EU) 2016/1148 of the European

Parliament and of the Council of 6 July 2016 concerning

measures for a high common level of security of network and

information systems across the Union, vol. L194. 2016

[Online]. Available: http://eur-lex.europa.eu/legal-

content/EN/TXT/PDF/?uri=OJ:L:2016:194:FULL&from=EN

[Accessed: 28-05-2019]

[14] Secretary of the UN Task Force on Cyber Security and Over-

the-Air issues, “Draft Recommendation on Cyber Security of

the Task Force on CyberSecurity and Over-the-air issues of

UNECE WP.29 GRVA (Informal Document).” 20-Sep-2018

[Online]. Available:

https://www.unece.org/fileadmin/DAM/trans/doc/2018/wp29

grva/GRVA-01-17.pdf [Accessed: 28-05-2019]

[15] NHTSA, “Vehicle-to-Vehicle Communications: Readiness of

V2V Technology for Application,” National Highway Traffic

Safety Administration, US Department of Transportation.

[16] European Telecommunications Standards Institute (ETSI),

“ETSI ES 202 663 V1.1.0; Intelligent Transport Systems

(ITS); European profile standard for the physical and medium

access control layer of Intelligent Transport Systems

operatingin the 5 GHz frequency band.” Nov-2009 [Online].

Available:

https://www.etsi.org/deliver/etsi_es/202600_202699/202663/

01.01.00_50/es_202663v010100m.pdf [Accessed: 28-05-

2019]

[17] C. Valasek and C. Miller, “A Survey of Remote Automotive

Attack Surfaces,” IOActive [Online]. Available:

https://ioactive.com/wp-

content/uploads/2018/05/IOActive_Remote_Attack_Surfaces.

pdf [Accessed: 28-05-2019]

[18] H. A. Odat and S. Ganesan, “Firmware over the air for

automotive, Fotamotive,” in IEEE International Conference

on Electro/Information Technology, 2014, pp. 130–139.

12

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] EcoAT, “Der österreichische Beitrag zum Kooperativen ITS

Korridor“ [Online]. Available: http://eco-at.info/ [Accessed:

28-05-2019]

[20] ETSI, “Automotive Intelligent Transport Systems,” European

Telecommunications Standards Institute. [Online]. Available:

https://www.etsi.org/technologies-

clusters/technologies/automotive-intelligent-transport

[Accessed: 28-05-2019]

[21] B. Datler, “A Road Operator’s View on Cloud-based ITS –

Requirements and Cooperation Models,” 23rd ITS World

Congress, 2016

[22] E. Khayari, “SECURE AUTOMOTIVE ON-BOARD

ELECTRONICS NETWORK ARCHITECTURE,” p. 9.

[23] D. Spaar, “Car, open yourself! Vulnerabilities in BMW’s

ConnectedDrive,” pp. 86–90, 2015.

[24] J. Petit and S. E. Shladover, “Potential Cyberattacks on

Automated Vehicles,” IEEE Transactions on Intelligent

Transportation Systems, vol. 16, no. 2, pp. 546–556, Apr.

2015.

[25] D. C. Miller and C. Valasek, “Remote Exploitation of an

Unaltered Passenger Vehicle,” p. 91.

[26] Cybersecurity Guidebook for Cyber-Physical Vehicle Systems.

SAE, 2016

[27] ECo-AT, “ECo-AT SWP3.4 Security,” ECo-AT, 2016

[Online]. Available: http://www.eco-at.info/system-

spezifikationen.html [Accessed: 28-05-2019]

[28] “Connected Cars: Die Apps der Autohersteller sind

Daten-schnüffler.” 26-Sep-2017 [Online]. Available:

https://www.test.de/ Connected-Cars-Die-Apps-der-

Autohersteller-sind-Datenschnueffler-5231839-5231843/

[Accessed: 28-05-2019]

[29] C. Schmittner, Z. Ma, C. Reyes, O. Dillinger, and P. Puschner,

“Using SAE J3061 for Automotive Security Requirement

Engineering,” in Computer Safety, Reliability, and Security,

2016, pp. 157–170.

[30] International Organization for Standardization, Ed., ISO/SAE

CD 21434 Road Vehicles - Cybersecurity engineering. ISO,

Geneva, Switzerland [Online]. Available:

https://www.iso.org/standard/70918.html [Accessed: 28-05-

2019]

[31] “ISO 31000:2009 Risk management -- Principles and

guidelines,” ISO, Feb. 2018 [Online]. Available:

https://www.iso.org/standard/65694.html [Accessed: 28-05-

2019]

[32] International Organization for Standardization, Ed., ISO

31010:2009 Risk management - Risk assessment techniques.

ISO, Geneva, Switzerland, 2009.

[33] G. Macher, H. Sporer, R. Berlach, E. Armengaud, and C.

Kreiner, “SAHARA: A security-aware hazard and risk

analysis method,” in 2015 Design, Automation Test in Europe

Conference Exhibition (DATE), 2015, pp. 621–624.

[34] C. Schmittner, T. Gruber, P. Puschner, and E. Schoitsch,

“Security Application of Failure Mode and Effect Analysis

(FMEA),” in Computer Safety, Reliability, and Security, 2014,

pp. 310–325.

[35] “A case study of FMVEA and CHASSIS as safety and security

co-analysis method for automotive cyber-physical systems,”

ResearchGate. [Online]. Available:

https://www.researchgate.net/publication/282792587_A_case

_study_of_FMVEA_and_CHASSIS_as_safety_and_security

_co-analysis_method_for_automotive_cyber-

physical_systems [Accessed: 28-05-2019]

[36] M. Zhendong, and C. Schmittner. "Threat modeling for

automotive security analysis." Advanced Science and

Technology Letters 139 (2016): 333-339.

[37] F. Swiderski and W. Snyder, Threat Modeling (Microsoft

Professional). 2004.

[38] “E-safety vehicle intrusion protected applications,” EVITA,

2008 [Online]. Available: https://www.evita-

project.org/Publications/EVITAD0.pdf [Accessed: 28-05-

2019]

[39] J. Braband, “Towards an IT Security Framework for Railway

Automation,” presented at the Embedded Real Time Software

and Systems,” Toulouse, Feb. 2014.

[40] “C-ITS Strategy Austria [C-ITS Strategy Austria],” Network

Drivers, Promote Efficiency and Safety in Transport., Jun.

2016 [Online]. Available:

https://www.bmvit.gv.at/en/service/publications/transport/do

wnloads/citsstategy.pdf [Accessed: 28-05-2019]

 [41] S. Strobl, D. Hofbauer, C. Schmittner, S. Maksuti, M. Tauber,

and J. Delsing, “Connected cars — Threats, vulnerabilities and

their impact,” in 2018 IEEE Industrial Cyber-Physical Systems

(ICPS), 2018, pp. 375–380.

[42] “ENISA Threat Landscape 2015 — ENISA.” [Online].

Available: https://www.enisa.europa.eu/publications/etl2015

[Accessed: 28-05-2019]

[43] “Uncover Security Design Flaws using The STRIDE

Approach,” MSDN Magazine, Nov. 2006 [Online]. Available:

https://adam.shostack.org/uncover.html [Accessed: 28-05-

2019]

[44] K. B. Rasmussen, S. Capkun “Realization of RF Distance

Bounding”. InUSENIX Security Symposium 11-08-2010 (pp.

389-402).

[45] G. P. Hancke and M. G. Kuhn, “Attacks on Time-of-flight

Distance Bounding Channels,” in Proceedings of the First

ACM Conference on Wireless Network Security, New York,

NY, USA, 2008, pp. 194–202 [Online]. Available:

http://doi.acm.org/10.1145/1352533.1352566 [Accessed: 28-

05-2019]

[46] “History of CAN technology.” [Online]. Available:

https://www.can-cia.org/can-knowledge/can/can-history/

[Accessed: 28-05-2019]

[47] “Mercedes W140: First car with CAN.” [Online]. Available:

https://can-

newsletter.org/engineering/applications/160322_25th-

anniversary-mercedes-w140-first-car-with-can [Accessed: 28-

05-2019]

[48] International Organization for Standardization, Ed., ISO

17987-1:2016 Road vehicles; Local Interconnect Network

(LIN); Part 1: General information and use case definition.

ISO, Geneva, Switzerland, 2016.

[49] J. R. C. Nurse, S. Creese, and D. De Roure, “Security Risk

Assessment in Internet of Things Systems,” IT Prof., vol. 19,

no. 5, pp. 20–26, 2017.

[50] J. R. C. Nurse, P. Radanliev, S. Creese, and D. De Roure, “If

you can’t understand it, you can’t properly assess it! The

reality of assessing security risks in Internet of Things

systems,” Living in the Internet of Things: Cybersecurity of

the IoT - 2018,

13

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MEADcast: Explicit Multicast with Privacy Aspects

Vitalian Danciu∗, Cuong Ngoc Tran∗

∗ Ludwig-Maximilians-Universität München
Oettingenstr. 67, 80538 München, Germany

Email: {danciu, cuongtran}@mnm-team.org

Abstract—We find that existing multicast protocols require
either the participation of hosts in group management or partial
address lists of the group members to be sent to end-points (hosts),
thus creating a privacy issue. Many services suitable for multicast
are transmitted via massive unicast for technical or management
reasons outside the sphere of influence of the sender. The large
amount of identical payload transmitted constitutes a significant
waste of network resources. We address these issues by presenting
MEADcast, a multicast protocol intended to support a smooth
transition from massive unicast to sender-centric multicast over
the Internet. Senders perform all group management while
receivers do not require explicit support for the protocol. The
protocol copes with varying degrees of support by routers in the
network and avoids the disclosure of end-point addresses to other
end-points. Performance evaluation shows a decrease of the total
traffic volume in the network of up to 1:5 as compared to unicast,
suggesting suitability for applications, such as Internet Protocol
Television (IP-TV), video conferences, online auctions and others.

Keywords—Privacy-Preserving Multicast; Agnostic Destination;
Explicit Multicast; Sender-Centric Multicast.

I. INTRODUCTION

Applications replacing traditional broadcast services (IP-
TV, IP-Radio), phone and video conferencing, and also tech-
nical services for software update or large-scale configuration
may profit from an n:m, multicast, distribution scheme. Today,
these applications still rely mostly on unicast transmission
despite multicast having been available for a long time. In this
text, we propose MEADcast (see also [1]), a multicast protocol
intended to allow the optional and gradual introduction of 1:n
communication between a sender and end-points into networks
with initially unknown support for our protocol.

A. Challenges to Multicast Adoption

Many applications have evolved into their present form
based on the technologies of the World Wide Web, including
a connection-oriented, TCP-based communication layer and
using the tacit design assumption that each service instance
induces a one-to-one relationship between a service provider
and a service user. The difficulty to roll out and maintain
specialised client software for a service, compounded with
the broad availability of a general-purpose, multimedia-capable
client – the web browser – and the lack of pressure on service
providers to conserve transmission capacity have led to the
unicast design of applications that clearly lend themselves to
multicast.

about group

Knowledge

Join/
leave

about group

Knowledge

Multicast (trad.)Unicast

Application Application

Authorize leave
Join/

Authorize

A
p

p
.

N
e
tw

o
rk

Figure 1. Knowledge and management actions in unicast and multicast.

B. Technical background

Typical multicast schemes are based on managed groups
(e.g., [2], [3], [4]). End-points may join a multicast group and
the network forwards messages addressed to that group to all
its members, i.e., to all end-points that joined it. As a rule,
a multicast group is symmetric in allowing any participant to
address a message to all others. Unfortunately, it requires the
network manager to effect configuration reflecting that a given
application uses a different kind of network function, while the
user is responsible for configuring the application to use mul-
ticast. The setup for services being provided across networks
and thus across administrative domains always requires the
cooperation of each participant domain’s network managers.

Another important reason for the lack of multicast adoption
seems to lie in the difference of scope of the application and
the network function: the local scope of traditional multicast
is inherent in the need to apply network configuration (e.g.,
IGMP) to the access network routers, while the applications
are being provided from outside the local scope (i.e., the
Autonomous System) over the global Internet.

As illustrated in Figure 1, by requiring an end-point to
join and leave the multicast group that supports the desired
application, the use of multicast

1) requires network management to authorize a service ses-
sion and possibly setup (multicast routers),

2) requires the user to execute a network management action,
3) requires transfer of knowledge on group membership at

the application level to a multicast group managed within
the network layer and

4) introduces state to the otherwise state-less (from the view
of the end-point) IP communication.

A number of additional properties exacerbate the perceived
drawbacks to multicast use:

14

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

5) If the network-level setup of multicast fails, there is no
automatic fall-back to unicast; instead, the application
must detect and handle the failure.

6) All participants in a service must have multicast support.
7) Re-configuration of the application group requires re-

configuration of the network.
8) Knowledge about the identities of the participants in a

service session is present in the network, possibly in
several administrative domains.

Applications seem therefore to prefer unicast even at the
expense of the higher transmission volume, or Application-
Layer Multicast (ALM) (e.g., [5], [6]) in spite of it being
application specific and requiring a network function within
the application’s code.

In essence, ALM reduces the n:m multicast pattern to the
asymmetric case of 1:n communication, where a single sender
addresses a group of receivers. In this case, it is sufficient for
the sender to hold knowledge about the group. Since the sender
necessarily implements the application layer of the service
being provided, group management may be transacted at the
application level. Such communication is easily implemented
over unicast transmissions. However, it requires receiver-side
configuration and does not profit from network support.

1) Non-proliferation of multicast: Although technical
means to address inter-domain multicast continue to be de-
veloped (e.g., [7], [8], [9]), the adoption of multicast requires
an incentive to both the service provider and to the access
network operator. It requires the establishment of a cooperation
between them by setting up routers supporting the inter-domain
multicast scheme. What is more, it requires a mapping of
services onto the (limited) multicast address space, implying
a-priori knowledge about the services being used. Outside of
applications provisioned centrally in the domain of an access
network operator, this knowledge is generally not available:
the reception of broadcast services (e.g., IP-TV, Internet radio)
as well as the use of multi-party audio/video conferencing
with participants outside of the network operator’s domain is
typically initiated by end users. Even when a certain service
is provided locally, end users might still opt for an alternative
service provided from outside the domain, if the local one
requires a specific request or setup while the “foreign” one
does not.

C. Contribution

We propose to combine the benefits of multicast to agnostic
receivers with those of optional network support.

We introduce a protocol named Multicast to Explicit Ag-
nostic Destinations (MEADcast) to allow sender-based mul-
ticast of IPv6 over the Internet. The novelty of MEADcast
is that it protects receivers’ anonymity and allows a gradual,
pro-active and selective transition between multiple unicast
and network-supported multicast. As the protocol favours
conservative decisions, we present studies of the transmission
cost in the network performed by simulating randomized as
well as designed situations.

D. Technical overview

MEADcast implements a sender-centric multicast in that
all knowledge about the receiver group, the network topol-

E2

E1

E3

E1

E2

E3

E 1

2
E

E2

E1

S

Extension
header Destination

address

Unicast
packet

{R2(E2,E3)}

R2

R1

R0

Figure 2. Multicast to agnostic receivers.

ogy and the availability of MEADcast-capable routers (called
MEADcast routers in this text) is gathered at and decided
upon by the sender. Given an initial list of receivers, the
sender commences to send data in unicast to each receiver
while simultaneously probing the network for the presence of
MEADcast routers and hence for the option to consolidate
some of the unicast streams into multicast. Multicast packet
headers reflect the MEADcast router responsible for translating
the multicast packets into (multiple) unicast packets. Receiving
end-points (called receivers in this text) always receive true
unicast packets either directly from the sender or generated by
a MEADcast router based on a multicast packet. Only unicast
addresses are used in the protocol.

Multicast packets begin with a standard IPv6 header ad-
dressed to one of the multicast receivers on a path, followed
by a Hop-by-Hop Routing Header with Router Alert. The
addresses of all multicast receivers on a path as well as the
MEADcast router(s) responsible for translation are encoded
into a multicast header. It is typically followed by a UDP
header. The addressing pattern is similar to the one in Internet
email, where one receiver is addressed directly (To:) while
all receivers are included in the carbon copy (CC:) list.
The protocol is designed to minimize packet duplication, and
receiver list re-writing in transit routers is eliminated.

Figure 2 shows an example where a sender S transmits to
three receivers Ei with the aid of three MEADcast routers Rj .
Note that the sender transmits unicast directly to E1, as it is the
only end-point on its subtree. It transmits one multicast packet
to E2 and E3, to be transformed into unicast by router R2.

None of the end-points can discern the identity of the oth-
ers, thus preserving privacy, or if the data has been multicasted.

E. Synopsis

In the following Section II, we analyse the challenges
to multicast adoption in dependency of the application being
used. After describing a typical application scenario, we char-
acterise applications with respect to their eligibility for multi-
cast and discuss two example applications. Section III reviews
different approaches to multicast, particularly Xcast [10],
which is technically most related to our work, and juxtaposes
their properties to those of our approach.

We continue by expounding the technical properties of
MEADcast in Section IV by describing the behaviour of
protocol entities, the structure of its protocol data unit and the
API offered to applications. The description is complemented
by a detailed example of the use of MEADcast. The study
of the protocol’s behaviour and performance, presented in
Section V, indicates that the reduction in total volume may
well be worth the effort for its introduction.

15

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Usage relation

No relation

Sender

Internet relations

Domain borders

ReceiversAccess
networks

Transit
networks

Content
provider

Payload transmission

Payload transmission

Figure 3. Relationships within the scenario.

In Section VI, we discuss the properties of MEADcast that
address the challenges formulated in the Problem Analysis
(Section II). In addition, the discussion addresses the protocol’s
overhead and limitations, security considerations and opportu-
nities for optimization. Section VII summarizes our ideas and
findings and points out further directions of research.

II. PROBLEM ANALYSIS

We analyse the problem of multicast adoption by char-
acterising the applications that would benefit from it. The
challenges faced by content providers are illustrated by means
of a scenario. The analysis of applications’ properties that
influence their use of multicast are summarised in a problem
space, which is exemplified by two different applications,
one of them being the one from the scenario. The review in
Section VI of the challenges identified in this section indicates
how they are addressed by the MEADcast protocol proposed
in this work.

A. Scenario

We illustrate the challenges to large-scale multicast use by
means of the following scenario.

A media directory operates a website that lists freely
accessible IP-radio and IP-TV offerings from different content
providers, i.e., from Internet radio and TV “stations”. The
content streams are transmitted from the content providers
to users in remote domains. Users that become increasingly
aware of privacy issues are reluctant to use the service if other
users become knowledgeable of their content consumption
behaviour without their knowledge and consent. The privacy
concept within our context is extensively discussed in the work
“privacy terminology” [11].

Some content providers are willing to employ techniques
like multicast in order to reduce the volume of data transmitted
to the users. At the same time, some of the operators of
networks hosting many receivers of the media streams are also
interested in reducing the load within their own core and access
network.

Both the media directory and the content providers are
interested in reaching as many users as possible. Therefore,
they are reluctant to create any barrier to the users’ access of

their content. The current and potential users are distributed
globally over many domains, they have the skills to operate
only basic, common software (e.g., web browsers) running on
a diverse spectrum of types and versions of operating systems,
thus obviating the effective introduction of a specialised client
for receiving media streams.

Figure 3 illustrates the relationship between the content
provider that hosts the sender, the transit networks and the
networks hosting receivers. While there is a relationship of ser-
vice delivery and service usage between the content providers
and the users (brokered by the directory), this relationship is
created ad-hoc based on interaction at the application layer.
It does not extend to the network operators that host the
users: the operators lack knowledge about the service being
provided beyond what they may infer from observations of
the network traffic entering their network. Content providers
and network operators are associated with other networks by
the relationships fundamental to the Internet, i.e., by peering
and transit agreements. Such relationships are not necessarily
between the two roles, and they are not transitive. Hence, in
the general case, content provider and access network operator
roles lack a direct relationship.

In consequence, it is difficult to establish a consensus for
the use of multicast both technically due to the inter-domain
aspect, and formally due to the lack of relationship between
the content providers and the network operator hosting a user.
There remains no other choice that is “safe” from preventing
users’ access to the offerings, than for the directory to broker
unicast streams between the content providers and each of their
users. This choice implies that a significant amount of the
transmitted traffic will consist of identical payload.

B. Problem space

The scenario is exemplary of application scenarios that
would benefit from multicast but do not use it. Such scenarios
can be categorised by the properties of the applications arising
from their purpose and their technical implementation:

• their communication pattern can be symmetric or asym-
metric (i.e., m:n or 1:n communication),

• they can be operated within an administrative domain or
across domains,

• their usage sessions can be of short or long duration,
• they can have a fixed or variable set of participants,
• they can have a small or large number of participants,
• they can have high or low demands on network resources,
• their capacity utilisation can be symmetric or asymmetric

between participants, etc.

To be effective and efficient, the properties of the multicast
scheme should be determined by the application category it
serves.

The properties of the settings in which applications are
deployed also characterise the scenario:

• network administration may be aware or unaware of the
application,

• end-point users may or may not be allowed to self-
configure group membership in a multicast group,

16

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

n:n1:n101000

hours

minutes

variable

fixed

1:1

low

high high

low

no

native

supporting

aware

unaware

IP−TV, IP−radio

Video conf.

Session
duration

Operator
involvement

Software
support

Participants

Participants
usage profile

Capacity
utilisation

Resource
demand

Communication
pattern

Figure 4. Application characterisation within a requirements space.

• the software package providing the application on the
end-point side may or may not support group-based
multicast.

C. Application examples

The resulting space is depicted in Figure 4, including
two application scenarios described in the following, their
usage requirements being shown as areas denoting their usage
subspaces.

a) IP-radio and IP-TV: are part of a class of “broad-
cast” applications in that they replace traditional, e.g., terres-
trial broadcast services. In analogy to the services it replaces,
the application class exhibits a 1:n communication pattern
and sessions that can reach durations of many hours, offered
to a large, variable set of participants distributed throughout
the Internet. The opportunity to employ buffering renders this
application class insensitive to latency, jitter and drop rate and
requires in principle only a sufficient end-to-end throughput ac-
cording to the media transmitted. Network capacity is utilised
in a highly asymmetric manner with a single sender producing
all traffic once a session has been established.

b) Video conferencing: is an application with an n:n
communication pattern of usage sessions in the range of a few
minutes to a few hours between a small, variable set of partic-
ipants that are grouped within a small number of domains. It
has rather high requirements on quality of the network service
due to being sensitive to latency, jitter, throughput and to some
extent drop rate. The capacity utilised is symmetric, due to
each participant sending his audio and video streams to all oth-
ers. Hence, an application session creates a full-mesh network
with traffic volume growing with the square of the number of
participants. This may be the motivation for some operators to
explicitly support multicast transport of conferences in order
to reduce the peak throughput requirements on the network.
Conferencing software typically supports the use of multicast
addresses, however, group management, i.e., the creation of a
group for a conference and the joining and leaving of multicast
groups by participants, requires management information with
respect to the mapping of conferences to multicast addresses.
The participation of users outside the domain of the network
operator cannot easily be supported from within the domain.

D. Challenges and opportunities

The challenges and opportunities in scenarios suitable for
multicast can be summarised as follows.

• Both 1:n and m:n communication patterns offer a high
degree of potential load reduction.

• The rather high volume requirements of pseudo-
multicasted streams of media (e.g., audio, video) increase
the potential reduction.

• The number of receivers of a particular content varies
strongly, and receivers must be expected to enter and exit
the group at any time.

• The duration of a session ranges between a few minutes
and a few hours. If transmission is continuous, the poten-
tial savings in transmitted volume are significant.

• Inter-domain transmission lacks a direct relationship be-
tween content provider and access network domains on
which a consensus for technology choice can be founded.

• Users cannot be expected to interact with non-trivial
network functions, such as group management functions,
unless explicit support by their local administration (i.e.,
the network operator) is provided. Likewise, the introduc-
tion of special software packages to support multicast on
the users’ side acts as a deterrent from using the service.

• The awareness to privacy issues with services provided
in the Internet needs to be addressed such that the
members of a communication group (e.g., a group simply
receiving content in a 1:n communication pattern) may
retain anonymity within the group.

Our construction of the MEADcast protocol, described in
Section IV, aims to exploit these opportunities and to address
the challenges in the scenario.

III. RELATED WORK

The idea of multicast was introduced decades ago and has
drawn research efforts broadly. A variety of solutions have
been proposed and a selection is presented here.

Traditional group-managed multicast [2], [3], [4], [12]
specifies the transmission of an IP datagram to a host group, a
set of zero or more hosts identified by a single IP destination
address. It requires network support (multicast-capable routers)
and the receivers to proactively join the host group. The routers
and end-points use the Internet Group Management Protocol
(for IPv4) or Multicast Listener Discovery (for IPv6) to main-
tain the multicast group. The deployment of IP multicast in
the Internet is still far behind expectations due to a number of
long-standing issues [13]. Amongst those are the management
complexity put on the end-point and the requirement of global
updates to routers.

An interesting approach on routing multicast traffic through
a “multicast domain”, namely Bit Index Explicit Replication
(BIER) is presented in [7]. A multicast packet entering the
domain is encapsulated in a BIER header by the ingress router,
who then determines the set of egress routers to send the
packets to them. Egress routers are represented by a bitstring
in the BIER header. BIER simplifies the traditional multicast
by eliminating the per-flow state and the explicit tree-building
protocols with the trade-off of additional management layers
introduced in BIER-compliant routers including the routing

17

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

underlay, the BIER layer and the multicast flow overlay. A
router has to maintain the routing information with other
routers in a BIER domain besides the ordinary unicast one and
be able to determine a set of egress routers for an incoming
multicast packet, this indicates an extra state to be maintained.
In comparison, a MEADcast router is much simpler by virtue
of being totally stateless. Moreover, BIER limits its scope in
routing multicast traffic within a BIER domain, leaving the
inherent management issues of multicast untouched. In con-
trast, MEADcast concentrates all management initiative with
the sender, allowing middle-boxes, non-MEADcast routers and
receivers to remain agnostic of the use of multicast.

Common practice to overcome the traditional multicast
management burden but still achieve better performance than
ordinary unicast is to employ Application Layer Multicast
(ALM), which implements multicasting functionality at the
application layer instead of at the network layer by using
the unicasting capability of the network. In contrast to the
slow deployment of IP multicast, ALM gains practical success
thanks to the ease of deployment. A survey of ALM over the
period 1995-2005 was given in [14]. ALM’s common approach
is to establish an overlay topology of unicast links between the
multicast participants where multicast trees can be constructed.
The drawback of ALM is that the privacy of receivers is not
ensured, which means the identity of one end-point might
become known to the other; furthermore, the data delivery of
ALM depends on the end-point capability, which could not
guarantee the stability and reliability. MEADcast overcomes
the above issues by leaving receivers agnostic of the underlying
technology being used. ALM also requires, by principle, the
deployment of ALM-capable software on at least a subset of
the hosts participating in a multicast group.

Xcast [10] is a multicast scheme with explicit encoding
of the destinations list in the data packets, instead of using
a multicast group address. Xcast is able to support a very
large number of small multicast sessions, making up the com-
plementary scaling property to traditional IP multicast, as the
latter has a scalability issue for a very large number of distinct
multicast groups. Xcast transmits data along optimal route
without traffic redundancy in the sufficient presence of Xcast-
capable routers; otherwise, some special mechanisms have
to be employed, e.g., tunneling or end-point upgrade, which
introduce new management tasks for Xcast routers (exchanging
and maintaining Xcast routing information) or end-points
(performing network functions of an Xcast-router). In case an
end-point assumes the Xcast router’s functions due to the lack
of network support, the identities of all receivers in a session
are exposed to this one, raising the privacy issue and possibly
hindering Xcast adoption by some applications. By design,
an Xcast-router suffers from complex header processing: it
has to perform a routing table lookup for each destination
in the Xcast header’s address list. Besides, Xcast is intended
for multicast sessions of small number of participants (i.e.,
small group size), confining its suitable applications. Xcast6
Treemap [15], [16], a derivative of Xcast, while providing
some enhancements to improve the traffic transmission latency
in a use case of Xcast gradual deployment, still shares the same
aforementioned limitations. However, Xcast does introduce
many efficient features: no maintenance of multicast state
by routers, routing based on ordinary unicast and automatic
reaction to unicast reroutes, easy security and accounting,

flexibility, among others. MEADcast takes advantage of some
valuable concepts from Xcast while off-loading the manage-
ment burden to the sender and simplifying the router functions.

IV. PROTOCOL DESIGN

MEADcast is implemented by senders and routers. We
describe the functions relevant for sender and router elements
and message types and procedures necessary for the realization
of these functions. A simple multicast scenario described in
full illustrates the behaviour of the protocol.

The information needed to describe the protocol is

• the sender S,
• the set of end-points Ei to which S transmits data,
• the set of MEADcast routers Rj in the network,
• the MEADcast distance d (or MEADcast hop-count)

from a MEADcast router to the sender in hops between
MEADcast routers.

Association is indicated by superscript, i.e., a router re-
sponsible for a sub-set Ek of the end-points is Rk and an
end-point served by a router Rj is Ej .

A. Functions

In MEADcast, we need to distinguish two groups of
functions for the sender and the router.

Sender functions include transmission of unicast and mul-
ticast messages, initiation of discovery of MEADcast routers
on paths to end-points and discovery response evaluation.

Router functions include normal forwarding, decomposi-
tion of multicast packets to unicast packets and multicast
packets and reaction to discovery requests from a sender.

1) Discovery-related functions: Both the sender and the
MEADcast router are involved in the discovery process. The
goal of discovery is for the sender to determine the sequence
of routers (Ri

1, R
i
2, · · ·) on the path to each end-point Ei.

Discovery requests and responses can be written as req(E, d)
and resp(E, d, R), respectively.

To initiate discovery, the sender addresses a MEADcast
discovery request req(E, 0) to an end-point E. When receiving
the request, every router R on the path to E increments d and
forwards the discovery request req(E, d+1) to the next hop;
at the same time, R sends a discovery response resp(E, d+1,
R) to S. Thus, the first router R1 on the path to E will send
(E, 1, R1), the second (E, 2, R2) and so on.

S can compile the sequence {(Ei, d1, R
i
1, d2, R

i
2, · · ·), · · ·}

and can compute the group of end-points to be handled by a
given router with a specific distance (Rj , dj , E

j
1, E

j
2, · · ·).

2) Decomposition: Decomposition, which is specific to
MEADcast router, means the transformation of a multicast
packet addressed to a set of target end-points into multiple
unicast and multicast packets with the same payload.

The target addresses Rj , E
j
1, E

j
2, · · · , Rk, E

k
1 , E

k
2 , · · ·

within a multicast message are structured to denote that
a router Ri is responsible for end-points Ei. During
decomposition a router will send unicast packets to each of

18

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Interaction between MEADcast’s entities.

the end-points it is responsible for and send multicast packets
to the routers responsible for the remaining target end-points.

When a multicast packet is created, the targets already
served either by unicast or by other multicast messages are re-
moved from the list of targets of the packet being created. The
removal process can be implemented efficiently by marking
removal in a bitmap and thus eliminating the need to compose
a new list of targets.

B. Interaction between MEADcast’s entities

Figure 5 shows the interaction between the sender, the
MEADcast router and the receivers, which involves the fol-
lowing steps.

1) First, the session is established between the sender and
the receivers. In essence, this could be the request on data
sent from each receiver to the sender or a data push from
sender to some pre-defined targets. The double-headed
arrow is used in this step to indicate both possibilities of
a session initiator (sender or receivers).

2) The sender starts transmitting data to the receivers via
unicast. Each router on the path takes part in the data
transmission process as usual.

3) In the meantime, the sender also performs the MEADcast
discovery by sending MEADcast discovery request to
each receiver. Upon receiving a request message, the

MEADcast router sends a MEADcast discovery response
back to the sender and a MEADcast discovery request
towards the receiver. The MEADcast hop-count in each
message is modified indicating the MEADcast distance
from the current router to the sender.

4) On receiving a MEADcast discovery response, the sender
will compose its topology view, which is an overlay
network connecting the sender, the MEADcast routers and
the receivers.

5) The data transmission by unicast is still carried out during
the MEADcast discovery phase.

6) The receivers drop MEADcast discovery request messages
since they do not understand them.

7) After a pre-defined timeout, the sender stops transmitting
data via unicast and starts the MEADcast data sending
phase. MEADcast data messages are built based on the
current topology viewpoint of the sender and are then
transmitted. Each MEADcast router on the path processes
the message according to the encoded MEADcast infor-
mation. It may forward the message intact or decompose
the message into multiple ones and forward them to
the other MEADcast routers, or build and send unicast
messages to the receivers.

C. Sender behaviour

The sender behaviour involves two phases: MEADcast
discovery and MEADcast data sending.

The sender sends MEADcast discovery requests req(Ei, 0)
to all receivers and updates the network topology in the
form of (Rj , dj , E

j
1, E

j
2, · · ·) whenever it receives a MEADcast

discovery response. In the mean time, the sender also transmits
unicast data to these end-points.

The MEADcast data sending phase starts when the discov-
ery phase is complete (i.e., after a pre-defined timeout). Based
on its network topology view, the sender constructs and trans-
mits MEADcast data messages containing the target addresses
(Rj , E

j
1, E

j
2, · · · , Rk, E

k
1 , E

k
2 , · · ·) for those receivers that can

be served by MEADcast routers and stops unicast data to them.
If the set of receivers of a multicast is larger than the maximum
number of addresses encodable in the MEADcast header, the
sender will divide the receivers into suitable subgroups, each
served by its own MEADcast packet. If discovery reveals that a
given MEADcast router would only be responsible for a single
receiver, that receiver is served unicast in order to conserve
header space in MEADcast transmission.

It is obvious that if there is no MEADcast router respon-
sible for any receivers, the data sending phase of MEADcast
operates exactly as unicast.

The discovery phase is carried out periodically so that the
sender can maintain an updated view of the topology.

D. Router behaviour

A MEADcast router is an IP router with added control
plane behaviour. It is capable to fulfil two tasks: participate in
the discovery mechanism and process MEADcast packets that
transport payload. The router does not hold state with respect
to the topology, the presence or the location of other routers
supporting MEADcast; nor does it hold information about the
multicast groups.

19

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Hop−by−Hop

Port 1 Port 2

Port N

Destination

Options

Layer

Routing

MEADcast

Upper

Destination address 1

Source address IPv6

Delivery Bitmap

Router Tag Bitmap

Destination address 1

...

...

Destination address N

of Dest. <= 64

Disc. Flags Disc. Hop−count

Figure 6. MEADcast header sequence with relevant fields.

1) The discovery mechanism: Discovery requests pertain
to a path to one receiver. They are therefore addressed to that
receiver and have the source address of the sender performing
discovery. Upon receiving such a request, the router increments
the MEADcast hop-count field of the request packet before
processing (and forwarding) it as any other IP packet. In
addition, the router transmits a discovery response to the
sender, transmitting its own address, the hop-count of the
discovery request and the address of the receiver that the
discovery is for. In consequence, the sender is capable of
discerning the sequence of MEADcast-capable routers on the
path to a given receiver, as it is able to order the routers by
the MEADcast hop-count of their responses.

2) The processing of multicast packets: relies on the ad-
dress information transported in the MEADcast header. This
information consists of a list containing both the addresses
of receivers and those of the MEADcast routers expected to
process the packet. A static router tag bitmap within the header
differentiates between the addresses belonging to receivers and
those belonging to routers. An additional bitmap, the delivery
bitmap, is employed to mark the addresses already accounted
for within the multicast tree.

On receiving a MEADcast packet, the router determines
with the help of the router bitmap the addresses that it is
responsible for. For the addresses of receivers (e.g., those in
directly connected networks) it creates unicast packets and
introduces them into its output queues. For the addresses of
routers that are expected to perform additional distribution, it
duplicates the received packet. In the duplicates, it marks all
the addresses that it has accounted for in the delivery bitmap.
Thus, the next router in the chain can determine that it should
neither send unicast to the receivers at those destinations nor
create multicast packets for the routers among them.

S

E 1

R0

R2

R1

E 4

E 3

E 2

(a) Full network support.

S

E 1

R2

E 4

E 3

E 2

(b) Partial network support.

Figure 7. Network topology from sender viewpoint.

E. Protocol headers

The tasks of sender and router are supported by a number
of data structures beyond those of the IP header. MEADcast
for IPv6 uses the extension header mechanism to introduce
multicast information. Figure 6 shows an overview of the
sequence of headers employed in a MEADcast transmission
with standard fields removed for clarity. The whole header in-
cludes the standard IPv6 header, Hop-by-Hop Options header,
MEADcast Routing header and Destination Options header.

The fields depicted in the figure have the following purpose
and structure:

• Source address and Destination address 1 · · ·n are normal
IPv6 addresses.

• # of Dest: Number of destinations in IPv6 address
encoded in the MEADcast Routing header.

• Disc. Flags: Discovery flags to mark a MEADcast mes-
sage as discovery request, response or data delivery.

• Disc. Hop-count: Discovery hop-count, which is the
MEADcast distance from a MEADcast router to the
sender.

• Delivery Bitmap: to mark if a MEADcast router has
received the MEADcast message.

• Router Tag Bitmap: to mark the position of the MEAD-
cast routers in the MEADcast Routing header’s address
list.

• Port 1 · · ·n: transport protocol port number (specifically
UDP port number) for receivers.

F. Protocol mechanics by example

Figure 7 describes the network where the proposed scheme
is effective, consisting of five end-points S,E1, E2, E3, E4

and three routers R0, R1, R2. Their connections are shown in
Figure 7(a) (without the rings). Two scenarios are described,
the first one with all routers being MEADcast-capable, the
second one with only R2 being a MEADcast router.

1) All routers are MEADcast-capable: The communica-
tions between the sender S and the receivers E1, E2, E3 and
E4 via the network in the first scenario are as follows.

1) S transmits unicast data to E1, E2, E3, E4.
2) S sends four different MEADcast discovery requests

req(Ei, 0), i ∈ {1, 2, 3, 4}.
3) For unicast messages, R0, R1, R2 simply forward it to the

intended receiver.
4) R0 receives req(E1, 0), it reacts to the presence of the

Hop-by-Hop header and analyses the content of the
MEADcast header. R0 sends a MEADcast discovery
response resp(E1, 1, R0) to S. It also sends req(E1, 1)

20

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

S

E 1

R0

R2

R1

E 4

E 3

E 2
(E2,0)

(E1,0)

(E4,0)

(E3,0)

(E2,1
)

(E1,1
)

(E4,1)

(E3,1)

(E2,2)

(E1,2
)

(E3,2)

(E4,0)

(E1,1,R0)

(E2,1,R0)

(E3,1,R0)

(E4,1,R0)

(E1,2
,R1)

(E2,2
,R1)

(E3,2,R2)
(E4,2,R2)

MEADcast discovery request
MEADcast discovery response

Legend:

Figure 8. Discovery in all MEADcast network (case a).

S

E 1

R0

R2

R1

E 4

E 3

E 2
S|E1|R1 |E1|E2|R2|E3|E4

 1| 0| 0 | 1| 0| 0
 1| 0| 0 | 1| 0| 0

S|E1|R1 |E1|E2|R2|E3|E4

 0| 0| 0 | 1| 0| 0
 1| 0| 0 | 1| 0| 0

S|E2

S|E1

S|E
4

S|E3

IPv6 header
MEADcast header

S|E1|R1 |E1|E2|R2|E3|E4

 1

| 0| 0 | 0| 0| 0

 1

| 0| 0 | 1| 0| 0

Router Tag Bitmap
Delivery Bitmap

Figure 9. Data delivery in all MEADcast network (case a).

to E1. The same procedure is carried out for req(E2, 0),
req(E3, 0), req(E4, 0).

5) R1 receives req(E1, 1), it sends resp(E1, 2, R1) to S.
It also sends req(E1, 2) to E1. The same procedure is
carried out when R1 receives req(E2, 1).

6) R2 receives req(E3, 1) and req(E4, 1), it sends resp(E3,
2, R2) and resp(E4, 2, R2) to S. It also sends req(E3, 2)
to E3 and req(E4, 2) to E4.

7) E1, E2, E3, E4 receive the unicast messages normally.
For the MEADcast discovery request, they do not under-
stand and simply drop it.

8) S receives MEADcast discovery responses and
updates its network topology viewpoint as
(R0, 1, E1, E2, E3, E4), (R1, 2, E1, E2), (R2, 2, E3, E4).
The topology viewpoint of sender can be illustrated by
the rings in Figure 7(a), where the sender is at the center,
R0 lies on the first ring with a distance of one, R1 and
R2 are on the second ring with a distance of two and all
receivers are always at the outermost ring.

All the steps above are depicted in Figure 8. The corresponding
data delivery phase described in the next steps is shown in
Figure 9. MEADcast routers and their associated entries in
bitmap fields of MEADcast headers are marked in blue bold
text. The same marking scheme is used in Figures 10 and 11.

9) S stops transmitting data via unicast and starts MEAD-
cast data sending phase. S transmits a MEADcast data
message consisting of:
• E1 as the destination IP address,
• {R1, E1, E2, R2, E3, E4} in the MEADcast Routing

header’s address list,

S

E 1

R0

R2

R1

E 4

E 3

E 2
(E2,0)

(E1,0)

(E4,0)

(E3,0)

(E2,0
)

(E1,0
)

(E4,0)

(E3,0)

(E2,0)

(E1,0
)

(E3,1)

(E4,1)

(E3,1,R2)
(E4,1,R2)

MEADcast discovery request
MEADcast discovery response

Legend:

Figure 10. Discovery in sparse MEADcast network (case b).

S

E 1

R0

R2

R1

E 4

E 3

E 2
S|E1|R2|E3|E 4

 1 | 0| 0
 1 | 0| 0

S|E1|R2 |E3|E4
 1 | 0| 0 1 | 0| 0

S|E2

S|E1

S|E
4

S|E3S|E1 S|E2

IPv6 header MEADcast header

S|E1
S|E2

Router Tag Bitmap

Delivery Bitmap

Figure 11. Data delivery in sparse MEADcast network (case b).

• Router Tag Bitmap being 100100, where bit 1 indi-
cates a router and 0 an end-point, Delivery Bitmap is
initialized with the same value of Router Tag Bitmap.
Note that, Router Tag Bitmap also points out, which
MEADcast router is responsible for which end-point,
in this case: R1 is responsible for E1, E2 and R2

for E3, E4. Router Tag Bitmap of the MEADcast data
message stays unchanged after leaving the sender.

10) R0 receives the MEADcast data message, sees that:
• it does not have to deliver message to any receivers

since its address is not in the MEADcast address list,
• based on the Router Tag Bitmap and Delivery Bitmap

fields, there are two other MEADcast routers, namely
R1, R2, needing to receive MEADcast data message.
R0 duplicates the original MEADcast data message.
◦ The Delivery Bitmap field of the first one is modi-

fied to be 100000, indicating that R2 has received
a MEADcast data message. R0 sends this message
to R1.

◦ R0 changes the destination IP address of the second
message to E3, modifies the Delivery Bitmap field
to be 000100, indicating that R1 has received a
MEADcast data message and sends it to R2.

◦ The checksum at the transport layer (specifically,
UDP) of each message is changed accordingly and
is discussed further in Section VI-B.

◦ The Router Tag Bitmap fields in both messages are
the same as in original one.

11) R1 receives a MEADcast data message, reads the Router
Tag Bitmap field and sees that it is responsible for E1

and E2. R1 constructs two unicast messages with the

21

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

data from the MEADcast data message and transmits
each to E1 and E2. The checksum at the transport layer
of each message is changed accordingly. The Delivery
Bitmap value of 100000 shows that there is no other
MEADcast router who needs to receives this MEADcast
data message.

12) R2 receives a MEADcast data message, reads the Router
Tag Bitmap field and sees that it is responsible for E3

and E4. R2 constructs two unicast messages with the
data from the MEADcast data message and transmits
each to E3 and E4. The checksum at the transport layer
of each message is changed accordingly. The Delivery
Bitmap value of 000100 shows that there is no other
MEADcast router who needs to receives this MEADcast
data message.

2) Only R2 is MEADcast-capable: The communications
between the sender S and the receivers E1, E2, E3 and E4 via
the network in the second scenario (only R2 is a MEADcast
router) are sketched in Figures 10 and 11, which have the same
first three steps as in the first scenario. The further steps are
as follows.

1) R0 receives req(E1, 0), it reacts to the presence of the
Hop-by-Hop header and analyses the content of the
MEADcast header, which it does not understand. It for-
wards the message further to the E1 direction. R0 does
not drop the message since the option type identifier of
MEADcast header is 00 [17]. The same procedure is
performed for req(E2, 0), req(E3, 0), req(E4, 0).

2) Similarly, R1 receives req(E1, 0) and req(E2, 0), it sends
these messages to E1 and E2.

3) R2 receives req(E3, 0), req(E4, 0). It sends resp(E3, 1,
R2) and resp(E4, 1, R2) to S. It also sends req(E3, 1) to
E3 and req(E4, 1) to E4.

4) E1, E2, E3, E4 receive the unicast messages normally.
For the MEADcast discovery requests, they do not un-
derstand and simply drop them.

5) S receives MEADcast discovery responses, updates its
network topology viewpoint as (R2, 1, E3, E4). Its net-
work topology viewpoint is illustrated in Figure 7(b).
There is no MEADcast router on the paths to E1, E2,
only R2 lying on the first ring of distance one is on the
paths to E3, E4. All receivers are on the outermost ring.

6) S starts MEADcast data sending phase. Based on its
topology view, S sees that:
• there is no MEADcast router on the paths to E1, E2.
S unicasts data to these receivers.

• R2 is on the paths to E3, E4. S transmits a MEADcast
data message with E3 as the destination IP address
and {R2, E3, E4} in the MEADcast routing header’s
address list, Router Tag Bitmap and Delivery Bitmap
being 100.

7) For unicast messages, R0, R1 simply forward them to the
intended receiver.

8) R0 receives the MEADcast data message, which it does
not understand. It forwards the message further to the E3

direction. R0 does not drop the message since the option
type identifier of MEADcast header is 00 [17].

9) R2 receives a MEADcast data message, reads the Router
Tag Bitmap field and sees that it is responsible for E3

and E4. R2 constructs two unicast messages with the data

from the MEADcast data message and transmits each to
E3 and E4. The checksum at the transport layer of each
message is changed accordingly.

G. Sender API

All state information about the multicast tree is held by
the sender, as MEADcast receivers are multicast-agnostic by
design. Routers with MEADcast-capability need not keep state
about the multicasted flows but require only the addition
of handling the discovery mechanism of MEADcast and the
processing of MEADcast data packets.

The sender has special requirements on the API by which
the network socket is controlled. We build on the work
described in RFC 7046 [18] (“Hybrid Adaptive Multicast”,
HAM; “Transparent Hybrid Multicast”) as a generic API that
aims to provide a common vertical interface for multicast
sockets without regard to the multicast technology. Although
the HAM API does not specifically target the sender-centric
multicast schemes and does require extensions to fully support
them, the expressive power of the API is sufficient to control
most aspects of the sender and does not contain aspects that
are unimplementable for MEADcast.

The HAM model of multicast is that an application uses a
HAM socket, which can be bound to network interfaces and
multicast groups to support an n:m communication pattern,
as known from “traditional” multicast. The application effects
the life-cycle management of the socket, its binding to network
interfaces and the joining and leaving of multicast groups. Mul-
ticast group identifiers are separated from network addresses
and noted as a URI (Uniform Resource Identifier) in order to
avoid assumptions about the actual multicast technology being
employed. As a tacit assumption, every host supporting the
API is expected to manage its membership in a group: it is
this tacit assumption that will require extension of the HAM
API in order to support MEADcast.

We iterate through the four interface sections of the HAM
API and apply them to MEADcast, before specifying the
necessary extensions.

1) Group management: The create() and delete()
calls act on abstract Multicast Sockets as described in the RFC.

The group management functions join() and leave()
are strictly speaking not required for MEADcast, since group
membership is only managed by the sender. They are restricted
to enabling MEADcast to change a group’s denomination
during a session.

The calls for (de-)registering a multicast data source,
srcRegister(), srcDeregister() duplicate the function
of the socket creation and deletion functions for the purposes
of the 1:n MEADcast.

2) Send and receive: The send() function signature can
be applied as is. The receive() function is inert, given that
the sender does not receive multicast and the receivers do not
support the API.

3) Socket options: RFC 7046 specifies a number of socket
management functions, which are useful for a sender ap-
plication and can be supported in a MEADcast sender.
The functions allow the management of interfaces bound to

22

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a socket with getInterfaces(), addInterface() and
delInterface() and setting of network parameters for sock-
ets/interfaces with setTTL(), getTTL.

The function getAtomicMsgSize() “returns the maxi-
mum message size that an application is allowed to transmit
per socket at once without fragmentation”. Given that MEAD-
cast performs a trade-off between this “atomic size” and the
number of multicast targets addressable with a single PDU
(Protocol Data Unit), applications should always consult this
function to determine the application SDU (Service Data Unit)
size offered by the MEADcast trade-off.

If an application cannot practically reduce the amount
of data sent at once, it is useful to allow it to influence
the trade-off performed by the MEADcast socket, i.e., to
sacrifice the number of addressable targets in favour of larger
messages, e.g., in order to fit frames of media streams into one
message. We present an extension to support such hints later
in Section IV-G5.

4) Service Calls: The service calls of the HAM API allow
an application to retrieve information about the multicast
environment of a HAM node.

The most relevant is the function childrenSet(), which
returns the clients (receivers) served by this sender, queried by
interface. For a complete list of receivers, the list of interfaces
retrieved with getInterfaces() can be iterated through calls
of childrenSet().

The maximum message size transmittable (with pos-
sible fragmentation) over a socket can be queried with
getMaxMsgSize(). For MEADcast, the value returned can be
the maximum size transmittable by unicasted IP; an application
sending messages of that size would either force transmission
by unicast or the multicast of fragments.

Some service calls return information possibly useful to the
application: groupSet() would retrieve the groups mapped
to a given interface; the application can request the neighbour
nodes (assumed to be those on the same link layer segment)
by means of calling neighborSet() for an interface.

Some of the service calls lack a function for MEADcast but
can be implemented to return sensible values for the applica-
tion. The designatedHost() function determines ”whether
this host has the role of a designated forwarder (or querier), or
not.“. The parentSet() function returns a list of neighbours,
from the node (in our case, the sender) receiving multicast; a
MEADcast implementation can return an empty set.

Membership events are issued from a HAM socket instance
to the application to notify of other members of the multicast
group joining or leaving the group. In our case, that informa-
tion originates with the application. Hence, supplying it again
can be useful only for confirmation of changes to the group
made within the MEADcast layer. Event flow management
with enableEvents() and disableEvents can be imple-
mented as specified.

5) Extension: The HAM API document does mention, in
short, Xcast as an example for a sender-centric, agnostic-
receiver-multicast protocol, and it sketches a few ideas for
necessary information management for this class of protocols.
The API itself, however, fails to take into account that Xcast

as well as MEADcast require a means to inform a sender
about the introduction or removal of a receiver to/from a
group. Consequently, it is necessary to supply two fundamental
functions in addition to those specified in RFC 7046.

a) Group management API extension: For the exten-
sion, we employ the same terminology and language as
RFC 7046. In particular, the receivers of packets multicasted
from one sender are termed “children” with respect to that
sender.

The application can register or deregister a child at a socket.
These functions are mandatory, as they constitute the only
manner in which MEADcast can be made aware of status
changes in children, i.e., in receivers.

joinChild (in Uri groupName,
in Child childSpec,
out Int error);

and

leaveChild (in Uri groupName,
in Child childSpec,
out Int error);

In each function, groupName identifies the multicast group
that the receiver (“child”) is to be added to. The implementa-
tion is responsible for adding it to the appropriate socket or
sockets and, if enabled, to generate Events to this effect. An
error return value of 0 indicates success, one of −1 indicates
failure.

The Child structure contains a mandatory set of informa-
tion items pertaining to the basic multicast service and a set of
optional items to support optimisation or application-specific
parameters. It is given as:

Child { Int IPversion ;
IPAddress childIPAddress ;
IPAddress routerIPAddress ;
Int port ;
Int pathMTU ; }

The IPversion mandatory field identifies the Internet
Protocol version to be used when casting to this receiver. The
IPAddress type is a binary encoded IPv6 or IPv4 (according
to the value of IPversion) unicast address. The mandatory
field childIPAddress identifies the receiver by IP address.

The optional field routerIPAddress identifies the initial
router (if any) to be responsible for transmitting unicast to the
receiver, giving its IP address on the path between sender and
receiver. The optional field pathMTU contains the maximum
transfer unit (MTU) on that same path. The optional field port
carries the transport layer protocol port at the receiver.

The structure is intended to be extensible with respect to
the optional items. Conceivable options include the receiver’s
preferences regarding quality, transmission volume, as well as
accounting parameters.

b) Hints: It is necessary to control the trade-off between
the number of targets addressable in a single MEADcast PDU
and the maximum size of messages acceptable from upper
layers and applications while avoiding fragmentation. While
the MEADcast stack might strive to maximise the number of

23

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

5

Receiving
end-points

4 10%
30%

50%

70%

Max. # entries in address list
of a MEADcast packet

0

8

16

32

Service data unit size

Topology

design

random

mix

100%64
MEADcast routers

1 2 3 4 900 1000
500

600
700

800

1500

Figure 12. Parameters for experiments.

addressable targets, application-specific information regarding
the structure of data can be helpful. For that purpose, we extend
the API with an additional, optional function:

setExpectedSDUSize (in Int sduSize,
in Uri groupName,
out Int error);

The parameter sduSize is the size of the service data unit
(SDU) of the upper layer, in bytes, that the application expects
to send() to a group specified by groupName. The function
returns a value of zero, if the size can be transmitted without
fragmentation or −1 if the size cannot be transmitted.

Note that the SDU will encompass the payload and the
transport protocol header: it is up to the application program-
mer, who decides on the transport protocol to be used, to
calculate the value.

For example, an application transmitting a media stream
can set the expected size of the payload to be the size of
one or more media frames plus the size of an UDP header.
In response, the MEADcast implementation can determine the
maximum number of addresses included in its own header.

V. EVALUATION

We have performed experiments within the parameter space
illustrated in Figure 12. We simulate MEADcast for 100
routers both on random network topologies with a diameter of
16 (generated by GT-ITM [19]) and on topologies designed
according to realistic scenarios using ns-2 1. To be more
specific, the experiments are carried out by the following steps.

1) A core network of 100 routers is generated.
2) Three core networks are created by randomly enabling the

MEADcast capability on 30, 50, 70 routers of the core
network in step 1, respectively. One more designed core
network by selectively enabling the MEADcast capability
on 10 routers and another for all routers are added. In
total, there are six core networks associated with 0, 10,
30, 50, 70 and 100 MEADcast-capable routers, in which
the second one is intended for designed cases and the
others for random ones.

1https://www.isi.edu/nsnam/ns/

3) The end-points are added to the core networks in step
2. The number of end-points ranges in 100, 200,...,1000.
We actively distribute the end-points over MEADcast-
capable routers for design cases while they are scattered
arbitrarily in random cases. Each association of a chosen
end-point set with a core network in either case forms
a final topology, which means there are 50 random final
topologies and 10 designed ones.

4) For each final topology in step 3, two experiments, one
for unicast and another for MEADcast, are performed.
An end-point is chosen as sender and the remaining end-
points are receivers. The sender then transmits a data
stream of 800 MB into the network to all the receivers.
The trace file created by ns-2 for each experiment to
log the whole data transmission process is analysed.
The traffic volume on all links of the whole network
is calculated and logged for further analysis. It is 120
different experiments on the whole.

A screenshot of a random topology with 100 routers (red
square nodes) and 100 end-points (grey round leaf nodes) is
presented in Figure 13. Node 100 (leftmost leaf node) is chosen
as sender, the remaining leaf nodes are receivers.

Table I shows an excerpt of the whole result when ex-
perimenting MEADcast and unicast for 100, 500 and 1000
end-points. Their corresponding total data volume in this table
is plotted in Figure 14 whereas Figure 15 presents all the
results. The percentage of traffic saving between MEADcast
and unicast for the case of 1000 end-points is highlighted by
double-headed arrows in the latter figure.

If there is no MEADcast router, the sender sends mainly
unicast messages and periodically sends discovery messages
that occupy only a little traffic volume over the whole network.
This discovery overhead is indicated by the value “−0.x”
in Table I and depends on how many times the discovery
is performed. Hence, the traffic volume of the MEADcast
protocol when there is no MEADcast router is approximately
that of unicast, provided that sender has large traffic to send.
The gap increases when the number of receivers and the
percentage of MEADcast routers grow. The extreme case

TABLE I. TOTAL TRAFFIC VOLUME IN THE WHOLE NETWORK [MB].
* INDICATES DESIGNED TOPOLOGY.

Topology MEADcast Discovery Traffic
End-points MEADcast Unicast without (one time) saving

routers discovery [%]

100

0 761,504 761,504 0.075 0
10(*) 761,504 271,104 0.149 64,4
30 761,504 563,376 0.157 26
50 761,504 433,504 0.210 43.1
70 761,504 372,964 0.246 51
100 761,504 272,420 0.500 64.2

500

0 4,136,544 4,136,544 0.409 (−0.x)
10(*) 4,136,544 1,279,936 0.813 69.1
30 4,136,544 2,513,296 0.897 39.2
50 4,136,544 1,698,336 1.216 58.9
70 4,136,544 1,069,276 1.389 74.2
100 4,136,544 902,056 2.835 78.2

1000

0 8,341,776 8,341,776 0.826 (−0.x)
10(*) 8,341,776 2,525,904 1.640 69.7
30 8,341,776 4,978,384 1.802 40.3
50 8,341,776 3,137,972 2.462 62.4
70 8,341,776 1,866,456 2.819 77.6
100 8,341,776 1,552,304 5.727 81.4

24

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

34
33

32

31

29

30

28

27

26

25

24

23

22

21

19
20

18 17

16

15

14

13

12

11

10

199198

197
196

195

194
193

192

191

190
189

188

187186

185

184
183

182

181

180

179

178
177

176
175

174

173

172

171

170

169

168

167

166

165

164

163

162

161

160

159

158

157

156
155

154

153

152

151
150

149

148

147

146

145

144 143

142

141

140

139
138

137

136

135
134

133

132

131

130

129 128 127

126

125

124

123

122

121 120

119

118

117

116

115

114 113

112

111

110

109

108

107
106

105

104 103

102

101

100

99

98

9

97

8

96

7

95

6

94

5

93

4

92

3

91

2

90

89

1

88

0

87

86

8584

83
82

81

80

79

78

77

76

75

74

73

72

7170

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55
54

53

52
51

50

49

48

47

46

45

44

43

42
41

39

40

38

37 36

35

Figure 13. A network topology generated by GT-ITM.

10
6

10
7

0 30 50 70 100

V
o
lu

m
e
 (

M
B

)

10
5

MEADcast
Unicast

end-point = 1000
end-point = 500
end-point = 100

MEADcast routers

Figure 14. Total data volume of unicast and MEADcast - an excerpt.

of 1000 end-points and 100% MEADcast routers shows the
difference of 81.4% in total traffic volume.

The total traffic volume reduction is considerable in the
presence of sufficient MEADcast routers, as shown by the
designed cases. The link stress (i.e., the number of packets
with the same payload sent by a protocol over each underlying
link in the network) [20] at the sender is reduced to an even
higher degree.

The impact of the service data unit size and the number of
entries in the address list are discussed in Section VI.

VI. DISCUSSION

We discuss a selection of aspects of MEADcast pertinent to
its deployment, the relationship of the protocol implementation
to other architectural components within the sender software

0
305070

100

200
400

600
800

1000

0
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06
7e+06
8e+06
9e+06

Volume (MB)
MEADcast

unicast

MEADcast routers

End-points

Volume (MB)

81.4% 77.6% 62.4%

 Traffic saving

40.3%

Figure 15. Total data volume of unicast and MEADcast when varying
MEADcast support in the network and the number of receivers.

stack, as well as limitations and the treatment of anomalies
that may occur.

A. Addressing scenario challenges

The scenario (see Section II) describes challenges origi-
nating in organisational and technological distance between
content providers in the sender role and the network operators
hosting the receivers.

MEADcast allows the gradual shift from many unicast
flows to a reduced number of multicast flows. Due to the
protocol’s properties, the receivers are not made aware of the
use of the protocol or the manner in which it transports a
flow to them. Certainly, the interception of discovery packets
addressed to receivers allows them to actively detect the
sender’s ability to employ MEADcast but without discerning
with certainty

25

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• if multicast is actually in use for “their” flow, and
• which other addresses receive the same data stream.

The privacy of each receiver is thus preserved.

The content provider can deploy MEADcast within their
own network in order to reduce the load between the senders
and the MEADcast routers. The operators of neighboring
networks to which the content provider organisation maintains
contractual relationships can be informed of the option to
deploy the protocol in order to improve distribution and thus
reduce the transmission volume.

Our approach specifically targets the subspace of applica-
tions delivered via massive unicast into networks in different
administrative domains than the sender. While MEADcast
can be employed as a general-purpose multicast protocol,
its benefits are most apparent in these scenarios: without an
approach with native internetwork support and incremental
deployment features it does not seem plausible that multicast
would be deployed at all. In the special cases where a managed
service is provided locally (e.g., in a symmetric conference-
style application provided to participants within the same
administrative domain) and pre-configured by that domain’s
network management, traditional, group-based multicast may
be the more effective choice.

1) Data-driven deployment: MEADcast signalling, i.e., the
discovery subprotocol, creates a technical means to advertise
the technology being in use and at the same time to identify
the number and location of receivers within a network to the
network operator.

By observing MEADcast discovery traffic, a network op-
erator is capable of determining

• the amount of traffic with potential MEADcast support
• whether the traffic terminates within the operator’s net-

work or constitutes transit traffic,
• the distribution of the terminating traffic within the net-

work topology, and
• the distribution of the transit traffic onto egress points.

Based on this information, the network operator is capable
to gauge the savings in terms of traffic volume if MEADcast
capability is introduced at a certain point in the network.

Consequently, the mechanism allows MEADcast routers to
be deployed at points where they have the greatest benefit,
while maintaining the freedom from association between a
content provider sending multicastable data and a network
operator hosting multiple receivers.

2) Incentives for non-access networks:

a) Incentives for peer and transit networks: to support
the protocol may originate in their own capacity management,
in order to reduce volume destined to their own egress routers.

b) Carrier services: may not be motivated to support
MEADcast, depending on their usage accounting model. How-
ever, the networks they serve might request MEADcast support
as a service, when acting as transit networks to the MEADcast
traffic or as the hosting network for many receivers.

3) Deploying m:n multicast applications: Applications like
video conferencing (see Section II-C have an m:n (in their
special case m = n) communication pattern. They can benefit
from MEADcast by deploying the sender software stack on
participants’ hosts, thus placing those hosts in the role of a
MEADcast sender.

This type of deployment has a number of beneficial prop-
erties:

• The sender stack is optional: if it is missing or inoperable
on a given host, the outgoing traffic from that host is
regular unicast.

• The support of the networks connecting the participants
is employed to the degree that it is actually available,
but network operators may decide to deploy MEADcast
capability in order to manage the network load produced
by video conference sessions.

• No mapping of participants’ network identities to multi-
cast groups is necessary, therefore allowing a conference
to be configured by selecting, e.g., SIP identities.

• Finally, the extension software stack can be pre-
configured by the administrative domain’s system man-
ager without regard to the location of other participants
and without the need for user configuration.

B. Relation to upper layers

The concepts of MEADcast require a higher degree of
interaction between the network layer and its upper layers
(transport and application), which merits discussion. While
our simulation results indicate significant performance gains
for a wide range of parameters, MEADcast scenarios may be
limited by properties of the protocol or the applications using
it, and routers may experience a higher control plane load.
After discussing these points, we conclude with remarks on
fault and security issues.

Decomposition of MEADcast data packets may yield pack-
ets with different destination addresses and thus invalidate
checksums in upper layer headers that include network ad-
dresses in the checksum (e.g., UDP for IPv6). For the new
packet to be valid at the destination, MEADcast routers must
re-compute these checksums for every new unicast packet
and every new MEADcast packet with a different destination
address. This issue is due to the re-use of network addresses in
transport layer protocols, and problematic not only because of
the increased load on routers’ control plane but also because
of the requirement to handle protocols other than IP. The
checksum calculation in the transport layer by a MEADcast
router is similar to that of an Xcast router, which is presented
in [10]-Section 10.1.

Transport layer port numbers will differ at end-point sock-
ets and have to be included in the MEADcast header along with
the IP address of each end-point, thus creating an additional
binding to the transport layer.

Network service primitives do not support addressing mul-
tiple receivers. Therefore, applications and higher protocols on
the sender side must be modified to make use of MEADcast.
A solution idea would be to use “regular” IGMP/MLD-based
multicast on the first hop, thus allowing applications and higher
protocols to employ multicast addressing as usual, then use

26

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a proxy function to translate between regular multicast and
MEADcast before transmitting. While Path MTU discovery
[21] is a standard function of the Internet, the application
requirements on payload size are not readily available to allow
the computation of optimum header size. We envision an
interface to the network layer allowing the application to issue
hints with respect to its intended use of the network.

We emphasize that these modifications are required for the
sender only. The providers of asymmetric applications (IP-TV,
Internet radio, etc.) can be assumed to correctly gauge the
cost and benefit of introducing modifications to consolidate
the multitude of unicast flows they create presently.

C. Limitations

Inherent limitations of the approach include the maximum
number of entries in the address table, the overhead introduced
by the address table, the time required to establish multicast
structures and load introduced in the control plane of routers.

MEADcast routers do not keep group information, thus
rendering MEADcast processing stateless, while nevertheless
complex in contrast to multiple flows that may be handled by
accelerators such as FPGAs.

MEADcast performs a gradual transition from a number of
unicast packet flows to a (smaller) number of multicast flows
as the availability of MEADcast-capable routers is discovered.
Sessions that are shorter than the time for discovery not only
forego the benefit of multicast but also carry the additional
load for discovery; they are an application for unicast.

Given a path MTU value, the number of entries in the
address table determines the remaining space for payload. If
the service data units received from the upper layer is small,
the sender may enlarge the number of entries, however, for
large number of end-points even small payloads will require
the sender to issue multiple multicast packets. Figure 16
shows the critical points where data volume is increased when
the address table space of 32 entries is exhausted by one
router multicasting to an increasing number of end-points.
Conversely, a large address table leaves less space for payload
and may lead to fragmentation, as illustrated in Figure 17.

D. Fault and security considerations

Packet loss naturally incurs a larger penalty for MEADcast
than unicast, as more receivers are affected. In particular,
the failure of a MEADcast path by changes in routing (by
administrative action or by faults) will lead to continuous loss
of packets until the periodic discovery mechanism informs
the sender of the change in the network topology. A higher
discovery frequency might lessen the consequences at the
expense of increased control plane load in routers and an
increase in the number of (albeit small) packets transmitted
over a path.

Beyond the security issues noted for Xcast (see [10]),
which also employs sender-based multicast, we note that
the deprecation [22] of the Type 0 Routing Header in IPv6
to prevent amplification attacks suggests careful scrutiny of
any mechanism that causes Internet routers to transmit more
packets than they receive. We presume our mechanism to
be reasonably safe due to the following properties: i) the

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

D
a
ta

 v
o
lu

m
e
 (
K

B
y
te

)

Receivers

Critical points, number of hosts: 32, 63, 94

MEADcast

Figure 16. Total volume increased by exhausted address table.

20

30

40

50

60

70

80

90

100

400 600 800 1000 1200 1400 1600 1800 2000

N
e
tw

o
rk

 v
o
lu

m
e
 (
K

B
y
te

)

Payload at sender (Byte)

Critical points: fragmentation

MEADcast

Figure 17. Fragmentation impact on total volume (1 router, 31 end-points).

total volume of transmitted multicast data does not exceed
the corresponding unicast volume for the same data, with
the exception of the lightweight signalling overhead required
for consolidating multicast, ii) addresses are not modified by
routers, i.e., data is transmitted via the same path in both
unicast and multicast modes.

RFC 6398 [23] warns that the Router Alert Option (RAO)
[24], which is useful to indicate MEADcast packets to routers,
may be used as an attack vector. The authors recommend, as
a measure to defend against attacks, to either forward packets
with RAO without evaluating the RAO content or, as a last
resort, to drop packets with the RAO. Given that the RAO is
employed by a number of well-known protocols, e.g., Resource
Reservation Protocol (RSVP), Internet Group Management
Protocol (IGMP), we assume that support for RAO will be
maintained.

E. Multiple unicast paths between two MEADcast routers

As MEADcast routing relies on unicast, there are cases
where different data delivery unicast paths from the sender
to receivers cause a MEADcast router to send discovery
responses to the sender with different distances (MEADcast
hop-count). Figure 18 illustrates a case where the distance of
R3 to S is 4 according to the path from S to E1 (S-R1-R2-R4-
R3-E1) while it is 3 for the path from S to E2 (S-R1-R2-R3-
E2). This case is conceivable in reality for some reason, e.g.,

27

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

R1

R4

R3R2

E2

E1

S

Figure 18. Hop-count conflict situation.

path load balancing deployment causes traffic to be directed
on different paths. The network topology viewpoint building
process at the sender is influenced: i) R3 could have the same
distance to S as R4 and both are immediately after R2 or ii) R3

is one hop farther than R4. Note that the sender’s viewpoint
is key for the MEADcast data sending phase and has to be
a tree (with the sender as root), i.e., a loop-free viewpoint.
Therefore, only one possibility of these two can appear in the
final sender’s viewpoint.

Several strategies could be employed by the sender in this
case, e.g., for multiple discovery responses from a source
(MEADcast router) with different distances (MEADcast hop-
count), the sender could:

1) consider only the distance in the first response, which
means this router always has this distance to the sender
regardless of any different distance reflected in subsequent
discovery responses,

2) choose the shortest distance extracted from all the discov-
ery responses,

3) choose the longest distance,
4) choose the most popular distance, i.e., the distance with

highest frequency in all responses.

Our current implementation is based on the second option
since it intuitively induces the least latency in data delivery.
The longer path can be seen as backup in case the shortest one
is broken and comes into use after the next periodic discovery
phase. So the path through router R4 in Figure 18 is considered
as redundant and the traffic is normally sent from S to E1 and
E2 on the path R1-R2-R3.

It is conceivable to amend the specification of router
behaviour to effect the transmission of a responding router’s IP
addresses within the discovery response message, e.g., encoded
in the destination address field.

F. Opportunities for optimisation

It is easy to upgrade MEADcast to control the data trans-
mission’s efficiency, e.g., which router is responsible for which
receiver and how many of them. It is only the design matter at
sender side, not at MEADcast router or other end-points. So
the upgrade point is only the sender.

1) Reflection of unicast: It is safe to assume that the
majority of routers in the Internet are either agnostic or phobic.

• If a datagram is forwarded through agnostic routers past
the point where it should be branched, a receiving aware
router can forward it back over the same path by unicast
if it recognises this to be the case.

• The reflecting router should at the same time notify the
sender of reflection being necessary on this path, e.g.,
by sending it an ICMP message containing the reflected

S

E 1

E 3

E 2
R1

R0

R2

Figure 19. A scenario for optimization consideration.

destinations. In response to this message, the sender is
expected to stop multicasting to those destinations and
use unicast for them instead.

• The reflecting router should process (i.e., reflect) only
a limited number of multicast datagrams from a certain
source in order to avoid senders that are in violation of
the protocol. Reflection, like multicast itself, might be a
vector for an amplification attack, using a reflecting router
to inject large amounts of traffic into the network.

2) Greedy unicast: If only few destinations are reachable
via a given path, it may be more efficient to transmit unicast.
E.g., it may not be worth the effort of transmitting and
processing extra headers in the case where only one destination
is addressed in the MEADcast header. Figure 19 raises such
a scenario where according to the sender’s viewpoint after
the topology discovery process, there are some MEADcast
routers (R1, R2) responsible for only one receiver. For the
setting of allowing a MEADcast router to be responsible for
at least one receiver, the data delivery tree is then exactly
alike the topology viewpoint of the sender: the sender may
build two different MEADcast messages for each branch:
{R0, E1, R1, E2} and {R2, E3} and send them to the direction
of E2 and E3, respectively. The data delivery process is similar
to the steps described in Section IV-F. R0 composes and sends
a unicast message to E1 and sends a MEADcast message to
R1, who then composes and sends a unicast message to E2.
Obviously, it is not so efficient compared to the case where the
first message built by sender is: {R0, E1, E2}, then R0 will
decompose the MEADcast message into two unicast ones and
send them to E1 and E2. The transmitted message from sender
to R0 is smaller by saving up the space for R1 in the address
list, the unicast message sent from R0 to R1 is also more
bandwidth-efficient compared to the MEADcast message in the
former case. Similarly, S does not send MEADcast messages
to E3 but unicast ones, which is also more efficient.

VII. CONCLUSION

The MEADcast protocol introduced in this article addresses
long-standing issues of the adoption of multicast. We find
that the requirement on group participants to perform group
management, as well as the addressing scheme and the intra-
domain design of traditional multicast erect barriers to its
adoption as a natural, common means for group communi-
cation. The massive unicast employed by many services, in
consequence, leads to a significant waste of network resources
due to the transmission of identical payload over all links to
all receivers.

We have introduced MEADcast as a sender-centric multi-
cast protocol that introduces a separation of the concerns of
managing groups and holding state (at the sender), forwarding

28

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

multicast payload without having to keep state (routers) and
receiving the payload, without having to have knowledge of
the network technology employed (receivers). The discovery
mechanism of MEADcast allows a “fall-forward”, incremental
introduction of multicast transmission, depending on the actual
support by the network, on a single receiver basis. At the
same time, in contrast to a fall-back mechanism, it avoids the
transmission of address tables to receivers and consequently
avoids the potential breach of privacy between them. Our
experiments have focused on the reduction of the total volume
of traffic in the network compared with unicast in a wide
range of simulated scenarios with varying support for MEAD-
cast in the network. These experiments have employed both
randomly generated topologies with randomized placement of
MEADcast routers and topologies specified to reflect real-
life networks. We have found that even a modest amount of
MEADcast routers in the network yield a reduction in resource
use. The gains in performance become larger with a higher
degree of support.

Our discussion indicates several open questions and av-
enues for development, including the study of the load increase
in router control planes and the real-world evaluation of
streaming applications based on a module implementation for
the Linux kernel and the development of an interface for
the management of multicast groups and parameters on the
sender side. We intend to employ the kernel implementation
for studies of the protocol’s behaviour during the experimental
provisioning of services transported via MEADcast within
a moderately controlled environment such as an academic
network. A different point of interest is the realisation of
MEADcast with virtual network functions, to be used in and
between Software Defined Networks (SDN).

ACKNOWLEDGMENT

The authors wish to thank the members of the Mu-
nich Network Management (www.mnm-team.org), directed by
Prof. Dr. Dieter Kranzlmüller, and Dr. Truong Khoa Phan for
valuable comments on previous versions of this paper.

REFERENCES

[1] C. N. Tran and V. Danciu, “Privacy-preserving multicast to explicit
agnostic destinations,” in The Eighth International Conference on Ad-
vanced Communications and Computation (INFOCOMP 2018). IARIA
XPS Press, 2018, pp. 60–65.

[2] S. Deering, “Host extensions for IP multicasting,” RFC 1112
(INTERNET STANDARD), Internet Engineering Task Force, Aug.
1989, updated by RFC 2236. [Online]. Available: http://www.ietf.org/
rfc/rfc1112.txt

[3] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan,
“Internet Group Management Protocol, Version 3,” RFC 3376 (Proposed
Standard), Internet Engineering Task Force, Oct. 2002, updated by
RFC 4604. [Online]. Available: http://www.ietf.org/rfc/rfc3376.txt

[4] H. Holbrook, B. Cain, and B. Haberman, “Using Internet Group
Management Protocol Version 3 (IGMPv3) and Multicast Listener
Discovery Protocol Version 2 (MLDv2) for Source-Specific Multicast,”
RFC 4604 (Proposed Standard), Internet Engineering Task Force, Aug.
2006. [Online]. Available: http://www.ietf.org/rfc/rfc4604.txt

[5] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, Scalable applica-
tion layer multicast. ACM, 2002, vol. 32, no. 4.

[6] D. A. Tran, K. A. Hua, and T. T. Do, “A peer-to-peer architecture for
media streaming,” IEEE Journal on Selected Areas in Communications,
vol. 22, no. 1, pp. 121–133, 2004.

[7] I. Wijnands, E. Rosen, A. Dolganow, T. Przygienda, and S. Aldrin,
“Multicast using bit index explicit replication (BIER),” RFC 8279
(Experimental), Internet Engineering Task Force, Nov. 2017. [Online].
Available: http://www.ietf.org/rfc/rfc8279.txt

[8] I. Wijnands, E. Rosen, A. Dolganow, J. Tantsura, S. Aldrin, and
I. Meilik, “Encapsulation for bit index explicit replication (BIER)
in MPLS and non-MPLS networks,” RFC 8296 (Experimental),
Internet Engineering Task Force, Jan. 2018. [Online]. Available:
http://www.ietf.org/rfc/rfc8296.txt

[9] L. Ginsberg, A. Przygienda, S. Aldrin, and J. Zhang, “Bit
index explicit replication (BIER) support via IS-IS,” RFC 8401,
Internet Engineering Task Force, Jun. 2018. [Online]. Available:
http://www.ietf.org/rfc/rfc8401.txt

[10] R. Boivie, N. Feldman, Y. Imai, W. Livens, and D. Ooms, “Explicit
Multicast (Xcast) Concepts and Options,” RFC 5058 (Experimental),
Internet Engineering Task Force, Nov. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc5058.txt

[11] M. Hansen, R. Smith, and H. Tschofenig, “Privacy Terminology,”
Internet Engineering Task Force, Tech. Rep. draft-hansen-privacy-
terminology-03, Oct. 2011, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-hansen-privacy-terminology-03

[12] W. Fenner, “Internet Group Management Protocol, Version 2,”
RFC 2236 (Proposed Standard), Internet Engineering Task Force,
Nov. 1997, updated by RFC 3376. [Online]. Available: http:
//www.ietf.org/rfc/rfc2236.txt

[13] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen,
“Deployment issues for the IP multicast service and architecture,” IEEE
Network, vol. 14, no. 1, pp. 78–88, 2000.

[14] M. Hosseini, D. T. Ahmed, S. Shirmohammadi, and N. D. Georganas,
“A survey of application-layer multicast protocols,” IEEE Communica-
tions Surveys & Tutorials, vol. 9, no. 3, pp. 58–74, 2007.

[15] K. T. Phan, N. Thoai, E. Muramoto, K. Ettikan, B. Lim, and P. Tan,
“Treemap-the fast routing convergence method for application layer
multicast,” in Consumer Communications and Networking Conference
(CCNC), 2010 7th IEEE. IEEE, 2010, pp. 1–5.

[16] K. T. Phan, J. Moulierac, C. Tran, and N. Thoai, “Xcast6 treemap
islands: revisiting multicast model,” in StudentWorkshop@CoNEXT,
2012.

[17] R. Hinden, “Internet protocol, version 6 (IPv6) specification,” RFC
8200 (Best Current Practice), Internet Engineering Task Force, Jul.
2017. [Online]. Available: http://www.ietf.org/rfc/rfc8200.txt

[18] M. Waehlisch, T. Schmidt, and S. Venaas, “A Common API
for Transparent Hybrid Multicast,” RFC 7046 (Experimental),
Internet Engineering Task Force, Dec. 2013. [Online]. Available:
http://www.ietf.org/rfc/rfc7046.txt

[19] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model
an internetwork,” in INFOCOM’96. Fifteenth Annual Joint Conference
of the IEEE Computer Societies. Networking the Next Generation.
Proceedings IEEE, vol. 2. IEEE, 1996, pp. 594–602.

[20] Y.-h. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A case for end system
multicast,” IEEE Journal on selected areas in communications, vol. 20,
no. 8, pp. 1456–1471, 2002.

[21] J. McCann, S. Deering, J. Mogul, and R. Hinden, “Path MTU
discovery for IP version 6,” RFC 8201 (Best Current Practice),
Internet Engineering Task Force, Jul. 2017. [Online]. Available:
http://www.ietf.org/rfc/rfc8201.txt

[22] J. Abley, P. Savola, and G. Neville-Neil, “Deprecation of Type
0 Routing Headers in IPv6,” RFC 5095 (Proposed Standard),
Internet Engineering Task Force, Dec. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc5095.txt

[23] F. L. Faucheur, “IP Router Alert Considerations and Usage,” RFC
6398 (Best Current Practice), Internet Engineering Task Force, Oct.
2011. [Online]. Available: http://www.ietf.org/rfc/rfc6398.txt

[24] C. Partridge and A. Jackson, “IPv6 Router Alert Option,” RFC 2711
(Proposed Standard), Internet Engineering Task Force, Oct. 1999,
updated by RFC 6398. [Online]. Available: http://www.ietf.org/rfc/
rfc2711.txt

29

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Evaluating Security Products:

Formal Model and Requirements of a New Approach

Pierre-Marie Bajan∗ Christophe Kiennert† Hervé Debar†
∗Université Paris-Saclay and Institut de Recherche Technologique SystemX (Saclay, France),

Email: {first.last}@irt-systemx.fr
†Télécom SudParis (Evry, France),

Email: {first.last}@telecom-sudparis.eu

Abstract—In a previous paper, we presented a new method to
generate evaluation data for the evaluation of security products
and services. That approach tackles the issues of producing
a workload with a rich semantic at a large scale. Testbed
environments are the most appropriate tool for such task but
induce a lot of effort and costs to implement. We presented a
model to produce semantic data that can be implemented on
light virtual networks and thus deployed at a large scale. This
paper is an extension of our complete formal model. In this
extension, we identify additional requirements for our model and
define our ambitions. We translate those ambitions in verifiable
properties of our model. Our prototype, although currently
limited, provides the basis for an evaluation method that is
customizable, reproducible, realistic, accurate and scalable. We
generate realistic activity for up to 250 simulated users interacting
with a real-world webmail server in an experiment to verify the
properties of our model.

Keywords–cybersecurity; simulation; evaluation; formal method.

I. INTRODUCTION

Security products are composed of services and products
designed to protect a service, machine or network against
attacks. Like other products, they must be tested to guarantee
adherence to specifications. In a previous paper [1] published at
ICIMP 2018, we divided evaluation tests into two categories:
semantic tests – tests of capability that require data with a
high-level of semantic; and load tests – tests that subject the
product to a large workload.

With current testing methods [2], load tests are semanti-
cally poor, thus not realistic. Meanwhile, semantic tests either
require vast amount of resources to reach large scales (e.g.,
testbed environments), or rely on real life captures with their
own set of challenges (e.g., elaboration of the ground truth
and privacy concerns). Moreover, a complete evaluation of
a security product tests different properties of the product.
Thus the evaluator needs to select different methods with the
right granularities. The granularity of interactions of the data
corresponds to the level of control or precision of the data.
For an evaluator, the right granularity for a testing method is a
granularity that is fine enough to test specific vulnerabilities or
properties. A granularity too large does not match the need of
the evaluator and a granularity too fine may result in a drastic
increase of the preparation burden of the evaluator for little to
no improvement of the results. Rather than relying on several

methods with different granularities, we aim to elaborate a
method to produce data with a customizable granularity and the
possibility to achieve large scale generation with appropriate
semantic.

In this paper, we present a methodology to produce simu-
lated evaluation data with different granularities independently
of the network support. To achieve variable granularity of our
model, we formally presents the concepts of our simulation and
define properties that must be respected and verify. We also
extract five requirements from our analysis of existing methods
to determine the criteria of an ideal method: customizable,
reproducible, realistic, accurate and scalable. To ensure that
the method we propose is as ideal as possible, we convert
those requirements in additional properties of our method. We
then ensure that the developed prototype of our method respect
all the raised properties in a series of experiments.

The remainder of this paper is organized as follows. Section
II reviews the related work on the production of evaluation
data and their limits. Section III is our analysis of current
methods compiled into five criteria for an data generating
method. Section IV defines the concepts of our methodology
and uses those concepts to introduce our model. Section V
explains the different choices we made for the implementation
of our prototype and shows the experiment results to validate
our model. Finally, we conclude our work in Section VI.

II. RELATED WORK

We first present existing related to the generation of semantic
tests.

A. Semantic tests

Semantic tests generate evaluation data with high semantic
value. Their goal is to generate realistic workloads to produce
real-life reactions of the security product or to test specific
functionalities and vulnerabilities of the product. There are two
approaches to those tests: take data from the real world (the
highest level of semantic), or execute specialized tools and
homegrown scripts.

Real world data can come from several sources: provided
by real world organizations, or obtained from honeypots where
attackers were tricked into interacting with a recording system

30

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to learn about the current trends (ex: generation of intrusion
detection signatures using a honeypot [3]). However, the
evaluator does not have a complete knowledge of the content
of the data. Some of them can be misidentified or the intent
behind some actions misinterpreted. Moreover, real world data
are difficult to obtain. Organizations are reluctant to provide
data that can damage their activity, and data anonymization has
the drawback of deleting relevant information (e.g., challenges
of anonymization [4] and desanonymization techniques [5]).
As for honeypots, the evaluator can never know beforehand
the amount of data he can obtain or what kind of data he will
gather.

Another way to obtain high semantic data is to generate
them according to a defined scenario, relying on tools and
scripts to produce specific and calibrated data. Those scripts
can be homegrown scripts, exploits, or software testing scripts
that try every function of a software to validate its specifica-
tions. Manually generating the data (e.g., video transcoding
[6], file copy operations [7], compiling the Linux kernel [8],
etc.) offers the greatest control over the interactions inside
the data, but the automation of the activity generated through
scripts with tools like exploit databases (Metasploit [9], Nikto
[10], w3af [11], Nessus [12]) also offers good control. How-
ever, those methods are quite time-consuming or require in-
depth knowledge of the evaluated product. Moreover, the
granularity of control for varied for each tool and may not
be appropriate for the evaluator.

B. Load tests

Load tests create stress on the tested product [13]. The
most common tests use workload drivers like SPEC CPU2000
[8], ApacheBench [14] [15], iozone [15], LMBench [16] [8],
etc. They produce a customizable workload with a specific
intensity. The evaluator can also manually start tasks or pro-
cesses known to stimulate particular resources (e.g., kernel
compilation [14] [16], files download [17], or execution of
Linux commands [17]). Those methods are designed to test
particular resources of a system (like I/O, CPU and memory
consumption) or produce large amount of workload of a spe-
cific protocol. For example, SPEC CPU 2017 generates CPU-
intensive workloads while ApacheBench generates intensive
HTTP workloads. However, the semantics of the workloads
are low: the generated data are characteristic of the driver used
and do not closely resemble real life data.

C. Deployment of scalable semantic tests

Evaluators prefer tests that are both intensive and with a
high semantic, as the performance of security products like
intrusion detection systems often deteriorate at high levels of
activity [18]. The prefered method is to deploy semantic tests at
a large scale. However, the deployment of tests with a realistic
semantic at a large scale provides its own challenge.

Semantic tests are deployed on a large scale network support
like a testbed environment where a large amount of resources
and contributors are gathered to create a large-scale test.

Evaluators must either have access to a testbed environment
with enough resources to deploy large-scale experiments or
use the results of other organizations that conducted large-
scale experiments and made their data publicly available for
the scientific community (DARPA/KDD-99 [19], CAIDA [20],
DEFCON [21], MawiLab [22], etc.).

However, publicly available datasets, on top of often con-
taining errors [2], are not designed for the specific needs
of each evaluator. The evaluator needs to have an in-depth
knowledge of the characteristics of the activities recorded in
the dataset to avoid having an incorrect interpretation of the
results of studies using those datasets. Finally, there is the
issue of freshness of the traces. Those large-scale experiments
produce one-time datasets that are quickly outdated.

III. OUR ANALYSIS

From the analysis of existing method, we took into consider-
ation the strengths and weaknesses of each method and came
to the conclusion that, among the current existing methods,
testbed environments are the best tool available for an evaluator
to properly evaluate products. They allow the evaluator to have
a single evaluation environment that can perform semantic tests
that doubles as load tests. The large scale of the environments
allows the evaluator to use a wide range of tools in a single
experiment. With a proper activity model to conduct the
evaluation, the evaluator can have an evaluation traffic close to
reality with full control over parameters like intensity of the
workflow or the introduction of incidents. The evaluator has
full knowledge of the activity of the simulation and does not
have to face issues from real world data like anonymisation.

However, testbeds environments have a serious flaw: the
prohibiting cost of setting up, maintaining and generating
large-scale experiments. We analyzed the reasons of that cost
to find a way to make evaluation data with the same semantic
richness than testbed environments more easily available. We
came to the conclusion that one of the main culprit of the cost
of such environments is the network infrastructures.

In this section we offer our analysis on how to reduce the
cost of network infrastructure by crafting a method compatible
with lower-end network simulator. We also share the analysis
of the criteria of an ideal method to generate evaluation
data. During our study of related work, we observed that
the strengths and and weaknesses of all the methods mostly
revolved over five major requirements: customization, repro-
ducibility, realism, accuracy and scalability. We explain in this
section those requirements in further details.

A. Using process virtual machines

One of the reasons for that cost is that the network in-
frastructures for testbed environments are composed of either
physical machines or virtual machines (VMs) that create sim-
ulated hardware upon which the evaluator installs a complete
operating system. There are virtual network infrastructures that
use lighter VMs that do not simulate the hardware but only
primary functions of the operating system (Wine, Mininet,

31

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IMUNES, etc.). However, evaluators do not use those network
infrastructures because those light VMs do not support a wide
range of real-world application and programs.

For example, IMUNES generates cloned kernels coupled
with Jail in FreeBSD systems to use them as virtual machines
[23]. Those cloned kernels do not handle a graphical interface
and cannot launch a browser. Thus, using this type of virtual
network for a testbed environment seriously limits the possible
actions taken by the VMs, even if a lot more cost-effective for
large scale virtual network.

Rather than working on improving the virtualization tools,
we decided to take another approach on the issue and to im-
prove the method to generate evaluation data with a semantic
richness. We propose a new production method that generates
controlled activity data from short traces independently of the
network support. This method consists in a single program
reproducing the simulation data of a large variety of programs
with a level of quality sufficient for an evaluator need. This
program does not complete the tasks of the real-world pro-
grams but only reproduce model data of such programs. Even
if the reproduced data are not perfect, they must at least comply
with the evaluation requirements of the evaluator.

Thus, rather than deploying VMs that can handle commonly
used real-world programs, we can deploy a large number of
light VMs that can run our program producing evaluation
data from model data. It can be implemented on a testbed
environment or on a network support with lower requirements
like a lower end network simulator. We also want our method
to meet the need of evaluators to generate tests with a rich
variety (different systems, properties of the data, etc.) and to
devise hybrid tests, both semantic and load oriented.

B. Essential requirements for an data generation method

Our ambition is to propose an evaluation data method that
can incorporate most of the strengths of current data generation
method while leaving out their weaknesses.

In a cross analysis of what was presented as strengths
or weaknesses of other methods, we highlight five goals, or
requirements for an ideal method, that represent the most
relevant aspect of the current state of evaluation data method.

Ideally, an evaluation data method must be:

• Customizable: one of the main strengths of executable
workloads is that the evaluators can customize the
generated activity to match their needs. It allows them
to use the same tools to test a security product with
different metrics. Meanwhile traces only allow the test
of one scenario per trace. We want our method to be able
to offer a wide variety of parameters to modulate and
produce evaluation data according to the needs of the
evaluator. We also want our method to avoid the usual
issue of the freshness of traces.

• Reproducible: one of the biggest weakness of exe-
cutable workloads is that it is often time-consuming
to restore the victim environment to its previous state,
especially in a sophisticated setting like a testbed. A

significant advantage of traces is that it is easy to feed
to a security product. In consequence, traces are used as
a standard for the community. We want a method that
can provide evaluation data with little to no overhead to
restore a victim environment.

• Realistic: real-world production traces and honeypots al-
low evaluators to confront security products and services
with real-life data and attacks. With a realistic activity
model, manual generation can produce a close to real
life evaluation data. Its capture, after deployment at a
large scale in a testbed environment, are the publicly
available traces. The community considers that method
of generating data as sufficiently realistic to be used as
a reference. As such, we want our method to be able to
provide realistic evaluation data to the level of publicly
available traces provided with a realistic activity model.

• Accurate: one of the main weakness of traces obtained
from real-world production and high level interaction
honeypots is the difficulty to generate the ground truth
of traces. The evaluator cannot guarantee the accuracy
and correctness of the generated ground truth. Isolating
attacks from one another or legitimate traffic is chal-
lenging. An ideal evaluation data method should have
full knowledge of the activity generated.

• Scalable: large-scale testbeds allow the evaluators to
generate complex and realistic traffic despite the large
cost of doing so. Publicly available traces aim to provide
that complex traffic at structures that cannot afford that
high cost. We want our method to be able to generate
the evaluation data of large scale networks while offering
the possibility to choose the size of this network.

These five requirements are the ambition of our evaluation
data method. Even if our method ends up not being as ideal,
we want our approach to respect as much as possible those
requirements.

We also want to be able to provide evaluation data for live
testings and offline testings. As such, we want our method to
be close to executable workloads.

IV. DATA PRODUCTION METHOD MODEL

In this section, we present a formal model for our data
production method. A formal representation of our model
allows us to present a generic approach that is not restrained
to a single implementation. Network simulators do not use
similar simulation techniques, even among the same category
of network simulators. The support of different network infras-
tructures provides different strengths that may be of interest
to the evaluators. In the same way, implementation choices
can also impact the properties and capacity of our model.
A formal model presents a generic model that allows for
different implementation approaches. By clearly defining the
properties of our model, we can devise tests to verify that the
implementation is in accordance with the model.

In our model, we define four core concepts: Elementary
actions, Data generating functions, Scenarios, and Scripts.

32

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

After those definitions and the presentation of our simulation
model, we deduce formal requirements on our model according
to the five ideal criteria. In short, we add several properties to
our model to ensure to respect as closely as possible the criteria
of an ideal method.

A. Concepts and definitions

1) Elementary action: We call Elementary action (A) a short
ordered set of interactions that represents an action between
two actors of the activity. Those actors are either a Host – a
source of generated data – or a Service – a set of functionalities
available to a Host. A Service can be an external server or an
internal service.

The goal of Elementary actions is to divide the activity
we simulate in actions that correspond to an entry of the
ground truth, such as ”connection to the web interface of a
webmail server”. The ground truth is an exact representation
of the activity generated. Therefore, a finer set of Elementary
actions for an activity means a finer representation of the
simulated activity and a finer control of the activity model for
the evaluator. Roughly translated, even if the model does not
forbid it, an Elementary action is not meant to be a large set of
interactions like ”a day of activity of user U”. An Elementary
action intends to represent a short action like ”connection to
service S” or ”adding an entry to service S′”.

For each Elementary action, we acquire Model data that are
the captured data of the execution of this Elementary action
during real activity (activity not issued from our simulation).
Model data take different forms (traces, logs, values, etc.)
according to the nature of the data the evaluation target can
handle.

Furthermore, the evaluator can classify the Model data. The
evaluator uses that classification to help label the resulting
Simulation data and create a labeled ground truth. However,
the evaluator is in charge of deciding a classification as
it can change according to the need of the evaluator. For
example, the evaluator can create two classes of Model data to
represent malicious activity and benign activity, respectively.
In other contexts, the evaluator can define other classes. For the
evaluation of administration tools of a network, the actors to
consider are different (security: attacker/user, administration:
admin/user/client) and the evaluator will have to define classes
of data accordingly.

After capturing Model data for every Elementary action
relevant for the evaluation, the resulting set of Model data
is then given to a Data generating function.

2) Data generating function: We define a Data generating
function (f) as a function that creates Simulation data from
Model data. Simulation data (dsimulation) is the execution of
an Elementary action (A) during a simulated activity.

A Data generating function (f) takes two inputs: Model data
(dmodel) and a set of Elementary action parameters (pA). We
define later the Elementary action parameters.

The properties of the Simulation data and Model data
represent the level of realism as seen by the evaluator. They

correspond to a set of specific features of the data, either
qualitative or quantitative. The properties of the data are of
different forms: acknowledgement of the data by the Service,
size of sent packets, value of a measure, etc. and they represent
the level of realism chosen by the evaluator.

Our definition of Data generating function does not include
requirements on the output, the Simulation data. We express
our demands for Simulation data as Equivalence. We call
Equivalence (∼) the fact that two activity data have the same
properties.

dactivityA ∼ d′ activityA

⇐⇒
Properties(dactivityA) = Properties(d′ activityA)

It is important to specify that two data are only equivalent
in the eyes of evaluator. The only identical properties of two
equivalent data are the properties of interest to the evaluator. So
if not all properties are necessarily identical, it also means that
two equivalent data are not necessarily identical. For example,
if the evaluator is only interested in the volume of the traffic
and the size of the packets, two packets with the same size but
different content will be equivalent.

A Data generating function can produce Simulation data
that are not identical but equivalent for the same inputs but
executed at different times. For instance, if the generation
of the Simulation data includes the addition of randomly
generated parameters like tokens. However, we do not consider
times as an input of our formalism of Data genration functions.
We do not include time as an input because, although time can
impact if the Simulation data are identical, it does not impact
the equivalence of Simulation data.

The evaluator selects a set of Elementary actions to decide
the finesse of control over the simulation and he chooses a
Data generating function to reproduce the properties of the
data he requires. If the Data generating function that produces
Simulation data from a dataset of Model data cannot produce
data with the same properties, it is useless for the evaluator.
Thus, we define the following verification property of Data
generating functions:

Property 1: a Data generating function f is said to be
useful to a set of Model data D if all Simulation data
generated by f from any Model data that belong to D is
equivalent to the data used as model.

∀ pA,∀ d ∈ D and f /f(d, pA) = dsimulation

f is useful to D ⇔ ∀d ∈ D, d ∼ dsimulation

The evaluator can select the Data generating function among
a pool of Data generating functions with Simulation parame-
ters (psimulation). The evaluator chooses the function that is
useful to his Model data and provides the Data generating
function with additional parameters called Elementary action
parameters (pA). Elementary action parameters allow the eval-
uator to modify the behavior of the Data generating function.
It can be to match a larger dataset of Model data or to provide
a finer control.

33

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We call Elementary action parameters (pA) associated to
an Elementary action (A) a set of parameters provided to a
Data generating function (f) to produce Simulation data that
can impact positively the usefulness of the Data generating
function.

∀pA, f(dA, p
A) is useful to D

f(dA, ∅) is useful to D′

}
⇒ D′ ⊆ D

For example, we take a Data generating function that
preserves the property ”acknowledgement of the data by the
Service” of traces given to it. That function, in order to be
useful to the dataset that has the same property, will change
some time-sensitive information on the input data like a cookie
or a session ID. However, different Services may mark this
information differently. A service S1 might mark the session
ID with the tag ”&session id=” while a service S2 will mark
it with the tag ”& session=”. Some services might also have
other additional change in their interactions that other services
do not have. To avoid relying on a different Data generating
function for every service due to those insignificant differences,
we want to parameter the transformations applied by the Data
generating function.

Moreover, the evaluator might want to produce Simulation
data from the same Model data but with different results.
For example, the evaluator wants to reproduce the Elementary
action ”connect to a webmail” with the conservation of the
property ”acknowledgement of the data by the Service”. How-
ever, left as it is, the Simulation data always present the same
credentials. The evaluator may want to simulate connection
to the webmail with different IDs without being force to
provide a different Model data for every set of credentials.
It is necessary to be able to parameter the function to make
small modifications rather than having a lot of Model data for
the same Elementary action.

The Data generating functions are controlled and fed by
a simulation control program. This program gives order to
virtual hosts to execute specific Data generating functions with
specific inputs. The orders are issued on a separate virtual
network. The resulting data exchanged between the simulation
control program and the virtual hosts are called Control data.

To sum up, Data generating functions are selected with
Simulation parameters by the evaluator for the properties they
preserve and the evaluator adapts or controls the Simulation
data with Elementary action parameters. The data exchanged
by the program that controls the simulation and the Host that
runs a Data generating function is the Control data (dcontrol)
and is essentially the ground truth of the simulation. The
compilation of the Control data informs us of all the actions
taken during the simulated activity.

3) Scenario and Scripts: A Script is the representation of a
realistic behavior of a Host. We define a Script as an ordered
set of Elementary actions coupled with Elementary action
parameters. A Script (ScriptH) is defined for each individual
Host and describes the activity it must generate during the
simulation. The set of defined Scripts is called the Scenario
(Sce) of the simulation.

A Script can be represented as a graph of actions, as
illustrated in Figure1.

A0, p
A0 A1, p

A1 A2, p
A2 . . .

Figure 1. Example of a Script

B. Our model

Simula'on	
control	
program	

Sce dcontrol (ground truth)

psimulation,A, pA
Host	0	

dA
model

f p
simulation

dA
simulation

Host	1	

psimulation,A, ʹp A
ʹdA
simulation

psimulation

dA
model

f p
simulation

Figure 2. Generation of simulated activity from short traces

Figure 2 is a representation of our model. In that figure,
the evaluator provides the simulation control program with the
Simulation parameters (psimulation) and the Scenario (Sce):

Sce = {ScriptH0 , ScriptH1} = {([A, pA], . . .), ([A, p′A], etc.)}

The simulation control program interprets the Scenario and
the Simulation parameters and deduces the number of Hosts
in the current simulation. It instructs the Hosts H0 and H1

to reproduce the Elementary action (A) with the parameters
psimulation and pA. Then, each Host retrieves the Model data
associated to the Elementary action and executes the Data
generating function (f) selected in the Simulation parameters.
That function produces Simulation data, which are sent to a
Service. The use of different Elementary action parameters by
H0 and H1 results in the generation of different Simulation
data even when the Data generating function and the Model
Data are the same:

dsimulation
A = fpsimulation

(dmodel
A , pA)

d′ simulation
A = fpsimulation

(dmodel
A , p′A)

}
6⇒

dsimulation
A = d′ simulation

A

However, while those two Simulation data may not be equal,
they are equivalent.

34

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

After the Hosts inform the simulation control program
that they finished simulating the Elementary action A, they
await the next simulation orders from the simulation control
program.

The model we presented is the situation where all the Hosts
are simulated and the Services are real services. If some Hosts
also acted as Services, they could also initiate the generation
of Simulation data according to requests received from other
Hosts in the form of other Simulation data.

In our model, the processing of the Control data of Hosts
simulated by our model generates the ground truth of the
simulation. Therefore, we do not process data from Hosts
unrelated to the simulation (external hosts connected to the
simulation). The evaluators must incorporate those elements
to their ground truth.

Lastly, we must present one of the significant issues of
our model: the parameterization of the Elementary actions.
The parameterization is the addition of Elementary action
parameters to extend the scope and variability of the Data
generating function while still preserving various data proper-
ties. However, the higher level the preserved properties are,
the more complex the reproduction of Elementary actions
becomes. Therefore, designing a Data generating function for
a highly realistic simulation, where for instance not only packet
size is preserved but also data acknowledgment, requires to
consider three main aspects:

• typing: identification and generation of short-lived data
like tokens, identifiers of session, etc.

• semantics: modification of inputs with a high semantic
value in the Model data: credentials, mail selection, mail
content, etc.

• scalability: a large scale execution of the Data gener-
ation function can have consequences on the previous
aspects and requires additional changes (e.g., creation
of multiple user accounts in the Service database).

These three aspects are integrated to the Elementary action
parameters. However, a few in-depth issues still require further
consideration and development in order to elaborate a model
able to adapt to various test situations without the intervention
of the evaluator. The typing issue can be solved with methods
based on machine learning, but others may require specific
methodologies according to the context of the evaluation. For
example, in the case of the reproduction of a real-life network,
the semantic and scalability issues can be solved with analysis
of an extended Model data acquisition period. The evaluator
can identify and highlight inputs in the Model data with a high
semantic value for the simulation.

C. Formalisation of data generation method requirements

Here, we discuss how to translate the requirements into
properties of the model of our method or, in case it is not
possible, into implementation requirements.

1) Reproducibility: Reproducibility concerns two different
aspects: an experiment carried out several times in the same
condition must produce the same results, and a previous
experiment should not impact a new experiment – which comes
down to the ability to restore the simulation environment to a
starting state.

The first requirement of reproducibility means that when
reproducing a similar event in the same context, our simulation
must provide a similar result. We translate it as a property on
Data generating functions:

Property 2 (Reproducibility property of Data generating function):
A Data generating function f is said to be reproducible if,
for any Model data, the resulting Simulation data generated
at any instant is equivalent to any Simulation data previously
produced with the same input data.

∀d ∈ D, ∀t′ 6= t
at instant t, f(d, pA) = dsimulation

at instant t′, f(d, pA) = d′ simulation

}
f is reproducible ⇔ dsimulation ∼ d′ simulation

The second requirement of reproducibility is not a require-
ment on our model but on the virtual infrastructure of our
simulation. The implementation of our model must allow
the creation of networks in similar conditions without any
lasting impact from any previous use of the simulation. This
requirement will impact the choice we make for the network
support of our simulation implementation.

2) Realism: The realism of our simulation depends on two
factors:

• The Data generating function and Model data: the
Simulation data produced are only as realistic as the
Data generating function and the input data allow it. The
verification property of the Data generating function (cf.
Property 1) ascertains that the Simulation data produced
is as realistic as the Model data used as input of the
Data generating function. Thus, for Simulation data to
be realistic, the Model data must also be considered
realistic for the same criteria of realism. Moreover, the
Data generating function must preserve the properties of
the Model data that the evaluator considers as realistic.

• The Scenario: the activity our simulation produce is only
as realistic as the Scenario. At its core, the Scenario is
the activity model of the evaluator for the simulation.
A realistic activity model with realistic Model data will
result in a realistic activity. We want our model to verify
that property.

Property 3 (Verification property of the Scenario): The
Model data generated by a real activity according to a
Scenario must be equivalent to the Simulation data generated
by a simulated activity of the same Scenario.

In short, our simulation model can generate an activity
according to a Scenario with the guarantee that the properties
of the Simulation data are as realistic as the input data. As
to what properties are guaranteed, it will depend on the Data
generating function chosen by the evaluator. In a more concrete

35

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

example, if our method makes a simulation of a network
activity with a Data generating function that preserves the
packet size of the model data, we can guarantee that the
produced Simulation data will present a volumetric network
activity as realistic as the Scenario of the simulation and the
Model data.

3) Adaptability: The evaluator can adapt a simulation on
our model with several aspects.

Firstly, the Scenario. The Scenario allows the evaluator
to generate the activity of different activity models. With a
large variety of Elementary actions, the evaluator can create
complex Scenarios and obtain realistic Hosts’ behavior during
the simulation. Moreover, the more atomic the Elementary
actions are, the more precisely the evaluator can control the
simulation and create Scenarios adapted to his needs.

Secondly, the Elementary action parameters. They can pre-
serve the realism of the Simulation data while offering an-
other degree of customization. The evaluator can significantly
improve the semantic value of the Simulation data by using
those parameters to modify customizable inputs in the Model
data (credentials, POST form inputs, etc.).

Lastly, the Data generating functions. The variety of Data
generating functions to select from is one strength of our
model. Each Data generating function offers a guarantee of
realism as seen in Section IV-C2. We can define levels of
realism that correspond to the selection of different Data
generating functions. As the realism property of our model
partly depend on the Data generating function, a customizable
Data generating function means an adaptable realism of the
simulation.

Figure 3. Levels of realism

In Figure 3, we exhibit several levels of realism associated
with several Data generating functions. We divide these levels
into three main types: Temporal, Network and System.

The first type, Temporal, is the minimal level of realism
possible and is useful only when the evaluator is solely
interested in the elapsed time of different Scenarios. In this
case, the simulation of activity consists of Hosts waiting the
average time of each Elementary action.

The second type of levels of realism, Network, is chosen
when an evaluator is solely interested in the simulated network
traffic. We identify three levels for this type:

• Reproduce packet volume: if the evaluator has an
interest in the network charge of the simulation, with
no interest for the content. From the Model data of
each Elementary action, the Data generating function
reproduces all the packets up to the transport layer before
padding the payload with random bytes to match the size
of the input data’s packets.

• Reproduce packets: if the evaluator is interested in
reproducing the input data with the full payload. The
Data generating function reproduces the packets while
changing the appropriate fields (tokens, session IDs, etc.)
for a correct exchange between the Host and the Service.

• Reproduce modified packets: if the evaluator needs
more precise control of the previous Reproduce packets
level of realism. The Data generating function produces
the packets as described above, but Elementary action
parameters customize the output. For example, if the
Data generating function reproduces the Model data to
connect to the webmail server, the evaluator also modify
the credentials used to connect to the Service by the
Model data.

Finally, the third type of realism is System. It is the highest
level of realism we imagined for the simulation. With Repro-
duction of system data, we want to reproduce the system data
measured on the Hosts so that it matches the Model data. For
the last degree of realism we want the Data generating function
to reproduce the data of service applications – to provide
network and system data without executing the applications.
It is, in essence, a Fake machine.

All those different levels of realism correspond to different
Data generating functions that the evaluator can select for his
simulation. It is also possible to imagine and add other levels
of realism or Data generating functions with different uses.
Those levels of realism represent our implementation goal for
a customizable realism of our model.

To be noted, the nature of the Model data described in each
type of level of realism is different. Temporal uses measure
values as Model data, Network has network traces, and the
Model data of System are a combination of system data and
network traces.

To sum it up, the evaluators can customize the simulation
of our model according to:

• The scenario and network topology (size, topology,
connexion to external networks, . . .)

36

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• The Model data: the scope of Elementary actions
(smaller or larger number of interactions)

• The Elementary action parameters: customize inputs
with semantic value (credentials, information fields, sub-
mission contents, etc.)

• The Data generating function: the evaluator can select
a level of realism useful for a specific dataset or the
preservation of specific properties.

4) Accuracy: The constitution of the ground truth is deduced
from the analysis of the Control data. We want the Control
data of our model to contain the information on the input of
every event (psimulation, A, pA), to know when the Host has
reproduced the Elementary action, how long it took to do it
and what the result was (success, failure, error, etc.).

Our simulation must guarantee that information. We trans-
late it into an implementation requirement of our model:

Property 4 (Implementation requirement): The Control
data of the simulation must include the following information
for every entry of the Scenario associated to an Elementary
action:

• The Elementary action an Host took
• The timestamp of that action
• The Elementary action parameters sent with the action
• The result of that Elementary action
• The time it took to carry it

By combining this information with the traces used for each
Elementary action, it is possible to label a record of the activity
generated by the simulation of our model quite simply.

In our model, each Host only receives instructions to replay
one Elementary action at a time. Only the simulation control
program knows the full Scenario and knows which Elementary
action and Elementary action parameter any given Host will
replay next. Each Host is in a stateless situation at any given
point of the simulation. We could choose to give the Script of
the Host to each of them at the start of the simulation and let
them deal with the execution of the Script. However, it would
risk having the Hosts act out of sync with each other, especially
when introducing elements of randomness in the Scripts of the
Hosts.

With a centralization of the decision-making process of the
simulation, we have a central point with full knowledge of the
situation of the simulation at any given point in time, which
facilitates the constitution of the ground truth of the simulation.

However, our model is not connected to the output of the
tested product. Our model solely handles the data sent to the
tested product and can label the Simulation data produced.
While our model also receives data, it does not know if the
data was correctly processed by external components nor does
it have access to their logs. Those elements are necessary
for a complete ground truth. For example, if our simulation
asks an Host to reproduce the Elementary action ”connect
to the webmail server of the company”, we will know what
Data generating function it used, when and how long it took
for the Host to do it and if the execution of the function

went well. However, we do not have access to the log of the
webmail server telling us if the connection was successful.
That information is not present in the Control data. The
evaluator would have to provide that information to the ground
truth generated by the simulation.

In this example, we assumed that we are in the case where
we simulate only the clients of real-life services. If we also
simulated the Services, then the Control data would also
contain the information on the output of the tested product.

The scope we guarantee for the constitution of an accurate
ground truth only goes as far as the elements simulated by our
simulation goes. The constitution of the ground truth with the
data of external elements connected to our simulation is at the
charge of the evaluator.

5) Scalability: Scalability is an essential issue for evaluation
data. It is a property that rapidly increases the difficulty and
cost of most methods to generate evaluation data. However,
it is an interesting property because it allows the constitution
of complex and large-scale activity close to a real-world envi-
ronment. One of the interesting property of having a scalable
network simulation is that the Simulation data generated by
two Hosts (H0 and H1) is not the same thing as the Simulation
data of a single Host H0 doing the same action twice.

∃{d, fpsimulation

, pA}/
dsimulation
H0

= fpsimulation

H0
(d, pA)

dsimulation
H1

= fpsimulation

H1
(d, pA)

}

dsimulation
H0

∪ dsimulation
H1

6= dsimulation
H0

∗ 2

In the same way, having 50 Hosts making one connection is
not the same thing that having one Host making 50 connections
at the same time. The impact on the tested product is also not
the same, especially if that security product must follow the
activity of each user separately.

Our model guarantees that if two Hosts use the same useful
Data generating function on the same Model data, then the
resulting Simulation data are equivalent.
Proof.

• According to Property 1:

f is useful toD, if ∀d ∈ D, d ∼ dsimulation = f(d, pA)

• So, if the Hosts H0 and H1 produce Simulation data
with f then:

∀{d, pA}/
dsimulation
H0

= fH0
(d, pA)

dsimulation
H1

= fH1(d, p
A)

}

⇒ dsimulation
H0

∼ d and dsimulation
H1

∼ d

• The definition of equivalence is that two data are equiv-
alent if and only if their properties are the same. So:

Properties(dsimulation
H0

) = Properties(d)

Properties(dsimulation
H1

) = Properties(d)

}

37

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

⇒ Properties(dsimulation
H0

) =
Properties(dsimulation

H1
)

and Properties(dsimulation
H0

) = Properties(dsimulation
H1

)

⇐⇒ dsimulation
H0

∼ dsimulation
H1

• So, we have:

∀{d, pA}/
dsimulation
H0

= fH0
(d, pA)

dsimulation
H1

= fH1(d, p
A)

}

⇒ dsimulation
H0

∼ dsimulation
H1

We also know that two equivalent data are not necessarily
equal to each other (d ∼ d′ 6⇒ d = d′). Therefore, it
exists a case where two Model data are equivalent and not
equal. So:

∃{d, fpsimulation

, pA}/
dsimulation
H0

= fpsimulation

H0
(d, pA)

dsimulation
H1

= fpsimulation

H1
(d, pA)

}

dsimulation
H0

∼ dsimulation
H1

and dsimulation
H0

6= dsimulation
H1

So, if we produce dsimulation
H0

once more on each side we
obtain the following result on our model:

∃{d, fpsimulation

, pA}/
dsimulation
H0

= fpsimulation

H0
(d, pA)

dsimulation
H1

= fpsimulation

H1
(d, pA)

}

dsimulation
H0

∪ dsimulation
H1

6= dsimulation
H0

∗ 2

We now have proof that one of the main interesting aspects
of a scalable simulation is not in opposition to our model.
With our model, we can produce the activity of n Hosts
that would be different from doing the same activity n times
simultaneously on a single Host.

The other aspect to consider with scalability is the network
infrastructure. To achieve a scalable simulation, we must
impose some requirements on the network support:

Property 5 (Implementation requirement 2): The network
infrastructure supporting the simulation model must be favor-
able to scalability. It should:

• Use virtual hosts: it is not possible to have a scalable
network with physical hosts so our network support must
use virtual hosts.

• Have low setup time and resources requirements: re-
sources consumption and the workforce required for set-
ting up a vast network are what often prevent evaluation
data methods from being scalable.

Following the second requirement, we aim to make our
simulation model work on a virtual network using process
VMs. We detail the implementation of a prototype in the
following section.

V. IMPLEMENTATION OF THE PROPOSED METHOD

In this section, we describe the implemention of a prototype
that follows the requirements of our model. This prototype uses
Mininet [24] as the network support of our simulation. Mininet
is an open-source network simulator that deploys lightweight
virtual machines to create virtual networks, and able to create
hundreds of lightweight virtual machines in a short amount of
time.

A. Model of the prototype

Our prototype contains several Data generating functions
that preserve each of these properties: execution time, packet
size, acknowledgement of the data by the Service. Based on
these Data generating functions we simulate the activity of
50 to 200 Hosts representing regular employees of a small
company interacting with the Service of a webmail server
Roundcube on a Postfix mail server. A simulation control
program follows the Script described in Figure 4 for all the
Hosts of the simulation. In Figure 4, the Elementary actions
are in italics while actions that do not generate activity data are
in a regular font. The Host can simulate two different series
of Elementary actions after a waiting period of X seconds
each time. The intensity of the Script can be modulated by
modifying the value of X .

Wait X seconds

Connect to webmail

Read last email

Disconnect

p = 0.5

Wait X seconds

Connect to webmail

Read last email

Send email

Disconnect

p = 0.5

p = 0.2

p = 0.8

Figure 4. Generation of simulated activity from short traces

To make sure that our method improves the existing meth-
ods, we must verify that our implementation respects the
properties we highlighted:

• the verification property of Data generating functions
(c.f. Property 1)

• the reproducibility property of Data generating functions
(c.f. Property 2)

• the verification property of the Scenario (c.f. Property
3)

• the implementation requirement on Control data (c.f.
Property 4)

• the implementation requirement for scalability (c.f.
Property 5)

38

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. NUMBER OF LINES IN THE WEBMAIL LOG FILES.

5 VMs 5 Hosts 50 Hosts 100 Hosts 150 Hosts 200 Hosts 250 Hosts
Filenames avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev
userlogins 90 9 112 10 1032 36 2084 45 3085 52 4121 53 5118 74
imap 43245 5070 57775 5306 487883 22742 984642 28820 1450507 27792 1933823 21117 274825 235985
sql 4955 525 6703 563 56081 1886 113031 2452 167138 2964 223427 2906 265354 4688

B. Verification of the implementation requirements

The verification of the implementation requirements (Prop-
erties 4 and 5) are the easiest to verify.

We select the network simulator Mininet in accordance to
Property 5: it uses lightweight virtual machines and can create
a large amount of virtual hosts (around a thousand) connected
with virtual links in a matter of minutes on a regular computer.
Mininet uses the lightweight virtualization mechanisms built
into the Linux OS: processes running in network namespaces,
and virtual Ethernet pairs. Mininet can emulate links, hosts,
switches, and controllers at a very low resource cost.

Concerning the Property 4, we simply ask the simulation
control program to write in a file the information required by
that property.

C. Experiments on the prototype

We verify the other properties with two separate experi-
ments.

The first experiment is a control experiment. We deploy
5 virtual machines on the network simulator Hynesim [25]
and make them generate the activity of our simulation. We
script the Elementary actions of the Script described in Figure
4 with the web driver Selenium [26] and make the virtual
machines use their browser to interact with the webmail server.
This experiment provides referential values for our second
experiment. We expect proportionality between these values
and the results of our simulation, with respect to the number
of Hosts.

In the second experiment, we simulate different number of
Hosts (5, 50, 100, 150, 200 and 250) and make them generate
the activity of regular users using a webmail service for 30
minutes. We measure the activity at three different points:
the webmail server, the network simulator Mininet and the
server hosting the simulation. Every 30 seconds, we measure
four parameters: CPU usage, memory usage, network I/O, and
disk I/O. Figure 5 is an example of the measured activity. It
represents the network traffic received and sent by the webmail
server with 50 simulated Hosts. Each Host follows the Script
described in Figure 4, with X = 30.

We also retrieve the logs produced by the webmail server
during both experiments. The quantity and content of the
logs is analyzed in Table I and Table II. Both experiments
are done twenty times for each set of parameters to ensure
the consistency of the results (Property 2). In the results we
express the average value and standard deviation of those
twenty experiments.

0 20 40 6010 30 50 705 15 25 35 45 55 65

0

200 000

400 000

600 000

100 000

300 000

500 000

50 000

150 000

250 000

350 000

450 000

550 000

slices of 30 seconds

b
y
te

s

recv

send

Figure 5. Network traffic of the webmail server for a single experiment (50
Hosts)

In the second experiment, we use the Data generating func-
tion with the highest level of realism: the adapted replay. That
Data generating function preserves the data acknowledgement
by the Service and allows Elementary action parameters to
modify the inputs of submitted forms. Concretely, it means
that a server cannot distinguish the adapted replay from an
interaction with a real user. Also, with the help of Elemen-
tary action parameters, the evaluator can freely change the
credentials replayed to the webmail server.

The analysis of the logs aims to verify the Properties 1
and 3. We verify that the Postfix server correctly accepted
the data generated by the Data generating function for each
Elementary actions (Property 1) and that the logs of the
simulation reflects our estimation from the logs of the control
experiment (Property 3). We also verify that the results are
consistent over multiple instances (Property 2).

Table I represents the quantity of logs produced by the
webmail server during both experiments. We express the
average number of lines in the log files of the webmail and
their standard deviation. The first column is the name of the
main log files produced by the server: ”userlogins” logs every
connection (successful or not), ”imap” logs every instruction
from the server that uses the IMAP protocol, and ”sql” logs
every interaction between the server and its database. The
entries under the name ”5 VMs” correspond to the results of
the control experiment while the other entries are the results
of the simulation experiment.

39

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 20010050 150 250

0

2 000

4 000

6 000

1 000

3 000

5 000

number of Hosts simulated

n
u

m
b

e
r

o
f

s
e

s
s
io

n
 c

re
a

te
d

average number of sessions

standard deviation

estimation

Figure 6. Number of sessions created during simulation (blue)
compared to estimation (black)

The number of lines in ”userlogins” represents the number
of connections during the experiments (one line per connec-
tion) and can be used to calculate the number of sessions
created during both experiments. Figure 6 shows the average
number of sessions created during the second experiment and
its standard deviation according to the number of simulated
Hosts. We also estimate the average number of sessions
inferred from the results of the control experiment, based on
proportionality (avg(”5 VMs”)× number of Hosts

5).

We observe that the number of sessions created during the
second experiment is close to our estimation. Our simulation
produces more sessions than expected but it can be explained
by the fact that our Data generating function reproduces the
Model data of an Elementary action faster than the browser
of the virtual machines. Hence, in a period of 30 minutes, the
simulated activity has gone through more cycles of the Script
than the control experiment. A projection of the number of
lines of the other log files (”imap” and ”sql”) displays similar
results.

These results establish that the simulated activity produces a
consistent amount of logs. In Figure 7, we examine the network
traffic produced by our simulated activity. The blue and red
parts represent the average number of bytes, respectively,
received and sent by the webmail server every 30 seconds,
along with the standard deviation. For comparison, the black
lines correspond to the estimation of the expected results based
on the control experiment. As before, the results of the second
experiment are close to our estimation. The deviation can be
justified with the same explanation regarding the activity speed
difference. This deviation is also partly due to the cached data.
Since these data are stored on the host after the first connection,
the amount of exchanged data during the first connection is
higher than during subsequent sessions.

0 20010050 150 250

0e00

1e06

2e05

4e05

6e05

8e05

1.2e06

1.4e06

1.6e06

number of Hosts simulated

b
y
te

s

average number received every 30s

received standard deviation

received estimation

average number sent every 30s

sent standard deviation

sent estimation

Figure 7. Network traffic of the webmail server

However, our Data generating function does not take cached
data into account. Therefore, our simulated connections request
more data from the webmail server than estimated. This
observation is part of the parametrization issues of the Data
generating function raised at the end of Section IV. Adding
Elementary action parameters to modify the behavior of the
function can solve this issue as we did for previous typing
and semantic issues. However, the addition of new Elementary
action parameters is made from empiric observation and could
be improved by adding new methods to our model like machine
learning.

Despite those issues, we have shown that the simulated
activity of the second experiment generated a large network
activity proportionally to the number of simulated Hosts, as
expected. We now focus on proving that the activity semantics
was also preserved.

For each Elementary action of the activity Script, we look
for log entries that could act as signatures for the action. We
select those signatures by comparing the logs of the different
Elementary actions. The log entries that appeared for only one
Elementary action are selected as signature of that action.

Those log entries are used to verify that the server ac-
knowledges the simulation data as it would real actions. We
also manually verified the correctness of the Data generating
function for some Elementary actions. For example, we ask
the simulation to do the action ”read the email” for a different
email that the one in the Model data. Or to do the action
”connect to the webmail” with purposely wrong credentials. In
both cases, the manual analysis of the simulated data showed
that the webmail server properly acknowledged the simulated
data.

Signatures from log entries is a more global form of veri-
fication. By comparing these signatures in both experiments,
we obtain the results displayed in Table II.

From Table II, the following observations can be made:

• the number of signatures for the ”connect” Elementary

40

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. SIGNATURE LOG ENTRIES.

5 VMs 5 Hosts 50 Hosts 100 Hosts 150 Hosts 200 Hosts 250 Hosts
Signatures Actions avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev
imap.sign1 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign2 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign3 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign4 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign5 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign6 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign7 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign8 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign9 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4873 88
imap.sign10 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4873 88
sql.sign1 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
sql.sign2 disconnect 90 9 122 10 1032 36 2079 44 3085 52 4121 53 5118 74
imap.sign11 open 89 9 122 10 1028 36 2069 44 3059 52 4090 53 4808 91

action is slightly inferior to the number of sessions
(the number of lines from ”userlogins”) observed for
150 Hosts and above. It is explained by the fact that
the signatures correspond to the number of successful
connections to the webmail server. If we remove the
number of lines in the ”userlogins” file that correspond
to failed connections, we find the exact number of
signatures for the ”connect” Elementary action.

• the number of signature for the ”disconnect” Elementary
action corresponds to the exact number of sessions
observed in Table I.

• the number of signatures for the ”open” Elementary
action is slightly inferior to the number of signatures
for the ”connect” Elementary action for 50 Hosts and
above. It is likely due to the experiment ending before
the last Script cycle ended for a few Hosts.

• no characteristic entry for the ”send an email” Elemen-
tary action could be found in the ”userlogins”, ”imap”
and ”sql” log files.

The failure of several connections in our simulation may
also be due to the parameterization of the Data generating
function. The adapted replay Data generating function was
designed to modify short-lived information from the Model
data like the token or the session identifier according to the
server reply from the requests. However, such modification was
not included in the first request. The webmail server possibly
refused some connections because they contained the same
information at the same time. Therefore, an improvement of
the typing of the adapted replay Data generating function
should raise the number of successful connections with a
high number of simulated Hosts. Table II shows that for each
successful session in our simulated activity, the webmail server
correctly interpreted the Elementary actions.

To sum up the results analysis, our prototype generates a
simulated activity that produces a realistic amount of net-
work traffic and logs from the webmail server (Property
3). Moreover, the webmail server produces the appropriate
number of logs reflecting the correct semantics. Each simulated
Elementary action resulted in the same log entries as a real one
(Property 1). Each result was verified twenty times (Property

2). Therefore, our prototype succeeds in providing scalable and
realistic data generation, thus validating our model.

VI. CONCLUSION

In this paper, we establish a new methodology to generate
realistic evaluation data on a network support (Mininet) with
far fewer requirements than the common network testbeds.
This methodology takes into consideration the need for an
evaluator to test different properties and evaluate different
vulnerabilities in a security product. Therefore, an evaluator
can select the Data generation function that matches the
properties of the product that need to be tested. The evaluator
also has a control on the granularity of the activity Elementary
actions. The finesse of the simulated activity can be improved
by introducing new Elementary actions or adding Elementary
action parameters to the Data generation function.

We add to our previous published paper several aspects.
First, we elaborate the ambition of our method into five iden-
tified requirements: customizability, reproducibility, realism,
accuracy, and scalability. Second, we explain with greater
details the different concepts of our methods and translate our
added requirements into verifiable properties of our model. It
allows us to introduce the concepts of levels of realism with
clear example of the current capacities of our model and its
future potential. We validate our model with a prototype able
to generate realistic activity up to 250 users interacting with a
webmail server. The traffic can be customized in terms of Hosts
numbers as well as Scripts content. With our added verifiable
properties of the five requirements of our model, we define
experimental tests to make sure our prototype complies with
our ambitions. In another article [27], we use this prototype
to define evaluation methodologies and evaluate a security
product: the intrusion detection system Suricata.

However, our prototype still has a few limitations. The
existing Data generating functions mostly focus on the creation
of network activity and does not generate system activity for
host-based security products. The parametrization for more
realistic Data generating functions also raises additional issues
that need to be addressed with further work. Finally, our
prototype is currently limited to the simulation of Hosts. In
parallel with the testing of network-based intrusion detection

41

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

systems based on our prototype, the next steps of our work will
focus on extending our prototype to include the simulation of
Services and develop new Data generating functions that focus
on the generation of system data rather than network data.

REFERENCES

[1] P.-M. Bajan, H. Debar, and C. Kiennert, “A new approach of net-
work simulation for data generation in evaluating security products,”
in ICIMP 2018, The Thirteenth International Conference on Internet
Monitoring and Protection, 2018.

[2] A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne,
“Evaluating computer intrusion detection systems: A survey of common
practices,” ACM Computing Surveys (CSUR), vol. 48, no. 1, 2015,
p. 12.

[3] C. Kreibich and J. Crowcroft, “Honeycomb: creating intrusion detection
signatures using honeypots,” ACM SIGCOMM computer communica-
tion review, vol. 34, no. 1, 2004, pp. 51–56.

[4] V. E. Seeberg and S. Petrovic, “A new classification scheme for
anonymization of real data used in ids benchmarking,” in Availability,
Reliability and Security, 2007. ARES 2007. The Second International
Conference on. IEEE, 2007, pp. 385–390.

[5] S. E. Coull et al., “Playing devil’s advocate: Inferring sensitive infor-
mation from anonymized network traces.” in NDSS, vol. 7, 2007, pp.
35–47.

[6] A. Srivastava, K. Singh, and J. Giffin, “Secure observation of kernel
behavior,” Georgia Institute of Technology, Tech. Rep., 2008.

[7] F. Lombardi and R. Di Pietro, “Secure virtualization for cloud comput-
ing,” Journal of Network and Computer Applications, vol. 34, no. 4,
2011, pp. 1113–1122.

[8] J. Reeves, A. Ramaswamy, M. Locasto, S. Bratus, and S. Smith,
“Intrusion detection for resource-constrained embedded control systems
in the power grid,” International Journal of Critical Infrastructure
Protection, vol. 5, no. 2, 2012, pp. 74–83.

[9] K. Nasr, A. Abou-El Kalam, and C. Fraboul, “Performance analysis
of wireless intrusion detection systems,” in International Conference
on Internet and Distributed Computing Systems. Springer, 2012, pp.
238–252.

[10] K. Ma, R. Sun, and A. Abraham, “Toward a lightweight framework
for monitoring public clouds,” in Computational Aspects of Social
Networks (CASoN), 2012 Fourth International Conference on. IEEE,
2012, pp. 361–365.

[11] J.-K. Ke, C.-H. Yang, and T.-N. Ahn, “Using w3af to achieve automated
penetration testing by live dvd/live usb,” in Proceedings of the 2009
International Conference on Hybrid Information Technology. ACM,
2009, pp. 460–464.

[12] F. Massicotte, M. Couture, Y. Labiche, and L. Briand, “Context-based
intrusion detection using snort, nessus and bugtraq databases.” in PST,
2005.

[13] N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A. Olsson,
“A methodology for testing intrusion detection systems,” IEEE Trans-
actions on Software Engineering, vol. 22, no. 10, 1996, pp. 719–729.

[14] R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention of kernel
rootkits with vmm-based memory shadowing,” in International Work-
shop on Recent Advances in Intrusion Detection. Springer, 2008, pp.
1–20.

[15] H. Jin et al., “A vmm-based intrusion prevention system in cloud
computing environment,” The Journal of Supercomputing, vol. 66, no. 3,
2013, pp. 1133–1151.

[16] J. Morris, S. Smalley, and G. Kroah-Hartman, “Linux security modules:
General security support for the linux kernel,” in USENIX Security
Symposium, 2002, pp. 17–31.

[17] M. Laureano, C. Maziero, and E. Jamhour, “Protecting host-based
intrusion detectors through virtual machines,” Computer Networks,
vol. 51, no. 5, 2007, pp. 1275–1283.

[18] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman, “An overview
of issues in testing intrusion detection systems,” NIST Interagency,
Tech. Rep., 2003.

[19] R. K. Cunningham, R. P. Lippmann, D. J. Fried, S. L. Garfinkel, I. Graf,
K. R. Kendall, S. E. Webster, D. Wyschogrod, and M. A. Zissman,
“Evaluating intrusion detection systems without attacking your friends:
The 1998 darpa intrusion detection evaluation,” Massachusetts Inst. of
Tech. Lexington Lincoln Lab, Tech. Rep., 1999.

[20] T. V. Phan, N. K. Bao, and M. Park, “Distributed-som: A novel per-
formance bottleneck handler for large-sized software-defined networks
under flooding attacks,” Journal of Network and Computer Applications,
vol. 91, 2017, pp. 14–25.

[21] C. Cowan, S. Arnold, S. Beattie, C. Wright, and J. Viega, “Defcon
capture the flag: Defending vulnerable code from intense attack,” in
DARPA Information Survivability Conference and Exposition, 2003.
Proceedings, vol. 1. IEEE, 2003, pp. 120–129.

[22] R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “Mawilab: com-
bining diverse anomaly detectors for automated anomaly labeling and
performance benchmarking,” in Proceedings of the 6th International
COnference. ACM, 2010, p. 8.

[23] Z. Puljiz and M. Mikuc, “Imunes based distributed network emulator,”
in Software in Telecommunications and Computer Networks, 2006.
SoftCOM 2006. International Conference on. IEEE, 2006, pp. 198–
203.

[24] R. L. S. De Oliveira, A. A. Shinoda, C. M. Schweitzer, and L. R.
Prete, “Using mininet for emulation and prototyping software-defined
networks,” in Communications and Computing (COLCOM), 2014 IEEE
Colombian Conference on. IEEE, 2014, pp. 1–6.

[25] “Homepage of Hynesim,” 2018, URL: https://www.hynesim.org [ac-
cessed: 2018-04-09].

[26] R. A. Razak and F. R. Fahrurazi, “Agile testing with selenium,” in
Software Engineering (MySEC), 2011 5th Malaysian Conference in.
IEEE, 2011, pp. 217–219.

[27] P.-M. Bajan, H. Debar, and C. Kiennert, “Methodology of a network
simulation in the context of an evaluation: Application to an ids,”
in ICISSP 2019, The Fith International Conference on Information
Systems Security and Privacy, 2019.

42

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Power Consumption Analysis of the New Covert Channels in CoAP

Aleksandar Velinov, Aleksandra Mileva, Done Stojanov

Faculty of Computer Science

University “Goce Delčev”

Štip, Republic of Macedonia

email: {aleksandar.velinov, aleksandra.mileva, done.stojanov}@ugd.edu.mk

Abstract — This paper presents several novel covert channels

in the Constrained Application Protocol (CoAP) - a specialized

Web transfer protocol used for Internet of Things. The

suggested new covert channels are categorized according to the

pattern-based classification, and, for each covert channel, the

total number of hidden data bits transmitted per second, or

per protocol data unit is given, together with the theoretical

performance evaluation. Additionally, we present a

methodology for power consumption analysis of these covert

channels, and we give the experimental results of applying this

methodology for one of the discovered CoAP covert channels.

Keywords - CoAP; network steganography; Contiki OS;

Cooja; Copper.

I. INTRODUCTION

We have investigated several novel covert channels for
the Constrained Application Protocol (CoAP) in the
conference paper [1]. In this paper, we extend the results
with an experimental methodology for power consumption
analysis of these covert channels, and we give the
experimental results of applying this methodology for one of
the discovered CoAP covert channels.

Network steganography is a practice of hiding data in
legitimate transmissions in communication networks, by
deploying different network protocols as carriers, and
concealing the presence of hidden data from network
devices. It provides only security through obscurity.

Covert channels are first introduced by Lampson [10] as
channels “not intended for information transfer at all” and
they can be exploited by a process to transfer information in
a manner that violates the systems security policy. The
current distinction between the network steganography and
covert channels is artificial, especially in a communication
networks environment. Network steganography techniques
create covert channels for hidden communication, but such
covert channels do not exist in communication networks
without steganography [14]. There is no some algorithm for
exaustive search of all covert channels in a given protocol.

Covert channels can be divided in two basic groups:
storage and timing channels. Storage covert channels are
channels where one process writes (directly or indirectly) to
a shared resource, while another process reads from it. In the
context of network steganography, storage covert channels
hide data by storing them in the protocol header and/or in the
Protocol Data Unit (PDU). On the other hand, timing

channels hide data by deploying some form of timing of
events, such as retransmitting the same PDU several times,
or changing the packet order.

Network-based covert channels may have black hat or
white hat applications. Black hat applications include
coordination of distributed denial of service attacks,
spreading of malware (for example, by hiding command and
control traffic of botnets), industrial espionage, secret
communication between terrorists and criminals, etc. On the
other hand, white hat applications include covert military
communication in hostile environments, prevention of
detection of illicit information transferred by journalists or
whistle-blowers, circumvention of the limitation in using
Internet in some countries (e.g., Infranet [4]), providing
Quality of Service - QoS for Voice over Internet Protocol -
VoIP traffic [12], secure network management
communication [6], watermarking of network flows (e.g.,
RAINBOW [8]), tracing encrypted attack traffic or tracking
anonymous peer-to-peer VoIP calls [21][22], etc.

Nowadays, there are a plenty of choices in the landscape
of network protocols for carriers. There are several surveys
about different covert channels in many TCP/IP
(Transmission Control Protocol/Internet Protocol) protocols
[15][26]. To the best of our knowledge, there are only a few
papers about network steganographic research addressing
protocols specialized for constrained devices in the IoT
(sensors, vehicles, home appliances, wearable devices, and
so on) [3] [9]. The Constrained Application Protocol (CoAP)
[19] is a specialized Web transfer application layer protocol,
which can be used with constrained nodes and constrained
networks in the IoT. The nodes are constrained because they
have 8-bit microcontrollers, for example, with limited
random-access memory (RAM) and read-only memory
(ROM). Constrained networks often have high packet error
rates and small data rate (such as IPv6 over Low-Power
Wireless Personal Area Networks - 6LoWPANs). CoAP is
designed for machine-to-machine (M2M) applications and
its last stable version was published in June 2014 in the RFC
7252 [19]. In fact, it is a Representational State Transfer -
RESTful protocol with multicast and observe support. In this
paper, we try to apply existing network steganographic
techniques for creating covert channels in CoAP.

Wendzel et al. [24] presented a new pattern-based
categorization of network covert channel techniques into 11
different patterns or classes. They represented the patterns in
a hierarchical catalog using the pattern language Pattern

43

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Pattern-based categorization of network covert channel techniques

Language Markup Language (PLML) v. 1.1 [5]. A
modification of this categorization is made by Mazurczyk et
al. [14]. In our paper, we use this joint classification (see
Figure 1) to characterize our covert channels.

Covert channels are analyzed through the total number of
hidden data bits transmitted per second (Raw Bit Rate -
RBR), or through the total number of hidden data bits
transmitted per PDU (for example, Packet Raw Bit Rate-
PRBR) [13]. For each new CoAP channel, its PRBR value is
given, where PDU is a CoAP message.

The rest of this article is structured as follows. The
related work is presented in Section II. Details about the
CoAP header, messages, functionalities and concepts are
presented in Section III. The main Section IV describes eight
groups of new covert storage and timing channels in CoAP,
that can be used regardless its transport carrier (DTLS or
clear UDP). Some possible applications of these covert
channels are also briefly suggested in this section. In Section
V we present the performance evaluation, while the
experimental evaluation of one of the new covert channels is
given in Section VI. We conclude the paper in Section VII.

II. RELATED WORK

The research on network steganography for IoT has seen
an increased interest recently.

One example for this is the work of Islam et al. [9],
which uses Internet Control Message Protocol (ICMP) covert
channels for authenticating Internet packet routers as an
intermediate step towards proximal geolocation of IoT
devices. This is useful as a defense from the knowledgeable
adversary that might attempt to evade or forge the
geolocation. Hidden data are stored in the data field of the
ICMP Echo Request and ICMP Echo Reply messages.

Patuck et al. [18] present several storage covert channels
in the Extensible Messaging and Presence Protocol (XMPP),
a popular instant messaging protocol based on XML, which
in the past was used by many messaging platforms such as
Google Talk, AOL Instant Messenger, Microsoft Messenger
Sevice, etc. These covert channels use some attributes in the
XMPP messages, like Type, id and xml:lang attributes, or
the message body. For example, for the Type attribute, three
covert channels are presented: by changing cases of the
value, by changing value, or by presence/absence of the
attribute.

A storage covert channel with modulated sensor readings
is presented by Tuptuh et al. [20] for wireless sensor
networks. In this channel, LSBs of encrypted sensor readings
are the cover bits. The sender performs the following
algorithm: while LSB bit of the current reading is different
from the cover bit, small offset is added to the sensor reading
(e.g., temperature) and the value is encrypted.

44

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Building Automation and Control Networking Protocol
(BACnet) is another protocol for which two storage
(message-type based and parameter-based) and one timing
(with inter packet gaps) covert channels were given by
Wendzel [23].

Wendzel et al. [25] have showed that even a cyber-
physical system (CPS) can be used for network
steganography. One can places hidden data in the CPS
environment by slightly modifying some of its components,
like actuators, sensors, controllers, and monitoring
equipment. The authors apply the term scatter hoarding,
which means that only small modifications of the CPS will
be allowed but they will be applied to numerous carefully
selected components, to avoid them being regularly
modified, e.g., by a human user. One example is the
temperature sensor, which comprises two 8-bit alarm
registers with a lower and an upper warning threshold, and
can be used to store hidden values. Another example is the
state modulation of actuators, like heater, in which the
heating value of 80% will be a binary “0”, and of 79% will
be a binary “1”. Because the actuator states change and
influence the physical environment, steganographic
operations may not be robust and be easily detectable and
thus need a reasonable storage strategy.

 Some applications of steganography in IoT are not
connected with the protocols themselves, but with the
applications on top of these protocols. For example, Denney
et al. [3] present a novel storage covert channel on wearable
devices that sends data to other applications, or even to other
nearby devices, through the use of notifications that are
normally displayed on the status bar of an Android device.
For that purpose, a notification listening service on the
wearables needs to be implemented. Data are hidden in the
notification ID numbers (32 bits), and their exchange is done
by using two functions notify and cancel. If the notifying
function is immediately followed by the canceling function,
the notification is never displayed to the user although it can
be seen in the log files, so the communication is hidden from
the user who wears the device.

There are several papers that deploy steganography in the
physical or medium access control (MAC) layers [7][11][16]
[19].

As far as we now, there is no paper (other than [1]) that
analyze existance of covert channels in CoAP. Additionally,
we try to give a methodology how one can perform a power
consumption analysis of a given covert channel in the IoT
device.

III. HOW COAP WORKS

Similar to HTTP, CoAP uses client/server model with
request/response messages. It supports built-in discovery of
services and resources, Uniform resource identifiers (URIs)
and Internet media types. The CoAP sends request message
requesting an action (using a Method Code) to the resource
(idenified by a URI) hosted on server. The server responds
to this request by using the response message that contains
the Response Code, and possibly some resource
representation. CoAP defines four types of messages:

Confirmable (CON), Non-Confirmable (NON),
Acknowledgment (ACK) and Reset (RST). These types of
messages use method and response codes to transmit
requests or answers. The requests can be transmitted as
Confirmable and Non-Confirmable types of messages, while
the responses can be transmitted through these and via
piggybacked and Acknowledgment types of messages.

CoAP uses clear UDP or DTLS on transport layer to
exchange messages asynchronously between endpoints. As
shown in Figure 2, each message contains a Message ID
used for optimal reliability and to detect duplicates. A
message that requires reliable transmission is marked as
CON, and if does not, it is marked as NON. The CON
message is retransmitted using a default timeout and binary
exponential back-off algorithm for increasing the timeout
between retransmissions, until the recipient sends an ACK
message with the same Message ID. When the recipient is
not able at all to process CON or NON message, it replies
with a RST message.

Figure 2. a) Reliable CoAP message transmission b) Unreliable CoAP

message transmission.

CoAP messages are encoded into simple binary format

(see Figure 3). Each message starts with a 4B fixed header,
followed by a Token field, with size from 0 to 8B. Then
comes the optional Options field and optional Payload field.
If the Payload field is present it is preceded by one-byte
Payload Marker (0xFF).

The fields that make up the message header are the
following:

• Version (Ver) - 2-bit unsigned integer that idenitfies the
CoAP version. Currently it must be set to 01.

• Type (T) – 2-bit unsigned integer that indicates the
message type: Confirmable (0), Non-Confirmable(1),
Acknowledgement (2), or Reset (3).

• Token Length (TKL) – 4-bit unsigned integer that stands
for the length of the Token field (0-64 bits). Lengths 9-
15 are reserved and must be processed as a message
format error.

• Code – 8-bit unsigned integer. It is divided into two
parts: 3-bit class (the most significant bits) and 5-bit
details (the least significant bits). The format of the code
is “c.dd”, where “c” is a digit from 0 to 7 and represents
the class while “dd” are two digits from 00 to 31.
According to the class we can determine the type of the
message, such as: request (0), a successful response (2),
a client error response (4), or a server error response (5).

45

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CoAP has a separate code registry that provides a
description for all codes [2].

• Message ID - 16-bit unsigned integer that is used to
detect duplicate messages and to connect
Acknowledgment/Reset messages with Confirmable/
Non-Confirmable messages.

The message header is followed by the Token field with
variable size from 0 to 64 bits. This field is used to link
requests and responses.

The optional Options field defines one or more options.
CoAP defines a single set of options that are used both for
requests and for responses. These are: Content-Format, Etag,
Location-Path, Location-Query, Max-Age, Proxy-Uri,
Proxy-Scheme, Uri-Host, Uri-Path, Uri-Port, Uri-Query,
Accept, If-Match, If-None-Match, and Size1.

The payload of requests/responses that indicates success
typically carries the resource representation or the result of
the requested action.

Figure 3. CoAP message format.

Figure 4. a) Piggybacked response b) Separate response.

There are two types of responses: piggybacked and
separate (Figure 4). If the request is transmitted via CON or
NON message, and if the response is available and
transmitted via an ACK message, then it is piggybacked
response. If the server is unable to respond immediately to
the request, an Empty message (with code 0.00) is sent that
tells the client to stop sending the request. If the server is
able for later respond to the client, it sends a CON message
that must then be confirmed by the client. This is called a
separate response.

Similar to HTTP, CoAP uses GET (with code 0.01),
POST (with code 0.02), PUT (with code 0.03), and
DELETE (with code 0.04) methods.

IV. NEW COVERT CHANNELS IN THE COAP

When someone creates a covert channel (CC) in network
protocol, usually uses: a protocol feature that has a dual
nature (i.e., the same feature can be obtained in more than
one way), a feature that is not mandatory, a feature that can
obtain random value, and so on. Therefore if we use some of
these features, we can create new covert channels in CoAP.
From the beginning, CoAP offers some protection against
network steganography. For example, by introducing a
proper order in the appearance of different options in
message, the steganographic techniques that deploy different
order of options can not be applied.

CoAP can be applied in different fields, such as: smart
energy, smart grid, building control, intelligent lighting
control, industrial control systems, asset tracking,
environment monitoring, and so on. So, one useful scenario
of application of the CoAP covert channels would be for
support of the authentication of geolocation of IoT devices.
Another possible scenario is clandestine communication
between wearable devices in a hostile environment, for the
needs of the soldiers, or, between nodes in a wireless sensor
network.

As steganography offers only security through obscurity,
a successful attack against any covert channel consists in
detecting the existence of this communication. Next, the new
CoAP covert channels are presented.

A. Covert Channel Using Token and/or Message ID Fields

The Message ID contains a random 16-bit value. In the
case of piggybacked response for CON message, the
Message ID should be the same as in the request, while in
the case of separate response, the server generate different
random Message ID (while the request Message ID is copied
in the first sent Empty ACK message).

The same Message ID can not be reused (in the
communication between same two endpoints) within the
EXCHANGE_LIFETIME, which is around 247 seconds
with the default transmission parameters.

The Token is another random generated field, with
variable size up to 64 bits, used as a client-local identifier to
make a difference between concurrent requests. If the request
results in the response, the Token value should be echoed in
that response. This also happens in the case when the server
sends separate response. So, we can create an unidirectional
or a bidirectional communication channel between two hosts,
by sending 16 (from Message ID) plus/or 64 (from Token

ID) bits per message (PRBR {16, 64, 80}). According to
the pattern-based classification [14][24], this channel
belongs to the following class:

Network Covert Storage Channels

 --Modification of Non-Payload

 --Structure Preserving

 --Modification of an Attribute

 --Random Value Pattern

46

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Covert Channel Using Piggybacked and Separate

Response

Since the server has a choice for sending piggybacked or
separate response, one can create an one-bit per message
unidirectional or a bidirectional covert channel (PRBR=1),
such as:

• piggybacked response to be binary 1, and

• separate response to be binary 0.

At heavy load, the server may not be able to respond
(sending binary 1), so this covert channel is limited to the
times when the server has the choice. According to the
pattern-based classification [14][24], this channel belongs to
the following class:

Network Covert Timing Channels

 --Protocol aware

 --Message ordering pattern

C. Covert Channel Using Payload of the Message

Both requests and responses may include a payload,
depending of the Method or the Response Code,
respectively. Its format is specified by the Internet media
type and content coding providen by the Content-Format
option. The payload of requests or of responses that indicates
success is typically a representation of the resource or the
result of the requested action.

If no Content-Format option is given, the payload of
responses indicating client or server error is a Diagnostic
Payload, with brief human-readable diagnostic message
being encoded using UTF-8 (Unicode Transformation
Format) in Net-Unicode form.

The CoAP specification provides only an upper bound to
the message size - to fit within a single IP datagram (and into
one UDP payload). The maximal size of the IPv4 datagram
is 65,535B, but this can not be applied to constrained devices
and networks. According to IPv4 specification in the RFC
791, all hosts have to be prepared to accept datagrams of up
to 576B, while IPv6 requires the maximum transmission unit
(MTU) to be at least 1280B. The absolute minimum value of
the IP MTU for IPv4 is 68B, which would leave at most 35B
for a CoAP payload (the smallest CoAP header size with
Payload Marker before the payload is 5B, assuming 0B for
Token and no options). On the other hand, constrained
network presents another restriction. For example, the IEEE
802.15.4's standard packet size is 127B (with 25B of
maximum frame overhead), which leaves (without any
security features) 102B for upper layers. The sizes of the
input/output buffers in the constrained devices are another
restriction of the maximal payload. Thus, we can create a
unidirectional or a bidirectional communication channel
between two hosts, by sending a Diagnostic Payload with the
smallest maximal size of 35B per message (PRBR=280).
According to the pattern-based classification [14][24], this
channel belongs to the following class:

Network Covert Storage Channels

 --Modification of Payload Pattern

Another similar channel can be created by encoding the
data in some specific Internet media format (for example,
“application/xml” media type) and sending this format as
payload of a message with appropriate Content-Format
option (41 for “application/xml”).

D. Covert Channel Using Case-insensitive Parts of the

URIs

CoAP uses “coap” and “coaps” URI (Uniform Resource
Identifier) schemes for identification of CoAP resources and
providing a means for locating the resource. The URIs in the
request are transported in several options: URI-host, URI-
Path, URI-Port and URI-Query. They are used to specify the
target resource of a request to CoAP origin server. The URI-
host and the scheme are case insensitive, while all other
components are case-sensitive. So, we can create a
unidirectional covert channel between the client and the
server using, for example:

• capital letter in the URI-host option to be binary 1,
and

• small letter in the URI-host option to be binary 0.

Taking into account that valid Domain Name System

(DNS) name has at most 255B, we can send at most 255B
per message, or in other words, the PRBR of this channel is
up to 255B. According to the pattern-based classification
[14][24], this channel belongs to the following class:

Network Covert Storage Channels

 --Modification of Non-Payload

 --Structure Preserving

 --Modification of an Attribute

 --Value Modulation

 --Case Pattern

CoAP supports proxying, where proxy is a CoAP
endpoint that can be tasked by CoAP clients to perform
requests on their behalf. Proxies can be explicitly selected by
clients, using the Proxi-URI option, and this role is “forward-
proxy”. Proxies can also be inserted to stand in for origin
servers, a role that is named as "reverse-proxy". So, we can
create similar covert channel using schema and host part
from the Proxi-URI option. A request containing the Proxy-
URI Option must not include URI-host, URI-Path, URI-Port
and URI-Query options.

E. Covert Channel Using PUT and DELETE Methods

The PUT method requires the resource identified by the
URI in the request, to be updated or created with the
enclosed representation. If the resource exists at the request
URI, the enclosed representation should be considered as a
modified version of that resource, and a 2.04 (Changed)
Response Code should be returned. If no resource exists,
then the server may create a new resource with the same URI
that results in a 2.01 (Created) Response Code.

The DELETE method requires deletion of the resource,
which is identified by the URI in the request. Regardless if

47

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the deletion is successful, or the resource did not exist before
the request, a 2.02 (Deleted) Response Code should be send.

If somebody has a known representation of the existing
resource R1 on the server and if he knows that specific
resource R2 does not exist on the same server, a
unidirectional covert channel to the server can be created, in
this way:

• send request with PUT method to create the resource
R1 with enclosed known representation as binary 1,
and

• send request with DELETE method to delete non-
existing resource R2 as binary 0.

In this way, one bit per message can be sent (PRBP=1).

According to the pattern-based classification [14][24], this
channel belongs to the following class:

Network Covert Storage Channels

 --Modification of Non-Payload

 --Structure Preserving

 --Modification of an Attribute

 --Value Modulation Pattern

F. Covert Channel Using Accept Option

The Accept option can be used to indicate which
Content-Format is acceptable to the client. If no Accept
option is given, the client does not express a preference. If
the preferred Content-Format if available, the server returns
in that format, otherwise, a 4.06 "Not Acceptable" must be
sent as a response, unless another error code takes
precedence for this response. We can create a unidirectional
one-bit per message covert channel (PRBP=1), in this way:

• sending a given message without Accept option to
be binary 1, and

• sending a given message with Accept option to be
binary 0.

According to the pattern-based classification [14][24],

this channel belongs to the following class:

Network Covert Storage Channels

 --Modification of Non-Payload

 --Structure Modifying

 --Add Redundancy Pattern

G. Covert Channel Using Conditional Requests

Conditional request options If-Match and If-None-Match
enable a client to ask the server to perform the request only if
certain conditions specified by the option are fulfilled. In the
case of multiple If-Match options the client can make a
conditional request on the current existence or value of an
ETag for one or more representations of the target resource.
This is useful to update the request of the resource, as a
means for protecting against accidental overwrites when
multiple clients are acting in parallel on the same resource.
The condition is not fulfilled if none of the options match.
With If-None-Match option the client can make a conditional
request on the current nonexistence of a given resource. If

the target resource does exist, then the condition is not
fulfilled.

If somebody knows for sure that given condition C1 is
fulfilled (for example, the resource is created or deleted in
previous message) and other C2 is not fulfilled, using either
of If-Match and If-None-Match options, a unidirectional
one-bit per message covert channel (PRBP=1) can be created
in this way:

• sending a given message without fulfilled condition
to be binary 1 (e.g., If-Match + C2), and

• sending a given message with fulfilled condition
(e.g., If-Match + C1) to be binary 0.

According to the pattern-based classification [14][24],

this channel belongs to the following class:

Network Covert Storage Channels

 --Modification of Non-Payload

 --Structure Preserving

 --Modification of an Attribute

 --Value Modulation Pattern

H. Covert Channel Using Re-Transmissions

If we are using CoAP in channels with small error-rate
(to cope with the unreliable nature of UDP), we can create a
unidirectional or a bidirectional covert channel using
retransmissions with PRBP=1, in this way:

• sending a given message only once to be binary 1,
and

• sending a given message two or more times to be
binary 0.

In this way, one bit per message can be sent. According
to the pattern-based classification [14][24], this channel
belongs to the following class:

Network Covert Timing Channels

--Protocol aware

 --Re-Transmission pattern

V. PERFORMANCE EVALUATION

Suppose that two IoT devices communicate with CoAP
every t seconds.

Any covert channel with a given PRBR will need at least

ceil(l / PRBR) t (s)

for sending a message with length l bits.
We can evaluate the minimum time for sending the

message ”Hello, world!” using the newly suggested covert
channels. The message has length of 13 7-bit ASCII
characters or l=91 bits. Results are given in Table I.

So, we can see that not all suggested covert channels in
CoAP are able to send short messages in real time, especially
the ones with PRBR=1. Still, the covert channels 3 and 4 can
be used for sending a short message per one CoAP message,
without rising any suspicions. If the time for sending the

48

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

message is not so important, one can choose covert channels
1 or 2, without rising any suspicions.

TABLE I. PERFORMANCE EVALUATION OF THE NEW COVERT

CHANNELS FOR SENDING THE MESSAGE “HELLO, WORLD!”

No. Type of CC PRBR
Time (s)

t=1s t=5s t=10s

1

CC using
token and/or
message ID
Fields

16 6 30 60

64 2 10 20

80 2 10 20

2

CC using
piggybacked
and separate
response

1 91 455 910

3
CC using
payload of the
message

280 1 1 1

4

CC using case-
insensitive
parts of the
URIs

2040 1 1 1

5
CC using PUT
and DELETE
Methods

1 91 455 910

6
CC using
Accept option

1 91 455 910

7
CC using
conditional
requests

1 91 455 910

8
CC using re-
transmissions

1 91 455 910

TABLE II. PERFORMANCE EVALUATION OF THE NEW COVERT

CHANNELS WITH PRBR>1 FOR SENDING 320X240 RAW COLOR IMAGE

(WITH 24-BIT PIXELS)

Type of
CC

PRBR
Time(s)

t=1s t=5s

1

CC using
token
and/or
message
ID Fields

16
115200
(32h)

576000
(160h)

64
28800
(8h)

144000
(40h)

80
23040
(6,4h)

115200
(32h)

2

CC using
payload of
the
message

280
6583

(>1,82h)
32915
(>9.1h)

3

CC using
case-
insensitive
parts of the
URIs

2040
904

(15 min)
4520

(76 min)

Additionally, we can evaluate the minimum time for

sending the 320x240 raw color image (with 24-bit pixels)

using the newly suggested covert channels. The size of the
image is 225KB or l=1843200 bits. Results are given in
Table II.

The results from Table II show that most of the new
CoAP covert channels are not quite suitable for sending
images, because of the large transmission time. The covert
channel 3 is the most suitable for that purpose (it will send
225KB image in 15 minutes).

VI. EXPERIMENTAL EVALUATION

For our research we have used Contiki OS, and specially,
Instant Contiki version 3.0 as a development environment. It
is a Ubuntu Linux virtual machine that runs in VMWare
player. It has all the development tools, compilers and
simulators. We can develop our application and test it on one
of the devices in simulator. We used Cooja simulator. With
it, we can create different types of devices for which we can
develop applications. This is practical because before we
execute our application on real device we will make sure it
works properly.

For the purposes of our research we used Z1 Zolertia
Mote. It is an ultra low power wireless module for use in
wireless sensor networks (WSN). Z1 has the second
generation of MSP430F2617 low power microcontroller,
which has a powerful 16-bit RISC CPU @16MHz clock
speed. It also has built-in clock factory calibration, 8KB
RAM and a 92KB Flash memory. Z1 module includes the
CC2420 transceiver, which operates at 2.4GHz with data rate
of 250Kbps and it supports 802.15.4 standard to interoperate
with other devices. This module has a built-in temperature
and 3-axis accelerometer sensors. Z1 allows flexible
powering using the battery pack (2xAA or 2xAAA), Coin
Cell, USB and with direct connection.

Figure 5. Implementation scenario

In our research, we used Copper (Cu) as a CoAP user-

agent. It is a Firefox plugin that installs a handler for “coap”
URI scheme and allows users to browse and interact with
Internet of Things (IoT) devices. The scenario for our
research is presented on Figure 5. We used the Cooja
simulator to create a new simulation with, 2 Z1 Zolertia
motes. One Z1 mote is for Border Router. As a source we
used rpl-border router source code that is located in:

/home/user/contiki-3.0/examples/ipv6/rpl-border-router

The other Z1 mote is for CoAP server. In our research we

used Erbium implementation of CoAP server for Contiki OS.
The source code is located in:

/home/user/contiki-3.0/examples/er-rest-example

49

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

To adjust it to our needs, we made a change to the source
code, specifically in the file “res-hello.c” that is located in
the following path in Contiki:

/home/user/contiki-3.0/examples/er-rest-

example/resources

According to this scenario, we have implemented the
covert channel that uses the PUT and DELETE methods. By
using Copper user-agent, we created request using the PUT
and DELETE methods (with PUT in the 50th second of the
execution of the simulation and with DELETE in the 60th
second of the execution of the simulation). We also
examined power consumption in case when we do not
implement a covert channel and in the case of an
implemented covert channel. To calculate the power
consumption, we used the data obtained with the tool
“Powertrace” for CoAP server with and without
implemented covert channel. These data are printed at the
mote output for Z1 module in Cooja. We made the
calculations in a total time interval of 100 seconds as
previously predefined interval for performing the simulation
for both cases. These data show the total number of clock
ticks in different states of the module: CPU (CPU in active
mode), LPM (CPU in Low Power Mode), TX (Transmit) and
RX (Receive) (Table III and Table IV).

TABLE III. DATA OBTAINED WITH “POWERTRACE” FOR “COAP”

SERVER WITHOUT IMPLEMENTATION OF COVERT CHANNEL

ALL_CPU ALL_LPM ALL_TX ALL_RX

4674 322863 149 294987

9879 645197 229 622586

15204 967576 412 950244

17500 1292676 412 1277763

19778 1617956 412 1605442

24933 1940346 514 1933022

27435 2265399 594 2260619

29721 2590672 594 2588298

32001 2915952 594 2915978

34271 3241241 594 3243658

39491 3563562 675 3571258

To calculate the power consumption, we used the

following formula [27] :

RuntimeSECONDRTIMER

VoltageCurrentvalueEnergest
nconsumptioPower

*_

**_
_ =

Energest_value is the difference between the number of

clock ticks (in states CPU, LPM, TX and RX) between two
time intervals. We used the Z1 datasheet to get the values for

Current in different states (Approximate Current
Consumption of Z1 circuits: Active Mode @16MHz - < 10
mA (approximate 9mA), Standby Mode - 0.5µA, RX Mode -
18.8mA, TX Mode - 17.4mA) [28]. The value for Voltage
parameter is 3V. The value for RTIMER_SECOND is 32768.
Runtime is the time interval (10 seconds in our case).

TABLE IV. DATA OBTAINED WITH “POWERTRACE” FOR “COAP”

SERVER WITH IMPLEMENTED COVERT CHANNEL

ALL_CPU ALL_LPM ALL_TX ALL_RX

4726 322829 149 294987

10020 645086 229 622586

15271 967393 332 950165

17738 1292480 413 1277762

20253 1617524 476 1605379

25731 1939607 641 1932896

28236 2264657 722 2260493

30521 2589930 722 2588173

32801 2915210 722 2915853

35071 3240499 722 3243533

40372 3562751 802 3571132

Figure 6. Power consumption for CoAP server (Z1) in CPU state (with

and without implemented covert channel)

Figure 6 shows the power consumption for Z1 module

(implemented as CoAP server) in CPU state with and

without implemented covert channel. The average power

consumption without implemented covert channel is

0.28688324 mW, while the average power consumption

with implemented covert channel is 0.293713989 mW. We

can see that the average power consumption with an

implemented covert channel is bigger.

50

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7 shows the power consumption for Z1 module

(implemented as CoAP server) in LPM state with and

without implemented covert channel. The average power

consumption without implemented covert channel is

0.001483474 mW, while the average power consumption

with implemented covert channel is 0.001483119 mW. We

can see that the average power consumption with

implemented covert channel is slightly smaller than the

power consumption without implemented covert channel.

Figure 7. Power consumption for CoAP server (Z1) in LPM state (with

and without implemented covert channel)

Figure 8. Power consumption for CoAP server (Z1) in TX state (with and

without implemented covert channel)

Figure 8 shows the power consumption for Z1 module

(implemented as CoAP server) in TX state with and without

implemented covert channel. The average power

consumption without implemented covert channel is

0.008379272 mW, while the average power consumption

with implemented covert channel is 0.010402405 mW. We

can see that the power consumption with implemented

covert channel is around 1.24 times greater than the power

consumption without implemented covert channel.

Figure 9 shows the power consumption for Z1 module

(implemented as CoAP server) in RX state with and without

implemented covert channel. The average power

consumption without implemented covert channel is

56.3908949 mW, while the average power consumption

with implemented covert channel is 56.3887262 mW.

We can see that the average power consumption with

implemented covert channel is slightly smaller than the

power consumption without implemented covert channel.

Figure 9. Power consumption for CoAP server (Z1) in RX state (with and

without implemented covert channel)

Figure 10. Total power consumption for CoAP server (Z1) in all states

(with and without implemented covert channel)

51

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10 shows the total power consumption for Z1

module (implemented as CoAP server) in all states, in each

time interval with and without implemented covert channel.
The average power consumption without implemented

covert channel is 56.68764088mW, while the average power

consumption with implemented covert channel is

56.69432571mW. We can see that the average power

consumption (in all states) for Z1 module with implemented

covert channel (when sending two bits) is slightly greater

than the power consumption without implemented covert

channel.
The power consumption of the Z1 module in the 50th

second (the time when we sent a request with the PUT

method) with implemented covert channel has increased

very little, for only 0.02580548 mW.

We have the same case in the 60th second (the time when

we sent a request with the DELETE method), when the

power consumption with implemented covert channel has

increased very little, for only 0.00040648 mW. The

implementation of the covert channel using the PUT and

DELETE methods does not greatly affect the power

consumption of the Z1 module.

VII. CONCLUSION

Considering that IoT will consist of about 30 billion
objects by 2020 [17], CoAP belongs to the group of possible
most exploited protocols in the forthcoming years. The
CoAP covert channels presented here, are suitable for
sending short messages, as our performance evaluation
showed. Additionally, the performed experimental
evaluation of power consumption analysis on one of the
covert channels, shows only a slight increase in the power
consumption of the used device, when sending two bits. The
consequence of all these results, is the importance of
identifying as much as it can, the possible ways of hiding
data in CoAP and trying to mitigate them. One can deploy
active and passive wardens for this purpose, but this is left
for later investigation.

REFERENCES

[1] A. Mileva, A. Velinov, and D.Stojanov, “New Covert

Channels in Internet of Things,” Proc. 12th International

Conference on Emerging Security Information, Systems and

Technologies - SECURWARE 2018, Venice, Italy, 2018, pp.

30-36.

[2] Constrained RESTful Environments (CoRE) Parameters,

CoAP Codes [Online]. Available at:

https://www.iana.org/assignments/core-parameters/core-

parameters.xhtml [retrieved: July, 2018]

[3] K. Denney, A. S. Uluagac, K. Akkaya, and S. Bhansali, “A

novel storage covert channel on wearable devices using status

bar notifications,” Proc. 13th IEEE Annual Consumer

Communications & Networking Conference, CCNC 2016,

Las Vegas, NV, USA, 2016, pp. 845-848, doi:

10.1109/CCNC.2016.7444898.

[4] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and

D. Karger, “Infranet: Circumventing Web Censorship and

Surveillance,” Proc. 11th USENIX Security Symposium, San

Francisco, CA, 2002, pp. 247-262.

[5] S. Fincher et al., “Perspectives on HCI patterns: concepts and

tools,” Proc. Extended Abstracts on Human Factors in

Computing Systems (CHI EA ’03). ACM, New York, NY,

USA, 2003, pp. 1044–1045, doi: 10.1145/765891.766140.

[6] D. V. Forte, “SecSyslog: An Approach to Secure Logging

Based on Covert Channels,” Proc. First International

Workshop of Systematic Approaches to Digital Forensic

Engineering (SADFE 2005), Taipei, Taiwan, 2005, pp. 248-

263, doi: 10.1109/SADFE.2005.21.

[7] M. Guri, G. Kedma, A. Kachlon, and Y. Elovici, “AirHopper:

Bridging the Air-Gap between Isolated Networks and Mobile

Phones using Radio Frequencies,” MALWARE 2014, 2014.

[8] A. Houmansadr, N. Kiyavash, and N. Borisov., “RAINBOW:

A Robust And Invisible Non-Blind Watermark forNetwork

Flows,” Proc. 16th Network and Distributed System Security

Symposium (NDSS 2009), San Diego, USA, The Internet

Society, 2009.

[9] M. N. Islam, V. C. Patil, and S. Kundu, “Determining

proximal geolocation of IoT edge devices via covert

channel,” Proc. 18th International Symposium on Quality

Electronic Design, ISQED 2017, Santa Clara, CA, USA,

2017, pp. 196-202, doi: 10.1109/ISQED.2017.7918316.

[10] B. W. Lampson, “Note on the Confinement Problem,”

Commun. ACM vol. 16, 10, Oct. 1973, pp. 613-615, doi:

10.1145/362375.362389.

[11] D. Martins and H. Guyennet, “Attacks with Steganography in

PHY and MAC Layers of 802.15.4 Protocol,” Proc. Fifth

International Conference on Systems and Networks

Communications (ICSCN), Nice, France, 2010, pp. 31-36,

doi: 10.1109/ICSNC.2010.11.

[12] W. Mazurczyk and Z. Kotulski, “New Security and Control

Protocol for VoIP Based on Steganography and Digital

Watermarking,” Annales UMCS Informatica AI 5, 2006, pp.

417-426, doi: 10.17951/ai.2006.5.1.417-426.

[13] W. Mazurczyk and K. Szczypiorski, “Steganography of VoIP

Streams,” in On the Move to Meaningful Internet Systems

(OTM 2008) Robert Meersman, Zahir Tari (Eds.). LNCS,

vol. 5332, 2008, pp. 1001-1018, doi: 10.1007/978-3-540-

88873-4_6.

[14] W. Mazurczyk, S. Wendzel, Z. Zander, A. Houmansadr, and

K. Szczypiorski, “Information Hiding in Communication

Networks” Wiley / IEEE Comp. Soc. Press, (2016).

[15] A. Mileva and B. Panajotov, “Covert channels in TCP/IP

protocol stack - extended version-,“ Central European Journal

of Computer Science vol. 4, 2, 2014, pp. 45-66, doi:

10.2478/s13537-014-0205-6.

[16] A. K. Nain and P. Rajalakshmi, “A Reliable Covert Channel

over IEEE 802.15.4 using Steganography,” Proc. IEEE 3rd

World Forum on Internet of Things (WF-IoT), Reston, VA,

USA, 2016, pp. 711-716, doi: 10.1109/WF-

IoT.2016.7845486.

[17] A. Nordrum, “Popular Internet of Things Forecast of 50

Billion Devices by 2020 Is Outdated,” IEEE Spectrum. 18

August, 2016.

[18] R. Patuck and J. Hernandez-Castro, “Steganography using the

Extensible Messaging and Presence Protocol (XMPP),”

Computing Research Repository arXiv:1310.0524, 2013.

[19] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained

Application Protocol (CoAP),” RFC 7252, 2014.

[20] N. Tuptuk and S. Hailes, “Covert channel attacks in pervasive

52

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

computing,” IEEE PerCom, pp. 236–242, 2015.

[21] X. Wang and D. S. Reeves, “Robust correlation of encrypted

attack traffic through stepping stones by manipulation of inter

packet delays,” Proc. 10th ACM Conference on Computer

and Communications Security (CCS'03), 2003, pp. 20-29,

doi: 10.1145/948109.948115.

[22] X. Wang, S. Chen, and S. Jajodia, “Tracking anonymous

peer-to-peer VoIP calls on the Internet,” Proc. 12th ACM

Conference on Computer and Communications Security

(CCS'05), Alexandria, VA, USA, 2005, pp. 81-91, doi:

10.1145/1102120.1102133.

[23] S. Wendzel, “ Covertand Side Channels in Buildings and the

Prototype of a Building-aware Active Warden” IEEE ICC,

pp. 6753-6758, 2012.

[24] S. Wendzel, S. Zander, B. Fechner, and C. Herdin, “Pattern-

Based Survey and Categorization of Network Covert Channel

Techniques,” ACM Computing Surveys vol. 47, 3, Article 50,

2015, doi: 10.1145/2684195.

[25] S. Wendzel, W. Mazurczyk, and G. Haas, “Don't You Touch

My Nuts: Information Hiding in Cyber-physical Systems,”

IEEE SPW 2017, pp. 29-34, 2017.

[26] S. Zander, G. Armitage, and P. Branch, “A survey of covert

channels and countermeasures in computer network

protocols,” IEEE Communications Surveys and Tutorials vol.

9, 3, 2007, pp. 44-57, 10.1109/COMST.2007.4317620.

[27] Internet of Things technology [Online]. Available at:

http://thingschat.blogspot.com/2015/04

/contiki-os-using-powertrace-and.html [retrieved: January,

2019]

[28] Z1 Datasheet [Online]. Available at:

http://zolertia.sourceforge.net/wiki/images/e/e8/

Z1_RevC_Datasheet.pdf [retrieved: January, 2019]

53

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Secure Cooperation of Untrusted Components Using a Strongly Typed Virtual Machine

Roland Wismüller and Damian Ludwig
University of Siegen, Germany

E-Mail: {roland.wismueller, damian.ludwig}@uni-siegen.de

Abstract—A growing number of computing systems, e.g., smart
phones or web applications, allow to compose their software
of components from untrusted sources. For security reasons,
such a system should grant a component just the permissions
it really requires, which implies that permissions must be suffi-
ciently fine-grained. This leads to two questions: How to know
and to specify the required permissions, and how to enforce
access control in a flexible and efficient way? We present the
design and implementation of a novel approach based on the
object-capability paradigm with access control at the level of
individual methods, which exploits two fundamental ideas: we
simply use a component’s published interface as a specification
of its required permissions, and extend interfaces with optional
methods, allowing to specify permissions that are not strictly
necessary, but desired for a better service level. These ideas have
been realized within a static type system, where interfaces specify
both the availability of methods, as well as the permission to use
them. In addition, we support deep attenuation of rights with
automatic creation of membranes, where necessary. Thus, our
access control mechanisms are easy to use and also efficient, since
in most cases permissions can be checked when the component
is deployed, rather than at run-time. Based on our type system,
we have defined a secure intermediate representation, specified
its semantics and sketched a correctness proof. The presented
concepts have been implemented in a virtual machine called
COSMA. When a component is loaded, COSMA type checks
its intermediate representation and then compiles it into native
machine code, thus enabling its execution with minimal run-time
overhead. Thus, COSMA enables the secure, efficient, and flexible
cooperation of untrusted software components.

Keywords–Security; software component; type system; object-
capability model; membrane; virtual machine.

I. INTRODUCTION

In today’s computer based systems, the software envi-
ronment is often composed of components developed by an
open community. Prominent examples are web applications,
and smart phones with their app stores. A major problem
in such systems is the fact that the components’ origin and
therefore the components themselves may not be trusted [1]
[2]. In order to ensure security in systems composed of un-
trusted components, the Principle Of Least Authority (POLA)
should be obeyed, i.e., each component should receive just
the permissions it needs to fulfill its intended purpose [3]. The
term ’authority’ denotes the effects, which a subject can cause.
These effects can be restricted via permissions, which control
the subject’s ability to perform actions. An appealing and
popular approach to implement POLA is the use of the object-
capability model [4] [5], where unforgeable object references
are used as a capability allowing to use the referenced object.

Based on the object-capability paradigm, several secure
languages have been devised, such as the E language [4], Joe-
E [6] or Emily [7]. In order to allow a fine grained access
control at the level of individual methods, the programmer

has to manually implement security-enforcing abstractions,
e.g., membranes [5]. An inherent problem of language based
approaches is that security is achieved mainly by restrictions
of the source language and associated compile-time checks.
Thus, they not only confine interactions between different com-
ponents, but also limit the programmer’s capabilities within
a single component. A second drawback is that security can
only be guaranteed, if all components are available in the form
of source code, which in practice is infeasible for reasons of
protecting intellectual property rights.

The second problem can be addressed by enforcing security
at the level of a Virtual Machine (VM). However, existing
VMs like Oviedo3 [8] only provide basic mechanisms for the
management of access rights, i.e., adding and removing the
permission to execute a method for a given object reference,
and must check all these permissions at run-time. Thus, they
are neither easy to use nor efficient.

To overcome the drawbacks of existing approaches, the
goal of our work is to provide a VM that eliminates the
shortcomings of existing capability systems and secure high-
level languages, and addresses the special needs for the secure
cooperation of untrusted components. In particular, it

• allows components to be distributed and deployed in
binary form while still providing security,

• enables fine-grained access control without putting a
relevant annotation or implementation burden on the
components’ programmers,

• does not restrict the code’s expressiveness within a
single component, and

• minimizes the number of required run-time checks
by performing most checks when a component is
deployed.

Our paper is organized as follows: We start with a dis-
cussion of related work in Section II, before in Section III,
we present our security model and a component model, where
each component specifies its minimal and desired permissions
in a natural way using interfaces. We then outline the details of
a type system that allows fine-grained access restrictions and
optional methods (Section IV). In addition, we introduce the
concepts and the implementation of a virtual machine based
on a secure, strongly-typed byte code, which allows static type
checking at deployment time and the automatic creation of
membranes (Section V). We conclude the paper by giving
an outlook to our future work (Section VI). The appendix
contains the definition of the formal semantics of the virtual
machine’s instruction set and sketches a proof of its primary
security property. This paper is an extended version of [1],
which includes an elaborate discussion of our type system, the

54

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

automatic creation of membranes and the implementation of
our virtual machine.

II. RELATED WORK

Component-based software development has a long tradi-
tion in software engineering. Large software systems are built
by composing smaller parts, which interact only via well-
defined interfaces. Recent research on composition aspects
focuses on how to specify the semantics of these interfaces,
such that properties of the system can be derived from the
properties of the individual components [9] [10] [11]. While
typically components are assumed to be trustworthy, secure
cooperation of untrusted components is gaining more and more
attention, e.g., in the area of telecommunication systems [12]
or web application [2]. In many cases, the security is based on
the object-capability model.

Capability based protection mechanisms date back as early
as the 1960-ies with, e.g., the IBM System/38 and the Hydra
operating system as prominent examples [13]. A good intro-
duction to the object-capability model and the principle of least
authority is provided in [14]. The general properties of capa-
bility systems, as well as some common misconceptions about
capabilities are clearly pointed out in [15]. The authors show
that capabilities have strong advantages over access control
lists and can support both confinement and revocation of access
rights. More details about the object-capability paradigm as
well as revocation and confinement are discussed in [3]. A
detailed discussion of several common object-capability pat-
terns, including membranes, together with a formal modeling
and proofs has been presented by Murray [5].

The object-capability paradigm has been used as a basis
for secure languages. A pioneer in this area is the work of
Mark Samuel Miller [4] on the E language, which points out
the prerequisites for secure languages: memory safety, object
encapsulation, no ambient authority, no static mutable state,
and an API without security leaks. In addition to these features,
E provides capabilities for access control at the object level.
Access control at the granularity of methods is also possible,
but requires the programmer to explicitly implement security-
enforcing abstractions like membranes. Based on E, Joe-E [6]
restricts Java such that access to objects is only possible via
capabilities that have been explicitly passed to a component.
It also supports immutable interfaces allowing to implement
secure plug-ins. Joe-E uses compile-time checking and secure
libraries to disable insecure features of Java like, e.g., reflection
and ambient authority. In a similar spirit, Emily [7] is a
secure subset of OCaml. Emily does not have the notion of
components, but dynamically grants permissions to launched
applications via explicit use of the powerbox pattern. Maffeis
et al. [2] specifically address the problem of mutual isolation
of (third-party) web applications written in JavaScript. They
define a language to be authority safe, if it satisfies the proper-
ties “only connectivity begets connectivity” and “no authority
amplification”, and formally show that authority safety implies
isolation.

An implementation of capability-based access control at
method granularity within a virtual machine is presented in
[8] [16] [17]. Oviedo3 consists of an object oriented abstract
machine and an accompanying operating system. It provides

basic mechanisms for the management of access rights, i.e.,
adding and removing the permission to execute a method for
a given object reference, and checks all these permissions at
run-time.

A different area of research examines the use of type
systems for enforcing security constraints. One goal that has
been achieved is alias control, i.e., a means to restrict the
sharing of references. Several different concepts have been
developed, e.g., universes [18], ownership types [19] [20] [21]
or confined types [22]. In [23], Philip Fong shows that these
concepts can be used at the byte code level, enabling to
enforce confined types at link time, while in [24] [25] the same
author discusses how to formally model capabilities, such that
confinement can be guaranteed. The common idea of these
approaches is to augment class types, such that references to
instances of these classes created in some context x cannot be
passed to another context y.

There are also several proposals to assign more powerful
and flexible security restrictions to types. As an example, both
[26] and [27] allow the type system to enforce restrictions on
information flow, similar to the Bell-LaPadula model. A pow-
erful, but also complex capability type system is introduced
in [28], which allows the programmer to define sequences of
aliasing events that may occur to a reference type.

In [29], the authors present the idea of adding hidden
capabilities to the interface description of components in
order to separate protection definition from application code.
Capabilities are implemented in the classical way using OS
protection mechanisms. An approach to define the semantics
of common type annotations used to specify access rights for,
e.g., reading and writing objects is outlined in [30]. While the
code can be checked statically in this approach, it does not
support fine-grained access permissions for methods. Strategies
for fine-grained access control with link-time enforcement have
been developed in ISOMOD [31]. Based on the idea that if a
loaded module does not know the name of an entry point,
it cannot call the corresponding service, ISOMOD defines a
powerful, but also rather complex policy definition language.
A problem, which is inherited from the underlying Java VM
is that there are no explicit interfaces between the modules,
making it extremely hard to determine the minimal rights
required by a module. In addition, only nominal typing is
supported and rights cannot be attenuated at run-time. The
Safe Language Kernel [32] employs a similar basic idea by
introducing type capabilities, which are checked at link time.
However, since the paper was never officially published the
concept is not fully worked out and has not been integrated
into a type system.

The above discussion shows that although there are some
partial solutions for supporting the secure cooperation of
untrusted components, there is no satisfying practical approach
for this problem yet. The language-based approaches achieve
security by imposing restrictions on the programming lan-
guage, which also affects its expressiveness for programming
within a single component. In addition, they require compo-
nents to be distributed as source code, which is not desirable.
Approaches based on the object-capability paradigm or on type
systems for alias control in general just support access control
at the object-level, but not at the method-level. Fine-grained
access control either requires manually programmed security

55

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

abstractions or a run-time management and enforcement of
method permissions implying a significant overhead. The more
sophisticated type based approaches, like [28] result in a sig-
nificant annotation burden for the programmer, which hinders
their widespread usage.

The contribution of our work is to provide an approach
that avoids the mentioned shortcomings by combining existing
techniques with completely new ideas. Our solution is based
on a VM executing a strongly typed intermediate language
where types are used to represent permissions. A central
idea is to specify fine-grained access control by just using
standard interface definitions, thus avoiding complex code
annotations. Since the VM performs a static type check, which
in our approach also corresponds to a permission check, when
a new component is loaded, most run-time checks can be
avoided. If necessary, the VM automatically builds the required
membranes for method-level access restrictions. The VM’s
underlying type system has been designed in such a way
that it does not limit expressiveness within a component,
but just restricts the permissions of object references passed
from one component to another. While we did not implement
annotations for alias control yet, this may easily be added in
future.

III. COMPONENT AND SECURITY MODEL

A. Component Model

Our work is based on the established definition of a
software component, as given by Szyperski: “A software
component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to
composition by third parties” [33]. We assume that components
are distributed as compiled byte code for a VM, rather than
source code. Their internal structure is not relevant, however,
we require that a component defines a purely object oriented
interface, i.e., to its environment it appears to be composed
of classes. One of these classes, the principal class, is the
component’s entry point, i.e., when the component is loaded,
an instance of the principal class is created and its constructor
is invoked.

B. Security Model

In order to support qualified statements about security prop-
erties, we structure the computing system under consideration
into a disjoint set of security domains that we call contexts.
We assume that the system features a trusted computing base,
which just consists of the VM and a minimal operating system
(OS) kernel, and is referred to as OS context. Any other service
available in the system is implemented by loading components
from an external, untrusted source. When the OS loads a
component, it creates a new context c and instantiates the
component’s principal class within this context. In turn, when
a method of any object in context c instantiates a new object,
the new object will also be enclosed in c. Thus, c comprises
all objects created on behalf of the loaded component.

Our threat model now is as follows: Code executing within
a context c may try to compromise the confidentiality, integrity,
authenticity and availability of any data contained in or service

LISTING 1. CALENDAR INTERFACE

principal class Calendar {
interface Appointment {
int startTime();
int endTime();
String subject();
String notes(); // confidential notes

}
void createAppointment(...) { ... }
// return next upcoming appointment
Appointment getNextAppointment() { ... }
...

}

provided by a context c′ by accessing or invoking data or code
in other contexts, including the OS context.

As a prerequisite, we assume that all interactions between
different contexts are based on the object-capability paradigm,
i.e., access to data or code is possible only via references
that can be passed between contexts and act as capabilities.
In addition, data can be accessed only by calling an object’s
methods. This implies that there is no ambient authority, thus,
the OS kernel must also exhibit a purely object oriented
interface.

The goal of our work now is to parry the depicted threat
by enforcing the following property: Code of a component
that has been loaded into a context c can only perform actions
(i.e., execute methods on objects) in contexts different from c,
which (1) have been explicitly documented by that component,
and (2) have been explicitly permitted to context c.

Compared to the traditional object-capability model, there
are two significant extensions. First, the granularity of access
control is more fine grained, since our model controls the
ability to execute certain actions on an object, rather than just
the overall access to the object. Second, components include
an explicit definition of their required permissions.

C. An Example

Consider a component Calendar that manages and pro-
vides appointments. In a Java-like language (where access
modifiers have been omitted for brevity), this component may
be defined as shown in Listing 1.

Now assume that there is a component C whose task
is just to display the next upcoming appointment in some
widget. In this situation, POLA requires that C can just get
the next appointment, but not, e.g., create a new one. However,
the standard object-capability model will allow C to invoke
createAppointment() once it receives a reference to
a Calendar object. This is true, even when the reference
is passed using a restricted type (i.e., an interface type just
containing getNextAppointment()), since virtually all
popular object oriented languages will allow C to downcast
the reference to the type Calendar again.

D. Fine Grained Access Control

In principle, an object-capability system can be extended
with a more fine grained access control by supplementing

56

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Let Tpc denote the type of the principal class of C,
Targ(T) the set of the argument types of all methods defined in a type T ,
Tres(T) the set of the result types of all methods defined in type T ,
Tin the set of all types of references (or values) that component C receives from its environment

(required interface), and
Tout the set of all types of references (or values) passed from component C to its environment

(provided interface).

Then (Tin, Tout) is the least fixed point of the following equations:

Tin = Targ(Tpc) ∪ Targ(Tout) ∪ Tres(Tin)

Tout = {Tpc} ∪ Tres(Tout) ∪ Targ(Tin)

Figure 1. Computation of the provided and required interfaces of a component C.

each reference with a list of permissions, which allow or
disallow the available methods. However, this approach, which
is, e.g., implemented in Oviedo3 [8] [17] imposes a sig-
nificant overhead both for storing the access rights in each
reference and for checking them at run-time whenever the
reference is used. In addition, it does not directly allow to
restrict the permissions for references returned by calls to a
permitted method. In our example, permissions included in the
Calendar reference passed to C can prevent C from calling
createAppointment(), but not from calling notes()
on the appointment returned by getNextAppointment().

A better solution is to use the membrane pattern [4] [5]:
Instead of providing C with a reference to the real calendar, we
create a membrane object, which acts similar to a proxy in the
sense that it delegates method calls to the calendar object. The
important difference is that the membrane will only provide a
getNextAppointment() method. In addition, it can also
wrap the returned appointment into another membrane that
does not provide the notes() method. Thus, membranes can
also support deep attenuation of rights.

However, the classical membrane pattern has two severe
drawbacks: First, the manual creation of membranes to enforce
a minimal set of permissions is a difficult and error prone
task for large object systems, since the necessary membrane
structure may be deeply nested or may even be recursive.
Second, if permissions are attenuated in several steps (e.g.,
component A passes an attenuated version of the calendar to
B, which passes a more attenuated version to C), membranes
will be cascaded, thus sacrificing run-time performance due
to multiple delegation. As we will show, both drawbacks
can be avoided by automatically generating membranes, when
necessary.

E. Specifying Required Permissions

Another general problem related to POLA is that the user of
a component C must know the minimal permissions required
by C in order to work properly. One of the central ideas of
our work is to use the already available type definition of an
object reference as a specification of the permissions that are
requested (in the case of an input variable) or granted (in the
case of an output variable) by this reference. This perception of
type definitions is possible when the run-time system executing
the code of a component does not allow any of its input
references to be downcasted to a less restrictive type.

Now, given our purely object oriented component model,
we can exactly determine the minimal permissions that a
component C requires from its environment by determining the
types of all references that C can receive. Vice versa, we also
can identify the permissions that C grants to its environment
from the types of all references that C returns. In order to
increase the model’s flexibility, we also allow optional methods
(i.e., permissions) in interfaces. In this way, the type of a
component C’s principal class explicitly defines

• Tin : the minimum and maximum permissions that
C requests from its environment, where C will use
optional methods, if they are available, but does not
require them for its correct operation, and

• Tout : the minimum and maximum permissions that
C grants to its environment, where for each optional
method, C may decide at run-time whether or not to
provide it.

The set Tin (Tout) is determined by recursively computing
the types of all references that the component can receive from
(pass to) its environment, as shown in Figure 1.

As an example, consider the calendar component in
Listing 1. As the component has no input (we omitted
the parameters of createAppointment() for simplicity),
Calendar does not request any permissions from its en-
vironment, so Tin = ∅. However, it grants permission to
use the appointment returned by getNextAppointment()
via the Appointment interface, which results in Tout =
{Calendar, Appointment, int, String}.

The calendar client displaying upcoming appointments may
now have an interface similar to Listing 2.

This interface specifies the permissions the client
needs from a Provider: it must be able to call the
getNextAppointment() method, which returns an object
of type Event. On an Event, the client must be able
to call startTime() and endTime(), and it will use
subject(), if available. Thus, for the calendar client com-
ponent we have Tout = {CalendarClient} and Tin =
{Provider, Event}. Since we use structural typing for
component interfaces, a reference to the Calendar compo-
nent can be passed to setProvider(), as Appointment
provides all the methods required by Event.

57

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

LISTING 2. CALENDAR CLIENT INTERFACE

principal class CalendarClient {
interface Provider {

Event getNextAppointment();
}
interface Event {

int startTime();
int endTime();
optional String subject();

}
void displayEvents();
void setProvider(Provider c);

}

Client ClientCalendar

Appointment

Calendar

Appointment

startTime()
endTime()

Figure 2. Full access to Appointment (left) versus restricted permissions
(right): the client has access to Calendar only through a membrane. The

membrane’s getNextAppointment() method in turn returns a
membrane for the Appointment object, which only allows two methods

to be called.

In this example, the calendar client will not be able
to call the notes() method on events received from any
Provider, because it is not part of the Event interface.
Formally, a component C can invoke method m on an object
o from another component, only if o can be assigned to
a reference of some type T ∈ Tin, which allows to call
m. Especially, a component can only execute the operations
explicitly specified in its published interface. This means that
everything the component can do is explicitly visible in its
published interface, so the user can decide not to install
the component or to only provide it with a reference to a
restricted object where (some of) the optional permissions are
not granted. Traditionally, this requires to manually program
a membrane for the Calendar component, such that the
object returned by getNextAppointment() does not have
a subject() method (see Figure 2). In our model, the same
effect can be achieved by just casting the Calendar reference
to a more restricted interface, where the subject() method
is missing.

In principle, if the Calendar component declared the
subject() method in Appointment as optional, it also
could decide at run-time whether or not to expose this
method to the client invoking getNextAppointment(),
e.g., based on some authentication procedure. However, we
believe that this decision should usually be left to the user
assembling the components.

Note that a component’s published interface (what it pre-
tends to do) may differ from its actually implemented interface,
e.g., a component may try to call a method not declared in
its published interface. However, because the component will
always be used via its published interface, such a deviation

TABLE I. INTENDED SEMANTICS OF A TYPE T .

Status of Assertion that the Permission
method m referenced object to call
in type T has method m method m

m is not in T no no
m is optional in T no yes
m is required in T yes yes

will result in a type error when the component is loaded. We
will present a detailed discussion of our type system in the
next section.

IV. TYPE SYSTEM

In order to ease the presentation of our type system,
we make a few simplifying assumptions for the following
discussion: First, we assume that components are written in a
statically typed, object oriented language. This will usually be
the case today and is also assumed by our current implementa-
tion. However, the only real requirement of our approach is just
that the interface between a component and its environment is
purely object oriented. Second, the presentation only covers
object types, i.e., class and interface types, although our
implementation of the type system also provides simple types
and array types. Finally, we will assume the use of structural
typing for interface types. An extension allowing a flexible
mixture of structural and nominal typing is currently being
developed (see Section VI).

A. Types as Permissions

A central idea of our type system is to interpret a com-
ponent’s type as a specification of access permissions at
the granularity of single methods. In addition, we retain the
traditional interpretation, which asserts that all objects of a
given type will offer the methods specified by that type. We
achieve both goals by using the concept of optional methods,
as specified in Table I.

As the main goal of our type system is security, it must
enforce the access restrictions defined by Table I in such a way
that no component can amplify its rights by type conversions,
i.e., downcasting. Whenever possible, we ensure this property
statically, i.e., at the time a component is deployed, rather than
by using run-time checks. In addition, we avoid delayed type
failures: once a component C is deployed and a reference to
C’s primary object has successfully been assigned to a variable
of some type I , all methods in I can be invoked without run-
time type errors. Finally, the type system supports an easy
attenuation of rights by just upcasting a reference, without the
need to manually code a membrane.

B. Subtyping Rules

From Table I, we can immediately derive the subtype rules
required for our type system: if we have two types S and
T , which only differ in the status of a method m, then S is
subtype of T , if and only if

• S contains m, but T does not (classical situation),

58

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

S-REFL
S <: S

S-TRANS
S <: U U <: T

S <: T

S-RCD

{li i∈1..n} ⊆ {kj j∈1..m}
kj = li ⇒ (nj ⇒ oi) ∧ (Sj <: Ti)

{(kj : Sj , nj)
j∈1..m} <: {(li : Ti, oi)

i∈1..n}

S-ARROW
T1 <: S1 S2 <: T2
S1 → S2 <: T1 → T2

Figure 3. Subtyping rules

CC-REFL
S ≺:c S

CC-TRANS
S ≺:c U U ≺:c T

S ≺:c T

CC-RCD

{li i∈1..n | oi} ⊆ {kj j∈1..m}
kj = li ⇒ (nj ⇒ oi) ∧ (Sj ≺:c Ti)

{(kj : Sj , nj)
j∈1..m} ≺:c {(li : Ti, oi)

i∈1..n}

CC-ARROW
T1 ≺:c S1 S2 ≺:c T2
S1 → S2 ≺:c T1 → T2

Figure 4. Defining rules for ≺:c. If S ≺:c T , then r : S can be assigned to
r′ : T without the need for a type check at run-time.

• or m is required in S, but optional in T (since
this means that every object implementing S also
implements T).

The formal subtyping rules are shown in Figure 3. We
model classes and interfaces as record types, whose members
are functions. Functions have just one argument and return
type, however, multiple argument and/or result values are
possible, since the type can again be a record. The notation
{(li : Ti, oi)

i∈1..n} denotes a type with n methods named
li modeled as functions of type Ti = T ′i → T ′′i , where
the Boolean value oi indicates whether or not the method
is optional. Compared to traditional type systems (see, e.g.,
[34]), the rule S-RCD representing structural subtyping is
modified with an extension for optional methods: assume that
S = {(kj : Sj , nj)

j∈1..m} and T = {(li : Ti, oi)
i∈1..n},

then for S <: T we additionally require that for all common
members m of S and T either m is not optional in S, or it is
also optional in T .

C. Well-Typed Programs

For safety and security reasons, we may allow the VM
to load a component only if the component’s code is well-
typed. According to Cardelli [35], this means that the code will
not exhibit any unchecked run-time errors (although controlled
exceptions are allowed). The main question in this context is:
when can we allow to assign a reference from a variable r
of type S to a variable r′ of type T ? Compared to traditional
type systems, the important restriction here is that we must not
allow r′ to gain more permissions than r via downcasting.

Assume that there exists a method m that is optional in

CM-REFL
S ≺:m S

CM-TRANS
S ≺:m U U ≺:m T

S ≺:m T

CM-RCD

{li i∈1..n} ⊆ {kj j∈1..m}
kj = li ⇒ Sj ≺:m Ti

{(kj : Sj , nj)
j∈1..m} ≺:m {(li : Ti, oi)

i∈1..n}

CM-ARROW
T1 <: S1 S2 <: T2
S1 → S2 ≺:m T1 → T2

Figure 5. Defining rules for ≺:m. If S ≺:m T , then r : S can be assigned
to r′ : T without the need to introduce a membrane.

C-REFL
S ≺: S

C-TRANS
S ≺: U U ≺: T

S ≺: T

C-RCD

{li i∈1..n | oi} ⊆ {kj j∈1..m}
kj = li ⇒ Sj ≺: Ti

{(kj : Sj , nj)
j∈1..m} ≺: {(li : Ti, oi)

i∈1..n}

C-ARROW
T1 ≺:c S1 S2 ≺:c T2
S1 → S2 ≺: T1 → T2

Figure 6. Defining rules for ≺:. If S ≺: T , then r : S can be assigned to
r′ : T .

S, but required in T . Table I shows that there are no security
concerns in this situation, since both S and T allow to call m.
However, since T asserts that the referenced object has method
m, we must check this condition at run-time when assigning
r to r′. Thus, we can assign r : S to r′ : T without a run-time
type check, if and only if

• there is no optional method in S that is required in T ,

• each required method of T is also present in S,

• each method of S can be assigned to its corresponding
method in T without a run-time check, i.e., all its
arguments and results can be assigned without check
(this avoids delayed type failures).

Using the rules shown in Figure 4, we denote this situation as
S ≺:c T .

A different situation arises if there exists a method m that
is optional in T , but is not present in S. In this case, Table I
shows that T actually allows to call m (which may, however,
result in a run-time error, if the referenced object o does not
provide that method), while S does not. Thus, we actually can
assign r : S to r′ : T in a secure way, if after this assignment
r′ references an object that does not provide m. We ensure
this by using a coercion semantics, where the result of the
assignment is a reference to a membrane for o that does not
provide method m. Vice versa, this means that we can assign
r : S to r′ : T without introducing a membrane, if and only if

• each method of T is also declared in S, and

59

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• all methods of S can be assigned to the corresponding
method of T without a need for a membrane.

This is formalized in Figure 5. Note the rule CM-ARROW,
which states that when we assign a method m : S1 → S2 to a
method m′ : T1 → T2, and must perform a run-time check or
introduce a membrane for the method’s argument or its result
(i.e., T1 6<: S1 or S2 6<: T2), we need to wrap m with some
code performing these tasks when it is called at run-time. This
is done by introducing a membrane for the object providing
m.

We can summarize the above considerations into a single
relation ≺: defined by the rules in Figure 6. S ≺: T denotes
that an assignment from r : S to r′ : T is (statically) type safe,
if and only if

• each required method of T is also declared in S, and

• all methods of S can be assigned to the corresponding
method of T .

The latter is only the case, if the argument and result can be
assigned without a run-time type check. This is a deliberate
decision in order to avoid delayed type failures, as mentioned
in the second paragraph of Section IV-A.

D. Run-Time Actions

With the relations introduced above, a component’s code
is well-typed, if for each assignment from r : S to r′ : T
the condition S ≺: T holds. However, when at run-time an
assignment with S 6≺:c T is about to execute, we need to
perform an additional type check. Likewise, when S 6≺:m T ,
we need to introduce a membrane. If we must both create a
membrane and perform a run-time check, the run-time check
will be the last action. For the following detailed discussion,
we assume that variable r : S contains a reference to an object
o of class C.

During the run-time type check, we must simply verify
that a reference to o can be assigned to r′ without any further
actions, i.e., C <: T .

Introducing a membrane is more complex. The coercion
semantics requires that after r : S has been assigned to r′ : T ,
r′ refers to an object (i.e., the membrane) that actually has
type T . This membrane must be computed from the types S
and T , and the class C of the object o referenced by r. We
perform this computation in two steps: First, from S and T
we compute the cast action a that needs to be performed by
the membrane. This can be done at the component’s load-
time. Second, we apply a to the actual object o at run-time in
order to obtain the concrete membrane. The rules to compute
the cast action are shown in Figure 7. Informally speaking,
the cast action instructs the membrane to (recursively) retain
only those methods that are allowed by both S and T . Thus,
the application of a cast action a to an object o results in a
membrane for o that (recursively) provides just these methods.
This is formalized in Figure 8, where fa is the actual run-time
operation performed for the cast action a.

A special case occurs, if o already is a membrane (with
cast action a′) for some other object o′. In this case, the
membranes will not be cascaded, but applying a to o will

We define the set CA of cast actions inductively as follows:
1) > ∈ CA

> denotes that the membrane does not need to
perform any action, i.e., no need for a membrane.

2) ∀i=1..n : ai ∈ CA ⇒ {li : ai
i=1..n} ∈ CA

This means that the membrane (just) provides the
methods li that perform the actions defined by ai.

3) a ∈ CA ∧ b ∈ CA ⇒ (a, b) ∈ CA
This denotes that a method first applies the action
a to its argument, then forwards the call to the
real object, and finally applies the action b to the
result.

For two types S and T , the cast actions ca(S, T) that need
to be performed when assigning r : S to r′ : T are defined
by the following rules:

CA-NONE
S ≺:m T

ca(S, T) = >

CA-RCD

S = {(kj : Sj , nj)
j∈1..m}

T = {(li : Ti, oi)
i∈1..n}

S ≺: T
S 6≺:m T

ca(S, T) = {li : ca(Sj , Ti)
i∈1..n, j∈1..m, kj=li}

CA-ARROW

S = S1 → S2

T = T1 → T2
S ≺: T
S 6≺:m T

ca(S, T) = (ca(T1, S1), ca(S2, T2))

Figure 7. Rules for the cast actions specifying the behavior of a membrane.

result in a merged membrane for o′, reflecting both cast
actions a and a′, as shown in Figure 9. Informally, the merge
operation corresponds to the (recursive) intersection of the
allowed methods.

E. Downcasting

The type system outlined above achieves its security prop-
erties by strictly limiting downcast operations. However, this
limitation is only necessary when code executing in a context
x has a reference to an object in a different context y. If the
reference points to an object o in the local context x, i.e., an
object created by context x, there are no security issues at all.
This is because x is able to retain the original (unrestricted)
reference when it creates o, thus, it can not gain additional
authority by downcasting any reference to o. So in order not
to restrict the expressiveness of our type system, we should
allow downcasting in this situation.

We achieve this by a simple extension: We distinguish
between local types, which assert that references of this type
will always point to objects contained in the local context,
and non-local types, which do not provide such a guarantee.
We then extend the subtyping rules from Figure 3, such that
S <: T does not hold if T is local, but S is non-local. It is
still possible to assign from a variable r with a non-local type

60

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fa(null) = null

f>(o) = o

f{kj :aj j∈1..m}({li : mi
i∈1..n}) = {li : faj (mi)

i∈1..n, j∈1..m, kj=li}
f(a,b)(m) = fb ◦m ◦ fa

Figure 8. Semantics of the generated membrane.

Assume that o is a membrane, i.e., o = f{k′j :a′j j∈1..m}(o
′). Then

f{kj :aj j∈1..m}(o) = f{kj :aj j∈1..m}(f{k′j :a′j j∈1..m}(o
′)) = (f{kj :aj j∈1..m} ◦ f{k′j :a′j j∈1..m})(o

′)

= fmerge({kj :aj j∈1..m},{k′j :a′j j∈1..m})(o
′)

where the function merge is defined by
merge(>, a) = a

merge(a,>) = a

merge({li : ai
i∈1..n}, {kj : bj

j∈1..m}) = {li : merge(ai, bj)
i∈1..n, j∈1..m, kj=li}

merge((a1, b1), (a2, b2)) = (merge(a2, a1),merge(b1, b2))

Figure 9. Fusion of cascaded membranes.

S to a variable r′ with local type T , provided that a run-time
check is performed to ensure that r actually refers to an object
in the local context. With this extension, we can allow all the
traditional downcast operations when the source type is local.

F. An Example

Assume that we have the types Calendar and
Appointment from Section III, as well as the three restricted
interfaces shown in Listing 3.

LISTING 3. RESTRICTED CALENDAR PROVIDER INTERFACES

interface Provider1 {
Event1 getNextAppointment();

}
interface Event1 {

int startTime();
int endTime();

}

interface Provider2 {
Event2 getNextAppointment();

}
interface Event2 {

int startTime();
int endTime();
optional String subject();

}

interface Provider3 {
Event3 getNextAppointment();

}
interface Event3 {

int startTime();
int endTime();
String subject();

}

In this example, the type Calendar can be converted to
Provider1 without any precautions, since Calendar <:
Provider1 (Rules S-RCD and S-ARROW in Figure 3). Note
that in this case the restricted access permissions, like the fact
that it is not allowed to call subject() on the object returned
by getNextAppointment(), are statically enforced by the
type Provider1 without a need for any run-time checks.

A further conversion from Provider1 to Provider2
is also allowed, since Provider1 ≺: Provider2 (Rule
C-RCD in Figure 6). However, we have Provider1 6≺:m
Provider2 (Rules CM-RCD and CM-ARROW in Figure 5),
since the members of Event2 are a not a subset of the
members of Event1. Thus, at run-time a membrane for
the Calendar object is created that wraps the method
getNextAppointment(), such that its return value is
wrapped into a second membrane that does not have a method
subject() (c.f. Figure 2). Now, the access restrictions are
enforced by the membrane.

Our type system does not allow a conversion from
Provider2 to Provider3. Although this conversion would
be safe if the reference actually points to an object of type
Calendar, allowing it could result in unexpected run-time
errors: A component that has a reference of type Provider3
would assume that getNextAppointment() always re-
turns an object that provides the method subject(). How-
ever, since subject() is declared as optional in Event2,
the implementation of getNextAppointment() in the
referenced object may actually return a reference that does
not allow to call this method.

V. COSMA

The Component Oriented Secure Machine Architecture
(COSMA) is a secure VM based on the outlined component
model and type system. It comes with a specification for an
object oriented byte code, called Component Intermediate Lan-
guage. As outlined in Figure 10, the structure of this byte code

61

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2

1..*

1..*

1

1

**

*1

1

......

contains

PrincipalClass Class

Method Attribute

StorageLocation

ConstantOrVariable

ConstantImove

Variable

TypeBasicBlock

Instruction

MethodImpl

*

Operand

indices

1

*

10..1

1..* 1..*

1 *

*
returnTypes

Figure 10. Simplified structure of a COSMA program

reflects that of a component: The entry point for a component’s
code always is its principal class, which logically contains all
other classes. Method implementations are structured into basic
blocks, which are sequences of instructions (cf. Figure 11).
Basic blocks within the local method are the only admissible
targets of branch instructions. Instructions do not allow direct
access to the memory. Instead, they use typed operands to
access abstract storage locations. There is also no visible call
stack, but a high-level method call instruction, where lists of
operands are passed for arguments and results. This ensures
that a malicious program cannot forge references (e.g., by
abusing an untyped stack), which is the major requirement
for a secure object-capability system. Since the byte code
does not contain any names except the obligatory method
names in interfaces, it also protects the component developer’s
intellectual property rights.

We need a secured byte code, since secure high-level
languages “can still be attacked from below” [36]. In order
to prevent such attacks, we must use “computers on which
only capability-secure programs are allowed” [36]. Thus, new
programs can only be loaded into COSMA as components
represented in our byte code.

When a component is deployed into the VM, it is associ-
ated with a new context that serves as a trust (or protection)
unit. Within this context, the component’s principal class is
instantiated, and a reference (capability) to this principal object
is returned and gets casted to the component’s published
interface. Initially, this reference is the only way to interact
with the component. When an object in a context c creates
another object, the new object also is associated with c. Thus,
a context comprises all objects that are (transitively) created by
the principal object of a loaded component. COSMA ensures
that references can point to objects in a different context, only
if they have a non-local type and therefore are subject to the
security restrictions outlined in Section IV. References with
local types can only point to objects in the local context.
Thus, we do not restrict the code’s expressiveness within a
component.

During deployment, a component’s complete byte code is
checked for consistency, which includes type checking. Since
the byte code does not allow any untyped data accesses, this

call r m args res
Calls method m on the reference r passing args
as arguments and res as write-back operands.

cjmp src nz block
Jumps to block if src 6= 0 (nz = true) or if
src = 0 (nz = false).

chktype r t dst
Tests whether r has type t and stores the result
in dst .

inv r id args
Invokes a method whose name is stored in the
string referenced by operand id on the reference
r and passes args as the arguments.

jmp b
Jumps to block b.

load const dst
Loads the constant const into dst .

mov src dst
Assigns src to dst .

new c dst
Creates a new object of the given class c and
stores the reference in dst .

op lhs rhs op dst
Calculates lhs oop rhs (with oop ∈ {+,−, ∗, /,
mod, ...}) and stores the result in dst .

ret r
Returns the given operands to the caller.

test lhs rhs op dst
Tests for lhs oop rhs (with oop ∈ {=, 6=, <,≤,
>,≥}) and writes the result to dst .

Figure 11. Instructions supported by the virtual machine (without
array-specific instructions).

can be done on a per-instruction basis, without a need for a
complex verification of instruction sequences, as it is neces-
sary, e.g., in Java byte-code [37]. Based on the type informa-
tion available in the component’s code, COSMA automatically
generates the code for all required membranes, relieving the
programmer from this burden. At run-time, membranes are
automatically inserted via coercion semantics when security
relevant downcasting is performed. Thus, security constraints
are enforced mainly statically, leaving only a few run-time
checks.

The first component that is deployed into the VM can
receive a reference to a native kernel object as the first
parameter of its constructor. This object offers basic operating
system services (system calls), which are not expressible
through the instruction set for security reasons. As described
in Section III-B, the kernel object is part of the trusted
computing base and built into COSMA. At the moment, we
have implemented only a few indispensable services, thus, the
reference has the interface type shown in Listing 4 (the type
Any used here is a special type, which can be assigned to any
reference type, using a run-time type check; the type String
is currently implemented as an integer array).

62

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

LISTING 4. KERNEL INTERFACE

interface Kernel {
// load component IR and
// return principal object
Any loadComponent(String filename);
// print string to stdout
void print(String msg);
// read string from stdin
String scan();
// create a thread
Thread createThread(Runnable r);

}
interface Thread {

void start();
void join();

}
interface Runnable {

void run();
}

The initial component can share the reference to the
kernel object with other components, while all the rules from
Section IV still apply. In particular, utilization of the operating
system can be restricted and checked at load time as if it were
a normal object.

The basic idea is that the first component, wrapping the
functionality of the native kernel object, provides additional
operating system services with a cleaner and more powerful
interface.

A. Implementation

We have implemented two variants of the COSMA virtual
machine: A pure interpreter as a reference implementation of
the machine’s semantics (see Appendix), and a more realistic
version that uses an ahead-of-time (AOT) compiler to trans-
late a component’s intermediate representation (IR) to native
machine code at load time.

The AOT version of COSMA consists of two processes:
One of them implements the loader and type checker, which
are programmed in Java, while the other one executes the gen-
erated native code of all loaded components. When COSMA
starts, the loader reads the IR of the initial component, per-
forms type and consistency checks for each element of the IR,
and then compiles the IR into C code, which is then compiled
into a shared library using the GNU C compiler. This library is
then dynamically loaded and linked into the native execution
process using the dynamic linker (i.e., dlopen() in Linux
systems).

The constructor of the initial component’s principal class
receives a reference to the kernel object described above.
When the kernel’s loadComponent() method is invoked, a
synchronous request is sent to the loader process (using inter-
process communication via UNIX pipes), which will then load
the component’s IR as described above.

When the native code executes an assignment, it may
be necessary to perform a run-time type check and/or to
introduce a membrane. Since a naı̈ve implementation of these

operations would require a recursive traversal of the involved
type definitions, which is prohibitively expensive, we follow
a different strategy. In the native code, each type is just
represented as a globally unique integer number, which is
assigned by the loader when it first sees the type. The loader
also precomputes the relation <: into a hash table, so that
a type-check at run-time just requires a hash table lookup.
The hash table is extended incrementally whenever a new
component is loaded.

Furthermore, the loader precomputes the information that
is needed to create the native code for the classes of all
membranes that may be required at run-time. In Section IV-D,
we have shown that when a reference r pointing to an object
o of class C is converted from type S to T , the required
membrane is determined in two steps:

1) compute the cast actions ca(S, T) from S and T ,
2) generate the membrane for o from ca(S, T) and C.

In order to generate all membrane classes that may be required
at run-time, we execute a simple data flow analysis that
determines for each statement s performing a relevant type
cast from S to T the set of all classes C, such that a reference
to an object of class C may reach s. We then generate the
code for the required membrane class from ca(S, T) and C.
Since the instances of these membrane classes may again need
to be wrapped by a membrane, resulting in new membrane
classes, we perform a fixed point iteration, which stops when
the set of membrane classes does not change any more. The
termination of this fixed point iteration is actually guaranteed
by the fact that we avoid cascading of membranes by fusing
them as outlined in Fig 9. As with the subtype relation, we
incrementally expand the set of generated membrane classes
whenever a new component is loaded.

Although the creation of all possibly required membrane
classes at load-time requires additional time and storage when
a component is loaded, it makes the creation of membranes
at run-time extremely fast: We just need a hash table lookup
(with the type number of the object’s class as the key) to find
the membrane class that must be instantiated.

B. Performance Considerations

Since in the majority of cases, the necessary access restric-
tions are enforced statically by COSMA’s type system, we can
achieve fine grained access control between components with
minimal run-time overhead. This overhead, as compared to
traditional designs for object oriented virtual machines, arises
from the following three sources:

• The IR does not have a fixed format, like tradi-
tional byte codes, and therefore cannot be directly
interpreted with comparable efficiently. However, as
modern virtual machines are based on just-in-time
or ahead-of-time compilation techniques, an efficient
direct interpretation of the IR is no longer a necessity.
If really required, a simple ahead-of-time compiler
could easily transform the IR into a fixed format byte
code at load time.

• Method calls on component interfaces require a more
expensive dispatch mechanism, since we use a mod-
ified form of structural typing instead of nominal

63

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

typing. However, there is a number of established
methods to minimize this overhead [38] [39].

• Finally, we need an additional method call for each
method invoked via a membrane. Ignoring possible
low-level optimizations, this effectively doubles the
time required for an (empty) method call. However,
membranes are only introduced for component inter-
faces that include optional methods, thus, this sit-
uation will not occur at high frequencies. We also
will investigate the benefit of dynamically testing
when membranes can safely be removed again. In the
example in Section IV-F, the membrane introduced
when the reference to the Calendar object was
converted from Provider1 to Provider2 can be
removed again when the reference is converted back to
Provider1. The problem is that we need to trade the
time required for this run-time test when assigning a
reference against the time saved when calling methods
via this reference. Thus, this optimization requires
a more elaborate analysis during the ahead-of-time
compilation, which is part of our future work.

So the only unavoidable run-time overhead of our approach is
due to the introduction of membranes. However, membranes
are only needed when a decision on the granted permissions
should be possible at run-time, which imperatively implies that
also the permission checks must be performed at run-time.

In summary, the implementation of COSMA proves that
using our intermediate representation and type system, we can
efficiently execute components while offering a high degree of
protection by enforcing fine grained access permissions.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel concept for the secure
cooperation of untrusted components. This involves a compo-
nent model, where each component declares its required and
granted permissions via a self-explanatory public interface.
This interface can then be used to connect it to other com-
ponents. Components are distributed in the form of a secure
byte code with high-level instructions that preserves typing
information, but still protects intellectual property rights. The
corresponding VM implements a type system ensuring that a
component cannot gain more permissions than those explicitly
defined in its public interface. Type checking is done at
deployment time, with some additional run-time checks, where
necessary. Coercion semantics is used to automatically insert
membranes.

At present we have a fully operational implementation of
the type system and the VM, as well as a compiler translating
a Java-like language into our byte code. The implementation
is freely available at the COSMA website [40]. A formal spec-
ification of the type system, including subtyping and coercion,
is also available, along with the semantics of the implemented
instructions and a formal proof that no instruction sequence
can amplify a component’s permissions (see Appendix).

In the current implementation all components are executed
by the same VM, thus, security of network connections is not
an issue. In the future, the model can be extended to distributed
systems using remote method invocation, provided that the

communication link between the VMs uses a secure protocol
ensuring authentication and integrity.

We are currently working on an extension of our type sys-
tem that integrates structural and nominal typing into a unified
framework by explicitly considering the required semantics
of methods. In this way, we enable a flexible and safe reuse
of components and at the same time fulfill all the subtyping
desiderata outlined in [41] (i.e., flexible assignment of respon-
sibility, modular extensibility of the subtyping relation, unique
name introduction and traceability) without the idiosyncrasies
of that approach, especially avoiding non-transitiveness of the
subtype relation.

We are also working on a more complete operating sys-
tem that meets the special requirements of safe and secure
component-based software. This includes in particular memory
management for strongly interacting components, such as pag-
ing and garbage collection. The latter is especially interesting
in combination with fault tolerance and error recovery: If
an error occurs in one component, the effects for all other
components interacting with it must be as small as possible.
To this end, we are looking for a solution to make reloading
or replacing a component mostly transparent to its users.

Based on our current work, we will investigate the perfor-
mance of our VM in more detail, comparing it against plain
Java, in order to assess the costs for run-time checks and the in-
direction caused by the use of membranes. Other topics, which
we will address in future are the integration of alias control
(cf. Section II), error and exception handling, mechanisms for
the revocation of permissions and optimizations such as the
removal of unnecessary membranes discussed in Section V-B.
Our ultimate goal is to provide a complete programming
system, consisting of a VM, an OS and a high-level language
compiler, which can be used to develop and deploy component-
based software in an easy, secure and efficient way.

REFERENCES

[1] R. Wismüller and D. Ludwig, “Secure Cooperation of Untrusted Com-
ponents,” in Twelfth Intl. Conf. on Emerging Security Information,
Systems and Technologies (SECURWARE 2018). Venice, Italy:
IARIA, Sep. 2018, pp. 103–107.

[2] S. Maffeis, J. C. Mitchell, and A. Taly, “Object Capabilities and
Isolation of Untrusted Web Applications,” in Proc. of IEEE Symp.
Security and Privacy. Oakland, CA, USA: IEEE, May 2010, pp. 125–
140.

[3] M. S. Miller and J. S. Shapiro, “Paradigm Regained: Abstraction
Mechanisms for Access Control,” in Advances in Computing Science
- ASIAN 2003. Progamming Languages and Distributed Computation,
ser. LNCS, vol. 2896. Springer, 2003, pp. 224–242.

[4] M. S. Miller, “Robust composition: Towards a unified approach to
access control and concurrency control,” Ph.D. Thesis, Johns Hopkins
University, Baltimore, Maryland, May 2006.

[5] T. Murray, “Analysing object-capability security,” in Proc. of the Joint
Workshop on Foundations of Computer Security, Automated Reasoning
for Security Protocol Analysis and Issues in the Theory of Security,
Pittsburgh, PA, USA, Jun. 2008, pp. 177–194.

[6] A. Mettler, D. Wagner, and T. Close, “Joe-E: A Security-Oriented
Subset of Java,” in Network and Distributed Systems Symposium.
Internet Society, Jan. 2010, pp. 357–374.

[7] M. Stiegler, “Emily: A High Performance Language for Enabling
Secure Cooperation,” in Fifth Intl. Conf. on Creating, Connecting and
Collaborating through Computing C5’07. Kyoto, Japan: IEEE, Jan.
2007, pp. 163–169.

64

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] D. A. Gutierrez, F. T. Martı́nez, F. A. Garcı́a, M. A. D. Fondón, R. I.
Castanedo, and J. M. C. Lovelle, “An Object-Oriented Abstract Machine
as the Substrate for an Object-Oriented Operating System,” in Object-
Oriented Technology ECOOP, Workshop Reader, ser. LNCS, vol. 1357.
Jyväskylä, Finland: Springer, Jun. 1997, pp. 537–544.

[9] R. P. e Silva and R. T. Price, “Component Interface Pattern,” in Proc.
9th Conf. on Pattern Language of Programs, Monticello, IL, USA,
Sep. 2002. [Online]. Available: http://hillside.net/plop/plop2002/final/
plop2002 rpsilva0 1.pdf [last access: 17.05.2019]

[10] S. Mouelhi, K. Agrou, S. Chouali, and H. Mountassir, “Object-Oriented
Component-Based Design using Behavioral Contracts: Application to
Railway Systems,” in Proc. 18th International ACM SIGSOFT Sym-
posium on Component-Based Software Engineering (CompArch ’15).
Montreal, QC, Canada: ACM, May 2015, pp. 49–58.

[11] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long,
J. Robert, R. Seacord, and K. Wallnau, “Volume II: Technical
Concepts of Component-Based Software Engineering, 2nd Edition,”
Carnegie Mellon University, Software Engineering Institute, Pittsburgh,
PA, USA, Technical Report CMU/SEI-2000-TR-008, ESC-TR-2000-
007, May 2000. [Online]. Available: https://resources.sei.cmu.edu/
asset files/TechnicalReport/2000 005 001 13715.pdf [last access:
17.05.2019]

[12] J. Andronick, D. Greenaway, and K. Elphinstone, “Towards proving
security in the presence of large untrusted components,” in Proc.
5th Intl. Workshop on System Software Verification, Vancouver, BC,
Canada, Oct. 2010. [Online]. Available: https://www.usenix.org/legacy/
events/ssv10/tech/full papers/Andronick.pdf [last access: 17.05.2019]

[13] H. M. Levy, Capability-Based Computer Systems. Digital Press, 1984.
[Online]. Available: http://homes.cs.washington.edu/∼levy/capabook
[last access: 17.05.2019]

[14] M. S. Miller, B. Tulloh, and J. S. Shapiro, “The Structure of Authority:
Why Security Is not a Separable Concern,” in Proc. 2nd Intl. Conf.
on Multiparadigm Programming in Mozart/Oz. Charleroi, Belgium:
Springer, 2004, pp. 2–20.

[15] M. S. Miller, K. P. Yee, and J. Shapiro, “Capability Myths Demolished,”
Systems Research Laboratory, Johns Hopkins University, Technical
Report SRL2003-02, 2003. [Online]. Available: http://srl.cs.jhu.edu/
pubs/SRL2003-02.pdf [last access: 17.05.2019]

[16] M. A. D. Fondon, D. A. Gutierrez, L. T. Martinez, F. A. Garcia,
and J. M. C. Lovelle, “Capability-based protection for integral object-
oriented systems,” in Proc. Computer Software and Applications Conf.
COMPSAC ’98. Vienna, Austria: IEEE, Aug. 1998, pp. 344–349.

[17] M. A. D. Fondon, D. A. Gutierrez, A. G. M. Sánchez, F. A.
Garcı́a, F. T. Martı́nez, and J. M. C. Lovelle, “Integrating capabilities
into the object model to protect distributed object systems,”
in Proc. Intl. Symp. on Distributed Objects and Applications.
Edinburgh, GB: IEEE, Sep. 1999, pp. 374–383. [Online]. Available:
http://dx.doi.org/10.1109/DOA.1999.794067 [last access: 17.05.2019]

[18] P. Müller and A. Poetzsch-Heffter, “Universes: A type system for
controlling representation exposure,” in Programming Languages and
Fundamentals of Programming, A. Poetzsch-Heffter and J. Meyer, Eds.
Fernuniversität Hagen, 1999, pp. 131–140, Technical Report 263.

[19] W. Dietl and P. Müller, “Ownership Type Systems and Dependent
Classes,” in Intl. Workshop on Foundations of Object-Oriented Lan-
guages (FOOL’08), San Francisco, CA, USA, Jan. 2008.

[20] D. G. Clarke, J. M. Potter, and J. Noble, “Ownership types for
flexible alias protection,” in Proc. 13th ACM SIGPLAN Conf. on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA ’98), Vancouver, Canada, Oct. 1998, pp. 48–64.

[21] S. Balzer, T. Gross, and P. Müller, “Selective ownership: Combining
object and type hierarchies for flexible sharing,” in Foundations of
Object-Oriented Languages (FOOL), J. Boyland, Ed., 2012.

[22] B. Bokowski and J. Vitek, “Confined Types,” in Proc. 14th ACM SIG-
PLAN Conf. on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA ’99), Denver, CO, USA, Nov. 1999, pp.
82–96.

[23] P. W. L. Fong, “Link-Time Enforcement of Confined Types for JVM
Bytecode,” in Proc. 3rd Annual Conf. on Privacy, Security and Trust
(PST’05), St. Andrews, Canada, Oct. 2005, pp. 191–202.

[24] ——, “Discretionary capability confinement,” in Proc. 11th European
Symposium On Research In Computer Security (ESORICS’06), ser.

LNCS, vol. 4189. Hamburg, Germany: Springer, Sep. 2006, pp. 127–
144.

[25] ——, “Discretionary Capability Confinement,” International Journal of
Information Security, vol. 7, no. 2, Apr. 2008, pp. 137–154.

[26] D. Volpano and G. Smith, “A Type-Based Approach to Program Secu-
rity,” in TAPSOFT ’97: Theory and Practice of Software Development,
ser. LNCS, M. Bidoit and M. Dauchet, Eds., vol. 1214. Springer, 1997,
pp. 607–621.

[27] A. Gollamudi and S. Chong, “Automatic Enforcement of Expressive
Security Policies using Enclaves,” in Proc. 2016 ACM SIGPLAN
Intl. Conf. on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA ’16), Amsterdam, Netherlands, Nov. 2016, pp.
494–513.

[28] P. W. L. Fong and C. Zhang, “Capabilities as alias control: Secure
cooperation in dynamically extensible systems,” Dept. of Computer
Science, Univ. of Regina, Regina, Canada, Technical Report CS-2004-3,
Apr. 2004.

[29] D. Hagimont, J. Mossière, X. R. de Pina, and F. Saunier, “Hidden Soft-
ware Capabilities,” in Proc. 16th Intl. Conf. on Distributed Computing
Systems (ICDCS ’96), Hong Kong, May 1996, pp. 282–289.

[30] J. Boyland, J. Noble, and W. Retert, “Capabilities for Sharing - A
Generalisation of Uniqueness and Read-Only,” in 15th European Conf.
on Object-Oriented Programming (ECOOP ’01), Budapest, Hungary,
Jun. 2001, pp. 2–27.

[31] P. W. L. Fong and S. Orr, “A Module System for Isolating Untrusted
Software Extensions,” in Proc. 22nd Annual Computer Security Appli-
cations Conf. (ACSAC’06), Miami Beach, Florida, USA, Dec. 2006,
pp. 203–212.

[32] C. Hawblitzel, C. C. Chang, G. Czajkowski, D. Hu, and T. von Eicken,
“SLK: A Capability System Based on Safe Language Technology,”
Cornell University, Technical Report, Mar. 1997. [Online]. Available:
http://www.cs.cornell.edu/slk/papers/slk.pdf [last access: 17.05.2019]

[33] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Boston, MA, USA: Addison-Wesley, 2002.

[34] B. C. Pierce, Types and programming languages. MIT Press, 2002.
[35] L. Cardelli, “Typeful Programming,” in Formal Description of Program-

ming Concepts, E. Neuhold and M. Paul, Eds. Springer, 1991, pp.
431–507.

[36] M. Stiegler, “The E Language in a Walnut,” 2000. [Online]. Available:
http://www.skyhunter.com/marcs/ewalnut.html [last access: 17.05.2019]

[37] X. Leroy, “Java bytecode verification: Algorithms and formalizations,”
Journal of Automated Reasoning, vol. 30, no. 3, May 2003, pp. 235–
269. [Online]. Available: https://doi.org/10.1023/A:1025055424017
[last access: 17.05.2019]

[38] A. M. Schiffman and L. P. Deutsch, “Efficient Implementation of the
Smalltalk-80 System,” in Proc. 11th ACM SIGACT-SIGPLAN Symp.
on Principles of Programming Languages (POPL ’84), 1984, pp. 297–
302.

[39] J. Gil and I. Maman, “Whiteoak: Introducing Structural Typing
into Java,” in Proc. 23rd ACM SIGPLAN Conf. on Object-Oriented
Programming Systems Languages and Applications (OOPSLA ’08),
Nashville, TN, USA, Oct. 2008, pp. 73–90.

[40] “COSMA – A Virtual Machine Supporting the Secure Cooperation
of Untrusted Components.” [Online]. Available: https://www.bs.
informatik.uni-siegen.de/forschung/cosma [last access: 28.05.2019]

[41] K. Ostermann, “Nominal and Structural Subtyping in Component-Based
Programming,” Journal of Object Technology, vol. 7, no. 1, Jan. 2008.
[Online]. Available: http://www.jot.fm/issues/issue 2008 01/article4
[last access: 17.05.2019]

65

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

APPENDIX

In this section we present the semantics of COSMA’s
instruction set. The auxiliary rules we use here can be found in
Figure 12. We also provide a proof sketch that the semantics
successfully prevents an amplification of access rights.

A. Basic Definitions

According to the structure of the intermediate representa-
tion, we use the following (abstract) types (cf. Figure 10):

• V for instances of Variable

• F for instances of Attribute

• L = V ∪ F for storage locations

• B for instances of BasicBlock

• T for instances of Type
◦ τref ∈ T is a reference type
◦ τobj ∈ T is an object type
◦ τval ∈ T is a value type

• Id for method names

• N,Z as usual

• B for Boolean values

• Impl : (name : Id) × (var : V ∗) × (nargs : N) ×
(resT : T ∗) × (blocks : B∗) × (clazz : Class) for
method implementations

• Decl : (name : Id)×(opt : B)×(argT : T ∗)×(resT :
T ∗) for method declarations

• Class : (pub : Impl∗) × (priv : Impl∗) × (attr :
F ∗)× (child : Class∗) for classes and class types

• Iface : (methods : Decl∗) for interface types.

• CA for type cast actions

• RT for generic run-time values
◦ Val for numeric run-time values
◦ Obj : (methods : Impl∗) × (config : F ∗) for

objects
◦ Mem : (obj : Obj)× (actions : (Id × CA∗)∗)

for membranes

• Γ for the type environment

A Frame is defined as a tuple (obj : Obj) × (method :
Impl) × (block : N) × (pc : N) × (var : V ∗) × (res : L∗) ×
(resT : T ∗) × (mem : fA(obj)), where obj represents the
current object, method the currently executing method with
the basic block number block and its program counter pc. The
current values of the method’s variables are stored in var , and
res is a list of operands to write back the method’s results to
the caller. resT holds the result types expected by the caller. If
the current method was called on a membrane, a reference to
the membrane is stored in mem . For simplification we assume
that the last instruction in each basic block is either a return
statement or an unconditional jump into the following basic
block, i.e., we do not need to model overflows of the program
counter. A state S is a stack of frames. We write s :: t to split
S into the topmost frame s and the tail t.

BlockIndex (m, b) = i holds, if there exists exactly one
basic block in m’s implementation that is b and this block
is the i-th block in m.

BLOCKINDEX
m : Impl b : B ∃1i ≥ 0 : m.blocksi = b

BlockIndex (m, b) = i

To lookup a method implementation for a method named
id inside an object o:

LOOKUP

o : Obj
∃1m ∈ o.methods : m.name = id

lookup(id , o) = m

Object creation follows the INSTANTIATE rule:

INSTANTIATE

class : Class
〈class.pub ∪ class.priv , class.attr〉 = o

Instantiate(class) = o

Figure 12. Semantic functions and auxiliary rules

All semantic rules are formulated as a state transition of
one stack configuration to another. Possible effects of these
transitions are:

1) the top-most frame is changed,
2) a new frame is pushed onto the stack,
3) the top-most frame is removed from the stack, or
4) any meaningful combination of that.

If a frame is changed, we only write down the differences in
the transition. Everything remaining unchanged is not shown.
If for example the program counter is increased, but everything
else is not touched, we just write s[pc ← pc + 1] :: t. For
new frames we assume that the program counter pc and the
block number block are set to 0 and refrain from writing this
explicitly.

B. Constants, Branching and Arithmetic Operations

In this subsection we present the semantics for simple
instructions, such as conditional and unconditional jumps,
loading constants and arithmetic operations and relations.

JMP
BlockIndex (s.method , b) = blk

s :: t
jmp b−→ s[block ← blk , pc ← 0] :: t

JMP jumps to the given block and resets the program
counter. It holds, iff the given block is part of the current
method.

CJMP-T

BlockIndex (s.method, b) = blk
v → val : Val
(v 6= 0) = nz

s :: t
cjmp v nz b−→ s[block ← blk , pc ← 0] :: t

CJMP-T jumps to the given block and resets the program
counter. It holds, if:

1) the block is part of the current method,

66

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) v contains a value val (e.g., integer),
3) val 6= 0 and nz is set to true (jump on non-zero), or

val = 0 and nz is false.

CJMP-F

BlockIndex (s.method , b) = blk
v → val : Val
(v 6= 0) 6= nz

s :: t
cjmp v nz b−→ s[pc ← pc + 1] :: t

CJMP-F increments the program counter. It holds, iff
CJMP-T fails only on the third premise.

LOAD
const : Z Γ ` dst : τref ⇒ const = 0

s :: t
load const dst−→ s[pc ← pc + 1, dst ← const] :: t

LOAD loads the constant const into the operand dst and
increases the program counter. It holds for every dst having
a value type. If dst has a reference type, const must be 0
(“null”).

OP

lhs → val1 : Val
rhs → val2 : Val

Γ ` dst : τval
f ∈ {÷,−, mod, ·,+}

s :: t
op lhs rhs f dst−→

s[pc ← pc + 1, dst ← val1 ◦f val2] :: t

TEST

lhs → val1 : Val
rhs → val2 : Val

Γ ` dst : τval
f ∈ {=, 6=, <,≥, >,≤}

s :: t
test lhs rhs f dst−→

s[pc ← pc + 1, dst ← val1 ◦f val2] :: t

OP and TEST increase the program counter and calculate
val1 ◦f val2 to store it in the given operand dst . Both rules
hold, if:

1) both source operands point to values,
2) the target operand has a value type and
3) the operator is valid.

C. Object Creation and Assignments

NEW

c : Class
Γ ` c : τ1

Γ ` dst : τ2
Instantiate(c) = o
fca(τ1,τ2)(o) = o′

s :: t
new c dst−→ s[pc ← pc + 1, dst ← o′] :: t

NEW increases the program counter and stores a reference
to a newly created object (or to a membrane for that object).
It holds, if:

1) the given class has type τ1,
2) the target operand has type τ2, and
3) an object o is created from the given class and
4) can be assigned to the target operand.

MOV

Γ ` src : τ1
Γ ` dst : τ2
src → o : RT

fca(τ1,τ2)(o) = o′

s :: t
mov src dst−→ s[pc ← pc + 1, dst ← o′] :: t

MOV increases the program counter and assigns src to
dst , performing the necessary cast actions. It holds, if src is
initialized, and o is assignable to the target operand.

D. Calling Methods and Returning Results

CHKTYPE

Γ ` r : τref
t : T

τref ≺: T = assignable : B

s :: t
chktype r t dst−→

s[pc ← pc + 1, dst ← assignable] :: t

CHKTYPE increases the program counter and writes True
to dst , iff r is assignable to the given type t .

CALL

r → o : Obj ∧ Γ ` r : τ ∧ τ : Iface
m : Decl

m ∈ τ.methods
lookup(m.name, o) = m′ : Impl
args = (a1, . . . , an) ∧ Γ ` ai : τi

n = m′.nargs
(fca(τ1,m.argT1)

(a1), . . . , fca(τn,m.argTn)
(an)) = Var ′

m.resT : T k ∧ res : Lk

s :: t
call r m args res−→

[o,m′,Var ′, res,m.resT ,⊥] :: s :: t

CALL creates a new frame containing the target object,
the called method implementation and the method’s list of
variables including the parameters. The frames also carries the
result operands and the result types, as expected by the caller.
The rule holds, if:

1) r points to an object o and has type τ ,
2) m is a method declaration and available in τ ,
3) o’s class type has an implementation of m, and
4) the given arguments can be casted to the formal

parameter types of m,
5) the number of formal result types matches the given

write-back operands.

67

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CALL-M

r → o′ = fA(o) ∧ o : Obj ∧ Γ ` r : τ
m : Decl

m ∈ τ.methods
lookup(m.name, o) = m′ : Impl
args = (a1, . . . , an) ∧ Γ ` ai : τi

n = m′.nargs
(fca(τ1,m.argT1)

(a1), . . . , fca(τn,m.argTn)
(an)) = Var ′

m.resT : T k ∧ res : Lk

(m.name, (A1, . . . , An)) ∈ o′.actions
(fA1

(Var ′1), . . . , fAn
(Var ′n)) = Var ′′

s :: t
call r m args res−→

[o,m′,Var ′′, res,m.resT , o′] :: s :: t

CALL-M does the same as CALL, but additionally adds the
membrane to the new frame. The rule holds, if:

1) r points to a membrane o′ for object o,
2) CALL would hold for r 7→ o, and
3) o′ holds method actions for m that can be applied to

the casted parameters.

INV-M

r → o′ = fA(o) ∧ o : Obj ∧ Γ ` r : Any
id → name : Id

lookup(name, o) = m : Impl
args = (a1, . . . , an),Γ ` ai : Any

n = m.nargs
m.resT : ()

(m.name, (A1, . . . , An)) ∈ o′.actions
(fA1

(a1), . . . , fAn
(an)) = Var ′

s :: t
inv r id args−→ [o,m′,Var ′, (), (), o′] :: s :: t

INV-M creates a new frame containing the target object
and the called method implementation, as well as the given
arguments. Since inv is only allowed on references of type
Any, the reference always points to a membrane, which is
added to the new frame. Result operands and result types are
not set, since the instruction does not support results. The rule
holds, if

1) r r has type Any and points to a membrane o′ for o,
2) o has an implementation for a method named name,
3) all arguments have type Any,
4) o′ holds method actions for the called method, which

can be applied to the arguments.

RET

m : Impl ∧ m.resT : Tn

r : Ln ∧ Γ ` ri : τi ∧ ri 7→ oi : RT
res : Ln ∧ Γ ` resi : ηi

resT : Tn

fca(resT i,ηi)(fca(τi,m.resT i)(ri)) = Vi

[. . . ,m, . . . , res, resT ,⊥] :: s :: t
ret r−→

s[pc ← pc + 1, resi ← Vi] :: t

RET removes the top-most frame (the callee frame) from
the stack and increases the program counter in the caller
frame. The operand list res in the callee frame references

storage locations available in the caller frame. Writing to
these operands changes the caller frame, which is the intended
behavior. The instruction performs two typecasts. First, the
actual results ri must be casted to the formal result type of the
method implementation m.resT i. Finally, we need to apply a
cast action, casting from the interface’s result type resT i to
the target operand’s type ηi.

RET-M

m : Impl ∧ m.resT : Tn

r : Ln ∧ Γ ` ri : τi ∧ ri 7→ oi : RT
res : Ln ∧ Γ ` resi : ηi

(m.id × (A1, . . . , An)) ∈ o′.actions
resT : Tn

fca(resT i,ηi)(fAi
(fca(τi,m.resT i)(ri))) = Vi

[. . . ,m, . . . , res, resT , o′] :: s :: t
ret r−→

s[pc ← pc + 1, resi ← Vi] :: t

In case the method was invoked through a membrane as in
RET-M, an additional cast is needed between the two type casts
mentioned in RET. This cast addresses differences between the
method implementation’s formal result types and interface’s
result types.

E. Proof Sketch: No Amplification of Rights

Assumption 1. X is a context, and o ∈ X is an object
providing method m. X′ is a different context (X′ 6= X)
holding references that point to o or a membrane for o. For
all references r ∈ X′ pointing to o or a membrane for o, we
assume that m is not callable.

Notation: For a method m and an interface type T we write
m ∈ T ⇔ (m : U, η) ∈ T . For a reference r we write
m ∈ r ⇔ Γ ` r : T ∧m ∈ T . For a membrane mem we write
m ∈ mem ⇔ (m.name, ca) ∈ mem.actions. For cast ac-
tions ca(S, T) we write m ∈ ca(S, T)⇔ (m : A) ∈ ca(S, T).

With this notation, the assumption can be formalized as

∀r ∈ X′ :
{

Γ ` r : T ∧ m /∈ T r 7→ o

m /∈ membrane(o) r 7→ membrane(o)

Observation 1. For assignments from type S = {(kj :
Sj , ηj)

j∈1...z} to type T = {(li : Ti, σi)
i∈1...n} we have three

cases:

1) S 6≺: T
⇒ assignment is not possible ⇒ no need to consider

2) S ≺:m T
⇒ {li i∈1...n} ⊆ {kj j∈1...z} ∧ ca(S, T) = >

3) S ≺: T ∧ S 6≺:m T
⇒ ca(S, T) = {li : ca(Sj , Ti)

i∈1...n, j∈1...z, kj=li}

Theorem 1. There is no sequence of instructions executed in
context X′ involving any r ∈ X′ that results in successfully
calling m on o, unless m is called by some method in a
different context X′′ or X′′ returns a reference to o allowing
m.

Proof: COSMA supports 14 instructions of which four
(mov, call, ret, inv) are able to create or copy object

68

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

references. The new-instruction is of no interest. We perform
an induction over the length ` of the instruction sequence.
For ` = 0, m is not callable on any reference r ∈ X′ by
assumption (induction hypothesis).

Instruction: mov r r’
Let r ∈ X′ be a reference of type S and r′ a new reference
of type T .

1) S ≺:m T

a) r 7→ o
Ass⇒ m /∈ S ⇒ m /∈ T MOV⇒ r′ = r ⇒

m /∈ r′
b) r 7→ o′ = fca(S′,T ′)(o)

Ass⇒ m /∈
ca(S′, T ′) MOV⇒ r′ 7→ o′ ⇒ m /∈ r′

2) S ≺: T ∧ S 6≺:m T

a) r 7→ o
Ass⇒ m /∈ S ⇒ m /∈ ca(S, T) ⇒ m /∈

fca(S,T)(o)
MOV⇒ m /∈ r′

b) r 7→ o′ = fca(S′,T ′)(o)
Ass⇒ m /∈ ca(S′, T ′)

MOV⇒ r′ = fca(S,T)(fca(S′,T ′)(o)) =

fmerge(ca(S,T),ca(S′,T ′))(o)
merge⇒ m /∈ r′

The second case needs more explanation: If r has type S
and points directly to o, S has no m (induction hypothesis).
Then, m is not part of ca(S, T) following CA-RCD. By
applying this cast action to o, m is not callable on the resulting
membrane.

If r points to a membrane, following the induction
hypothesis m is not callable on this membrane. But the
membrane results from applying a type cast action ca(S′, T ′)
to the object o, so m was not a part of that type cast action.
When merging this cast action with any other type cast action,
m cannot be part of the result. Therefore it is also not callable
through r′.

Instruction: call ref m args res
Let method foo accept an argument of type U and S ≺: U .
We assume that foo is callable through some reference ref
and the actual implementation accepts arguments of type T ,
with U ≺: T . Let r′ be the name of a parameter in foo. The
instruction pushes a new frame onto the stack so that the stack
will look like this: [. . . ,Var ′ = (r′, . . .), . . .] :: s :: t.

• m = (foo, opt , argT = (. . . , U, . . .), resT = (. . .))

• args = (. . . , r, . . .), res = (. . .), ref 7→ obj ∨
ref 7→ fA(obj)

• ref 7→ obj ⇒ U ≺:m T ⇒ ca(U, T) = >

Again, we look at the different cases:

1) S ≺:m U ∧ U ≺:m T ⇒ S ≺:m T

a) r 7→ o
Ass⇒ m /∈ S ⇒ m /∈ T

CALL⇒ r′ 7→
f>(o) = o⇒ m /∈ r′

b) r 7→ fca(S′,T ′)(o)
Ass⇒ m /∈ ca(S′, T ′) CALL⇒

r′ 7→ f>(fca(S′,T ′)(o)) = fca(S′,T ′)(o) ⇒
m /∈ r′

2) S 6≺:m U ∨ U 6≺:m T ⇒ S 6≺:m T

a) r 7→ o
Ass⇒ m /∈ S ⇒ m /∈ ca(S,U) ⇒ m /∈

fca(S,U)(o)

⇒ m /∈ fca(U,T)(fca(S,U)(o))
CALL⇒ m /∈ r′

b) r 7→ o′ = fca(S′,T ′)(o)
Ass⇒ m /∈ ca(S′, T ′)

CALL⇒ r′ = fca(U,T)(fca(S,U)(fca(S′,T ′)(o)))
merge⇒ m /∈ r′

The proof for method calls performed on a membrane follows
directly from CALL-MEM and merge.

Instruction: inv x mth r
The inv-instruction accepts only arguments of type Any . In
order to pass r as an argument to mth it needs to be casted
it to this special type. This always introduces a membrane
fca(S,Any)(r) allowing exactly the methods that are callable
through r, because S 6≺:m Any . This membrane can then be
assigned to a reference r′ of the methods formal parameter
type T with just a type check (Any ≺:m T ∧Any 6≺:c T).

m /∈ r INV-M⇒ m /∈ r′

Instruction: ret
Let bar be the current method with formal return type
(. . . , U, . . .) that was invoked through an interface bar : X 7→
(. . . , V, . . .). Let s′ :: s :: t be a snapshot of the system’s state
right before the execution of the return-instruction.

s′ = [obj ,
bar ,
Var ′ = (. . . , r, . . .),
ResT ′ = (. . . , V, . . .),
Res′ = (. . . , r′ . . .),
⊥]

Let Γ ` r :: S ∧ Γ ` r′ :: T and S ≺: U .

• S ≺: U ⇒ ca(S,U) 6= ⊥
• V ≺: T ⇒ ca(V, T) 6= ⊥
• U <: V ⇒ ca(U, V) = > (follows directly from

CM-ARROW)

Again, look at the different cases:

1) S ≺:m U ∧ V ≺:m T ⇒ S ≺:m T

a) r 7→ o
Ass⇒ m /∈ S ⇒ m /∈ T ⇒ m /∈ r′

b) r 7→ fca(S′,T ′)(o)
Ass⇒ m /∈ ca(S′, T ′) RET⇒

r′ 7→ fca(S′,T ′)(o)⇒ m /∈ r′
2) S 6≺:m U ∨ V 6≺:m T ⇒ S 6≺:m T

a) r 7→ o
Ass⇒ m /∈ S

⇒ m /∈ merge(merge(ca(S,U),>), ca(V, T))
RET⇒ r′ 7→ fmerge(merge(ca(S,U),>),ca(V,T))(o)
⇒ m /∈ r′

b) r 7→ fM=ca(S′,T ′)(o)
Ass⇒ m /∈ r

⇒ m /∈ ca(S′, T ′)
RET⇒ r′ = fY (fM (o)) with

Y = merge(merge(ca(S,U),>), ca(V, T))
⇒ r′ = fmerge(Y,M)(o)
⇒ m /∈ r′

The proof for returning from a method called on a membrane
follows directly from RET-M and merge.

69

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Implementation and Performance Evaluation of Eavesdropping Protection Method

over MPTCP Using Data Scrambling and Path Dispersion

Toshihiko Kato1)2), Shihan Cheng1), Ryo Yamamoto1), Satoshi Ohzahata1) and Nobuo Suzuki2)

1) Graduate School of Informatics and Engineering

University of Electro-Communications

Tokyo, Japan

2) Adaptive Communications Research Laboratories

Advanced Telecommunication Research Institute International

Kyoto, Japan

kato@net.lab.uec.ac.jp, chengshihan@net.lab.uec.ac.jp, ryo_yamamotog@net.lab.uec.ac.jp,

ohzahata@net.lab.uec.ac.jp, nu-suzuki@atr.jp

Abstract—In order to utilize multiple communication interfaces

installed mobile terminals, Multipath Transmission Control

Protocol (MPTCP) has been introduced recently. It can

establish an MPTCP connection that transmits data segments

over the multiple interfaces, such as 4G and Wireless Local Area

Network (WLAN), in parallel. However, it is possible that some

interfaces are connected to untrusted networks and that data

transferred over them is observed in an unauthorized way. In

order to avoid this situation, we proposed a method to improve

privacy against eavesdropping using the data dispersion by

exploiting the multipath nature of MPTCP in our previous

papers. The proposed method takes an approach that, if an

attacker cannot observe the data on every path, he/she cannot

observe the traffic on any path. The fundamental techniques of

this method is a per-byte data scrambling and path dispersion.

In this paper, we present the result of implementing the

proposed method within the Linux operating system and its

performance evaluation in more detail than our former papers.

Keywords- Multipath TCP; Eavesdropping; Data Dispersion;

Data Scrambling.

I. INTRODUCTION

This paper is an extension of our previous paper [1], which
is presented in an IARIA conference.

Recent mobile terminals are equipped with multiple
interfaces. For example, most smart phones have interfaces
for 4G Long Term Evolution (LTE) and WLAN. In the next
generation (5G) mobile network, it is expected that multiple
communication paths provided by multiple network operators
are commonly involved [2]. In this case, mobile terminals will
have more than two interfaces.

However, the conventional TCP establishes a connection
between single IP addresses at individual ends, and so it
cannot utilize multiple interfaces in one end at the same time.
In order to cope with this issue, MPTCP [3] is being
introduced in several operating systems, such as Linux, Apple
OS/iOS [4] and Android [5]. MPTCP is an extension of the
conventional TCP. It combines multiple TCP flows into one
data stream called an MPTCP connection, and provides the
same programing interface with the socket interface. So,
existing TCP applications can use MPTCP as if they were
working over conventional TCP.

MPTCP is defined by three Request for Comments (RFC)
documents by the Internet Engineering Task Force. RFC
6182 [6] outlines architecture guidelines. RFC 6824 [7]
presents the details of extensions to support multipath
operation, including the maintenance of an MPTCP
connection and subflows (TCP connections associated with an
MPTCP connection), and the data transfer over an MPTCP
connection. RFC 6356 [8] presents a congestion control
algorithm that couples the congestion control algorithms
running on different subflows.

When a mobile terminal uses multiple paths, some of them
may be unsafe such that an attacker is able to observe data
over them in an unauthorized way. For example, a WLAN
interface is connected to a public WLAN access point, data
transferred over this WLAN may be disposed to other nodes
connected to it. One way to prevent the eavesdropping is the
Transport Layer Security (TLS). Although TLS can be
applied to various applications including web access, e-mail,
and ftp, however, it generally requires at least one end to
maintain a public key certificate, and so it will not be used in
some kind of communication, such as private server access
and peer to peer communication.

As an alternative scheme, we proposed a method to
improve confidentiality against eavesdropping by exploiting
the multipath nature of MPTCP [9][10]. Even if an unsafe
WLAN path is used, another path may be safe, such as LTE
supported by a trusted network operator. So, the proposed
method is based on an idea that, if an attacker cannot observe
the data on every path, he/she cannot observe the traffic on any
path [11]. In order to realize this idea, we adopted a byte based
data scrambling for data segments sent over multiple subflows.
This mixes up data to avoid its recognition through illegal
monitoring over an unsafe path. Although there are some
proposals to use multiple TCP connections to protect
eavesdropping [12]-[15], all of them depend on the encryption
techniques. The proposed method is dependent on the
exclusive OR (XOR) calculation that is much lighter in terms
of processing overhead.

In our previous paper [1] that is the origin of this paper,
we showed how to implement the proposed method over the
Linux operating system. We used the kernel debugging
mechanism called JProbe, in order to avoid the modification
of the Linux kernel as much as possible. The previous paper

70

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

also showed the results of implementation focusing on how
the proposed method works over off-the shelf personal
computers and access point, but the descriptions on
performance evaluation was limited.

In this paper, we describe the proposed method and its
implementation in more detail. We also show another
behavior of the proposed method and the results of
performance evaluation in detail.

The rest of this paper is organized as follows. Section II
explains the overview and the security issue of MPTCP [10].
Section III describes the proposed method. Section IV shows
how to implement the proposed method within the MPTCP
software in the Linux operating system. Section V gives the
behavior of the proposed method and the results of the
performance evaluation. In the end, Section VI concludes this
paper.

II. OVERVIEW AND SECURITY ISSUES OF MPTCP

A. MPTCP connections and subflows

As described in Figure 1, the MPTCP module is located
on top of TCP. As described above, MPTCP is designed so
that the conventional applications do not need to care about
the existence of MPTCP. MPTCP establishes an MPTCP
connection associated with two or more regular TCP
connections called subflows. The management and data
transfer over an MPTCP connection is done by newly
introduced TCP options for MPTCP operation.

Figure 2 shows an example of MPTCP connection
establishment where host A with two network interfaces
invokes this sequence for host B with one network interface.
In the beginning, host A sends a SYN segment to host B with
a Multipath Capable (MP_CAPABLE) TCP option. This
option indicates that an initiator supports the MPTCP
functions and requests to use them in this TCP connection. It
contains host A’s Key (64 bits) used by this MPTCP
connection. Then, host B replies a SYN+ACK segment with
MP_CAPABLE option with host B’s Key. This reply means
that host B accepts the use of MPTCP functions. In the end,

host A sends an ACK segment with MP_CAPABLE option
including both A’s and B’s Keys. Through this three-way
handshake procedure, the first subflow and the MPTCP
connection are established. Here, it should be mentioned that
these “Keys” are not keys in a cryptographic sense. They are
a sort of random numbers assigned for individual MPTCP
connections. As described below, they are used for generating
the Hash-based Message Authentication Code (HMAC), but
MPTCP does not provide any mechanisms to protect them
from attackers’ accessing while transfer.

Next, host A tries to establish the second subflow through
another network interface. In the first SYN segment in this
try, another TCP option called a Join Connection (MP_JOIN)
option is used. An MP_JOIN option contains the receiver’s
Token (32 bits) and the sender’s Nonce (random number, 32
bit). A Token is an information to identify the MPTCP
connection to be joined. It is obtained by taking the most
significant 32 bits from the SHA-1 hash value for the
receiver’s Key (host B’s Key in this example). Then, host B
replies a SYN+ACK segment with MP_JOIN option. In this
case, MP_JOIN option contains the random number of host B
and the most significant 64 bits of the HMAC value. An
HMAC value is calculated for the nonces generated by hosts
A and B using the Keys of A and B. In the third ACK segment,
host A sends an MP_JOIN option containing host A’s full
HMAC value (160 bits). In the end, host B acknowledges the
third ACK segment. Using these sequence, the newly
established subflow is associated with the MPTCP connection.

B. Data transfer

An MPTCP implementation will take one input data
stream from an application, and split it into one or more
subflows, with sufficient control information to allow it to be
reassembled and delivered to the receiver side application
reliably and in order. The MPTCP connection maintains the
data sequence number independent of the subflow level
sequence numbers. The data and ACK segments may contain
a Data Sequence Signal (DSS) option depicted in Figure 3.

The data sequence number and data ACK is 4 or 8 byte
long, depending on the flags in the option. The number is
assigned on a byte-by-byte basis similarly with the TCP
sequence number. The value of data sequence number is the
number assigned to the first byte conveyed in that TCP
segment. The data sequence number, subflow sequence
number (relative value) and data-level length define the
mapping between the MPTCP connection level and the
subflow level. The data ACK is analogous to the behavior of
the standard TCP cumulative ACK. It specifies the next data
sequence number a receiver expects to receive.

Figure 1. Layer structure of MPTCP.

Host A
Address A1 Address A2

Host B
Address B

 SYN (MP_CAPABLE [Key-A])
 SYN+ACK (MP_CAPABLE [Key-B])

 ACK (MP_CAPABLE [Key-A, Key-B])
 SYN (MP_JOIN

[Token-B, Nonce-A])

 SYN+ACK (MP_JOIN
[HMAC-B, Nonce-B])

 ACK (MP_JOIN [HMAC-A])
 ACK

Figure 2. Example of MPTCP connection establishment.

 Application

MPTCP

Subflow (TCP) Subflow (TCP)

IP IP

Kind (= 30) Length
Subtype

(= 2)
Flags

Data ACK (4 or 8 octets, depending on flags)

Data sequence number (4 or 8 octets, depending on flags)

Subflow sequence number (4 octets)

Data-level length (2 octets) Checksum (2 octets)

Figure 3. Data Sequence Signal option.

71

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Eavesdropping protection over multiple TCP

connections

As we mentioned in Section I, there are several proposals
on the data dispersion over multiple paths. Yang and
Papavassiliou [12] showed a method to analyze the security
performance when a virtual connection takes multiple disjoint
paths to the destination, and proposed a traffic dispersion
scheme to minimize the information leakage when some of
the intermediate routers are attacked. Nacher et al. [13] tried
to determine the optimal trade-off between traffic dispersion
and TCP performance over mobile ad-hoc networks to reduce
the chances of successful eavesdropping while maintaining
acceptable throughput. These two studies use multiple TCP
connections by their own coordination methods instead of
MPTCP. Gurtov and Polishchuk [14] used host identity
protocol (HIP), which locates between IP and TCP to provide
multiple paths, and proposed how to spread traffic over them.
Apiecionek et al. [15] proposed a way to use MPTCP for more
secure data transfer. After data are encrypted, they are divided
into blocks, mixed in the predetermined random sequence,
and then transferred through multiple MPTCP subflows. A
receiver rearranges received blocks in right order and decrypts
them.

All of those proposals aim at just spreading data packets
over multiple paths, and do not consider the coordination over
multiple paths. If the transferred data are encrypted before
dispersion, it can be said that they are coordinated by the
encryption procedure, but the coordination is not realized by
the dispersion schemes. In contrast with them, our proposal
adopts an approach to improve privacy by coordinating data
over multiple paths through data scrambling not encryption.

III. PROPOSED METHOD

A. Motivation

The first point we considered in designing our proposal
was utilize multiple paths supported by MPTCP. So we
picked up the secret sharing method [16], which produces
some number of pieces from data in a way that a specific
number of pieces are required for reconstructing the original
data. By using the secret sharing, it is possible to divide data
into multiple subflows. However, in this approach, it is
required to duplicate the original data or at least increase the
amount of sending data. Besides, this approach requires some
cryptographic calculation that uses a lot of CPU power.

Next approach we considered is the network coding
approach [17], where a packet is XORed with the following
packet and the first packet and the XOR result are sent via
different paths [18]. This approach does not require any
cryptographic calculation and so the processing overhead is
low. However, if the packet length is different, unnecessary
padding may be necessary.

The third approach is applying the mode of operation, such
as Cipher Block Chaining (CBC) and Output Feedback (OFB),
used in block ciphering [19]. The block cipher defines only
how to encrypt or decrypt a fixed length bits (block). The
mode of operation defines how to apply this operation to data
longer than a block. CBR and OFB introduce a chaining
between blocks such that a block is combined with the

preceding block by XOR calculation. The application of the
mode of operation without any encryption to data dispersion
is considered as a block level data scrambling. So, if the
length of packet is not integral multiple of block length,
unnecessary padding will be required again.

Based on these considerations, we picked up a byte level
scrambling which is described in the following subsection.

B. Detailed procedure

Figure 4 shows the overview of the proposed method. As
shown in Figure 4(a), we introduce a data scrambling function
within MPTCP and on top of the original MPTCP. When an
MPTCP communication is started, the use of data scrambling
is negotiated. It may be done using a flag bit in
MP_CAPABLE TCP option.

When an application sends data, it is stored in the send
socket buffer in the beginning. The proposed method
scrambles the data by calculating XOR of a byte with its
preceding 64 bytes in the sending byte stream. Then, the
scrambled data is sent through multiple subflows associated
with the MPTCP connection. Since some data segments are
transmitted through trusted subflows, an attacker monitoring
only a part of data segments cannot obtain all of sent data and
so cannot descramble any of them. When receiving data
segments, they are reordered in the receive socket buffer by
MPTCP. The proposed method descrambles them in a byte-
by-byte basis just before an application reads the received data.

Figure 5 shows the details of data scrambling. In order to
realize this scrambling, the data scrambling module maintains
the send scrambling buffer, whose length is 64 bytes. It is a
shift buffer and its initial value is HMAC of the key of this
side, with higher bytes set to zero. The key used here is one
of the MPTCP parameters, exchanged in the first stage of
MPTCP connection establishment. When a data comes from
an application, each byte (bi in the figure) is XORed with the
result of XOR of all the bytes in the send scrambling buffer.

original MPTCP

Subflow (TCP) Subflow (TCP)

Data Scrambling
M
P
T
C
P

(a) Layer structure of proposed method

Send socket
buffer

Data Scrambling

original MPTCP

trusted path
untrusted

path

Receive socket
buffer

Data
Descrambling

original MPTCP

trusted path
untrusted

path
 (b) Sending data procedure (c) Receiving data procedure

Figure 4. Overview of proposed method [9].

72

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The obtained byte (Bi) is the corresponding sending byte.
After calculating the sending byte, the original byte (bi) is
added to the send scramble buffer, forcing out the oldest
(highest) byte from the buffer. The send scrambling buffer
holds recent 64 original bytes given from an application. By
using 64 byte buffer, the access to the original data is protected
even if there are well-known byte patterns (up to 63 bytes) in
application protocol data.

Figure 6 shows the details of data descrambling, which is
similar with data scrambling. The data scrambling module
also maintains the receive scramble buffer whose length is 64
bytes. Its initial value is HMAC of the key of the remote side.
When an in-sequence data is stored in the receive socket
buffer, a byte (Bi that is scrambled) is applied to XOR
calculation with the XOR result of all the bytes in the receive
scramble buffer. The result is the descrambled byte (bi),
which is added to the receive scramble buffer.

By using the byte-wise scrambling and descrambling, the
proposed method does not increase the length of exchanged
data at all. The separate send and receive control enables two
way data exchanges to be handled independently. Moreover,
the proposed method introduces only a few modification to
the original MPTCP.

IV. IMPLEMENTATION

A. Use of Kernel Probes

Since MPTCP is implemented inside the Linux operating
system, the proposed method also needs to be realized by
modifying operating system kernel. However, modifying an
operating system kernel is a hard task, and so we decided to
use a debugging mechanism for the Linux kernel, called
kernel probes [20].

Among kernel probes methods, we use a way called
"JProbe" [21]. JProbe is used to get access to a kernel
function's arguments at runtime. It introduces a JProbe
handler with the same prototype as that of the function whose
arguments are to be accessed. When the probed function is
executed, the control is first transferred to the user-defined
JProbe handler. After the user-defined handler returns, the
control is transferred to the original function [20].

In order to make this mechanism work, a user needs to
prepare the following;

 registering the entry by struct jprobe and
 defining the init and exit modules by functions

register_jprobe() and unregister_jprobe

()[21].

In the Linux kernel, function tcp_sendmsg() is called
when an application sends data to MPTPCP (actually TCP,
too) [22]. As stated in Section II, the scrambling will be done
at the beginning of this function. So, we define a JProbe

handler for function tcp_sendmsg() for scrambling data
to be transferred.

In order for an application to read received data, it calls

function tcp_recvmsg() in MPTCP. In contrast to data
scrambling, the descrambling procedure needs to be done at
the end of this function. So, we introduce a dummy kernel
function and export its symbol just before the returning points

of function tcp_recvmsg(). We then define a JProbe
handler for descrambling in this dummy function.

By adopting this approach, we can program and debug
scrambling/descrambling independently of the Linux kernel
itself.

B. Modification of Linux opeating system

We modified the source code of the Linux operating
system in the following way. We believe that this is a very
slight modification that requires to us to rebuild the kernel
only once.

 Introduce a dummy function in tcp_recvmsg().
As described above, we defined a dummy function named

dummy_recvmsg(). It is defined in the source file

“net/ipv4/tcp.c” as shown in Figure 7. It is a function

just returning and inserted before function tcp_recvmsg()
releases the socket control. Since this function is very simple,

“noinline” indication pragma needs to be specified. The
prototype declaration is done in the source file

“include/net/tcp.h”.
 Maintain control variables within socket data structure.

In order to perform the scrambling/descrambling, the
control variables, such as a scramble buffer, need to be
installed within the Linux kernel. The TCP software in the

sending data

XOR　　　　・・・

send scramble buffer

scrambled sending data

XOR

・・・ ・・・

・・・ ・・・

　　　　・・・

・・・ ・・・

sending data

send scramble buffer

(a) Scrambling

(b) Adding sending byte to scramble buffer

bi

bi

Bi

bi

Figure 5. Processing of data scrambling [9].

scrambled received data

XOR　　　　・・・

receive scramble buffer

received data

XOR

・・・ ・・・

・・・ ・・・

　　　　・・・

・・・ ・・・

received data

receive scramble buffer

(a) Descrambling

(b) Adding received byte to scramble buffer

bi

Bi

bi

bi

Figure 6. Processing of data descrambling [9].

73

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

kernel uses a socket data structure to maintain internal control
data on an individual TCP / MPTCP connection [22]. This is
controlled by the following variable, as shown in Figure 4.

struct tcp_sock *tp = tcp_sk(sk);

This structure includes the MPTCP related parameters, such
as keys and tokens. The parameters are packed in an element
given below.

struct mptcp_cb *mpcb;

So, we added the control variables for data scrambling in this
data structure. Figure 8 shows the control variables. The
details of those variables are given in the following.

 sScrBuf[64] and rScrBuf[64]: the send and
receive scramble buffers, used as ring buffers.

 sXor and rXor: the results of calculation of XOR for
all the bytes in the send and receive scramble buffers.

 sIndex and rIndex: the index of the last (newest)

element in sScrBuf[64] and rScrBuf[64].

 sNotFirst and rNotFirst: the flags indicating
whether the scrambling and descrambling are invoked
for the first time in the MPTCP connection, or not.

C. Implementation of scrambling

(1) Framework of JProbe handler
Figure 9 shows the framework of JProbe hander defined

for tcp_sendmsg(). Function jtcp_sendmsg() is a
main body of the JProbe hander. The arguments need to be
exactly the same with the hooked kernel function

tcp_sendmsg(), and it calls jprobe_return() just

before its returning. Data structure struct jprobe

mptcp_jprobe specifies its details.

Function mptcp_scramble_init() is the
initialization function invoked when the relevant kernel
module is inserted. In the beginning, it confirm that the
hander has the same prototype with the hooked function.
Then it defines the entry point and registers the JProbe handler.

Function mptcp_scramble_exit() is called when the

relevant kernel module is removed. It removes the entry point
and unregisters the hander from the kernel.

(2) Flowchart of data scrambling
The data scrambling procedure is implemented in

jtcp_sendmsg(). Figure 10 shows the flowchart for this

procedure. When jtcp_sendmsg() is called, it is checked
whether this function is invoked for the first time or not. If it
is the first invocation over a specific MPTCP connection,

sScrBuf[] is initialized to the value of the local key

maintained in the struct mptcp_cb structure. Then,

XOR of all the bytes in sScrBuf[] is calculated and saved

in sXor, and sIndex is set to 63.

The argument containing data (msg) is a list of data blocks,
and so individual blocks are handled sequentially. For each
data block, a byte-by-byte basis calculation is performed in
the following way. First, the XOR of the focused byte and

sXor is saved in temporal variable x. Then, sIndex is
advanced by one under modulo 64. Thirdly, the XOR of

sXor, sScrBuf[sIndex] and the original byte are
calculated and saved in sXor. It should be noted that the value

in sScrBuf[sIndex] at this stage is the oldest value in the
send scramble buffer. Fourthly, the original byte is stored in

sScrBuf[sIndex],which means that the send scramble
buffer is updated. At last, the byte in the message block is

replaced by the value of x.

D. Implementation of descrambling

The data descrambling is implemented similarly with
scrambling. We developed the JProbe handler for function

dummy_recvmsg() in the same way with the approach
given in Figure 9. The flowchart of descrambling procedure
is shown in Figure 11. This is similar with the flowchart
shown in Figure 10. In the first part of the flowchart, it should

Figure 7. Dummy function in tcp_recvmsg().

Figure 8. Control variables for data scrambling/descrambling.

struct mptcp_cb {

unsigned char sScrBuf[64], rScrBuf[64];

 unsigned char sXor, rXor;

 int sIndex, rIndex, sNotFirst, rNotFirst;

};

Figure 9. JProbe hander definition for tcp_sendmsg().

static const char procname[] = mptcp_scramble
int jtcp_sendmsg(struct sock *sk, struct msghdr *msg,

 size_t size) {

 struct tcp_sock *tp = tcp_sk(sk);

 . . .

 jprobe_return();

 return 0;

} // (i) JProbe handler

static struct jprobe mptcp_jprobe = {

 .kp = {.symbol_name = "tcp_sendmsg",},

 .entry = jtcp_sendmsg,

}; // (ii) Register entry

static __init int mptcp_scramble_init(void) {

 int ret = -ENOMEM;

 BUILD_BUG_ON(__same_type(tcp_sendmsg, jtcp_sendmsg) == 0);

 if(!proc_create(procname, S_IRUSR, init_net.proc_net, 0))

 return ret;

 ret = register_jprobe(&mptcp_jprobe);

 if (ret) {

 remove_proc_entry(procname, init_net.proc._net);

 retrun ret;

 }

 return 0;

} // (iii) Init function

module_init(mptcp_scramble_init);

static __exit void mptcp_scramble_exit(void) {

 remove_proc_entry(procname, init_net.proc._net);

 unregister_jprobe(&mptcp_jprobe);

} // (iv) Exit function

module_exit(mptcp_scramble_exit);

74

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be noted that rScrBuf[] is set to the remote key, which is
the local key in the sender side. In this case, the data block is
a descrambled data. Therefore, in the byte-by-byte basis part,

the original value (x in the figure) is used to calculate rXor

and is stored in rSrcBuf[rIndex].

V. EXPERIMENT AND PERFORMANCE EVALUATION

A. Experimental settings

We implemented the proposed method over the Linux
operating system (Ubuntu 16.04 LTS/14.04 LTS with
MPTCP support). We evaluated it in the experimental
configuration shown in Figure 12. Two note PCs are used as
a client and a server. They are connected with each other via
a hub/access point using Ethernet and WLAN. Ethernet is
100base-T and WLAN is IEEE 802.11g with 2.4 GHz. The
client uses both Ethernet and WLAN, and the server uses only
Ethernet. The WLAN interface does not use any encryption.
We suppose that the Ethernet link is a trusted network and the
WLAN link without any encryption is an untrusted network.
Table I shows the specification of nodes. It should be noted
that the model for the client and server nodes is a little old and
the processing power of CPU is low. The model of the access
point is Buffalo Air Station G54. The proposed method is
implemented in the Linux operating system running over the

client and server nodes. In the attacker node, Wireshark (and
tshark) is executed in order to monitor data transferred over
WLAN.

Figure 10. Flowchart of data scrambling.

Figure 11. Flowchart of data descrambling.

Figure 12. Experiment configuration.

TABLE I. SPECIFICATION OF NODES USED IN EXPERIMENT.

75

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The network setting is as follows.
 Since the access point works as a bridge, the client and

the server are connected to the same subnetwork,
192.168.0.0/24.

 The Ethernet and WLAN interfaces in the client are
assigned with IP addresses 192.160.0.1 and 192.168.0.3,
respectively. The Ethernet interface in the server is
assigned with IP address 192.168.0.2. The ESSID of the
WLAN is “MPTCP-AP.”

 In order to use two interfaces at the client, the IP routing
tables are set for individual interfaces, by use of the ip
command in the following way (for the Ethernet

interface enp4s1).

 ip rule add from 192.168.0.1 table

1

 ip route add 192.168.0.0/24 dev

enp4s1 scope link table 1

 The JProbe handlers for jtcp_sendmsg() and

jdummy_recvmsg() are built as kernel modules.

They are inserted and removed using insmod and

rmmod Linux commands without rebooting the system.

 In the experiment, we used iperf for sending data from
the client to the server, using Ethernet and WLAN. In
another evaluation, we used a simple file transfer, which
we implemented, where a specified file is transferred
from the server to the client.

 In the attacker node, the Wireshark network analyzer is
invoked for monitoring a WLAN interface with both the
promiscuous mode the monitor mode set to effective.
When we use tshark at the attacker node, which is a

command line interface version of Wireshark, the “-I”

option is used for capturing all WLAN frames and the “-

Y” option is used for applying a display filter defined
similarly with Wireshark.

B. Behaviors of proposed method

Figure 13 shows a result of the attacker’s monitoring of
iperf communication over WLAN in the conventional
communication. In the iperf communication, an ASCII digit
sequence “0123456789” is sent repeatedly. If the attacker can
monitor the WLAN, the content is disposed as shown in this
figure. Figure 14 shows a monitoring result by the attacker
over the WLAN link when the data scrambling is performed.

Figure 13. Capturing result of iperf when no scrambling is performed.

Figure 14. Capturing result of iperf when scrambling is performed.

76

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This figure shows the monitoring result for the first data
segment over the WLAN link, which is the same with Figure
13. The original data is a repetition of “0123456789” but the
data is scrambled in the result here. So, it can be said that the
attacker cannot understand the content, even the WLAN link
is not encrypted.

Figures 15 through 17 show result of the attacker’s
monitoring of file transfer over WLAN. Figure 15 is a display
image at the client node when it is receiving a text file
containing the text of our previous paper. It is the part of
references in the paper. Figure 16 shows a monitoring result
by the attacker when no data scrambling is performed. This

figure is a result with tshark command with “-x” option that
requests to display of data part in TCP segments. As shown
in this figure, the content of file can be obtained by the attacker.
Figure 17 shows the monitoring result by the attacker for the
same part of file given in Figure 16. Since the content is
scrambled, the attacker cannot recognize the content of the file.

C. Throughput evaluation

In order to evaluation the performance of the proposed
method, we measured file transfer throughput for the original
MPTCP (without data scrambling nor encryption), the
proposed method, and the MPTCP data transfer with
encryption and decryption using Advanced Encryption
Standard (AES) [23]. AES is a block based ciphering
algorithm standardized by NIST in 2001. It is a symmetric
block cipher that can process data blocks of 128 bits (16 bytes),
using cipher keys with lengths of 128, 192, and 256 bits (16
bytes, 24 bytes, and 32 bytes, respectively). In this experiment,
we used 16 byte key with the CBC mode. For the
implementation of AES based file transfer, we used a publicly
available source programs for AES [24] distributed by PJC, a

Japanese software company. In the throughput measurement,
data is transferred from the server node to the client node in
the configuration given in Figure 12. We measured the
throughput by changing the size of file transferred.

Figure 18 shows the measured throughput. When
changing the transferred file size from 20 MB through 80 MB,
the results are similar for all the sizes in every case. The

Figure 15. Client display image of file receiving.

Figure 16. Capturing result of file transfer without scrambling.

Figure 17. Capturing result of file transfer with scrambling.

77

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

throughput of the original MPTCP is the highest among three
and the result is around 90 Mbps. In the case of the proposed
method, the measured throughput is around 75 Mbps, which
is lower than the original MPTCP but high enough. In the
case of AES encryption, the throughput goes down to 2 Mbps.
Comparing the encryption and decryption, the decryption has
higher overhead in our experiment, and it limits the
performance of file transfer. It should be noted that the
software we used for AES encryption may not be optimized
and so the sophisticated AES program may improve the
throughput. But, it can be said that the proposed method will
require much less overhead than the encryption based method.
Another thing to be mentioned is that the equipment we used
in this experiment is rather old and so the processing power of
CPU is not high. This is one factor that makes the throughput
of the AES based method worse.

VI. CONCLUSIONS

This paper described the results of implementation and
performance evaluation of a method to improve privacy
against eavesdropping over MPTCP communications, which
we proposed in the previous papers. The proposed method
here is based on the not-every-not-any protection principle,
that is, if an attacker cannot observe the data over trusted path
such as an LTE network, he/she cannot observe the traffic on
any path. Specifically, the proposed method uses the byte
oriented data scrambling and the data dispersion over multiple
paths.

In the implementation of the proposed method, we took an
approach to avoid the modification of the Linux kernel as
much as possible. The modification is as follows. The control
parameters are inserted in the socket data structure, and the

dummy function for the last part of tcp_recvmsg()
function. The main part of scrambling and descrambling is
implemented by use of the kernel debugging routine called
JProbe handler, which is independent of the kernel.

Through the experiment, we confirmed that the data
transferred over unencrypted WLAN link cannot be
recognized when the data scrambling is performed. As for the
performance, the throughput of the scrambled communication
is just a little smaller than the original MPTCP communication
exposed to unauthorized access. Moreover, the throughput of
cryptographic method is degraded largely compared with the

original MPTCP and the proposed method. For the terminals
with low power CPU, the cryptographic approach will
decrease the throughput and so the proposed method will be
effective.

In the last of this paper, we need to say that the proposed
method is a practical approach based on the assumption that
the trusted path, for example, a path via a trusted network
operator, is safe enough. That means that, if the trusted path
is accessed in an unauthorized way, the data will be observed
thoroughly. By owing to the safety in the trusted networks,
the proposed method provides low overhead in the data
protection.

ACKNOWLEDGMENT

This research was performed under the research contract
of “Research and Development on control schemes for
utilizations of multiple mobile communication networks,” for
the Ministry of Internal Affairs and Communications, Japan.

REFERENCES

[1] T. Kato, S. Cheng, R. Yamamoto, S. Ohzahata, and N. Suzuki,
“Implementation of Eavesdropping Protection Method over MPTCP
Using Data Scrambling and Path Dispersion,” in Proc. SECURWARE
2018, pp. 108-113. Sep. 2018.

[2] NGNM Alliance, “NGMN 5G White Paper,”
https://www.ngmn.org/fileadmin/ngmn/content/downloads/Technical/
2015/NGMN_5G_White_Paper_V1_0.pdf, Feb. 2015, [retrieved: Feb.,
2019].

[3] C. Paasch and O. Bonaventure, “Multipath TCP,” Communications of
the ACM, vol. 57, no. 4, pp. 51-57, Apr. 2014.

[4] AppleInsider Staff, “Apple found to be using advanced Multipath TCP
networking in iOS 7,” http://appleinsider.com/articles/13/09/20/apple-
found-to-be-using-advanced-multipath-tcp-networking-in-ios-7,
[retrieved: Feb., 2019].

[5] icteam, “MultiPath TCP – Linux Kernel implementation, Users::
Android,” https://multipath-tcp.org/pmwiki.php/Users/Android,
[retrieved: Feb., 2019].

[6] A. Ford, C.Raiciu, M. Handley, S. Barre, and J. Iyengar, “Architectural
Guidelines for Multipath TCP Development,” IETF RFC 6182, Mar.
2011.

[7] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions
for Multipath Operation with Multiple Addresses,” IETF RFC 6824,
Jan. 2013.

[8] C. Raiciu, M. Handley, and D. Wischik, “Coupled Congestion Control
for Multipath Transport Protocols,” IETF RFC 6356, Oct. 2011.

[9] T. Kato, S. Cheng, R. Yamamoto, S. Ohzahata, and N. Suzuki,
“Protecting Eavesdropping over Multipath TCP Communication Based
on Not-Every-Not-Any Protection,” in Proc. SECURWARE 2017, pp.
82-87, Sep. 2017.

[10] T. Kato, S. Cheng, R. Yamamoto, S. Ohzahata, and N. Suzuki,
“Proposal and Study on Implementation of Data Eavesdropping
Protection Method over Multipath TCP Communication Using Data
Scrambling and Path Dispersion,” International Journal On Advances
in Security, 2018 no. 1&2, pp. 1-9, Jul. 2018.

[11] C. Pearce and S. Zeadally, “Ancillary Impacts of Multipath TCP on
Current and Future Network Security,” IEEE Internet Computing, vol.
19, iss. 5, pp. 58-65, Sept.-Oct. 2015.

[12] J. Yang and S. Papavassiliou, “Improving Network Security by
Multipath Traffic Dispersion,” in Proc. MILCOM 2001, pp. 34-38, Oct.
2001.

[13] M. Nacher, C. Calafate, J. Cano, and P. Manzoni, “Evaluation of the
Impact of Multipath Data Dispersion for Anonymous TCP
Connections,” In Proc. SecureWare 2007, pp. 24-29, Oct. 2007.

Figure 18. Measured throughput.

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80

th
ro

u
gh

p
u

t
(M

b
p

s)

transferred file size (MB)

original scrambling AES

78

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] A. Gurtov and T. Polishchuk, “Secure Multipath Transport For Legacy
Internet Applications,” In Proc. BROADNETS 2009, pp. 1-8, Sep.
2009.

[15] L. Apiecionek, W. Makowski, M. Sobczak, and T. Vince, “Multi Path
Transmission Control Protocols as a security solution,” in Proc. 2015
IEEE 13th International Scientific Conference on Informatics, pp. 27-
31, Nov. 2015.

[16] A. Shamir, “How to share a secret,” Communications of the ACM, vol.
22, no. 11, pp. 612-613, Nov. 1979.

[17] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network Information Flow,”
IEEE Trans. Information Theory, vol. 46, no. 4, pp. 1204-1216, Jul.
2000.

[18] M. Li, A. Lukyanenko, and Y. Cui, “Network Coding Based Multipath
TCP,” in Proc. Global Internet Symposium 2012, pp. 25-30, Mar. 2012.

[19] ISO JTC 1/SC27, “ISO/IEC 10116: 2006 – Information technology –
Security techniques – Modes of operation for an n-bit cipher,” ISO
Standards, 2006.

[20] LWN.net, “An introduction to KProbes,” https://lwn.net/Articles/
132196/, [retreieved: Feb., 2019].

[21] GitHubGist, “jprobes example: dzeban / jprobe_etn_io.c,”
https://gist.github.com/dzeban/a19c711d6b6b1d72e594, [retreieved:
Feb., 2019].

[22] S. Seth and M. Venkatesulu, “TCP/IP Architecture, Desgn, and
Implementation in Linux,” John Wiley & Sons, 2009.

[23] Federal Information Processing Standards Publication 197,
“Anouncing the Advanced Encryption Standard (AES),” Nov. 2001.

[24] PJC, “Distribution of Sample Program / Source / Software (in
Japanese),” http://free.pjc.co.jp/index.html, [retrieved: Feb., 2019].

79

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Protecting Deployment Models in Collaborative Cloud Application Development

Vladimir Yussupov, Ghareeb Falazi, Michael Falkenthal, and Frank Leymann
Institute of Architecture of Application Systems

University of Stuttgart, Stuttgart, Germany
email: [firstname.lastname]@iaas.uni-stuttgart.de

Abstract—Profitability of industrial processes today depends on
well-timed utilization of new technologies. Development of cloud
applications combining cross-domain knowledge from multiple
collaborating parties is one common way to enhance manu-
facturing. Often, such collaborations are not centralized due
to outsourcing or rearrangements in organizational structures.
Moreover, manual deployment inefficiency and intellectual prop-
erty issues further tangle the development process of such appli-
cations. While the development of deployment models obviates
the necessity to manually deploy applications, a way to protect
sensitive data in exchanged deployment models is still needed. In
this work, we describe the specifics of modeling and enforcement
of security requirements for deployment models in the context
of decentralized collaborative cloud application development. We
provide a stepwise demonstration of how security requirements
can be specified and enforced in a collaborative development
scenario based on the TOSCA cloud standard. Furthermore,
we conceptualize the system architecture, provide details about
the implementation of certain approach-specific operations, and
discuss the limitations of the approach. Finally, we show the
feasibility of the presented concepts via an open-source prototype.

Keywords–Collaboration; Security Policy; Confidentiality; In-
tegrity; Deployment Model; Deployment Automation; TOSCA.

I. INTRODUCTION

In the recent years, processes and technologies fostering
manufacturing automation gained a lot of attention from
both, industry and academia. Often, an intricacy of industrial
processes leads to the fact that desired automation goals can
only be achieved using custom-tailored software solutions.
Frequently, such software is the result of a teamwork involving
multiple independent parties, e.g., representing different partic-
ipating organizations. As a prerequisite for collective software
development to be successful, often, various functional and non-
functional system requirements have to be satisfied. Security
and privacy of the data exchanged among involved parties
are critically important requirements that have to be properly
documented and enforced during the development lifecycle [1].

Numerous modern computing paradigms have great po-
tential for accelerating the 4th industrial revolution, often
referred to as Industry 4.0 [2]. One notable example is the
rapidly evolving field of cloud computing [3], which allows on-
demand access to potentially unbounded number of computing
resources. Combined together with ubiquitous sensors usage
in the context of the Internet of Things (IoT) [4], cloud
computing facilitates the development of composite, cross-
domain applications tailored specifically for automation and
optimization of manufacturing. Along with the clear advantages,
such emerging technologies introduce additional challenges
that need to be tackled. For instance, the overall complexity of
development processes might become a significant obstacle for
industries willing to benefit from cloud applications.

A typical cloud application today has a composite structure
consisting of multiple interconnected and heterogeneous compo-
nents [5]. Deploying such complexly-structured applications in
a manual fashion is error-prone and inefficient [6]. Therefore,
various deployment automation approaches exist. One well-
established automation technique relies on the concept of
deployment models that specify application structure along with
the necessary deployment information. Automated processing of
such models considerably reduces the deployment’s complexity
and minimizes required efforts. Another significant benefit,
which improves portability and reusability aspects of the applica-
tion development process, is that instead of separate application
components, standardized models can be exchanged [7].

Complexity and heterogeneity of application’s components
are among the reasons why a common cloud application
development scenario in the context of Industry 4.0 is a
collaboration [8] involving several multidisciplinary partners
responsible for separate parts of the application [5]. The
final goal of this collaboration is to combine all parts into
a complete and deployable cloud application. Collaborative
development can significantly benefit from the portability
and reusability properties of deployment models. However,
since not all parties are known in advance, e.g., due to task
outsourcing or changes in organizational structure, the issues of
intellectual property protection in decentralized settings arise.
For instance, confidential information like sensor measurements
and proprietary algorithms might be subject to various security
requirements, including protection from unauthorized access
and verification of its integrity. Therefore, modeling and
enforcement of such requirements aimed at specific parts of
deployment models, have to be supported.

In our previous work [1], we introduced a method for
modeling and enforcement of security requirements in deploy-
ment models that combines the ideas of sticky policies [9],
policy-based cryptography [10], and Cryptographic Access
Control (CAC) [11]. In this paper, we build upon our previous
work and discuss in more details, how security requirements
aimed at data protection in modeled cloud applications can
be expressed using security policies and which parts of
deployment models need to support the attachment of security
policies. Focusing more on the practical aspects, we provide
a stepwise demonstration of how the introduced approach
can be applied to a collaborative and standardized process
of deployment model development. To have a uniform way
of deployment modeling, we use the existing OASIS standard,
Topology and Orchestration Specification for Cloud Appli-
cations (TOSCA) [12], [13], which specifies an extensible,
provider-agnostic cloud modeling language [14]. To validate
our concepts, we implement them in OpenTOSCA [15], an
opensource ecosystem that allows modeling and execution of
TOSCA-compliant deployment models. Moreover, we include

80

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a detailed description of the system architecture and elaborate
on the process of security requirements enforcement during
import and export of deployment models using our prototype.
The remainder of this paper is structured as follows. As in our
previous work [1], we first describe the fundamentals underlying
this work in Section II and discuss a motivational scenario
in Section III. In Section IV, we present concepts for modeling
and enforcement of security requirements in collaborative
deployment models development. In Section V, we apply the
concepts to a TOSCA-based deployment modeling process
and provide a demonstration of a TOSCA-based collaborative
development scenario using the example collaboration described
in the motivational scenario. The details about the prototypical
implementation in OpenTOSCA are discussed in Section VI.
In addition, we discuss the system’s architecture and describe
the specifics of import and export processes of deployment
models. Finally, in Section VII, we describe related work and
conclude this paper in Section VIII.

II. FUNDAMENTALS

In this section, we provide an overview of several important
concepts that serve as a basis for our work, namely: (i) deploy-
ment automation of cloud applications by means of deployment
modeling approaches, (ii) usage of policies as means to specify
non-functional system requirements, (iii) and a brief coverage
of access control mechanisms.

A. Deployment Modeling
The compound application structure and increased integra-

tion complexity make it non-trivial to automate the deployment
of modern cloud applications [6]. The concept of deployment
modeling aims to tackle the automation problem, and there are
several known approaches including imperative and declarative
modeling [6], [16], [17]. Both paradigms are based on the
idea of creating a description, or deployment model, sufficient
enough for deploying a chosen application in an automated
fashion. What makes these modeling approaches different is the
way how corresponding deployment models are implemented.

In case of the declarative modeling [16], a deployment
model is a structural model that conveys the desired state and
structure of the application. Essential parts of the declarative
deployment model include a specification of application’s
components with respective dependencies and necessary con-
nectivity details. As a result, the model might contain binaries or
scripts responsible for running some application’s components,
e.g., a specific version of Apache Tomcat, or a predefined
Shell script for running a set of configuration commands. In
addition, a description of non-functional system requirements
in some form can be included into the model. Some examples
supporting this type of modeling include Chef [18] and Juju [19]
automation tools, as well as TOSCA. This type of models
relies on the concept of deployment engines, which are able to
interpret a provided description and infer a sequence of steps
required for successful deployment of the modeled application.

Compared to the declarative approach, the imperative
modeling [16] focuses on a procedure, which leads to automatic
application deployment. More specifically, an imperative model
describes (i) a set of activities corresponding to the required
deployment tasks that need to be executed, and (ii) the
control and data flow between those activities. One robust
technique for this modeling style is to use a process engine,

e.g., supporting standards like Business Process Execution
Language (BPEL) [20] or Business Process Model and No-
tation (BPMN) [21], which can execute provided imperative
models in an automated fashion.

A combination of declarative and imperative approaches is
also possible. In general, creating both types of models requires
efforts from the modeler. However, the imperative modeling
approach is generally more time-consuming and error-prone,
since multiple heterogeneous components need to be properly
orchestrated. Moreover, the structure of the application might
change frequently, which requires to modify imperative models.
To minimize required modeling efforts, imperative models
might be derived from the provided declarative models [6].

One important aspect of deployment models is that apart
from valid descriptions they also need to include various files
related to described software components and other parts of the
application, e.g., scripts, binaries, documentation and license
details. As a result, the term deployment model usually refers to
a combination of all the corresponding metadata and application
files required for automatically deploying a target application.

B. Policies
One well-known approach for separating non-functional

requirements from the actual functionalities of a target system
relies on the usage of policies [22]. Essentially, a policy
is a semi-structured representation of a certain management
goal [23]. The term management here is rather broad, as it
might refer to different aspects of management, e.g., high-
level corporate goals or more low-level, technology-oriented
management goals. For instance, from the system’s perspective,
performance, configuration, and security are among the classes
of non-functional requirements that can be described using
policies. Additionally, various policy specification languages
exist in order to simplify the process of describing such
requirements in a standardized manner [22]. From the high-level
view, policies only declare the requirements, which then have
to be enforced using dedicated enforcement mechanisms [24].

The idea to specify security requirements in policies dates
back to at least the 1970s [22]. Depending on the level of details
security policies might specify, e.g., privacy requirements for
the whole system or for particular data objects. In information
exchange scenarios, security policies specified on the level of
data objects have to be ensured during the whole exchange
process [25]. For this reason, all receivers have to be aware
of specified policies and enforcement must happen, e.g., by
means of globally-available security mechanisms. Similarly,
deployment models in collaborative application development
are constantly exchanged and parts of them might be subject to
security policies. So-called sticky policies [25] is an approach
to propagate policies with the data they target. This approach
can be combined with cryptography in order to ensure that
data is accessed only when requirements specified in policies
are satisfied. Multiple approaches to combine sticky policies
with different cryptographic techniques such as public key
encryption or Attribute-Based Encryption (ABE) exist [26].

C. Access Control
A secure information system must prevent disclosure

(confidentiality) or modification (integrity) of sensitive data
to an unauthorized party and ensure that data are accessible
(availability) [24]. These requirements can be enforced by

81

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

assuring only authorized access to the system and its resources.
Commonly, this process is referred to as access control and there
exist multiple well-established access control mechanisms. For
example, in Discretionary Access Control (DAC) mechanism,
the access is defined based on the user’s identity. This results
in access rules that are specified specifically for this identity,
e.g., in the form of an access control matrix [27]. Another
well-known access control mechanism is called Role-Based
Access Control (RBAC) where access is granted or denied
based on the user roles and access rules defined for these roles.

One disadvantage of the aforementioned access control
mechanisms is that they commonly rely on some centralized
trusted authority, making it difficult to implement them in large
scale and open systems [11]. The idea of CAC is based on
well-known cryptographic mechanisms and regulates access
permissions based on the possession of encryption keys. In
CAC, the stored data are encrypted and can only be accessed
by those users who have the corresponding keys. One positive
advantage of this approach is that the data owner can grant
keys to other involved parties of his choice using established
key distribution mechanisms, thus enforcing the access control
without relying on the trusted third party.

III. MOTIVATIONAL SCENARIO

Developing distributed cloud applications and analytics
applications in the context of Industry 4.0 typically requires
combining numerous heterogeneous software components [28],
[29]. Commonly, this process implies a collaboration among
experts from various domains, such as data scientists, infras-
tructure integrators, and application providers. Furthermore,
resulting applications are often required to be deployable on
demand and, thus, are expected to be in the form of deployment
models that allow automating application provisioning [5], [30].

An example of a collaborative cloud application develop-
ment depicted in Figure 1 involves four participants responsible
for distinct parts of the application. When joined together, all
developed parts of the application, e.g., software components,
datasets, and connectivity information, comprise a complete and
provisioning-ready deployment model. In this scenario, the main
beneficiary who orders the application from a set of partners
and has exclusive rights on the resulting deployment model
is called the Application Owner. The Infrastructure Modeler
is responsible for integrating different components, such as
analytics runtime environments, databases, or application
servers. Moreover, two additional co-modelers are involved
in the development process, namely a Data Scientist and a
Dataset Provider. The former develops a certain proprietary
algorithm, whereas the latter provides a private dataset, e.g.,
comprised of sensor measurements obtained from a combination
of various cyber-physical systems used in production processes.

While the Application Owner has full rights on the resulting
deployment model, other participants might be subject to
security restrictions. For example, access to the dataset provided
by the Dataset Provider might need to be restricted to some of
the parties. Similarly, the Data Scientist might want to specify
security requirements on the provided algorithm. Since the final
infrastructure must include all corresponding sub-parts that were
provided directly or indirectly by participants, the Infrastructure
Modeler is responsible for preparation and shipping of the
finalized deployment model to the Application Owner who is
then able to create new instances of the application on demand.

Application
Owner

Dataset
Provider

1

Data
Scientist

Infrastructure
Modeler

Complete
Deployment

Model

Dataset Algorithm

Infrastructure Policies/Metadata

2

3

4

Figure 1. A collaborative application development scenario.

Generally, collaborative processes from various fields share
some common characteristics. For instance, according to Wang
et al. [31] such issues as (i) dynamically changing sets of
participants, (ii) the lack of centralization, (iii) intellectual
property and trust management issues, and (iv) heterogeneity
of exchanged data are important in collaborative development
of computer-aided design models. Likewise, the lack of
knowledge about all participants involved in collaborative
cloud application development makes it difficult to establish a
centralized interaction among them. Possible reasons include
outsourcing of development tasks and introduction of additional
participants due to rearrangements in organizational structures.
Since no strict centralization is possible, communication with
known participants happens in a peer-to-peer manner. Another
important aspect of collaborative cloud application development
is its iterative nature. Since exchanged deployment models
might be impartial or require several rounds of refinement, a
potentially complicated sequence of exchange steps is possible
for obtaining a final result. Therefore, deployment models need
to be exchanged in collaborations in a way that simplifies the
overall process and enforces potential security requirements.

A deployment model, generally, can be exchanged either in
a self-contained form or on a per-participant basis. In the former
case, the deployment model is self-contained and its content
is the same for all participants, whereas in the latter case its
content is fragmented according to some rules separately for
each participant. Sometimes, however, exchanging deployment
models on a per-participant basis interferes with the actual goals
of the collaboration. For example, in the exchange sequence
shown in Figure 1 the dataset is firstly passed directly to the
Application Owner by the Dataset Provider. For the integration
of the dataset into the final model, the Infrastructure Modeler
needs to model the required infrastructure, e.g., a Database
Management System (DBMS) and related tooling. As only
the Application Owner has full rights on all parts of the
application, the provided dataset has to be protected from
unauthorized access. Intellectual property issues become even
more complex in highly-dynamic scenarios when multiple

82

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

parties continuously exchange partially-completed deployment
models. Unfortunately, encrypting an entire deployment model
does not solve the problem since models might be intended
to remain partially-accessible by parties with limited access
rights. Apart from confidentiality problems, the authenticity
and integrity of passed deployment models and their parts
might be subject to verification requirements. For instance, the
Application Owner might need to check if an algorithm was
actually provided by the Data Scientist and no changes were
made by other parties. In such case, signing the hash value of an
entire deployment model is not suitable as integrity of individual
model’s parts have to be verified. Hence, it should be possible
to verify distinct parts of deployment models independently.

The aforementioned scenario highlights several important
issues in collaborative development of deployment models,
which need to be solved, namely (i) confidentiality, authenticity,
and integrity requirements of each involved participant have to
be reflected in the model, (ii) various levels of granularity for
these requirements need to be considered, i.e., from full models
to their separate parts, and (iii) a method to enforce modeled
requirements in a peer-to-peer model exchange is needed.

IV. MODELING AND ENFORCEMENT OF SECURITY
REQUIREMENTS

Intellectual property in collaborations has to be protected
from both, external and internal adversaries with respect to
their relation to the process. The former describes any attacker
from outside of the collaboration, i.e., who is not participating
and is not reflected in any kind of agreements, e.g., Service
Level Agreements (SLAs). Conversely, the latter refers to a
dishonest party involved in the process. We focus on internal
adversaries and data protection issues involving known parties.

This section presents an approach to ensure the fulfillment
of security requirements in the collaborative development
of deployment models. Our approach relies on the well-
established concept of representing non-functional requirements
via policies [32], [33], [34], [35]. The semantics of security
requirements is analyzed to derive a set of action and grouping
policies. The former type represents cryptographic operations
allowing to enforce confidentiality and integrity requirements,
inspired by the idea of policy-based cryptography [10]. The
latter type simplifies grouping parts of models that are subjects
to action policies. Both policy types are data-centric and
attachment happens with respect to a certain entity or a group
of entities in the manner of sticky policies [25] to preserve the
self-containment property of deployment models. The access
control enforcement is inspired by the idea of CAC [11].

A. Assumptions
To focus on internal adversaries, we assume that participants

establish bidirectional secure communication channels for data
exchange and that the modeling environment of every involved
participant is secure. By modeling environment we mean any
software that simplifies the process of deployment modeling,
e.g., by providing functionalities like loading (import) and
packaging (export) of deployment models of different formats
or performing various kinds of model validation. We employ
an “honest but curious” [36], [37], [38] adversary model in
which adversaries are interested in reading the data, but avoid
modifications to remain undetected. Despite the absence of
modifications made by adversaries, authenticity and integrity

requirements still need to be modeled and enforced. For
instance, participants might want to track changes or verify the
origin of some specific part in the model.

When describing how data encryption can be modeled,
we assume that no double encryption is needed for distinct
parts of deployment models. We do not distinguish between
read and write rights when discussing access control based
on cryptographic key possession. Therefore, a participant with
the required key is assumed to have full access rights on
the corresponding entity. For efficiency reasons, we adopt
symmetric encryption for ensuring the confidentiality of data.

B. Security Policies in Collaborative Deployment Models

An assumption that data is exchanged in a secure manner
among the participants does not guarantee that all involved
parties can be trusted. Therefore, security requirements are
important even under the secure communication channels as-
sumption. Security requirements we focus on are: (i) protection
of data confidentiality in deployment models, and (ii) verifica-
tion of data integrity and authenticity of deployment models.
On the conceptual level, two distinct types of policies, namely
encryption policy and signing policy, can be distinguished. The
former is aimed to solve the confidentiality problem, whereas
the latter targets integrity-related requirements. However, having
a completely encrypted deployment model does not solve the
confidentiality problem, since a party with limited rights will not
be able to access the parts of the deployment model that were
intended to remain accessible. A similar problem might arise
for a signature of the complete packaged deployment model,
e.g., in a form of an archive, since it will not be possible to
check what exactly was changed unless all files are also signed
separately as a part of the process. More specifically, if only
the hash of an entire deployment model was signed, there will
be no way to distinguish, which specific part of the model
is invalid. Therefore, we need to model security policies on
the level of atomic entities in deployment models to support
collaborations similar to the scenario described in Section III.

Naturally, if only parts of deployment models are subject
to confidentiality requirements, enforcement of encryption and
signing policies must affect only respective entities. In our
approach, an encryption policy attached to a certain entity
of the deployment model signals that it has to be encrypted.
In a similar manner, if a certain entity of the deployment
model needs to be signed, a corresponding signing policy
needs to be linked with it. In both cases, policies represent
actual keys that are going to be used for encryption or signing.
Since not all collaborations can rely on a centralized way to
manage policies, the deployment model has to be transferred
together with corresponding policies attached to its entities.
The keys bound to policies, however, cannot be embedded, as
deployment models will no longer remain suitable for sharing
with all possible participants in a self-contained fashion. In
such cases, either participants with proper access control rights
can receive such models, or the models have to be split on a
per-participant basis. Since not all scenarios favor participant-
wise model splitting, a policy needs to be linked with a specific
key in a decoupled manner to preserve self-containment of
a deployment model. As a side effect of decoupling keys
from policies, existing key distribution channels can be utilized
independently from deployment model exchange channels.

83

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For linking policies with particular keys, we need to
maintain unique identifiers for every key involved in the
collaboration. Since not all participants know each other, one
simple solution is to compute a digest of the key and use it
as an identifier or additionally combine it with several other
parameters such as algorithm details, participant identifier, etc.
Another option is to use identifiers, which include some partner-
specific parts so that policies can be easily identified. Several
important points have to be mentioned here. Linking the policy
only with the unique key identifier is not enough for decryption
since the modeler needs to know the algorithm details to
perform decryption. Such information can be provided either
as properties of a policy itself or be a part of the key exchange.
Additionally, specifically for encryption there is no obvious
way to distinguish if the policy was already applied and the
data is in encrypted state when a deployment model is received.
Although the data format after encryption will not be identical
to the original entity’s format, checking this difference for every
modeled entity is not efficient. For this reason, a policy needs
to have an attribute stating that it was applied. Due to the usage
of symmetric encryption, generating a respective decryption
policy is unnecessary as it is identical to the encryption policy.

Conversely, the verification of signing policies differs from
the encryption process since private keys are used for signing
and certificate chains of one or more certificates containing the
public key and identity information are used for verification.
As a result, there are two options: to follow the encryption
approach and decouple certificates from policies, or, to embed
certificates into policies to simplify the verification process.
While certificates are meant for distribution, there is one caveat
in the embedding of certificates approach, however. Certificates
commonly have a validity period and verification must be able
to deal with the cases when certificates embedded into policies
are no longer valid. Since such verification is more an issue of
a proper tooling, the certificates are embedded into policies.

Unlike file artifacts, e.g., software components or datasets,
which are referenced from deployment models and supplied
alongside with them, some sensitive information, e.g., model’s
properties, might be directly embedded into models. For
instance, if user credentials for a third-party service have
to be passed from one modeler to another and no other
participant is allowed to see them, then these properties must be
encrypted. Sometimes such properties also need to be verified,
e.g., the Service Owner might want to check if the endpoint
information for a third-party service was actually modeled by
the Infrastructure Modeler. Therefore, an additional caveat
one has to consider is that not only distinct artifacts, but
also separate parts of artifacts might require encryption or
signing. The corresponding artifact in this case has to store
these properties with the modeled security requirements being
enforced, e.g., encrypted or signed.

Hence, we need two more policy types: encryption grouping
policy and signing grouping policy, which contain lists of
properties within an artifact that have to be encrypted or signed,
respectively. From the conceptual point of view, the discussed
policies can be classified as action and grouping policies. The
former includes policies representing an action, i.e., encryption
or signing, whereas the latter identifies groups of entities that
require the action. As a result, the corresponding grouping
policies are linked with the desired action policies, i.e., with
actual keys that will be applied to selected properties.

Algorithms Data

Structure Policies

Deployment
model with
protected

data

Signature of
entire deployment

model

Figure 2. A conceptual model of the signed deployment model.

C. Integrity and Self-Containment of Deployment Models
When security policies are modeled and enforced, the

resulting deployment model contains a combination of en-
crypted and signed artifacts and properties. Integrity check
at this point allows to verify the state of modifications and
authenticity of entities modeled by other participants. However,
verification of the entire deployment model’s integrity including
modeled security policies and other attached metadata requires
an additional signature on the level of deployment model.

For this purpose we adopt a technique analogous to
signing of Java archives (JARs) [39]. Essentially, a packaged
deployment model is some sort of an archive containing grouped
artifacts. It is then possible to assume the presence of a meta
file similar to manifest in JARs, which provides the list of all
contents plus some additional information. In situations when
such a manifest file does not exist, it can easily be generated by
traversing the contents of a corresponding deployment model.

As both, integrity of the model’s parts that are targeted by
security requirements and integrity of the entire deployment
model have to be considered, an enhanced packaging format is
needed. The enhanced structure of a deployment model consists
of its original content as well as the content’s signature files. The
latter is achieved via a combination of: (i) a manifest file with
digests for every file, (ii) a signature file consisting of digests
for every digest given in the manifest file plus the digest of the
manifest file itself, and (iii) a signature block file consisting
of a signature generated by the modeler and the certificate
details. The resulting conceptual model is shown in Figure 2.
To make a signed deployment model distinguishable from
regular deployment models, the signature has to be generated
in a standardized fashion, e.g., it can be stored in a predefined
folder inside the package or entire deployment models can be
archived along with the generated signature information.

One important issue is that, technically, there is no fixed
concept of a deployment model in collaboration. Since parts of
cloud applications might be exchanged separately or merged
together, the definition of the exchanged deployment model
is changing throughout the process. Thus, it is mandatory to
preserve the self-containment of modeled security requirements
on the level of atomic entities. Firstly, security policies are
always included into the deployment model since they are
tightly-coupled with target entities. With respect to actual

84

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Modeling Environment

1 2 3 4
Import/Create
Deployment

Model

Request and
Import Keys

Model
Security

Requirements

Export
Deployment

Model

optional

Figure 3. Actions of a collaborating participant.

entities, the problem is trivial in case of encryption since
locations of files or properties remain unchanged and only their
state changes. In other words, whether the encrypted entity is
exported from or imported into the modeling environment, the
information about encryption is always available. Conversely,
signatures of modeled entities have to be created as separate
files since embedding them might not always work. For instance,
embedding a signature into the application’s source code might
result in an incorrect behavior at runtime. This leads to a
requirement of generating and storing signatures in a self-
contained manner when signing policies enforcement happens.

In contrast, the signature of an entire deployment model
reflects a snapshot of its state at a particular point in time,
e.g., when the deployment model was packaged by a certain
participant. Semantically, this signature does not mean that all
content of the deployment model belongs to a signing party,
but only captures the state of the deployment model at export
time. In our approach, we use this external signature only
for integrity verification at import time, but do not explicitly
store it if verification was successful. However, if stored in
a centralized or decentralized manner, this type of signature
might form an expressive log of all export states, which can
later be utilized for audit and compliance checking purposes.

D. Enforcement of Security Policies
As participants of a collaborative development process might

not know all involved parties, every side has to maintain a set
of permissions for known participants, e.g., in a form similar
to the access matrix model [24]. In our case, permissions have
to reflect, which policies are available to which participant
and are, therefore, used for export and distribution of keys.
One caveat is that in long sequences of steps there will be
cases when a party does not know which rights with respect
to the specific key have to be defined for some of the involved
parties. The rules in such collaborations rely on various types
of agreements, such as SLAs, which define the lists of trusted
parties. Hence, we handle only explicitly mentioned access
rights defined by participants and forbid transitive trust [40]
propagation.

To enforce security policies in collaborations, participants
have to follow a set of actions shown in Figure 3. A new or ex-
isting deployment model can be imported into the participant’s
modeling environment. Signatures are verified for an existing
deployment model before import. An entire model’s signature
is verified first and if verification is successful, all signed
entities are verified next. If certificate chains are embedded, all
certificates must be valid. The import is aborted in case some
signatures or certificates are invalid. A participant might request

Modeling
Environment

C

Modeling
Environment

A

Modeling
Environment

D

Modeling
Environment

B

Peer-to-Peer Key
Distribution Channel

Peer-to-Peer Model
Exchange Channel

Policy
Enforcement

Point

Figure 4. Model and key exchange in collaborations.

keys needed for encrypted entities and if access is granted by the
key owner, keys can be imported into the modeling environment
and used for decryption. The policy enforcement at export time
happens transparently for participants as entities always get
encrypted if the respective keys are present. Since decryption
is only possible when the key is available, the encryption at
export is ensured by the modeling environment.

Afterwards, participants can model additional security re-
quirements and export a modified deployment model. One issue
related to signatures and mutual modifications of the same entity
is whether to keep the obsolete signature information. Since the
original content of the entity has to be modified, we consider it
being a new entity, which can be modeled separately eliminating
the problem of handling several signatures altogether. At export
time, all modeled requirements are enforced with respect to the
keys available in the modeling environment. The decrypted data
get encrypted again, in case the corresponding key is present and
the entity was decrypted previously. Only signatures modeled
by the participant who performs the export are generated. All
entities that were signed by others remain in a self-contained
state after import and thus are exported in a regular fashion.
One important point here is that all enforced signing policies
have to be verified before export. In case a violation is found,
the export can no longer proceed in the regular way.

Generated signatures must be linked with corresponding
modeling constructs. For instance, for every signed file the
corresponding signature files must be added as additional
linked references, e.g., following a predefined name format
“filename#sigtype.sig”. Signing properties requires a slightly
different approach. Since properties are parts of artifacts and are
subject to certain policies, their signatures have to be grouped
with respect to the policy. This results in generation of the
combined signature file and linking it with the artifact that
holds the signed properties. Signature of this file is, again,
generated similar to JAR files signing, but in this case the
generated artifact contains the details about signed properties.

Figure 4 shows communication infrastructure for col-
laboration described in Section III. As key distribution is
decoupled from the model exchange, two peer-to-peer channel
types are distinguished. Generally, not all participants need to
communicate with each other. For example, in an outsourcing
scenario, a contractor might grant rights to the ordering party

85

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

based on the contract rules and does not need to communicate
with others. Therefore, access permissions of the ordering
party have to also reflect access rules for the part of the
deployment model provided by the contractor. The access
to encrypted data is inquired by requesting a key using the
corresponding policy identifier. Without having a centralized
Policy Enforcement Point (PEP) [41], [42], every participant’s
modeling environment acts as a separate PEP, which regu-
lates access control permissions based on inter-participant
agreements. Participants are responsible for maintaining proper
access control permissions including transitive cases.

V. STANDARDS-BASED SECURE COLLABORATIVE
DEVELOPMENT OF DEPLOYMENT MODELS

In this section we discuss the specifics of collaborative
development of deployment models using TOSCA. We first
start with a basic overview of TOSCA concepts and proceed
with an analysis of which modeling constructs in TOSCA
might require protection. As a next step, we describe how our
concepts can be applied to this cloud standard and present
a stepwise example demonstrating how collaborative TOSCA
development process might look like.

A. TOSCA Application Model

TOSCA [12] is a cloud application modeling standard
that allows to automate the deployment and management of
applications. The structure of a TOSCA application is charac-
terized by descriptions of its components with corresponding
connectivity information, modeled as a directed, attributed, and
not necessarily connected graph. In TOSCA terminology the
entire application model is called a Service Template, whereas
the connectivity information is a subpart of it and referred
to as a Topology Template. The management information in
TOSCA terms is called Management Plans. This information
is necessary for execution and management of applications
throughout their lifecycle and can be represented, e.g., as
BPEL [20] or BPMN [21] models. A simplified TOSCA
topology of a Python cloud service [5] is shown in Figure 5. It
consists of several nodes representing software components that
are connected with directed edges describing the relationships
among them.

TOSCA differentiates between entity types and entity
templates, where the term entity might refer to distinct TOSCA
entities such as nodes, relationships, artifacts, or policies. Such
separation eases reusing modeled TOSCA entities, since the
semantics is always defined in the corresponding type. For
instance, the node representing a vSphere hypervisor in Figure 5
is a template of a certain type, or, more specifically, a certain
Node Type. The term “vSphere” written in braces in Figure 5
is the name of this node type. It describes a generic setup
of a vSphere virtualization platform and defines all required
configuration properties. Correspondingly, the term “vSphere-
Hypervisor” written without braces represents a particular
instance of the “vSphere” Node Type and in TOSCA terms is
referred to as a Node Template. Apart from defining common
properties, any Node Type might provide definitions of interface
operations required for managing its instances. For example, a
virtual machine node might need to implement management
operations such as “start”, “stop”, and “restart” that allow
controlling the state of the virtual machine. Implementations

hostedOn dependsOn

Python-Service
(PythonApp)

DA: Service.py

[…]

Python-Interpreter
(Python_2.7)

[…]

Flink-Framework
(Flink_1.0.3)

Port = 80
[…]

Ubuntu-OS
(Ubuntu16.04VM)

RAM = 8GB
[…]

vSphere-Hypervisor
(vSphere)

IP = 192.168.1.13
User = ‘admin’
Pwd = $ecret

[…]

IA: ManageVM.war

MySQL-DB
(Database)

[…]
DBName = DB145

DBUser = ***
DBPwd = ***

connectsTo

MySQL-DBMS
(MySQLDBMS5.7)

[…]

Ubuntu-OS
(Ubuntu16.04VM)

RAM = 8GB
[…]

IA: ManageVM.war

DA: Dataset.sql

Figure 5. A simplified TOSCA model of a cloud application.

of the operations can be provided in various ways, e.g., in a
form of Java web applications or shell scripts.

For deployment and management of the cloud service, all
required artifacts have to be modeled, e.g., the application
files and implementations of management interface operations.
The artifact entity in TOSCA can be of two types, namely
deployment artifacts (DA) and implementation artifacts (IA).
The former defines an executable required for materialization of
a node instance. The latter is a representation of an executable,
which implements a certain interface management operation.

One of the main goals of deployment models is to make
cloud applications portable and reusable. For this reason
TOSCA introduces a self-contained packaging format called
Cloud Service Archive (CSAR). Essentially, it is an archive
containing all application-related data necessary for automated
deployment and management, including, e.g., the model defi-
nitions, artifact files, policies and other metadata. In addition,
it contains a TOSCA.meta file, which describes files in the
archive similarly to a manifest file in JARs.

B. Security Requirements for TOSCA Entities
Several TOSCA modeling constructs can be associated

with confidential information or be subject to integrity checks.
Modeled application files, i.e., artifacts in TOSCA terms,
are an obvious example. All artifacts are always modeled
as Artifact Templates of desired Artifact Types in TOSCA,
e.g., a Java web application artifact is a template of the Web
application Archive (WAR) Artifact Type. While Artifact Types
are generic entities, which do not store any sensitive data,
Artifact Templates include actual application files. However,
in the TOSCA specification there is no standard way to
describe security requirements using policies for Artifact
Templates. To provide such modeling capabilities, an extension
to TOSCA is needed. Since properties are defined at the level
of Types in TOSCA, e.g., Node Types, it is useful to have a
mechanism allowing to enforce security requirements at this
level. Semantically, this would mean that encryption or signing
policies have to be applied to all Node Templates of a certain
Node Type. TOSCA does not offer a standard way of attaching
policies to specific properties, thus a proper way to enforce
protection of properties at the level of Node Types is needed
as well. In both cases, some form of extension to TOSCA

86

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is needed. In the next subsection, we demonstrate how such
extensions can be made without introducing non-compliant
changes to the standard.

C. TOSCA Policy Extensions
Due to the highly-extensible nature of TOSCA, we introduce

several extension points to support the attachment of security
policies to the aforementioned TOSCA entities. All policies
are defined in a dedicated extension element, which belongs
to a chosen entity. A simplified XML snippet in Figure 6
shows extension policies for Artifact Templates and Node
Types from Figure 5. One important point here is to use a
separate namespace for newly-introduced extensible elements,
but for the sake of brevity we omit namespaces in demonstrated
XML snippets. For Artifact Templates, a security policy is
attached in a separate element directly to the Artifact Template.
Essentially, an Artifact Template is a container grouping related
files in a form of file references. We treat Artifact Templates
as atomic entities meaning that policies are applied to all
referenced files, which makes the semantics of modeled security
requirements clearer. In cases when some referenced files need
to be distributed without enforcement of policies, they can be
modeled as separate Artifact Templates.

A combination of two policy types has to be defined in
a dedicated extension element for encryption and signing of
properties. A modeler has to specify a list of property names that
must be encrypted or signed as well as to attach a corresponding
action policy. These extensions allow participants to model
desired security requirements for parts of the CSAR.

The introduced extensions, however, do not offer modeling
capabilities for signing the entire CSAR. These two notions of
integrity might contradict with each other, since a party having
parts of the cloud service belonging to other parties is required
to sign them as well. Hence, we separate the integrity check
for a specific part of the model from an integrity check of the
entire CSAR leaving the latter outside of TOSCA modeling.

Essentially, Policy Types and Templates representing action
and grouping policies do not require significant modeling
efforts. The Encryption Policy Type defines a key’s hash
value, an algorithm, and a key’s size as its properties. In the
corresponding Policy Template, these properties are populated
using the respective key’s data. Similarly, the Signing Policy
Type has public key’s hash and related certificate chain as its
properties, filled in using the given key. Certificate chain can be
embedded, e.g., in a form of a Privacy Enhanced Mail (PEM)
encoded string in case of X509 [43] certificates. The only
property defined in grouping policies is a space-separated list
of property names. This Policy Type is abstract and is not
directly bound to any specific entity. Therefore, the tooling
is responsible for verification of the consistency of specified
property names in attached policies.

D. Ensuring the Self-Containement Property of CSARs
Enforcement of modeled encryption requirements does not

produce additional entities, but only modifies the existing
ones. However, in case of enforcing signing requirements, new
files are generated, i.e., the corresponding signature files for
properties or files of Artifact Templates. These generated files
have to be associated with the deployment model to ensure that
the resulting CSAR contains all files and the deployment model
represents these newly-generated files properly. Preservation

<ArtifactTemplate name=“Python-Service" ...>
<Policies>
<Policy applied="false" name="encryption"

policyType="csar:EncryptionPolicyType"
policyRef="csar1:c0e9a0e7".../>

</Policies>
<ArtifactReferences>
<ArtifactReference ref=".../Service.py"/>

</ArtifactReferences>
</ArtifactTemplate>
...
<NodeType name="vSphere" ...>
<PropertiesDefinition>...</PropertiesDefinition>
<Policies>
<Policy ... name="signing" .../>
<Policy ... name="signedprops" .../>

</Policies>
</NodeType>

Figure 6. Example of TOSCA extension policies specification in XML.

of a CSAR’s self-containment property after enforcement of
modeled policies requires embedding the signature information
for artifacts and properties into the corresponding entities. More
specifically, when a signature for an artifact is created, it has
to be placed along with other files referenced in the artifact.
For the signature of properties, one artifact containing all
properties’ signatures needs to be generated and attached to
the corresponding Node Template. Following this approach,
modeled entities remain self-contained even in case they are
being reused in other Service Templates.

E. Step by Step Collaborative Development Example in TOSCA

For a stepwise demonstration, we consider that the appli-
cation topology shown in Figure 5 is being collaboratively
developed following the same scenario and exchange sequence
among the four participants as depicted in Figure 1. This
example is not meant to be a thorough guideline for a given
collaboration scenario, but rather it aims to demonstrate how
certain security requirements can be modeled and enforced
throughout the collective TOSCA-based model development.

As discussed in Section III, the four different participants
involved in this scenario are: (i) an Application Owner who
orders an application, (ii) a Dataset Provider who provides a
private dataset, (iii) a Data Scientist who provides a proprietary
algorithm, (iv) and an Infrastructure Modeler who defines the
infrastructure. The output expected from this collaboration is a
complete application topology, which is depicted in Figure 5.
In the motivational scenario, essentially both the dataset
provider and the data scientist are only responsible for single
nodes in the topology that represent a private dataset and a
proprietary algorithm, respectively. The participant-specific and
infrastructure-specific nodes are combined by the infrastructure
modeler in a complete and deployable application topology,
which can afterwards be used by the application owner.

Prior to the beginning of the exchange sequence shown
in Figure 1, an application deployment model does not exist
yet, hence, one of the participants needs to instantiate it. Since
the application owner is the main driver for this collaboration,
we assume that the deployment model is first instantiated by
the application owner. For the sake of brevity, we omit the
discussion on how an empty deployment model is instantiated.

87

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MySQL-DB
(Database)

[…]
DBName =
DBUser =
DBPwd =

DA: Dataset.sql

Python-Service
(PythonApp)

DA: Service.py

[…]

Figure 7. Application topology consisting of two decoupled Node Templates
that represent the dataset and algorithm with encryption requirements.

In the first part of this collaboration, the dataset provider
enriches the deployment model with the dataset-specific in-
formation and sends it back to the application owner, who
then passes this part of the model to the infrastructure modeler.
Since the dataset is private and must only be accessed by the
application owner, the dataset provider must provide it in a
secured form. Thus, to protect the dataset from unauthorized
access, it must be encrypted. In addition, the dataset provider
might want to sign the dataset to ease its integrity verification.
The MySQL-DB Node Template shown in Figure 5 represents a
MySQL database node that is hosted on the MySQL Database
Management System (DBMS). In our example, the private
dataset is provided as a SQL dump file and is attached as a
DA to the node. Note that apart from the DA, the MySQL
database node has properties such as a database name or access
credentials, some of which might be set by different participants.
For instance, a name for the database might be present in the
dump file, therefore, the dataset provider might specify this
property and, optionally, decide to protect it. We assume that
only the artifact corresponding to the dataset has to be protected
for the MySQL-DB node as depicted in Figure 7.

In the second part of collaboration, the data scientist
models and enforces the encryption requirements for the
Deployment Artifact of the Node Template, which represents
the algorithm, and passes it to the infrastructure modeler. As the
application owner is the only authorized user of the algorithm,
the encryption requirements are similar to the ones of the
dataset. At this point, the application topology consists of two
decoupled Node Templates, namely MySQL-DB and Python-
Service as shown in Figure 7. Since both steps are about
enforcing encryption requirements for corresponding Deploy-
ment Artifacts, the process of modeling and enforcing these
requirements is similar. A participant, i.e., the dataset provider
or the data scientist, needs to: (i) create a TOSCA Policy
Template of type “Encryption Policy”, (ii) attach a TOSCA
Policy, i.e., an instance of the corresponding Policy Template,
to the corresponding Artifact Template, (iii) optionally include
other information, and (iv) export the resulting CSAR and
pass it to the next participant. As encryption Policy Templates
are uniquely associated with symmetric keys, the respective
participants must generate keys first and afterwards generate
corresponding Policy Templates. Moreover, the rules for sharing
keys need to be stored and maintained, e.g., in the form of
access control lists. In our example, though, the key sharing
rules are trivial, as only the application owner is able to access
the private contents of the application’s topology. Simplified
examples of Encryption Policy Type and Template are shown
in Figure 8. While the Encryption Policy Type only specifies
the schema for properties, e.g., a property keyHash is of type

<PolicyType name="EncryptionPolicyType" ...>
<PropertiesDefinition>
<properties>
<key>keyHash</key>
<type>xsd:string</type>

</properties>
<properties>
<key>algorithm</key>
<type>xsd:string</type>

</properties>
...

</PropertiesDefinition>
</PolicyType>

<PolicyTemplate name="4def0020237351e59...“
type="EncryptionPolicyType"...>

<Properties>
<keyHash>4def0020237351e59...</keyHash>
<algorithm>AES</algorithm>
...

</Properties>
</PolicyTemplate>

Figure 8. Simplified example of TOSCA Encryption Policy Type and
Template specification in XML.

<PolicyType name="SignedPropertiesPolicyType“ ...>
...
<PropertiesDefinition>
<properties>
<key>propertyNames</key>
<type>xsd:string</type>

</properties>
</PropertiesDefinition>

</PolicyType>

<PolicyTemplate name=“vSphereSignedProperties“
type="SignedPropertiesPolicyType“...>

<Properties>
<propertyNames>IP User Pwd</propertyNames>

</Properties>
</PolicyTemplate>

Figure 9. Example of TOSCA Signing Grouping Policy Type and its Template
specification for vSphere-Hypervisor Node Template’s properties in XML.

xsd:string, the corresponding Policy Template references an
actual key. Therefore, the properties in the Policy Template
shown in Figure 8 contain the details about the key, i.e., its hash
value and the algorithm name. Depending on the algorithm used
and the desired level of details, the number of properties might
be increased, e.g., to include the key size in bits. Moreover,
the attachment of policies to respective Artifact Templates
looks similar to the example shown in Figure 6. The modeled
encryption requirements are enforced at export time, which
results in encryption of the Artifact Template’s files using the
referenced key and changing the value of the corresponding
policy’s applied attribute to true.

In the final part of the collaboration scenario, the in-
frastructure modeler enriches the application topology with
infrastructure-related nodes and sets up all the necessary proper-
ties required for deploying this application in an automated way.
One important point here is that the model can be further refined
in case additional requirements arise afterwards. This means
that any participant might need to add or remove something

88

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hostedOn

dependsOn

Python-Service
(PythonApp)

DA: Service.py

[…]

Python-Interpreter
(Python_2.7)

[…]

Flink-Framework
(Flink_1.0.3)

Port = 80
[…]

Ubuntu-OS
(Ubuntu16.04VM)

RAM = 8GB
[…]

vSphere-Hypervisor
(vSphere)

IP = 192.168.1.13
User = ****
Pwd = ****

[…]IA: ManageVM.war

MySQL-DB
(Database)

[…]
DBName = DB145

DBUser = usr
DBPwd = db1234

connectsTo

MySQL-DBMS
(MySQLDBMS5.7)

[…]

Ubuntu-OS
(Ubuntu16.04VM)

RAM = 8GB
[…]

IA: ManageVM.war

DA: Dataset.sql

DA:
SignedPropsData

Data Scientist

Dataset Provider

Infrastructure Modeler

Signing Policies

Encryption Policies

Figure 10. A complete deployment model with enforced security requirements.

from the model after the original exchange sequence. Therefore,
all sensitive information, such as access credentials or endpoints,
might require to be encrypted and signed by the infrastructure
modeler to allow the application owner to ensure that the
application will be deployed according to the SLAs.

To demonstrate how encryption and signing requirements
can be combined, we assume that the infrastructure modeler
must encrypt and sign the properties for the vSphere-Hypervisor
Node Template, thus, ensuring that the application will be
deployed to the correct location. For instance, the user creden-
tials data must be encrypted and both, user credentials and IP
address information need to be signed. With these requirements,
the resulting set of policies related to the vSphere-Hypervisor
Node Template consists of: (i) encryption policy, (ii) encryption
grouping policy, (iii) signing policy, and (iv) signing grouping
policy. This set of policies, as discussed in Section V-B,
is attached to the vSphere Node Type to guarantee that all
templates of this type will have these requirements enforced.
The attachment of policies happens similar to the example
Node Type policy specification snippet shown in Figure 6. Two
attached policies represent respective keys, namely encryption
and signing policies. The former is linked with a symmetric
key used for encryption, and the latter is linked with a key-
pair. The purpose of grouping policies is to combine sets of
properties targeted for the same action, i.e., encryption or
signing. Figure 9 depicts a simple specification of a signing
grouping Policy Type and the corresponding Policy Template
for grouping the desired properties of vSphere-Hypervisor
Node Template. Chosen property names are listed in the
form of a space-separated list; therefore, the Policy Type
contains only one property of type xsd:string. The Policy
Template instantiates this property with a list of property
names related to the vSphere-Hypervisor Node Template. Note
that separate grouping policies are specified for encryption
and signing requirements to allow distinguishing them and
looking for overlaps. In cases when property lists overlap, the
signing operations need to be performed twice, before and after
encryption. This allows keeping the information about plain

properties’ hash values. This is one technical nuance that can
simplify verification of properties at export time for parties
authorized to access their values, since values can be checked
prior to encryption. After enforcing modeled requirements, the
infrastructure modeler possesses the complete version of the
deployment model, which is now ready to be passed to the
application owner. Figure 10 depicts the complete deployment
model with enforced encryption and signing requirements from
all involved participants. Generated signature files related to
properties are attached to the model to keep it self-contained.
Files that are required to be encrypted keep their original names,
but are not accessible anymore without being decrypted.

VI. PROTOTYPE

In this section we describe the prototypical implementation
of the presented concepts. The prototype is implemented during
the course of SePiA.Pro [44], a project that tackles the issues
of optimizing industrial automation processes in the context
of Industry 4.0. Our prototype is based on the OpenTOSCA
ecosystem, an open source toolchain for development and
execution of TOSCA-compliant cloud applications. The Open-
TOSCA ecosystem consists of such tools as Winery [45],
[46], OpenTOSCA Container [15], and Vinothek [47]. Winery
is a TOSCA-compliant modeling environment that supports
graphical and text-based modeling of deployment models and
offers additional functionalities including, e.g., GUI-based plan
modeling capabilities. OpenTOSCA Container is an execution
environment for TOSCA-based deployment models, which
offers a rich set of functionalities including, e.g., deployment
model execution, and a GUI for managing and monitoring the
application instances that is based on Vinothek concepts.

A. Overview
Winery is the core part for implementation of the presented

concepts, as most of them are coupled with the modeling
process. Winery is a feature-rich modeling environment for
TOSCA-compliant applications. The prototypical implemen-
tation adds extensions to both the backend and frontend of
Winery, does not require further configuration, and can be used

89

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as an integral part of it. It is open source and available via
Github [48]. As discussed in Section IV, in our approach every
modeler is required to use a local Winery instance due to the
absence of a centralized environment. Since keys are used for
the enforcement of policies, Winery is extended to support
key management functionalities. This includes storing, deletion,
and generation of symmetric and asymmetric keys. For key
storage we rely on the usage of Java’s Java Cryptography
Extension KeyStore (JCEKS) for storing all imported keys
together. Assuming that Winery runs in a local and secure
environment of a distinct party, registering keys in it is not
problematic since keys never leave the modeler’s environment.
This approach, however, has to be extended to support multiple-
owner Winery instances. Corresponding policies are generated
based on the selected keys. For key distribution, a partner-
wise specification of access control lists for security policies
is added to Winery. Every participant needs to maintain a list
of partner-specific rules negotiated by means of agreements
in collaborations. Therefore, whenever a key is requested by
some party, the key access rights are defined based on the
local rules in Winery. All functionalities are accessible via the
corresponding REST over HTTP endpoints.

The resulting prototype supports modeling of security
requirements using Winery’s built-in XML editors for the corre-
sponding TOSCA entities. Winery stores the modeled TOSCA
entities in a decoupled manner, which makes a concept of CSAR
important only at export or import time. More specifically, at
import time CSARs are disassembled into distinct entities to
prevent storing duplicates. In a similar fashion, at export time
CSARs are assembled from all the entities that are included
in the chosen Service Template. This results in an issue that
TOSCA meta files are not explicitly stored and are generated
on-the-fly. As described in Section IV, the enforcement of
modeled security policies at export time for selected TOSCA
entities, e.g., Service Templates or Artifact Templates, happens
in case specified keys are present in the system. Signatures for
files in Artifact Templates are generated, and then referenced
as additional files in the same Artifact Templates. If the files of
Artifact Templates are subject to both, encryption and signing
requirements, then the signatures of plain and encrypted files
are attached. This allows verifying the integrity of target files
to any involved participant independently of whether the files
are encrypted or not. Signatures for properties are grouped
as a separate Artifact Template of type “Signature”, which
is attached to the respective Node Template. This way of
referencing newly-generated files ensures the self-containment
property of deployment models. In addition, if policies were
applied, the corresponding attribute is set to signify this fact.
After encryption and signing requirements are enforced, an
external signature of a CSAR is generated using a so-called
master key, which is specified by the modeler for the whole
environment as discussed in Section IV. The corresponding
certificate or chain of certificates for this external signature is
embedded into the CSAR and is used for verification at import
time. The external signature is verified first at import time
and is not stored if verification succeeds, since the CSAR is
decomposed into distinct separately-stored entities. Furthermore,
the import is aborted in case if the integrity check was not
successful. In situations when keys requested by a modeler
were provided, they can be imported and used for decryption
of entities. Finally, only the participant who has an entire set

GUI

Topology
Modeler

Management
UI

TOSCA XML
Editor

REST API

CSAR
Importer

CSAR
Exporter

Security
Primitives

ACL Manager Key Manager

Policy
Enforcer

B
u

si
n

es
s

Lo
gi

c
La

ye
r

W
eb

-b
as

ed
G

U
I

TOSCA Types
& Templates

Artifacts Key Store

File-based Repository N
et

w
o

rk
 &

D
at

a
La

ye
r

P2P Key Exchange
Channel

Figure 11. Architectural overview of the prototypical implementation.

of keys is able to decrypt and deploy the final application.
Afterwards, the deployment and execution in the OpenTOSCA
Container happens in a regular manner, since the CSAR contains
the original deployment model.

To provide readers with a better view, in the following
subsection we discuss an architecture of the prototype and
explain several specific details related to the described concepts.

B. System Architecture
Figure 11 shows an architectural overview of Winery

focusing on the components relevant to the prototype. At the
topmost layer, Winery provides a Web-based graphical user
interface (GUI) that consists of multiple sub-modules among
which the following are of interest to the prototype: (i) The
Topology Modeler is a sub-module that allows users to visually
design various nodes and their interconnections as parts of
a desired TOSCA deployment model. Using this component
one is able to instantiate Node Types into Node Templates
and populate their properties appropriately. Furthermore, this
sub-module allows attaching various artifacts to these nodes
and form a topology out of them using suitable Relationship
Templates, all with simple UI operations such as Drag and
Drop (c.f. Section V-A). On the other hand, (ii) the TOSCA
XML Editor allows manually altering declarations of various
TOSCA constructs. This editor is used, for example, to define
the necessary Encryption and Signing Policy Types and attach
instances of them to Node Types and Artifact Templates
(c.f Section V-C). Finally, (iii) the Management UI allows
users, among other things, to request the export of CSARs,
which would enforce the corresponding policies, and the import
of CSARs, which would trigger the process of verifying signed
entities against the embedded certificate chains.

The GUI is merely an interface for the actual operations
residing in the Winery backend, which are accessible via a
REST API. In Figure 11, these operations are grouped into the
Business Logic Layer, which contains an extensive set of sub-
modules: (i) The CSAR Exporter is responsible for assembling
the resulting portable CSAR out of the corresponding TOSCA
templates and the artifacts attached to them. It is also respon-
sible for enforcing the policies attached to these constructs.
To this end, the CSAR Exporter utilizes another sub-module,
namely (ii) the Policy Enforcer, which applies policies by

90

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CSARExporter FileBasedRepository PolicyEnforcer

getFiles(serviceTemplateId)

files

enforcePolicies(files)

[encryption policy attached]
enforceEncPolicy(entity)

[signing policy attached]
enforceSigPolicy(entity)

allFiles=
(files, encrypted_files, signature_files)

metaFile =
generateMetaFile(allFiles)

externalSig =
generateExternalSig(metaFile)

csar = package
(allFiles, metaFile, externalSig)

loop [foreach entity with attached policy]

Figure 12. A simplified process of securely exporting a CSAR.

encrypting the properties and artifacts that have an Encryption
Policy attached, and generating a signature for them if a Signing
Policy is attached. On the other hand, the provisioning of
cryptographic keys used for encryption and signing is done
by (iii) the Key Manager. Moreover, (iv) the CSAR Importer
is responsible for disassembling a CSAR file and importing
its constituent components into the local repository. It is also
responsible for verifying the integrity and authenticity of the
imported CSAR by comparing the contents of the signed entities
with the associated signatures and only performing the import
if no violations are detected. As a supporter for the other
components, (v) the Security Primitives sub-module utilizes the
Bouncy Castle Crypto APIs [49] to provide various necessary
cryptographic operations, such as symmetric and asymmetric
encryption, key and certificate generation and content signing
and verification. Finally, as mentioned earlier, (vi) the Access
Control List (ACL) Manager specifies the rules that govern the
relationships the local participant has with the other participants.
This is necessary to determine who is authorized to obtain secret
keys used to encrypt sensitive parts of the deployment model.

As discussed earlier, the actual exchange of keys happens
at a lower level using a secure P2P Channel, which is not
part of the actual prototype. Besides key exchange, the bottom
layer of Figure 11 is responsible for the permanent storage
of the modeled and imported TOSCA entities, as well as the
associated implementation and deployment artifacts. The JCE
KeyStore also resides at this layer. Storage of these objects
happens using a File-based Repository.

In the following subsection, we see how the introduced
sub-modules interact together to achieve the operations of
exporting and importing a CSAR that utilizes the described
TOSCA Policy Extension (c.f. Section V-C).

(1) TOSCA.meta

TOSCA-Meta-Version: 1.0
CSAR-Version: 1.0
Created-By: Winery 2.0.0-SNAPSHOT
Entry-Definitions: Definitions/servicetemplates__myST.tosca

Name: Definitions/artifacttemplates__Flink_Simple_IA.tosca
Content-Type: application/vnd.oasis.tosca.definitions
SHA-256: 23de581ea….6913cf18

(2) TOSCA.sf

Manifest-Signature-Version: 1.0
Created-By: Winery 2.0.0-SNAPSHOT
SHA-256: b02b67a33….efb2cfb9

Name: Definitions/artifacttemplates__Flink_Simple_IA.tosca
SHA-256: 9386d4e2b….865b538e

SHA256

SHA256

SHA256
With
RSA

Private
Key

Public
Key

Participant’s Master
Signing Key-Pair

(3) TOSCA.sig (4) TOSCA.crt

embed

Figure 13. The process of generating the external CSAR signature files at
export time.

C. Secure Export of CSARs

As we have discussed earlier, the enforcement of the
introduced policies happens during the creation of a CSAR, i.e.,
the CSAR export operation. Moreover, during this operation
the CSAR’s external signature is also generated. Figure 12
shows a simplified UML sequence diagram that explains how
involved modules from the introduced system architecture
interact together in order to perform the export operation: after
receiving a request from the Management UI (not shown in
this figure) the CSAR Exporter starts the process via traversing
the TOSCA Topology specified by the Service Template and
requesting pointers to the corresponding TOSCA definition
files, as well as the files associated with them, from the File-
based Repository. Afterwards, a request is sent to the Policy
Enforcer to perform the enforcement. It does so by searching
the set of TOSCA definition files for Node Types or Artifact
Templates with attached policies, then encryption and signing
policies are enforced as discussed earlier. To this end, the Policy
Enforcer utilizes the functionalities provided by the Security
Primitives sub-module (not shown in the figure). The result
of policy enforcement is a changed set of files that has some
encrypted content and/or additional signature files. In the next
step, the CSAR Exporter populates the TOSCA.meta file by
traversing the set of files and creating an entry for each of
them. Finally, the external signature is generated starting from
the TOSCA.meta file and the resulting CSAR file is created
by packaging all files in a single compressed archive.

Figure 13 demonstrates the overall procedure of generating
the external signature of the CSAR, which starts from pro-
cessing the TOSCA.meta file and which, as mentioned earlier,
follows the JAR signing process. The TOSCA.meta file is used
to describe the contents of a CSAR and consists of: (i) a
header section, which provides general information about the

91

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ManagementUI CSARImporter FileBasedRepository

importCsar(csar)

extractInTempDir(csar)

(entries, TOSCA.meta, TOSCA.sf,
TOSCA.sig,TOSCA.crt)

verifySigFile(TOSCA.sf,TOSCA.sig,TOSCA.crt)

verifyMetaFile(TOSCA.meta,TOSCA.sf)

verifyIntegrity(entry,TOSCA.meta)

[entry has signing policy attached]
verifySignature(entry)

storeFilesInRepository(entries)

success

loop [foreach entry in entries]

Figure 14. A simplified process of securely importing a CSAR showing only
the successful control flow.

deployment model such as who created it and the path of the
TOSCA definition file associated with the Service Template,
and (ii) a body section that lists all files contained in the
CSAR along with their exact location and MIME file type. We
enhance the body section of the TOSCA.meta file with a digest
subsection for each contained file that helps in guaranteeing its
integrity. In this prototype, we use the SHA-256 [50] function
to calculate digests. In the next step, a signature file (TOSCA.sf)
is generated using the TOSCA.meta file. While the purpose of
the TOSCA.meta file is to guarantee the integrity of the CSAR,
the purpose of TOSCA.sf file is guaranteeing the integrity of
the TOSCA.meta file itself. To this end, the TOSCA.sf file has a
header section that includes a digest of the whole TOSCA.meta
file, and a body section with subsections corresponding to
the ones in the TOSCA.meta file. However, in this case each
subsection contains a digest of the whole matching subsection
in the TOSCA.meta file. Furthermore, to ensure the overall
integrity, the TOSCA.sf file is signed using the master signing
private key of the participant who issued the CSAR export.
As a result, a block signature file (TOSCA.sig) is generated.
Finally, a certificate (TOSCA.crt), which contains the master
signing public key of the participant, is also included in the
archive to provide future importers with the possibility to verify
the signature. The participant’s master signing key-pair resides,
like other keys, in the Key Store repository that can be accessed
by other components via the Key Manager sub-module.

D. Secure Import of CSARs

The import of a protected CSAR into the modeling environ-
ment comprises two steps: (i) firstly, it must trigger verifications
of CSAR’s integrity and authenticity, and afterwards (ii) the
regular task of storing constituent TOSCA entities and other
artifacts in the local repository must be accomplished. This is

depicted in Figure 14: upon a request from the Management UI
the CSAR Importer module begins the process of importing the
CSAR by asking the File-based Repository to create a temporary
directory in which the archive content is extracted. As we have
seen in the previous section, in addition to the regular entries,
the contents of the CSAR include the TOSCA.meta file as well
as the external signature files, i.e., TOSCA.sf, TOSCA.sig, and
TOSCA.crt. The importer then performs a check to verify the
integrity and authenticity of the signature file (TOSCA.sf) by
performing the digital signature verification process using the
TOSCA.sig and TOSCA.crt files. Next, the importer verifies the
integrity of the TOSCA.meta file by comparing its overall digest
as well as the digests of its subsections to the corresponding
entries in the TOSCA.sf file. Afterwards, the regular CSAR
entries are enumerated, and an integrity check is performed
for each one of them by calculating its digest and comparing
it to the corresponding digest listed in the TOSCA.meta file.
A further authenticity check is performed if the entry is a
Node Type, or an Artifact Template with an associated Signing
Policy in which case the included signature is verified. If all
previous validity checks pass, the contents of the CSAR are
imported into the File-based Repository and the Management
UI is notified about the success of the operation. Otherwise, the
import is aborted, and a proper error message is returned to the
Management UI. Similar to what we have seen in the export
process, the Security Primitives sub-module is utilized by the
CSAR Importer to perform required cryptographic tasks.

VII. RELATED WORK

The problem of data protection in outsourcing and collabo-
ration scenarios appears in works related to different domains.
Multiple works attempt to tackle security-related problems using
centralized approaches. Wang et al. [31] present a method
for protecting the models in collaborative computer-aided
design (CAD), which extends RBAC mechanism by adding
notions of scheduling and value-adding activity to roles. Authors
propose to selectively share data to prevent reverse engineering.
However, no clear description how to enforce the proposed
model is given. Cera et al. [51] introduce another RBAC-based
data protection approach in collaborative design of 3D CAD
models. Models are split into separate parts based on specified
role-based security requirements to provide personalized views
using a centralized access control mechanism. Li et al. [32]
propose a security policy meta-model and the framework for
securing big data using sticky policies concept. Policies are
loosely-coupled with the data and the framework relies on
a trusted party, which combines policy and key management
functionalities, and enforces the access control. Huang et al. [52]
introduce a set of measures allowing to protect patients data in
portable electronic health records (EHRs). Authors propose a
centralized system, which combines de-identification, encryp-
tion, and digital signatures as means to achieve data privacy. Li
et al. [36] describe an approach based on the Attribute-Based
Encryption that helps to protect patient’s personal health records
in the cloud. In this approach, data is encrypted using keys that
are generated based on the owner-selected set of attributes and
then published to the cloud. Users can only access the data in
case they possess corresponding attributes, e.g., profession or
organization. More specifically, users are divided into several
security domains and the attributes for these domains are
managed by corresponding attribute authorities. Decryption
keys, therefore, can be generated independently from data

92

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

owners by the respective attribute authorities. Essentially, the
described approaches are domain-specific and rely on a trusted
party, which makes it problematic to apply them to the problem
of protecting collaborative development of deployment models
discussed in Section III.

A number of approaches focus on the data encryption in
outsourcing scenarios. Miklau and Suciu [53] introduce an
encryption framework for protecting XML data published on the
Internet. Contributions of the work include a policy specification
language available in the form of queries and a model allowing
to encrypt single XML documents. Access control is enforced
based on key possession. Vimercati and Foresti [54] discuss
fragmentation-based approaches for protecting outsourced
relational data. The authors elaborate on several techniques
allowing to split up the given data based on some constraints
into one or more fragments and store them in a way to
protect confidentiality and privacy. For instance, data can be
split into two parts and stored on non-communicating servers.
Whenever constraints cannot be satisfied for some attributes,
the encryption is used. In the follow-up work, Vimercati et
al. [55] present a way to enforce selective access control using
the cryptography-based policies. Authors propose to use key
derivation mechanisms to simplify the distribution of keys.

To the best of our knowledge, there is no approach
that successfully tackles our problem of deployment models
protection in collaborative application development scenarios.
While the described related work provides useful insights on
the usage of well-established concepts such as the usage of
sticky policies and access control enforcement by means of
key possession, it is not applicable to our problem due to
several reasons. One of the main issues is that most of the
discussed approaches rely on the idea of a trusted party, which
can regulate the access control. While it is desirable to have a
central authority, in many cases it is unrealistic, leading to a
need for peer-to-peer solutions. Moreover, having focus only
on separate security requirements like encryption or strong
assumptions about the underlying data makes these approaches
not suitable for the described problems.

VIII. CONCLUSION AND FUTURE WORK

In this work, we showed how security requirements can
be modeled and enforced in collaborative development of
deployment models. We identified sensitive parts in deployment
models and proposed a method, which allows protecting
them based on a combination of existing research work. For
validation of the presented concepts, we applied them to
TOSCA, an existing OASIS standard, which specifies a provider-
agnostic cloud modeling language. The resulting prototypical
implementation is based on Winery, the modeling environment,
which is a part of the OpenTOSCA ecosystem, an open source
collection of applications supporting TOSCA.

One issue in our approach that has to be optimized is the way
keys are distributed. We rely on the fact that not all participants
need to exchange keys, which, however, does not solve the
scalability problem. If N keys were used for encryption, eventu-
ally all of them will be used in key distribution. For improving
the efficiency, the key derivation techniques, e.g., described by
Vimercati et al. [55], can be used to reduce the number of keys
that need to be exchanged. Another problem for future work is
the generalization of the adversary model. Since deployment
models can be intentionally corrupted by an adversary, there

is a strong need to store the provenance information, which
describes deployment model’s states at every export with respect
to a certain collaboration. Having such provenance information
stored in some accessible form makes it possible to track the
entire collaboration history with all the deployment model states
that were existing throughout the process. For this reason, one
might employ a centralized system, which will also simplify
the policy enforcement and key distribution processes, or store
the provenance in a decentralized fashion, e.g., by utilizing the
blockchain technology [56]. In addition, we plan to analyze
the existing deployment technologies and identify the optimal
mapping constructs for enabling our approach to them. For
instance, not every technology allows using policies as explicit
modeling constructs, which requires attaching security and
privacy requirements using other constructs, e.g., by means
of annotations or descriptors. Moreover, the modeling-related
tooling varies for different deployment technologies, which
imposes additional hurdles on enforcing modeled requirements
for the chosen technology.

There are several issues in our prototype that can be
optimized. Currently, the grouping policies in the prototype
cannot be linked with the corresponding encryption or signing
policies, hence it is not possible to model several groups of
properties signed or encrypted using different keys. In future
work, we plan to extend the implementation to support more
complex scenarios and increase the overall usability of the
modeling process using Winery and its respective components.
Finally, there is a pitfall for cases when files are modeled
in the form of references, e.g., if they reside on a remote
server. Encrypting and signing such files completely changes the
verification semantics as only the references are checked. This
is not safe since the actual content behind the reference can be
changed multiple times by the data owner without changing the
reference itself. Moreover, the usage of references invalidates
the self-containment property of deployment models. In future
work, referenced files need to be materialized at export time,
which solves this problem and preserves deployment models
in a self-contained state.

In our previous work [7], we tackled the issue of guarantee-
ing accountability of collaborative development of deployment
models by registering fingerprints of the various states a
deployment model goes through while being developed in
the blockchain. These fingerprints serve as a guarantee for
the integrity and authenticity of the model when being passed
from one participant to the next. Furthermore, we stored the
actual contents of these models in a decentralized file storage
addressable using the aforementioned fingerprints. This creates
an immutable history of verifiable deployment model states.
A problem with that approach is the public nature of the
decentralized storage where the contents of deployment models
are stored. This makes the sensitive information that might
exist within these models accessible to the public. The obvious
solution to this is encryption, thus in a future work, we plan
to combine both approaches in order to have a collaboration
process, which guarantees both security and accountability.

ACKNOWLEDGMENT

This work is partially funded by the BMWi project
SePiA.Pro (01MD16013F) and the European Union’s Hori-
zon 2020 research and innovation project RADON (825040).

93

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] V. Yussupov, M. Falkenthal, O. Kopp, F. Leymann, and M. Zimmermann,
“Secure Collaborative Development of Cloud Application Deployment
Models,” in Proceedings of The 12th International Conference on Emerg-
ing Security Information, Systems and Technologies (SECURWARE
2018). Xpert Publishing Services, September 2018, pp. 48–57.

[2] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie
4.0 scenarios,” in 2016 49th Hawaii International Conference on System
Sciences (HICSS). IEEE, 2016, pp. 3928–3937.

[3] P. M. Mell and T. Grance, “Sp 800-145. the NIST definition of cloud
computing,” Gaithersburg, MD, United States, Tech. Rep., 2011.

[4] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, 2010, pp. 2787–2805.

[5] M. Zimmermann, U. Breitenbücher, M. Falkenthal, F. Leymann, and
K. Saatkamp, “Standards-based function shipping – how to use tosca for
shipping and executing data analytics software in remote manufacturing
environments,” in Proceedings of the 2017 IEEE 21st International
Enterprise Distributed Object Computing Conference (EDOC 2017).
IEEE Computer Society, 2017, pp. 50–60.

[6] U. Breitenbücher et al., “Combining declarative and imperative cloud
application provisioning based on tosca,” in Proceedings of the IEEE
International Conference on Cloud Engineering (IEEE IC2E 2014).
IEEE Computer Society, March 2014, pp. 87–96.

[7] G. Falazi, U. Breitenbücher, M. Falkenthal, L. Harzenetter, F. Leymann,
and V. Yussupov, “Blockchain-based Collaborative Development of
Application Deployment Models,” in On the Move to Meaningful Internet
Systems. OTM 2018 Conferences (CoopIS 2018), ser. Lecture Notes in
Computer Science, vol. 11229. Springer, 2018, pp. 40–60.

[8] T. Kvan, “Collaborative design: what is it?” Automation in construction,
vol. 9, no. 4, 2000, pp. 409–415.

[9] G. Karjoth, M. Schunter, and M. Waidner, “Platform for enterprise
privacy practices: Privacy-enabled management of customer data,” in
International Workshop on Privacy Enhancing Technologies. Springer,
2002, pp. 69–84.

[10] W. Bagga and R. Molva, “Policy-based cryptography and applications,”
in International Conference on Financial Cryptography and Data Security.
Springer, 2005, pp. 72–87.

[11] A. Harrington and C. Jensen, “Cryptographic access control in a
distributed file system,” in Proceedings of the 8th ACM symposium
on Access control models and technologies. ACM, 2003, pp. 158–165.

[12] OASIS, Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0, Organization for the Advancement of Structured
Information Standards (OASIS), 2013.

[13] OASIS, Topology and Orchestration Specification for Cloud Applications
(TOSCA) Primer Version 1.0, Organization for the Advancement of
Structured Information Standards (OASIS), 2013.

[14] A. Bergmayr et al., “A systematic review of cloud modeling languages,”
ACM Comput. Surv., vol. 51, no. 1, Feb. 2018, pp. 22:1–22:38.

[15] T. Binz et al., “Opentosca – a runtime for tosca-based cloud applications,”
in Service-Oriented Computing. Berlin, Heidelberg: Springer, 2013,
pp. 692–695.

[16] C. Endres et al., “Declarative vs. imperative: Two modeling patterns for
the automated deployment of applications,” in Proceedings of the 9th

International Conference on Pervasive Patterns and Applications. Xpert
Publishing Services (XPS), Feb. 2017, pp. 22–27.

[17] U. Breitenbücher, K. Képes, F. Leymann, and M. Wurster, “Declarative
vs. imperative: How to model the automated deployment of iot
applications?” in Proceedings of the 11th Advanced Summer School on
Service Oriented Computing. IBM Research Division, Nov. 2017, pp.
18–27.

[18] Chef. [Online]. Available: https://www.chef.io/ [retrieved: July, 2018]
[19] Juju. [Online]. Available: https://jujucharms.com/ [retrieved: July, 2018]
[20] OASIS, Web Services Business Process Execution Language (WS-BPEL)

Version 2.0, Organization for the Advancement of Structured Information
Standards (OASIS), 2007.

[21] OMG, Business Process Model and Notation (BPMN) Version 2.0,
Object Management Group (OMG), 2011.

[22] R. Boutaba and I. Aib, “Policy-based management: A historical

perspective,” Journal of Network and Systems Management, vol. 15,
no. 4, Dec 2007, pp. 447–480.

[23] R. Wies, “Using a classification of management policies for policy spec-
ification and policy transformation,” in Integrated Network Management
IV. Springer, 1995, pp. 44–56.

[24] P. Samarati and S. C. di Vimercati, “Access control: Policies, models,
and mechanisms,” in International School on Foundations of Security
Analysis and Design. Springer, 2000, pp. 137–196.

[25] S. Pearson and M. Casassa-Mont, “Sticky policies: An approach for
managing privacy across multiple parties,” Computer, vol. 44, no. 9,
2011, pp. 60–68.

[26] Q. Tang, On Using Encryption Techniques to Enhance Sticky Policies
Enforcement, ser. CTIT Technical Report Series. Netherlands: Centre
for Telematics and Information Technology (CTIT), 2008, no. WoTUG-
31/TR-CTIT-08-64.

[27] B. W. Lampson, “Protection,” ACM SIGOPS Operating Systems Review,
vol. 8, no. 1, 1974, pp. 18–24.

[28] M. Falkenthal et al., “Opentosca for the 4th industrial revolution:
Automating the provisioning of analytics tools based on apache flink,”
in Proceedings of the 6th International Conference on the Internet of
Things, ser. IoT’16. New York, NY, USA: ACM, 2016, pp. 179–180.

[29] T. Binz, U. Breitenbücher, O. Kopp, and F. Leymann, TOSCA: Portable
Automated Deployment and Management of Cloud Applications. New
York, NY: Springer New York, 2014, pp. 527–549.

[30] M. Zimmermann, F. W. Baumann, M. Falkenthal, F. Leymann, and
U. Odefey, “Automating the provisioning and integration of analytics
tools with data resources in industrial environments using opentosca,” in
Proceedings of the 2017 IEEE 21st International Enterprise Distributed
Object Computing Conference Workshops and Demonstrations (EDOCW
2017). IEEE Computer Society, Oct. 2017, pp. 3–7.

[31] Y. Wang, P. N. Ajoku, J. C. Brustoloni, and B. O. Nnaji, “Intellectual
property protection in collaborative design through lean information
modeling and sharing,” Journal of computing and information science
in engineering, vol. 6, no. 2, 2006, pp. 149–159.

[32] S. Li, T. Zhang, J. Gao, and Y. Park, “A sticky policy framework for
big data security,” in 2015 IEEE First International Conference on Big
Data Computing Service and Applications (BigDataService). IEEE,
2015, pp. 130–137.

[33] T. Waizenegger et al., “Policy4TOSCA: A Policy-Aware Cloud Service
Provisioning Approach to Enable Secure Cloud Computing,” in On
the Move to Meaningful Internet Systems: OTM 2013 Conferences.
Springer, Sep. 2013, pp. 360–376.

[34] U. Breitenbücher, T. Binz, O. Kopp, F. Leymann, and M. Wieland,
“Policy-aware provisioning of cloud applications,” in Proceedings of the
7th International Conference on Emerging Security Information, Systems
and Technologies (SECURWARE). Xpert Publishing Services (XPS),
2013, pp. 86–95.

[35] A. A. E. Kalam et al., “Organization based access control,” in IEEE
4th International Workshop on Policies for Distributed Systems and
Networks, 2003. Proceedings. POLICY 2003. IEEE, 2003, pp. 120–
131.

[36] M. Li, S. Yu, K. Ren, and W. Lou, “Securing personal health records
in cloud computing: Patient-centric and fine-grained data access control
in multi-owner settings,” in International conference on security and
privacy in communication systems. Springer, 2010, pp. 89–106.

[37] F. Li, B. Luo, and P. Liu, “Secure information aggregation for smart
grids using homomorphic encryption,” in 2010 First IEEE International
Conference on Smart Grid Communications (SmartGridComm). IEEE,
2010, pp. 327–332.

[38] S. Ruj and A. Nayak, “A decentralized security framework for data
aggregation and access control in smart grids,” IEEE transactions on
smart grid, vol. 4, no. 1, 2013, pp. 196–205.

[39] Oracle. Understanding signing and verification. [Online]. Available: https:
//docs.oracle.com/javase/tutorial/deployment/jar/intro.html [retrieved:
July, 2018]

[40] J. Huang and M. S. Fox, “An ontology of trust: formal semantics
and transitivity,” in Proceedings of the 8th international conference on
electronic commerce: The new e-commerce: innovations for conquering
current barriers, obstacles and limitations to conducting successful
business on the internet. ACM, 2006, pp. 259–270.

94

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[41] M. Falkenthal et al., “Requirements and Enforcement Points for Policies
in Industrial Data Sharing Scenarios,” in Proceedings of the 11th

Advanced Summer School on Service Oriented Computing. IBM
Research Division, 2017, pp. 28–40.

[42] F. W. Baumann, U. Breitenbücher, M. Falkenthal, G. Grünert, and
S. Hudert, “Industrial data sharing with data access policy,” in Cooper-
ative Design, Visualization, and Engineering. Springer International
Publishing, 2017, pp. 215–219.

[43] M. Cooper et al. Internet X.509 Public Key Infrastructure: Certification
Path Building. [Online]. Available: https://tools.ietf.org/html/rfc4158
[retrieved: July, 2018]

[44] SePiA.Pro. [Online]. Available: http://projekt-sepiapro.de/en/ [retrieved:
May, 2019]

[45] O. Kopp, T. Binz, U. Breitenbücher, and F. Leymann, “Winery – A
Modeling Tool for TOSCA-based Cloud Applications,” in Proceedings
of the 11th International Conference on Service-Oriented Computing
(ICSOC 2013). Springer, Dec. 2013, pp. 700–704.

[46] Winery. [Online]. Available: https://eclipse.github.io/winery/ [retrieved:
July, 2018]

[47] U. Breitenbücher, T. Binz, O. Kopp, and F. Leymann, “Vinothek – a
self-service portal for tosca,” in Proceedings of the 6th Central-European
Workshop on Services and their Composition (ZEUS 2014). CEUR-
WS.org, Feb. 2014, Demonstration, pp. 69–72.

[48] Prototypical implementation of the secure csar concepts. [Online].
Available: https://github.com/OpenTOSCA/winery/releases/tag/paper%
2Fvy-secure-csar [retrieved: July, 2018]

[49] Bouncy Castle Crypto APIs. [Online]. Available: http://bouncycastle.org/
[retrieved: Dec., 2018]

[50] W. Penard and T. van Werkhoven, On the Secure Hash Algorithm family,
2008, ch. 1, pp. 1–18.

[51] C. D. Cera, T. Kim, J. Han, and W. C. Regli, “Role-based viewing en-
velopes for information protection in collaborative modeling,” Computer-
Aided Design, vol. 36, no. 9, 2004, pp. 873–886.

[52] L.-C. Huang, H.-C. Chu, C.-Y. Lien, C.-H. Hsiao, and T. Kao, “Privacy
preservation and information security protection for patients’ portable
electronic health records,” Computers in Biology and Medicine, vol. 39,
no. 9, 2009, pp. 743–750.

[53] G. Miklau and D. Suciu, “Controlling access to published data using
cryptography,” in Proceedings of the 29th international conference on
Very large data bases-Volume 29. VLDB Endowment, 2003, pp. 898–
909.

[54] S. D. C. di Vimercati and S. Foresti, “Privacy of outsourced data,” in
IFIP PrimeLife International Summer School on Privacy and Identity
Management for Life. Springer, 2009, pp. 174–187.

[55] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Encryption policies for regulating access to outsourced
data,” ACM Transactions on Database Systems (TODS), vol. 35, no. 2,
2010, p. 12.

[56] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. [Online].
Available: http://bitcoin.org/bitcoin.pdf [retrieved: July, 2018]

95

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Synthesis of Formal Specifications From Requirements for Refinement-based Real Time

Object Code Verification

Eman M. Al-Qtiemat∗, Sudarshan K. Srinivasan∗, Zeyad A. Al-Odat ∗, Mohana Asha Latha Dubasi∗, Sana Shuja†
∗Electrical and Computer Engineering, North Dakota State University,

Fargo, ND, USA
†Department of Electrical Engineering, COMSATS University,

Islamabad, Pakistan
Emails: ∗eman.alqtiemat@ndsu.edu, ∗sudarshan.srinivasan@ndsu.edu, ∗zeyad.alodat@ndsu.edu, ∗dubasi.asha@gmail.com,

†SanaShuja@comsats.edu.pk

Abstract—Formal verification methods have been shown to be
very effective in finding corner case bugs and ensuring safety
of embedded software systems. The use of formal verification
requires a specification, which is typically a high-level mathemat-
ical model that defines the correct behavior of the system to be
verified. However, embedded software requirements are typically
described in natural language. Transforming these requirements
to formal specifications is currently a big gap. While there is some
work in this area, this paper proposes solutions to address this gap
in the context of refinement-based verification, a class of formal
methods that have shown to be effective for embedded object
code verification. The proposed approach also addresses both
functional and timing requirements and has been demonstrated in
the context of safety requirements for software control of infusion
pumps.

Keywords–requirements analysis; safety-critical IoT embedded
devices; timing specifications; timing transition systems; formal
model; formal verification.

I. INTRODUCTION

Ensuring the correctness of control software used in safety-
critical embedded devices is still an ongoing challenge [1]. For
example, from 2001 to 2017, the Food and Drug Administra-
tion (FDA) has issued 54 Class-1 recalls on infusion pumps
(medical devices used to deliver controlled doses of fluid
medications to patients intravenously) due to software issues
[2]. Class-1 recalls are applied to medical device models whose
use can cause serious adverse health consequences or death.
With the advent of IoT, such safety-critical embedded devices
incorporate a whole slew of additional functionality to interface
with the network and other components, in addition to their
core control functions. These additional functions significantly
exacerbate the challenge of ensuring that the core functionality
of the control software is correct and intact.

Critical devices such as insulin pump still have safeness
issues which need valuable software amendments to assure
the reliability on design level, this can be handled by either
appending new safety insurance specifications to fix existing
hazards, or modifying some defined specifications that cause
faulty behaviours. Since critical devices are considered as
real time systems, most of their specifications have well
defined timing constraints must be met else wise the system
will fail. This paper works with both functional and timing
specifications (called functional and timing requirements), they
are basically written in natural language and need to be
transformed into a formal model, then it can be tested using

a formal verification method. The use of formal verification
has become an industry standard when addressing software
correctness of safety-critical devices. There are many success
stories and commercial adoption of formal verification pro-
cesses. Examples include Intel [3], Microsoft [4] and [5], and
Airbus [6].

Refinement-based verification [7] is a formal verification
technology that has been demonstrated to be applicable to
the verification of embedded control software at the object-
code level [8]. In formal verification and refinement-based
verification, typically the design artifact to be verified is called
the implementation and the specification is a formal model
that captures the correct functionality of the implementation.
The goal of refinement-based verification is to mathematically
prove that the implementation behaves correctly as defined
by the specification. In refinement-based verification, both the
implementation and specification are modeled as transition
systems and timed transition systems if timing specifications
are existed.

One of the key features of refinement-based is the use of
refinement maps, which are functions that map implementation
states to specification states. In practice, these refinement maps
have a very favorable property in that they abstract out behav-
iors of the implementation not relevant to the specification, but
only after determining that these additional behaviors do not
actually impact the behaviors of the implementation relevant to
the specification. This property of refinement maps makes the
refinement-based verification very suitable for the verification
of control software used in IoT devices as refinement maps
can be used to abstract out the additional functionality of
software in IoT devices; again, only after determining that
these additional functionality are not impacting the behavior
of the core functionality of the implementation as defined by
the specification.

One of the crucial challenges in applying refinement-
based verification to commercial devices is the availability
of formal specifications. For commercial devices, typically,
the specification of a device is given as natural language
requirements. There are many approaches towards transform-
ing natural language requirements to formal specifications,
however none targeted towards refinement-based verification.
In this paper, we present methodologies for transforming
natural language requirements (both functional and timing)
into formal specifications that can be used in the context of
refinement-based verification.

96

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The rest of the paper is organized as follows. An overview
of the background is presented in Section II. Section III details
the related work. A formal model describing the synthesis pro-
cedure of functional requirements is presented in Section IV,
while Section V presents a different formal model describing
the synthesis procedure of timing requirements. Section VI
details the case study. Section VII gives the verification results
for the proposed formal model. Conclusions and direction for
future work are noted in Section VIII.

II. BACKGROUND

This section explores the parsing tree, the definition of tran-
sition systems and the definition of timed transition systems
as key terms related to our work.

A. Parsing tree
A parse tree is an ordered tree that pictorially represents

how words in a sentence are connected to each other. The
connection between each word in the sentence gives the syntac-
tic categories for the sentence. The parsing process represents
the syntactic analysis of a sentence in natural language. For
example, when the parsing process is applied on a simple
sentence like ”Adam eats banana”, the parse tree categorizes
the two parts of speech: N for nouns (Adam, banana) and V
for the verb (eats). Here N, V are the syntactic categories.
The parsing process is considered to be a preprocessing
step for some applications, where natural language should be
converted into other forms. Usually, the system requirements
are written in natural language, which needs to be converted
into a structural form that can then be used to create the
transition system(s) (explained in Section II-B). Enju [9] is an
English consistency-based parser, which can process very long
complex sentences like system requirements using an accurate
analysis (the accuracy relation is around 90 percent of news
articles and bio-medical papers). Besides, Enju is a high-speed
parser with less than 500 msec per sentence. The output is the
resulting tree in an XML format which is considered to be
one of the commonly used formats by various applications.
As will be described later, the case study used to describe
the proposed methodology is from the bio-medical area, Enju
was the perfect tool as the natural language processing (NLP)
parser.

S

VP

NP

N

ball

D

the

V

hit

N

John

Figure 1. A simple example of a parsing tree using Enju parser [10].

Figure 1 shows a simple tree example using Enju. Here,
Enju distinguishes between terminal nodes (John is a terminal
node) and non-terminal nodes (VP is a verb phrase). The
abbreviations of the syntactic categories of Figure 1 are: S
stands for sentence (the head of the tree), N stands for noun,
VP stands for verb phrase (which is a subtree), NP stands

for noun phrase, V stands for verb, and finally D stands for
determiner (comes with noun phrases). Using these syntactic
categories, we have developed an extraction technique that
would help in translating the natural language to a formal
model of the requirements.

B. Transition systems
The implementation and specification in refinement-based

verification are represented using Transition Systems (TSs) [7],
[8]. The definition of a TS is given below:

Definition 1: A TS M = 〈S,R,L〉 is a three tuple in
which S denotes the set of states, R ⊆ SXS is the transition
relation that provides the transition between states, and L is a
labeling function that describes what is visible at each state.

INDV

IBO SPM

SY NC

Figure 2. An example of a transition system (TS).

An Atomic Proposition (AP) is a statement that can be
evaluated to be either true or false. The labeling function maps
state to the APs that are true in every state. An example of
a TS is shown in Figure 2. Here S = {IBO, SPM, SYNC,
INDV}, R = {(IBO, SPM), (SPM, SYNC), (SYNC, INDV),
(INDV, SYNC), (INDV, SPM), (IBO, INDV)} and, L(SPM)
represents the atomic propositions that are true for the SPM
state. Similarly, labeling function can be applied to all the
states in this TS.

C. Timed Transition Systems
Some applications have requirements with timing condi-

tions on the state’s transitions called as timing requirements.
Timing requirements explain the system behaviour under some
timing constraints. Timing constraints are very important es-
pecially if we deal with a critical real time systems. As
mentioned in the previous section (Sec II-B), transition systems
are used to represent the implementation and specification
in refinement-based verification, however they do not contain
timing requirements. Hence, in the verification of real time
systems that contain timing constraints, timed transition sys-
tems (TTSs) [8] are used to represent the implementation and
specification.

S1

S2 S3

〈1, 4〉

〈0, 0〉

〈3,∞〉

Figure 3. An example of a timed transition system (TTS)

97

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 2: A TTS Mt = 〈S,Rt, L〉 is a three tuple in
which S denotes the set of states and L is a labeling function
that describes what is visible at each state. The state transition
Rt has the form of 〈x, y, lt, ut〉 where x, y ∈ S and lt, ut ∈ N
represents the lower and upper bounds as the timing condition
for the transition.

Figure 3 shows an example of a timed transition system
that consists of three states { S1, S2, S3 }, for instance; if the
system is in state S1 it can go to state S2 only between 1 and
4 units of time, while going from S2 to S3 the time is zero
meaning that it should happen immediately, and so on.

III. RELATED WORK

In the last few years, there has been a tremendous growth
in finding the optimal technique of requirement transformation
into a formal model. While most of them proposed system-
driven models, our approach is user-driven to ensure a safe
product.

Automatic Requirements Specification Extraction from
Natural Language (ARSENAL) [11] is a system based frame-
work that applies some semantic parsers in multi-level to
get the grammatical relations between words in the require-
ment. ARSENAL transforms natural language requirements
into formal and logical forms expressed in Symbolic Analysis
Laboratory (SAL) (a formal language to describe concurrent
systems), and Linear Temporal Logic (LTL) (a mathematical
language that describes linear time properties) respectively.
The LTL formulas are then used to build the SAL model.
Multiple validation checks are applied on Natural Language
Processing (NLP) stage and LTL formulas to check for their
correctness. However, ARSENAL records some inaccuracies
in NLP stage that need a user intervention.

Aceituna et al. [12] have proposed a front end frame-
work that builds a model to exhibit the system behavior
(for synchronous systems only) and help in creating temporal
logic properties automatically. This framework can be used
before applying the model checking technique, it exposes
accidental scenarios in the requirements. The framework is
designed in a manner that helps in understanding the errors in
a non-technical manner for users who do not have a formal
background. In contrast, our work does not need the temporal
logic in defining the specifications for a model.

A semantic parser has been developed by Harris [13] to
extract a formal behavioral description from natural language
specifications. The proposed semantic parser was employed
to extract key information describing bus transactions. The
natural language descriptions are then converted to verilog (a
hardware description language) tasks.

Kress-Gazit et al. [14] have proposed a human-robot inter-
face to translate natural language specification into motions.
This interface allows a user to instruct the robot using a
controller. LTL formulas are employed to formalize the desired
behavior requested by the user.

An approach supporting property elucidation (called PRO-
PEL) has been introduced by Smith et al. [15], it provides
templates that capture properties for creating property pattern.
Natural language and finite state automation are used to
represent the templates.

Two approaches have been proposed by Shimizu [16] to
solve the ambiguity of natural language specifications using

formal specification. The first approach simplifies the formal
specification development for the popular PCI bus protocol
and the Intel Itanium bus protocol. The second approach
explains how formal specifications can help in automating
many processes that are now done manually.

A natural language parsing technique has been used with
the default reasoning, which is a requirement formalism to
support requirement development, this work helps stakeholders
to easily deal with requirements in a formal manner, in addi-
tion, a method has been proposed for discovering any existed
requirements inconsistencies. A prototype tool called CARL
was used for implementation and verification by Zowghi et
al. [17].

Gervasi et al. [18] have also worked on solving the
requirement’s inconsistencies issues by using a well-known
formalism called monotonic logic, it has been used especially
for requirement’s transformation. Multiple natural language
processing tools [19]–[22] in additional to grammatical anal-
ysis methodologies for requirement’s development have been
done to get requirements in a formal manner.

Bouyer et al. [23] have recently presented a survey on
timed automata and how it can be applied for model checking
of real-time systems. This survey has summarized the work
that has been done since the inception of timed automata in
the early 1990s till now. The timing information in real-time
models is expressed as temporal logic. However, the survey
does not specify gathering timing information from natural
language requirements, which has been the focus of our paper.

Knorreck et al. [24] have presented a graphical tool called
AVATAR-TEPE (Automated Verification of reAl Time soft-
wARe - TEmporal Property Expression Language), in which
the logical and temporal properties are expressed in formal
language. This tool can perform all tasks from requirement
capture to verification in one language and in one environment.
However, the tool requires the knowledge of logical and tem-
poral properties to verify the application. The tool is heavily
based on property modeling.

A standardized testing method for distributed real-time
cyber-physical systems (CPS) has been proposed by Shrivas-
tava et al. [25]. Temporal properties have been used to express
the timing constraints. Peters et al. [26] have proposed a new
language that considers timing requirement and checks for
errors in the description of the timing constraints. Kang et
al. [27] have presented a model-driven approach to verify the
timing requirements for automotive systems at the design level.
However, in all these works, gathering the timing constraints
from natural language requirements, which has been the focus
of this paper, has not been addressed.

Carvalho et al. [28] have proposed a symbolic model for
translating natural language requirements to a formal model
which consider time. Model-based testing techniques are then
applied to these formal models. Hassine [29] has presented
a formal framework to describe, simulate and analyze real-
time systems. This framework considers timing requirements.
However, this proposed framework is yet to be applied on
large scale industrial projects. In these works, even though the
timing requirements are considered, none of the these works
are targeted at refinement based verification.

The main advantages of our work over prior algorithms
in requirements engineering is its ability to generate a full

98

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

formal model directly from natural language requirements by
an expert supervision to emphasis on the safety transformation.
Also, our work does not require that the expert user know any
temporal logic languages which has been case for most of the
current literature.

IV. FORMAL MODEL SYNTHESIS PROCEDURE FOR
FUNCTIONAL REQUIREMENTS

The first step of computing the TSs is to extract the
APs from the requirements. We have developed three Atomic
Proposition Extraction Rules (APERs) that work on the parse
tree of the requirement obtained from Enju. The resulting APs
are then used to compute the states and transitions. The APERs
are described next.

A. Atomic Proposition Extraction Rule 1 (APER 1)
APER 1 is based on the hypothesis that noun phrases in a

requirement correspond to APs. Each subtree of the parse tree
with an NX root (called an NX head) corresponds to a noun
phrase and hence an AP. Therefore, APER 1 computes the
subtrees corresponding to NX heads. If NX heads are nested,
then the highest-level NX head is used to compute the AP. The
terminal nodes of the subtree are conjoined together to form
the noun phrase. APER 1 returns AP-list, which is the set of
APs corresponding to a parse tree.

Procedure 1 APER1

Require: Parse-tree
1: AP-list ← ∅ ;
2: for each n ∈ TerminalNodes(Parse-tree) do
3: Start-cat = head(head(n));
4: if Start-cat = NX then
5: X = Sub-tree(Start-cat);
6: while (head(X) = NX) ∨ (head(X) = COOD)

∨ (head(X) =NX-COOD) do
7: X = Sub-tree(head(X));
8: AP-list ← AP-list ∪ TerminalNodes(X) ;

Figure 4. An Enju parsing tree portion shows some resulting APs by
applying APER 1.

We now describe the procedure corresponding to APER 1
in detail. Firstly, AP-List is initialized to the empty set (line 1).
The procedure then iterates through each terminal node n (line
2). The head of a node is its parent. If a terminal node is part of
an NX subtree, its level two head will be marked as NX, which
is checked in line 3. The level-two NX node of the terminal
node is stored in variable State-cat. If the Start-cat is of NX
category (line 4), a function called Sub-tree is used to get the
resulting subtree (line 5), which is stored in variable X. A while
loop is used to traverse the tree of X upwards checking if the
head syntactic category is NX or COOD or NX-COOD (line
6). Only when one of the conditions is satisfied the subtree
is stored in X (line 7). The terminal nodes of the resulting
sub tree ’X’ will be added to AP-List as a new suggested AP
(line 8). Figure 4 gives a sub tree example for APER 1. Note
that APER 1 may result in the same AP being duplicated.
Duplicates are checked and removed from the AP list in the
overall approach.

As shown in Figure 4, the terminal nodes ’the’ and ’prim-
ing’ does not have head(head(n)) = NX. The first terminal node
that has the NX category is ’process’. Traversing upwards,
the NX related categories gives us the subtree which contains
’priming process’. This now constitutes the first AP for this
part of requirement. Applying the APER 1 rule on the visible
part of the sentence in Figure 4 gives us the following APs:
’priming process’, ’suspended basal profile’, ’basal profile’,
and ’temporary basal’.

B. Atomic Proposition Extraction Rule 2 (APER 2)
APER 2 and APER 3 correspond to the two other parse tree

patterns that also lead to noun phrases. APER 2 examines the
parse tree for noun categories along with its upper verb head.
APs will be the conjoined terminal nodes of the resulting sub
tree. APER 2 states that APs are the terminal nodes under the
head VP passing through NX (or its related phrases such as
NX-COOD, COOD), NP (or its related phrases NP-COOD,
COOD), and VX phrase.

Procedure 2 APER 2

Require: Parse-tree
1: AP-list ← ∅ ;
2: for each n ∈ TerminalNodes(Parse-tree) do
3: Start-cat = head(head(n));
4: X1 ← ∅;
5: if Start-cat = NX then
6: X = Sub-tree(Start-cat);
7: while (head(X) = NX) ∨ (head(X) = COOD)

∨ (head(X) =NX-COOD) do
8: X= Sub-tree(head(X));
9: while (head(X) = NP) ∨ (head(X) = COOD)

∨ (head(X) = NP-COOD) do
10: X1 = Sub-tree(head(X));
11: if (head(X1) = VX) ∧ (head(head(X1)) = VP) then
12: X = Sub-tree(head(head(X1));
13: else
14: if (head(X1) = VP) then
15: X = Sub-tree(head(X1);
16: AP-list ← AP-list ∪ TerminalNodes(X);

APER 2 is built on top of APER 1 to get atomic proposi-

99

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tions for requirements that APER 1 is not able to collect. While
APER 1 looks only for APs that are noun phrases, APER 2
looks for noun phrases that are further characterized by verb
phrases. For example, if APER 1 finds the AP ”suspended
basal delivery,” APER 2 will find ”resume the suspended basal
delivery.”

APER 1 and APER 2 have the same algorithmic flow until
finding the sub tree of X that is the top NX head (line 8).
However, APER 2 does not consider the resulting X to be
an AP like APER 1 does. Instead, X is the input of the next
step. A while loop is used to search if the head category of
X is in NP category or one of its related phrases (line 9).
Only when the while loop condition is true, the new sub-tree
is stored temporarily in the variable X1 (line 10), where X1 is
a temporary variable initialized to null (line 4). This ensures
that X does not change in this step for future use. The search
for VX and VP categories is to be performed only when X1

is not null.

Figure 5. An Enju parsing tree portion shows some resulting APs by
applying APER 2.

On the successful completion of NP category search,
the search for VX category followed by VP categories is
performed (line 11). When the if condition is satisfied, X is
updated with the new sub-tree (line 12). In the case of failure
of the if condition in line 11, a new search for VP category
is performed on the head of NP category sub-tree (line 14).
On success, X is updated with the new sub-tree (line 15). If
either of the if conditions (line 11 and line 14) fail, then X
will remain as the sub-tree of NX category. The terminal nodes
of the resulting subtree in X is appended to the AP-list (line
16). Figure 5 shows a resulting sub tree example by applying
APER 2.

Figure 5 shows that the procedure starts from left to right
looking for level two NX nodes and traversing upward until
higher NX nodes are accounted for. NP phrases are selected
to expand the tree. Then choosing the upper level which is VP
in this particular case (sometimes its VX → VP). The output
of APER 2 for this tree portion is ’override the current basal
delivery with a temporary basal’, and ’changing existing basal
profiles’.

C. Atomic Proposition Extraction Rule 3 (APER 3)
APER 3 is built on top of APER 2, it explores the verb head

levels in the parse tree like APER 2, but APER 3 eliminates
some verb phrases that is not part of APs. This elimination is
done based on the head of the VP category as illustrated in
Procedure 3 below.

APER 3 and APER 2 have the same stream up to line
10. The algorithm starts with initializing temporary variables
X1 and Y to null (line 4). The search for syntactic categories
start with the top NX phrase (line 7) and the resultant sub
tree is stored in X (line 8). Then, the search begins for the
top NP phrase (line 9) and the resultant sub tree is stored
in X1 (line 10) since the sub tree in X is needed for future
use. As in APER2, the search for either VX phrase followed
by VP phrase or just VP phrase is performed on X1 and the
resultant sub tree is stored in Y (lines 11-15). If and only if
Y is not empty then the check on the head syntactic category
is performed to ensure that it does not contain CP or COOD
categories. In this case, X gets only the right child (line 16-18)
i.e. the left child of Y is pruned. On the other hand, if Y has
a CP or COOD head, X value will be updated to be equal to
Y (line 20). Finally, terminal nodes of the resulting sub tree X
will be saved in the AP-list as a new AP. The pruning process
(line 18) is done to remove some action verbs which are not
part of an AP.

Procedure 3 APER 3

Require: Parse-tree
1: AP-list ← ∅ ;
2: for each n ∈ TerminalNodes(Parse-tree) do
3: Start-cat = head(head(n));
4: X1 ← ∅ , Y ← ∅;
5: if Start-cat = NX then
6: X = Sub-tree(Start-cat);
7: while (head(X) = NX) ∨ (head(X) = COOD)

∨ (head(X) =NX-COOD) do
8: X = Sub-tree(head(X));
9: while (head(X) = NP) ∨ (head(X) = COOD)

∨ (head(X) = NP-COOD) do
10: X1 = Sub-tree(head(X));
11: if (head(X1) = VX) ∧ (head(head(X1)) = VP) then
12: Y = Sub-tree(head(head(X1));
13: else
14: if (head(X1) = VP) then
15: Y = Sub-tree(head(X1);
16: if (Y 6= ∅) then
17: if head(Y) 6= CP) ∧ (head(Y) 6= COOD) then
18: X = Sub-tree(RightChild(Y));
19: else
20: X = Y ;
21: AP-list ← AP-list ∪ TerminalNodes(X);

Like APER2, APER3 also works on verb head categories.
However, APER3 has some pruning techniques to remove parts
of the sentence that should not be part of an AP. Consider the
snippet in Figure 6, the sub tree ”issue an alert” is subjected
to left branch pruning to remove the verb ’issue’ since such
verbs do not add value in the AP. According to the algorithm,
since the head node of VP is COOD, only the terminal nodes
of the right child are considered as an AP. Applying APER

100

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3 on the visible part of the requirement in Figure 6 gives the
following APs: ’pump’, ’an alert’, and ’deny the request’.

The proposed APERs may be used individually or in
combination depending on the system requirement and model
functionally. However, no one rule is considered to be the best
for all models because of the natural language structure.

Figure 6. An Enju parsing tree portion shows some resulting APs using
APER 3.

D. High-Level Procedure for Specification Transition System
Synthesis

Procedure 4 Procedure for synthesizing TSs from system
requirements

Require: set of requirements (System-requirements)
1: TS-set ← ∅ ;
2: for each Req ∈ System-requirements do
3: Parse-tree ← Get(Req tree.xml);
4: AP-list ← APER(Parse-tree);
5: AP-list ← Eliminate Dup(AP-list);
6: AP-list ← USR IN(AP-List);
7: AP-truth-table ← Relation(AP-list);
8: AP-truth-table ← USR IN(AP-truth-table);
9: S-list ← ∅;

10: for each A ∈ AP-truth-table do
11: S-list[i] = Ai ;
12: S-list ← USR IN(S-list);
13: T ← CreateT(S-list);
14: T ← USR IN(T);
15: TS ← CreateTS(T, S-list);
16: TS-set ← TS-set U TS;
17: return TS-set;

Procedure 4 shows the overall flow for computing the
TSs. A set of system requirements in natural language are
fed as input to the procedure. TS-set is the output of the
procedure and will contain the set of transition systems that
capture the input requirements as a formal model. TS-set is
initialized to null (line 1). Each requirement is input to the
Enju parser. The parser gives an xml file as output. A function

called Get is used to obtain the xml file into the variable
Parse-tree (line 3). The xml output in Parse-tree is subjected
to the proposed APERs, which give the atomic propositions
(APs) as output. APs are stored in the AP-list (line 4). Each
requirement is subject to all APERs and the AP-list obtained is
the union of the APs produced by each of the rules. The output
obtained by using the APERs may contain duplicates, which
are eliminated by using the function Eliminate Dup (line 5).
AP-list is then subjected to an expert user check, where the
AP(s) might be appended, eliminated or revised based on the
expert user’s domain knowledge (line 6). Some of the APs
maybe expressible as a Boolean function of other APs.

Therefore, next, a truth table (AP-truth-table) is created,
where each row corresponds to an AP from AP-list and each
column also corresponds to an AP from AP-list (line 7). Each
entry in the table is a Boolean value (true or false). Completing
the truth table determines the relationship of each AP with the
other APs in the AP-list. The truth table is completed by the
expert user (line 8). The list of states for the input requirements
are stored in the variable S-list. S-list is initialized to null (line
9). Each truth table entry (A) is defined to be a single state in
the transition system (line 10). This heuristic has worked well
in practice. S-list is subjected to expert user input (line 12).

The transitions of the TS are computed next. The list of
transitions (T) is initialized to a transition between every two
states using function ’CreateT’ (line 13). The transition list is
subjected to expert user input (line 14). A transition system
(TS) is constructed using the CreateTS function, which takes
the transitions (T) and the list of states (S-list) as input (line
15). This transition system (TS) is then added to the transition
system set (TS-set) (line 16). The procedure finally returns
a set of transition systems for all the requirements in an
application (line 17).

V. FORMAL MODEL SYNTHESIS PROCEDURE FOR TIMING
REQUIREMENTS

In this section, the approach is extended to deal with timing
requirements. When synthesizing transition systems (TSs), the
core activity was the extraction of APs. For synthesizing timed
transition system, the core activity is the extraction of APs and
TCs. An additional extraction rule is developed, that can be
applied on timed requirements not only to get APs but also to
extract the timing constraints (TCs) on each state transition.

A. Atomic Proposition and Timing Constrains Extraction Rule
(APTCER) for Timed Transition System

This section explains a new proposed rule that analyzes
timing requirements to get APs with their corresponding TCs
as a base for building TTSs. This rule called Atomic Propo-
sition and Timing Constrains Extraction Rule (APTCER) is
specified as Procedure 5 and works as follows. First, the timing
requirement is split into smaller phrases that are individually
analyzed (lines 1-14 of Procedure 5). These phrases are called
Timed Based Sentences (TBSs). Each resulting phrase is then
analyzed to extract the APs and TCs in that phrase (lines 15-
38 of Procedure 5). The list of APs and TSs are stored in
〈AP − list, TC − list〉.

APTCER takes the parse tree of the timing requirement as
input. The parse tree is obtained by applying the Enju parser
on the timing requirement. APTCER initilizes the list of TBSs
(TBS-list) to the empty list (line 1). APTCER then searches

101

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for sub-trees with root as ”S” and with left child of ”NP” and
right child as ”VP” (lines 2-5). Each such sub-tree is a TBS.

Note that TBSs can be nested in that there can be a TBS
inside of a TBS. The nested TBSs need to partitioned and
analyzed individually. This is done by searching for sub-trees
inside the TBS with ”SCP” or ”S” roots. Such sub trees are
cut out and the resulting TBS is returned (lines 7-13).

Next, the TBSs are analyzed to extract the APs and TCs.
The extraction is performed by analyzing both the left child
and the right child of the TBS. The left and right sub-trees
are assigned to variables A and B, respectively (lines 19 and
23). Then APER 1 is used to analyze both A and B. Through
empirical observation, it has been determined that the APs
extracted by APER 1 from sub-tree A (line 21, 22) corresponds
to APs but the APs extracted by APER 1 from sub-tree B (line
25, 26) corresponds to TCs. The resulting AP-list and TC-list
are corresponds to one TBS (line 27), the TBS’s pair is saved
in the final TBS-list (line 28).

Applying lines 1-14 of APTCER on the requirement in
Figure 7 gives three TBSs, they are shown in separate red
boxes. While the rest of the algorithm (lines 15-38) works on
each TBS to find it’s AP-list and TC-list. The left sentence
has one AP which is ”air-line-alarm” and one TC which is
”maximum delay time of x minutes”. The resulting AP and TC
will be saved as a pair. This helps in identify that the AP and
TC are correlated, which is used to determine the transition
for which the TC should be applied. More specifically, the
TC will be applied to a transition from a state in which the
corresponding AP is true. Overall the three TBS from Figure 7
give the following. AP-list is: ’air-in-line alarm’, ’air bubbles
larger than y L’, and ’insulin administrations’. TC-list will have
one TC: maximum delay time of x seconds which related to
the AP of ’air-in-line alarm’ as one pair.

Note that a TBS can correspond to more than one AP and
more than one TC. For example, Figure 8 shows a TBS that
has two APs (in red boxes) and one TC (in a green box).

B. High-Level Procedure for Specification Timed Transition
System Synthesis

Procedure 6 shows the overall flow for computing the
TTSs. A set of natural language timing requirements are input
to the procedure. TTS-set is the output of the procedure and
will contain the set of timed transition systems that capture
the input requirements as a formal model.

TTS-set is initialized to null (line 1). Each timing require-
ment is input to the Enju parser. The parser gives an xml
file as output. A function called Get is used to obtain the
xml file into the variable Parse-tree (line 3). The xml output
in Parse-tree is subjected to our proposed APTCER, which
gives the TBS-list that are pairs of atomic propositions and
their related timing constrains lists (line 4). The synthesizing
procedure then iterates through all TBSs (line 5) to get thier
corresponding pair of APs and TCs (line 6).

AP-lists is subjected to an expert user check, where the APs
might be appended, eliminated or revised based on the expert
users domain knowledge (line 7). Some of the APs maybe
expressible as a Boolean function of other APs. Therefore,
next, a truth table (AP-truth-table) is created, where each row
corresponds to an AP from AP-lists and each column also
corresponds to an AP from AP-lists (line 8). Each entry in the

table is a Boolean value (true or false). Completing the truth
table determines the relationship of each AP with the other
APs in the AP-lists. The truth table is completed by the expert
user (line 9). TC-list is then checked by the expert user, where
some TCs might be appended, eliminated or revised based on
the expert users domain knowledge (line 10).

Procedure 5 APTCER

Require: Parse-tree
1: TBS-list ← ∅ ;
2: for each Head− Cat ∈ Head(Parse-tree) do
3: if Head-Cat = S then
4: if (Left-Child (S)= NP ∨ NP-COOD) ∧

(Right-Child (S)= VP) then
5: TBS = Sub-tree (S);
6: for each Child-Head (TBS) do
7: if Child-Head (TBS) = SCP then
8: Cut-Sub-tree (SCP);
9: return TBS;

10: else
11: if Child-Head (TBS) = S then
12: Cut-Sub-tree (S);
13: return TBS;
14: TBS-list ← TBS-list ∪ TBS;
15: k ← ∅;
16: for each TBS ∈ TBS-list) do
17: K = k + 1;
18: A ← ∅ , B ← ∅;
19: A = Sub-tree (left-Child (TBS));
20: AP − listk ← ∅;
21: APER 1 (A) → AP-list;
22: AP − listk ← AP-list ;
23: B = Sub-tree (Right-Child (TBS));
24: TC − listk ← ∅;
25: APER 1 (B) → AP-list;
26: TC − listk ← AP-list ;
27: TBSk = 〈AP − listk, TC − listk〉;
28: TBS-list ← TBS-list ∪ TBSk;

Next, the states and transitions of the TTS are computed. S-
list variable (list of states) is initialized to null (line 11). Each
truth table entry (A) (line 12) is defined to be a single state
in the transition system (line 13). S-list is subjected to expert
user input (line 14). The transitions of the TTS are computed
next. The list of transitions (T) is initialized to a transition
between every two states using function CreateT (line 15). The
transition list is subjected to expert user input (line 16) where
some transitions might be pruned. A function called ’Apply-
TC-list’ is applied to link each TC to all transitions emanating
from states in which the corresponding APs are true, based on
the TBS pair → TBS 〈AP − list, TC − list〉 (line 17). The
expert user will confirm, modify, or apply the TC on specific
transition/s based on his domain knowledge (line 18). For the
remaining transitions that do not have any timing bounds, the
timing bounds are open from zero to infinity 〈0,∞〉. For this
reason a new function called ’Apply-TC-bounds’ is applied on
each transition that has no TC (line 19).

A timed transition system (TTS) is constructed using the
CreateTS function as in procedure 4, this function takes the
transitions (T) linked with their timing conditions and the

102

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

list of states (S-list) as input (line 20) to create a TTS. The
resulting TTS is then added to the timing transition system
set (TTS-set) (line 21). The procedure finally returns a set of
timing transition systems for all timing requirements that have
been fed to the algorithm (line 22).

Procedure 6 Procedure for synthesizing TTSs from timing
requirements

Require: set of requirements (Timed-requirements)
1: TTS-set ← ∅ ;
2: for each Req ∈ Timed-requirements do
3: Parse-tree ← Get(Req tree.xml);
4: TBS-list ← APTCER(Parse-tree);
5: for each TBS ∈ TBS-list do
6: Get (〈AP − list, TC − list〉);
7: AP-list ← USR IN(AP-list);
8: AP-truth-table ← Relation(AP-list);
9: AP-truth-table ← USR IN(AP-truth-table);

10: TC-list ← USR IN(TC-list);
11: S-list ← ∅;
12: for each A ∈ AP-truth-table do
13: S-list[i] = Ai ;
14: S-list ← USR IN(S-list);
15: T ← CreateT(S-list);
16: T ← USR IN(T);
17: T ← Apply-TC-list ;
18: T ← USR IN(TC);
19: T ← Apply-TC-bounds 〈0,∞〉;
20: TTS ← CreateTS(T, S-list);
21: TTS-set ← TTS-set U TTS;
22: return TTS-set;

VI. CASE STUDY: GENERIC INSULIN INFUSION PUMP
(GIIP)

Insulin pump is a medical device that delivers doses of
insulin 24 hours a day to patients with diabetes. It is typically
used to keep the blood glucose level in an acceptable range.
Overdose of insulin can lead to low blood sugar that can lead
to coma/death. Therefore, the insulin pump is a safety-critical
device.

The Generic Insulin Infusion Pump (GIIP) has been pro-
posed [30], which lists a set of safety requirements for insulin
pumps. We use these safety requirements to explain our
approach. GIIP has proposed a list of both functional and
timing requirements, examples will be given about both cases.

A. Functional requirements of GIIP
GIIP model abstracts requirements that explains how spe-

cific critical behaviour of the system can be controlled, func-
tional requirements are introduced to solve common hazards
in the insulin pump’s market that might happen during insulin
administration and not related to specific timing constraints.

As an example, consider requirement 1.8.2 (from [30])
which is needed to address a hazard that may happen in
the suspension mode of the pump. Suspension mode can
occur when the pump may be in refill or priming or insulin
delivery processes. The insulin pump has two type of insulin
deliveries: bolus and basal. Bolus is a high insulin rate that is
recommended in case of low blood glucose level.

Requirement 1.8.2: When the pump is in suspension mode,
insulin deliveries shall be prohibited. Any incomplete bolus
delivery shall be stopped and shall not be resumed after the
suspension.

From safety requirement 1.8.2, it is clear that the pump
should not resume a suspended bolus automatically after
returning from suspension since they would be an unexpected
amount of insulin.
Requirement 1.8.5: When the pump resumes from suspension,
calculations shall be performed to synchronize insulin used
and remaining reservoir volume.

Requirement 1.8.5 is an extension of how the pump should
function after returning from the suspension mode. Here two
requirements are needed to address one safety hazard. When
algorithm 4 is applied on these two requirements, the first step
is collecting the APs by using the extraction rules. Applying
APER 2 on 1.8.2 gives: ”pump”, ”suspension mode”, ”insulin
deliveries”, ”incomplete bolus delivery”, and ”suspension”.
Applying APER 2 on 1.8.5 gives: ”pump”, ”suspension”,
”calculations”, and ”synchronize insulin used and remaining
reservoir volume”. Next, duplicate APs are to be removed.
This eliminates ’pump’ and ’suspension’ from the AP-list.
Now, the expert user intervenes for manipulating the AP-list,
where APs can be deleted, modified or even inserted based on
the expert user’s domain knowledge. This yields the final AP-
list as ”suspension mode” (SPM), ”insulin deliveries” (INDV),
”incomplete bolus delivery” (IBO) and ”synchronize insulin
used and remaining reservoir volume” (SYNC). Next, the AP-
truth-table to define relations between APs is constructed as
shown in Table I.

TABLE I. AP-TRUTH-TABLE FOR REQUIREMENT 1.8.2 AND 1.8.5
FROM AP-LIST

APs → SPM INDV IBO SYNC
↓

SPM T F F F
INDV F T F F
IBO F T T F

SYNC F F F T

Here, each row represents a state. For example, SPM
represents a state where suspension mode is true, IBO is false,
INDV is false, and SYNC is also false; which emphasizes that
insulin bolus should not be active during suspension.

Finally, Procedure 4 applies transitions between every two
states as shown in Figure 9a. The expert user will approve
or remove some unacceptable transitions. Figure 9b shows the
final transition system.

B. Timing requirements of GIIP
The application of APTCER to some timing requirements

of GIIP are described next. Timing requirements are also criti-
cal to be preserved. In GIIP, a motor controls the fluid injection
and therefore the fluid flow rate and dosage. The motor is in
turn controlled by software and the speed of the motor is time
controlled by the software. The timing requirements of GIIP
are also safety-critical because if the software violates these
requirements, the dosage can be affected. Overdose or under
dose of medicines can be very harmful or even fatal to the
patient.

103

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. An Enju parsing tree shows three resulting TBSs after applying APTCER.

Figure 8. An Enju parsing tree portion shows the resulting TBS 〈AP − list, TC − list〉) after applying APTCER.

104

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. RESULTING TRANSITION SYSTEMS BY APPLYING PROCEDURE 4 AND APERS ON A SET OF SYSTEM REQUIREMENTS

Req. NO. APER
Total No.

of APs

No. of APs

Without DP

User input Final

AP added AP removed AP modified APs states transitions

1 10 10 0 6 0

1.1.1 2 10 10 0 5 0 5 4 5

3 10 10 0 6 0

1 7 7 0 3 2

1.1.3 2 7 7 0 3 2 4 4 4

3 7 7 0 3 1

1 24 12 3 5 1

1.2.4 , 1.2.6, 1.2.7 2 24 18 0 8 0 10 10 14

3 24 16 2 8 0

1 11 6 1 3 0

1.3.5 2 11 8 0 4 1 4 4 4

3 11 8 1 5 0

1 9 7 1 3 1

1.8.2, 1.8.5 2 9 7 0 3 0 4 4 5

3 9 7 0 3 0

1 6 6 0 3 1

2.2.2, 2.2.3 2 7 6 0 3 1 3 3 4

3 7 6 0 3 2

1 15 14 0 9 0

3.1.1 2 14 12 0 7 0 5 3 3

3 14 13 0 8 0

1 10 9 0 7 2

3.2.5 2 7 7 0 4 1 3 3 3

3 7 7 0 4 1

1 4 4 0 1 0

3.2.7 2 4 4 0 1 1 3 3 3

3 4 4 0 1 0

As an example, consider requirement 1.6.1 (from [30])
which helps patients to be aware of the occurrence of an air in
line hazard. Air in line hazard is the presence of air bubbles in
the pump above the acceptable range. The requirement states
that if the air in line problem occurred during insulin delivery,
an air in line alarm should start in a time not more than
x minutes, in addition, every ongoing insulin delivery must
be stopped. The alarm will give the patient a warning that a
problem is going to happen, so the patient will interact with
the pump and solve the issue to prevent incorrect insulin doses
or other problems.
Requirement 1.6.1: An air-in-line alarm shall be triggered
within a maximum delay time of x seconds if air bubbles larger
than y µL are detected, and all insulin administrations shall
be stopped.

When procedure 6 is applied to this requirement, the first
step is collecting the lists of TBS by applying APTCER, which
gives three separate TBSs. TBS1 is ”An air-in-line alarm shall
be triggered within a maximum delay time of x seconds”, while
TBS2 is ”air bubbles larger than y µL are detected”, and TBS3
is ”all insulin administrations shall be stopped”.

Next, the AP-list and TC-list for each TBS is computed.
AP-list contains: ”air-in-line alarm”, ”air bubbles larger than
y µL”, and ”insulin administrations”. TC-list contains: ”max-
imum delay time of x seconds” which is related to the AP:
”air-in-line alarm” in TBS1.

Now, the expert user intervenes to manipulate the AP-list,
where APs can be deleted, modified or even inserted based

105

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on the expert users domain knowledge. This yields the final
AP-list as ”air-in-line alarm” (ALRM), ”air bubbles larger than
y µL” (AIRB), ”insulin administrations” (INSAD). Next, the
AP-truth-table to define relations between APs is constructed
as shown in Table III.

INDV

IBO SPM

SY NC

(a) TS with all suggested
transitions.

INDV

IBO SPM

SY NC

(b) TS after removing some
transitions.

Figure 9. Finite state machine for suspension mode requirements (1.8.1 and
1.8.5).

AIRB

ALRM INAD

(a) TTS with all suggested transitions.

AIRB

ALRM INAD

〈0, x〉

〈0,∞〉

〈0,∞〉

(b) TTS after applying the TCs and removing some
transitions.

Figure 10. Timed finite state machine for air-in-line requirement (1.6.1).

TABLE III. AP-TRUTH-TABLE FOR TIMING REQUIREMENT 1.6.1
FROM AP-LIST

APs → AIRB INAD ALRM
↓

AIRB T T F
INAD F T F
ALRM F F T

As in Table I, each row in the Table III represents a state.
For example, AIRB represents a state where AIRB is true,
INAD is also true, while ALRM is false; which explains the
problem of having air bubbles while an insulin administration
is given to the patient. Now, the user can make changes to the

TC-list which may have a TC that corresponds to one or more
APs. After the states are computed, the expert user can add or
modify any of the states if needed.

Then, Procedure 6 applies transitions between every two
states, the expert user will approve or remove some unac-
ceptable transitions as shown in Figure 10a. After following
Procedure 6, the final TTS is shown in Figure 10b

VII. RESULTS ANALYSIS

An evaluation process is applied on the resulting TSs
and TTSs by using NuSMV and UPPAAL model checkers
respectively. Firslty, evaluation of the first approach (APERs
and Procedure 4) for TSs is performed using the NuSMV
model checker. A model checker is a tool that can check if
a TS or a TTS satisfies a set of properties. The properties
have to be expressed in a temporal logic. Here, we have used
CTL to express the properties. The CTL properties are written
manually for each of the requirements that are subjected to our
approach. NuSMV is used to check if the TSs synthesized by
the first approach satisfied the CTL properties corresponding
to each functional requirement.

Secondly, UPPAAL is used to verify the resulting TTSs
by applying APTCER and Procedure 6 (the second approach).
UPPAAL is a tool that can verify real time systems and is
based on the timed automata theory [31]. UPPAAL is used to
check if the TTSs synthesized by the second approach satisfied
the CTL properties corresponding to each timing requirement.

Table II shows the results of applying Procedure 4 on
a number of GIIP requirements. The requirement numbers
in the table are from [30]. All the final TSs satisfied their
corresponding CTL properties. Each requirement or set of
requirements (listed in column 1) have been subjected to the
extraction rules (column 2), where column 3 shows the total
number of APs resulting from each extraction rule. Column 4
gives the number of APs after removing the duplicate APs. In
addition, a record of the suggested expert user intervention for
adding, removing or modifying the APs is shown in column
5. The final number of APs, states, and transitions are shown
in column 6.

As shown in Table II, when a requirement is subjected
to the APERs, the resultant output from each APER may
be different even though the number of APs is the same.
For requirements 1.8.2 and 1.8.5, although applying APER1,
APER2, and APER3 give the same number of APs, APER1
gives different list of APs from APER2 and APER3.

Table IV presents the results of applying Procedure 6 on a
number of GIIP timing requirements from [30]. All applied
CTL properties are satisfied by the resulting TTSs. The listed
requirements (column 1) are subjected to the APTCER which
gives list of TBSs for each requirement (column 2). column
3 and 4 show the number of the resulting APs and TCs
respectively. Column 5 shows the pair of AP-list and TC-
list. As in Table II, column 6 has the user interventions of
appending, deleting, or modifying the AP-lists. The final TTS’s
components are shown in column 7: the number of APs, the
number of states, and finally the number of transitions between
states.

VIII. CONCLUSION

The key ideas of our approach for transforming require-
ments into transition systems and timed transitions systems

106

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. RESULTING TIMED TRANSITION SYSTEMS BY APPLYING PROCEDURE 6 AND APTCER ON A SET OF TIMING REQUIREMENTS

Req. NO.
Total No.

of TBSs

Total No.

of APs

Total No.

of TCs
(AP,TC)

User input Final

AP added AP removed AP modified APs states transitions

〈2, 1〉

1.2.8 2 3 3 〈1, 2〉 1 0 1 4 3 4

1.6.1 3 3 1 〈1, 1〉 0 0 0 3 3 7

〈1, 1〉

1.8.4 2 3 2 〈1, 1〉 1 1 2 3 3 4

2.2.1 4 6 1 〈4, 1〉 0 0 1 6 3 4

are the following. The extraction rules work on the parse tree
to get an initial list of APs and TCs. The AP truth table is
used to establish relationships between the initial list of APs.
For example, an AP may be expressible as a conjunction of
two other APs. The initial expert user pruned list of APs gives
insight into the states of the transition system. We have found
empirically that having one state for this initial pruned AP
list is a good heuristic to compute the states of the transition
system. Transitions are applied between every two states and
then pruned by the expert user. TCs are paired with APs and
this information is used to assign TCs to transitions.

Transforming natural language requirements into formal
models is quite a hard problem and hard to get right without
input from domain expert. Our approach sets up a very
structured process, where the tool does lot of the work in
analyzing and synthesizing TSs and TTSs, but also allows
for input from domain expert. The proposed methodology has
worked very well in practice for the GIIP requirements. All
the TSs and TTSs computed for the requirements satisfied their
corresponding CTL properties.

ACKNOWLEDGMENT

This publication was funded by a grant from the United
States Government and the generous support of the American
people through the United States Department of State and the
United States Agency for International Development (USAID)
under the Pakistan - U.S. Science & Technology Cooperation
Program. The contents do not necessarily reflect the views
of the United States Government. The authors would like to
acknowledge Dr. Vinay Gonela for helping with proofreading
the paper.

REFERENCES
[1] E. M. Al-qtiemat, S. K. Srinivasan, M. A. L. Dubasi, and S. Shuja,

“A methodology for synthesizing formal specification models from
requirements for refinement-based object code verification,” in The
Third International Conference on Cyber-Technologies and Cyber-
Systems. IARIA, 2018, pp. 94–101.

[2] FDA, “List of Device Recalls, U.S. Food and Drug Administration
(FDA),” 2018, last accessed: 2018-09-10. [Online]. Available:
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRES/res.cfm

[3] R. Kaivola et al., “Replacing testing with formal verification
in intel coretm i7 processor execution engine validation,” in
Computer Aided Verification, 21st International Conference, CAV,
Grenoble, France, June 26 - July 2, 2009. Proceedings, ser.
Lecture Notes in Computer Science, A. Bouajjani and O. Maler,
Eds., vol. 5643. Springer, pp. 414–429. [Online]. Available:
https://doi.org/10.1007/978-3-642-02658-4 32

[4] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “SLAM
and static driver verifier: Technology transfer of formal methods
inside microsoft,” in Integrated Formal Methods, 4th International
Conference, IFM, Canterbury, UK, April 4-7, 2004, Proceedings, ser.
Lecture Notes in Computer Science, E. A. Boiten, J. Derrick, and
G. Smith, Eds., vol. 2999. Springer, pp. 1–20. [Online]. Available:
https://doi.org/10.1007/978-3-540-24756-2 1

[5] K. Bhargavan et al., “Formal verification of smart contracts: Short
paper,” in Proceedings of the 2016 ACM Workshop on Programming
Languages and Analysis for Security, PLAS@CCS, Vienna, Austria,
October 24, T. C. Murray and D. Stefan, Eds. ACM, pp. 91–96.
[Online]. Available: http://doi.acm.org/10.1145/2993600.2993611

[6] D. Delmas et al., “Towards an industrial use of fluctuat on safety-critical
avionics software,” in International Workshop on Formal Methods for
Industrial Critical Systems. Springer, 2009, pp. 53–69.

[7] P. Manolios, “Mechanical verification of reactive systems,” PhD
thesis, University of Texas at Austin, August 2001, last accessed:
2018-10-10. [Online]. Available: http://www.ccs.neu.edu/home/pete/
research/phd-dissertation.html

[8] M. A. L. Dubasi, S. K. Srinivasan, and V. Wijayasekara, “Timed refine-
ment for verification of real-time object code programs,” in Working
Conference on Verified Software: Theories, Tools, and Experiments.
Springer, 2014, pp. 252–269.

[9] Tsujii laboratory, Department of Computer Science at The University
of Tokyo, “Enju - a fast, accurate, and deep parser for English,” 2011,
available from http://www.nactem.ac.uk/enju, [accessed: 2018-07-10].

[10] V. Ágel, Dependency and valency: an international handbook of con-
temporary research. Walter de Gruyter, 2003, vol. 1.

[11] S Ghosh et al., “Automatic requirements specification extraction from
natural language (ARSENAL),” SRI International, Menlo Park, CA,
Tech. Rep., 2014.

[12] D. Aceituna, H. Do, and S. Srinivasan, “A systematic approach to

107

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

transforming system requirements into model checking specifications,”
in Companion Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 165–174.

[13] I. G. Harris, “Extracting design information from natural language
specifications,” in Proceedings of the 49th Annual Design Automation
Conference. ACM, 2012, pp. 1256–1257.

[14] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Translating struc-
tured English to robot controllers,” Advanced Robotics, vol. 22, no. 12,
2008, pp. 1343–1359.

[15] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil, “Propel:
an approach supporting property elucidation,” in Proceedings of the
24th International Conference on Software Engineering. ACM, 2002,
pp. 11–21.

[16] K. Shimizu, “Writing, verifying, and exploiting formal specifications for
hardware designs,” Ph.D. dissertation, PhD thesis, Stanford University,
2002.

[17] D. Zowghi, V. Gervasi, and A. McRae, “Using default reasoning to
discover inconsistencies in natural language requirements,” in Software
Engineering Conference. APSEC 2001. Eighth Asia-Pacific. IEEE, pp.
133–140.

[18] V. Gervasi and D. Zowghi, “Reasoning about inconsistencies in natural
language requirements,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 14, no. 3, 2005, pp. 277–330.

[19] W. Scott, S. Cook, and J. Kasser, “Development and application of
a context-free grammar for requirements,” in SETE 2004: Focussing
on Project Success; Conference Proceedings; 8-10 November 2004.
Systems Engineering Society of Australia, 2004, p. 333.

[20] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie, “Automated ex-
traction of security policies from natural-language software documents,”
in Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering. ACM, 2012, p. 12.

[21] Z. Ding, M. Jiang, and J. Palsberg, “From textual use cases to service
component models,” in Proceedings of the 3rd International Workshop
on Principles of Engineering Service-Oriented Systems. ACM, 2011,
pp. 8–14.

[22] C. Rolland and C. Proix, “A natural language approach for requirements
engineering,” in International Conference on Advanced Information
Systems Engineering. Springer, 1992, pp. 257–277.

[23] P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, J. Ouaknine, and
J. Worrell, “Model checking real-time systems,” in Handbook of Model
Checking., E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds.
Springer, 2018, pp. 1001–1046.

[24] D. Knorreck, L. Apvrille, and P. de Saqui-Sannes, “TEPE: a sysml lan-
guage for time-constrained property modeling and formal verification,”
ACM SIGSOFT Software Engineering Notes, vol. 36, no. 1, 2011, pp.
1–8.

[25] A. Shrivastava, M. Mehrabian, M. Khayatian, P. Derler, H. A. Andrade,
K. Stanton, Y. Li-Baboud, E. Griffor, M. Weiss, and J. C. Eidson, “A
testbed to verify the timing behavior of cyber-physical systems: Invited,”
in Proceedings of the 54th Annual Design Automation Conference,
DAC 2017, Austin, TX, USA, June 18-22, 2017. ACM, 2017, pp.
69:1–69:6.

[26] J. Peters, N. Przigoda, R. Wille, and R. Drechsler, “Clocks vs. instants
relations: Verifying CCSL time constraints in UML/MARTE models,”
in 2016 ACM/IEEE International Conference on Formal Methods and
Models for System Design, MEMOCODE, Kanpur, India, November
18-20. IEEE, pp. 78–84.

[27] E. Kang, L. Huang, and D. Mu, “Formal verification of energy and
timed requirements for a cooperative automotive system,” in Proceed-
ings of the 33rd Annual ACM Symposium on Applied Computing, SAC
2018, Pau, France, April 09-13, H. M. Haddad, R. L. Wainwright, and
R. Chbeir, Eds. ACM, pp. 1492–1499.

[28] G. Carvalho, A. Cavalcanti, and A. Sampaio, “Modelling timed reactive
systems from natural-language requirements,” Formal Asp. Comput.,
vol. 28, no. 5, 2016, pp. 725–765.

[29] J. Hassine, “Early modeling and validation of timed system require-
ments using timed use case maps,” Requir. Eng., vol. 20, no. 2, 2015,
pp. 181–211.

[30] Y. Zhang, R. Jetley, P. L. Jones, and A. Ray, “Generic safety require-

ments for developing safe insulin pump software,” Journal of diabetes
science and technology, vol. 5, no. 6, 2011, pp. 1403–1419.

[31] G. Behrmann, A. David, and K. G. Larsen, “A tutorial on uppaal,” in
Formal methods for the design of real-time systems. Springer, 2004,
pp. 200–236.

108

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Reviewing National Cybersecurity Awareness for
Users and Executives in Africa

Maria Bada

Cambridge Cybercrime Centre
Computer Laboratory,

Cambridge University UK
Global Cyber Security Capacity Centre,

University of Oxford, UK
Academy for Computer Science

and Software Engineering
University of Johannesburg

South Africa
Email: maria.bada@cl.cam.ac.uk

Basie Von Solms

Academy for Computer Science
and Software Engineering

University of Johannesburg,
South Africa

Email: basievs@uj.ac.za

Ioannis Agrafiotis

Department of Computer Science
University of Oxford

Email: ioannis.agraotis@cs.ox.ac.uk

Abstract—There is an unprecedented increase in cybercrime
globally observed over the last years. One of the regions driving
this increase is Africa, where significant financial losses are
reported. Yet, citizens of African countries are not aware of the
risks present in cyberspace. The design and implementation of
national awareness campaigns by African countries to address
this problem are in their infancy state, mainly due to the absence
of capacity building efforts. As part of the Global Cybersecurity
Capacity Centre (GCSCC) programme, we conducted a series of
focus groups in six African countries, in order to assess their
cybersecurity posture, a critical component of which is user and
executive awareness of cyber risks. This paper is an extended
version of previous work where an initial analysis of awareness
for cyber risk in African countries was presented. In this extended
version, we reflect on best practice approaches for developing
national awareness campaigns and use these as a framework
to analyse qualitative data from the focus groups. We discuss
the current state of African countries with regards to the im-
plementation of national cybersecurity awareness campaigns for
users and executives, the main obstacles in combating cybercrime
and conclude with recommendations on how African countries
can identify and prioritise activities to increase their capacity
regarding cybersecurity awareness.

Keywords–Cybersecurity; National strategies; Cyber threat
awareness; Risk

I. INTRODUCTION

Over the last years, there has been an unprecedented
increase in cybercrime globally [1], [2], [3]. Africa is a region
with one of the highest rates of cybercrime affecting the
strategic, economic and social growth development of the
region [4]. Reports suggest that, inter alia, estimated costs have
soared up to $550 million for Nigeria, $175 million for Kenya
and $85 for Tanzania [4].

Additionally, the growth in Internet use has been facilitated
by high proliferation and adoption of mobile communications.
Speedy diffusion and adoption have exposed the public to
unprecedented individual security threats via the mobile plat-
form [5].

Studies have confirmed that mobile phones have been used
as a platform for distributing viruses as well as a transmission
of viruses over Bluetooth services [6]. In some instances,
mobile phones have been used to propagate hate speech as
evidenced in Kenya after the December 2007 elections that
fuelled ethnic violence [7].

One of the factors creating a permissive environment for
cybercrime is the lack of awareness in the African pub-
lic regarding risks when using cyberspace [4]. Additionally,
the level of development of digital infrastructure in African
countries directly influences their security posture. Reports
suggest that cyber criminals rely on the very poor security
habits of the general population [8] and urge policy makers
to engage in awareness campaigns [4] since there is strong
evidence that such initiatives can efficiently lower the success
rate of cybercrime [9]. More specifically, there are white
papers estimating that an investment in security awareness
and training can potentially change user’s behavior and reduce
cyber-related risks by 45% to 70% [9].

It is evident that Cybersecurity Awareness is a very impor-
tant step in the fight against cybercrime in Africa. For that
reason, it is essential for any African country that intends
to implement interventions in this area to have a holistic
understanding of the level of Cybersecurity Awareness in that
country. Towards this direction, there have been efforts to
capture the status of Cybersecurity Awareness (understanding
on cyber threats and risk, cyber hygiene, and appropriate
response options) in Africa [10], and in general, the findings
suggest that the absence of awareness campaigns regarding
cybersecurity and Internet safety create a lax environment for
information security [10]. In 2016, only 11 (20.3%) out of
54 countries had implemented cybersecurity (CS) laws and
regulations [11]. Additionally, the lack of an adequately skilled
workforce on cybersecurity can impose great challenges to
many African countries.

This paper is an extended version of previous work [1]

109

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where an initial analysis of awareness for cyber risk in African
countries was presented. In this extended version, we analyse
qualitative data from six African countries that was collected
when applying the Cybersecurity Capacity Maturity Model for
Nations (CMM) developed by the Global Cybersecurity Ca-
pacity Centre (GCSCC) at the University of Oxford [12]. We
reflect on best practice approaches for developing campaigns
and draw conclusions on what the current state of African
countries is regarding awareness in risks from cybercrime,
what are the main obstacles in combating cybercrime and
what actions countries should prioritise in order to increase
awareness of risks from cybercrime in their population.

In what follows, Section II provides a literature and best
practice review on developing cybersecurity awareness cam-
paigns and existing efforts in Africa. Section III provides a
brief overview of the CMM and the CMM methodology when
deployed in a country. Section IV describes the results from
the CMM reviews in six African countries and our analysis
of the qualitative data obtained from focus groups during
these reviews. As this paper concentrates on Cybersecurity
Awareness, which is one component of the CMM, only the
results of this component will be discussed. No countries will
be referenced, but a general overview of the outcome will be
described. Section V discusses the results of our analysis and
Section VI concludes the paper.

II. CYBERSECURITY AWARENESS RAISING CAMPAIGNS

According to the UK Her Majesty’s Government (HMG)
Security Policy Framework [13], it is government’s role to
raise cybersecurity awareness within a country. “People and
behaviours are fundamental to good security. The right se-
curity culture, proper expectations and effective training are
essential. Everyday actions and the management of people, at
all levels in the organisation, contribute to good security. A
strong security culture with clear personal accountability and
a mature understanding of managing risk, responsibility and
reputation will allow the business to function most effectively”.

Awareness presentations are “intended to allow individuals
to recognize IT security concerns and respond accordingly. In
awareness activities, the learner is the recipient of information,
whereas the learner in a training environment has a more
active role. Awareness relies on reaching broad audiences
with attractive packaging techniques. Training is more formal,
having a goal of building knowledge and skills to facilitate the
job performance [14].

Awareness is used to stimulate, motivate, and remind the
audience what is expected of them [15]. This is an important
aspect of cybersecurity policy or strategy because it enhances
the knowledge of users about security, changes their attitude
towards cybersecurity, and their behaviour patterns.

A. Developing cybersecurity awareness raising campaigns
There is an abundance of best practice approaches describ-

ing principles in designing and implementing an awareness-
raising campaign. Little emphasis, however, was put on how
to strategically decide the areas where awareness campaigns
should focus. National Institute of Standards and Technology
(NIST) [16] is one of the pioneers in this field. Their frame-
work provides three alternatives on how organisations should
be structured, detailing for each category the processes for an
effective and efficient campaign.

For all three approaches, namely centralised, partially de-
centralised and fully decentralized, NIST provides informa-
tion on how a ‘needs assessment’ should be conducted; a
strategy should be developed; an awareness training program
be designed; and an awareness program be implemented.
The key criteria to decide which approach an organisation
should adopt are the size of the organisation, similarities in
missions between different departments, knowledge of the
topics into question and how spread the geographical area
where campaigns will be implemented is.

Focusing on the design and implementation of awareness-
raising campaigns, literature suggests that successful aware-
ness campaigns need to be a ‘learning continuum’ [15], com-
mencing from awareness, evolving to training and resulting
in education. According to Organisation of American States
(OAS) [17], it is of paramount importance that stakeholders
from the public and private sector, Non-profit Government Or-
ganisations (NGOs), and technology and finance corporations
to be involved. Once stakeholders are identified, the next steps
in the OAS model provide instructions on how to define the
goals of the campaign, the audience it targets and the strategy
via which the campaign will be implemented.

Even by following best practise, several difficulties exist
when it comes to creating a successful campaign: a) not un-
derstanding what security awareness really is; b) a compliance
awareness program does not necessarily equate to creating the
desired behaviours; c) usually there is lack of engaging and
appropriate materials; d) usually there is no illustration that
awareness is a unique discipline; e) there is no assessment
of the awareness programmes [18]; f) not arranging multiple
training exercises but instead focusing on a specific topic or
threat does not offer the overall training needed [19].

Perceived control and personal handling ability, the sense
one has that he/she can drive specific behaviour, has also
been found to affect the intention of behaviour but also
the real behaviour [20]. Culture is another important factor
for consideration when designing education and awareness
messages [21] as it can have a positive security influence
to the persuasion process. Moreover, even when people are
willing to change their behaviour, the process of learning a
new behaviour needs to be supported [21].

Messages and advertisements are usually preferred when
they match the cultural theme of the message recipient.
Overall, a campaign should use simple consistent rules of
behaviour that people can follow. This way, their perception
of control will lead to better acceptance of the suggested
behaviour. Moreover, even when people are willing to change
their behaviour, the process of learning a new behaviour needs
to be supported [21].

B. Cybersecurity awareness campaigns in Africa
A review in cybersecurity policies in African countries [22]

shows that awareness raising is key issue either as a separate
factor or as part of the role of the proposed National CSIRT. A
cybersecurity policy and strategy may not be in place yet for
all countries in Africa. However, there are already a number
of organisations that have identified the need for continental
coordination and increased cybersecurity awareness including
the African Information Society Initiative (UNECA/AISI) [23],
The Internet Numbers Registry for Africa (AfriNIC) [24],

110

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ITU/GCA [25], Interpol, The Southern African Development
Community (SADC) [26] and ISG-Africa [27].

There are existing efforts in Africa such as the ISC
Africa [28]. This is a coordinated, industry and community-
wide effort to inform and educate Africa’s citizens on safe
and responsible use of computers and the Internet, so that the
inherent risks can be minimised and consumer trust can be
increased. Also, Parents’ Corner Campaign [29] is intended to
co-ordinate the work done by government, industry and civil
society. Its objectives are to protect children, empower parents,
educate children and create partnerships and collaboration
amongst concerned stakeholders.

Recently Facebook has also announced partnerships with
over 20 non-governmental organisations and official agencies
from the DRC, Ghana, Kenya, Nigeria and South Africa in sup-
port of Safer Internet Day (SID) marked on 6 February [30].
SID advocates making the internet safer, particularly for the
youth, and is organised by the joint Insafe-INHOPE network
with the support of the European Commission and funded by
the Connecting Europe Facility programme (CEF).

Usually, most of official awareness-campaign sites include
advice, which usually comes from security experts and ser-
vice providers, who monotonically repeat suggestions such as
use strong passwords. Such advice pushes responsibility and
workload for issues that should be addressed by the service
providers and product vendors onto users. One of the main
reasons why users do not behave optimally is that security
systems and policies are often poorly designed [31]. There is
a need to move from awareness to tangible behaviours.

C. Cybersecurity awareness raising for executives
The view that executives are often not sufficiently prepared

to handle cybersecurity risk has raised concerns in boardrooms
nationwide and globally. Even if companies increase their
investments in security, we see more and more serious cyber
attacks. The main concern is whether executives are prepared
to make the right cybersecurity investment decisions and
develop effective cybersecurity strategies [32].

Most executives realize the threat cyber risk represents to
their organisation and to the nation’s economy and are being
found liable for cyber systems failures. Governing agencies are
taking regulatory action against boards and management with
the full support of the courts [33].

To improve the situation, companies need to address two
issues. First, directors need to have basic training in cy-
bersecurity that addresses the strategic nature, scope, and
implications of cybersecurity risk. Second, top management
needs to provide meaningful data about not just the state of
data security as defined by viruses quarantined or the number
of intrusions detected, but also about the resilience of the
organisation’s digital networks [32].

Developing a common language for management and cor-
porate directors to discuss cybersecurity issues is also impor-
tant. Digital security specialists, like all subject-area experts,
must be able to communicate effectively with board members
and other leaders. Information security executives must be
capable to present information at a level and in a format that
is accessible to non-technical corporate directors [32].

Both management and directors need to be aware of:

1) the limitations of security (no practical cybersecurity
strategy can prevent all attacks) and

2) the need for resilience (strategies to sustain business
during a cyberattack and to recover quickly in the
aftermath of a breach).

This means that having strategies which will ensure sus-
tainability of business during a cybersecurity breach and quick
recovery in its aftermath, is important. Networks constantly
change, so tracking cyber risks and vulnerabilities over time
and adapting accordingly is essential [32].

Additionally, the involvement by business executives en-
sures that possible adverse impacts from security incidents are
viewed from a bottom-line as well as from an asset valuation
perspective [34]. In response to the gaps mentioned above,
executives follow two different paths of cyber governance.
First, they add a cybersecurity expert to the board and second,
they assess the cybersecurity maturity of the organization or
nation against accepted standards such as NIST [34].

In Africa, on the issue of who attends cybersecurity aware-
ness training, the responses showed that although 70 percent
of core business staff in organisations attended cybersecurity
awareness training, and there is significant attendance by other
groups of participants, such as supervisors/functional managers
(59 percent) and middle management (57 percent) [35].

According to the ISACA State of cybersecurity report
published in 2017 [36], globally just 21 percent of chief infor-
mation security officers (CISO) report to the chief executive
officer (CEO) or the board, while 63 percent report through the
chief information officer (CIO). This latter reporting structure,
which is even more common in Africa, positions security as
a technical issue rather than a business concern, reducing
the scope of action and effectiveness of any cybersecurity
initiatives.

III. THE CYBERSECURITY CAPACITY MATURITY MODEL
FOR NATIONS (CMM)

The CMM developed by the Global Cybersecurity Capac-
ity Centre (GCSCC) [12] at the University of Oxford is a
comprehensive framework which assesses the cybersecurity
capacity maturity of capabilities which are fundamental to
building resilience of a country over 5 different dimensions: 1)
Cybersecurity Policy and Strategy; 2) Cyber Culture and Soci-
ety; 3) Cybersecurity Education, Training and Skills; 4) Legal
and Regulatory Frameworks; 5) Standards, Organisations, and
Technologies.

Every Dimension consists of a number of Factors which
describe what it means to possess cybersecurity capacity. Each
Factor is composed of a number of Aspects that structure the
Factor’s content. Each Aspect is composed of a series of indi-
cators within five stages of maturity. These indicators describe
the steps and actions that must be taken to achieve or maintain
a given stage of maturity in the aspect/factor/dimension hierar-
chy. These 5 maturity stages are: 1) Start up; 2) Formative; 3)
Established; 4) Strategic; 5) Dynamic. The progressive nature
of the model assumes that lower stages have been achieved
before moving to the next.

The five stages are defined as follows:

1) Start-up: at this stage either no cybersecurity maturity
exists, or it is very embryonic in nature. There might

111

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be initial discussions about cybersecurity capacity
building, but no concrete actions have been taken.
There is an absence of observable evidence of cyber-
security capacity at this stage.

2) Formative: some aspects have begun to grow and be
formulated, but may be ad-hoc, disorganised, poorly
defined - or simply new. However, evidence of this
aspect can be clearly demonstrated.

3) Established: the indicators of the aspect are in place,
and functioning. However, there is not well thought-
out consideration of the relative allocation of re-
sources. Little trade-off decision-making has been
made concerning the relative investment in this as-
pect. But the aspect is functional and defined.

4) Strategic: at this stage, choices have been made about
which indicators of the aspect are important, and
which are less important for the particular organisa-
tion or state. The strategic stage reflects the fact that
these choices have been made, conditional upon the
state’s or organisation’s particular circumstances.

5) Dynamic: at this stage, there are clear mechanisms
in place to alter strategy depending on the prevailing
circumstances such as the technological sophistica-
tion of the threat environment, global conflict or
a significant change in one area of concern (e.g.
cybercrime or privacy). Dynamic organisations have
developed methods for changing strategies in-stride.
Rapid decision-making, reallocation of resources, and
constant attention to the changing environment are
features of this stage.

The assignment of maturity stages is based upon the
evidence collected, including the general or average view of ac-
counts presented by stakeholders, desktop research conducted
and the professional judgment of GCSCC research staff. Using
the GCSCC methodology recommendations are provided as to
the next steps that might be considered by a nation to improve
cybersecurity capacity.

In this paper, we focus on the factor ‘Cybersecurity Aware-
ness Raising’ (shown in detail in Figure 3 and Figure 4 in the
Appendix section). The aspects, within this factor are ‘Aware-
ness Raising Programmes’ and ‘Executive Awareness Raising’
with various indicator specialisations for every maturity stage.
The aspect ‘Awareness Raising Programmes’ examines the ex-
istence of a national coordinated programme for cybersecurity
awareness raising, covering a wide range of demographics
and issues, while the aspect ‘Executive Awareness Raising’
examines efforts raising executives’ awareness of cybersecurity
issues in the public, private, academic and civil society sectors,
as well as how cybersecurity risks might be addressed. The
CMM model was developed by conducting systematic reviews
on best practice approaches which are publicly available, as
well as consulting experts from various disciplines.

According to the CMM, the aspect ‘Awareness Raising
Programmes’ will be measured to be on a Start-up stage of
maturity if the indicator ‘The need for awareness of cyber-
security threats and vulnerabilities across all sectors is not
recognised, or is only at initial stages of discussion’ is met
and indicators from the next level are absent. This stage of
maturity is comprised only by this one indicator. In order to
be at the formative stage of maturity, the next two relevant
Indicators must be met. As seen in Appendix, the number

of Indicators may differ between maturity stages. In order to
elevate a country’s cybersecurity capacity maturity, all of the
indicators within a particular stage will need to be fulfilled.

The first version of the CMM was finalized in 2014 [37]
and the revised edition was published in 2017 [12]. So far, the
CMM has only been deployed on the national level (rather than
at the company/enterprise level), and 54 countries have been
fully evaluated through engagement and collaboration with the
host country.

A. The CMM implementation methodology
The process by which a (host) country is assessed is as

important as the model itself. This process actually forms the
basis of the whole review/research methodology on which a
country review is based. This process forms and motivates
the underlying research and application methodology of a
CMM review and provides scientific validity to the results
coming from a review the process guarantees the validity and
verification of the outputs. The first step of a country review is
to identify a country host that is the body which is responsible
for all logistical arrangements in the host country.

The CMM employs a focus group methodology since it has
been acknowledged to offer a rich set of data compared to other
qualitative approaches [38], [39], [40]. Like interviews, focus
groups are an interactive methodology with the advantage that
during the process of collecting data and information diverse
viewpoints and conceptions can emerge. It is a fundamental
part of the method that rather than posing questions to every
interviewee, the researcher(s) should facilitate a discussion
between the participants, encouraging them to adopt, defend
or criticise different perspectives [41].

Stakeholders are identified based on their expertise in each
one of the components of every Dimension of the CMM. There
will be 9 stakeholder (cluster) groups planned for each CMM
review (Table I). For example, for the specific factor Cyber-
security Awareness Raising, academia, civil society groups,
internet governance experts, one or more representatives from
Universities, and Internet societies will be invited to take part
in the focus group. This group of representatives are called a
stakeholder (cluster) group.

While these stakeholder clusters are useful as a guiding
structure for conducting the assessments, selecting the partici-
pants in country to engage with the CMM would be challeng-
ing without a thorough understanding of the complex network
of domestic actors. Therefore, in order to gain a more thorough
understanding of the domestic context in which the model
will be applied, we worked alongside either international
organisations with knowledge of such domestic dynamics or
directly with a host ministry or organisation within a country.
Additionally, we complemented that process by conducting
desk research on stakeholders that might provide valuable
insight into domestic cybersecurity capacity and then make
recommendations to the host team.

Focus group sessions are led by the CMM Review Team.
The assessments are typically conducted over the course of
three to four days for 1.5 to 2 hours for each cluster. The
host team would indicate in the invitation which cluster the
participant will engage with. The CMM review team will lead
the discussion facilitation with the different participants in
order to aid the selection of stages of maturity in each category,

112

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. Stakeholder groups participating in focus groups

Stakeholder (cluster) groups
Academia, Civil Society Groups, and Internet Governance Representatives

Criminal Justice and Law Enforcement
Critical National Infrastructure

CSIRT and IT Leaders from Government and the Private Sector
Defense and Intelligence Community

Government Ministries
Legislators/Policy owners

Private Sector and Business
Cyber Task Force

factor and dimension. Due to the depth and nuance of cyber-
security capacity within the CMM, it would be impossible to
go through the entire model with each stakeholders cluster.
Therefore, each cluster responds to two dimensions of the
CMM, depending on their relevant expertise. The participants
should be able to provide or indicate evidence supporting
their selection, so that subjective responses are minimised. If
a country does not fulfill all of the criteria within a particular
stage of maturity, the previous stage is selected, while noting
which particular elements of capacity are missing for achieving
the proceeding stage. This nuance is key, as it allows for
more flexibility in understanding existing capacity, rather than
assigning a stage of maturity that does not account for subtle
variations.

Additionally, the CMM review team would be facilitating
the discussion, trying to keep the discussion on track without
influencing the opinions of the group, but also avoiding only
a few of the participants dominating the discussion [42], [43].

The consultations result in a comprehensive report indi-
cating the relevant Maturity stage for all Factors and Aspects
in all Dimensions. A comprehensive set of Recommendations
is also provided to indicate to the country how to improve
capacity and progress onto the next stages of maturity.

IV. CMM RESULTS FOR AWARENESS RAISING IN AFRICA

In Africa, a team from the GCSCC has reviewed and
evaluated 6 countries based on the CMM and following the
methodology described in Section III. These countries were
selected for a review at the time because they were in the
process of drafting a national cybersecurity strategy. Therefore,
the review would assist this process. These reviews have been
conducted during the period June 2015 to January 2018.

Regarding the aspect ‘Awareness Raising Programs’ and
‘Executive Awareness Raising’, 12 focus groups have been
conducted in total. The stakeholders who participated in the
focus groups are from the following sectors: Public Sector
Entities; Legislators/Policy Makers; Criminal Justice and Law
Enforcement; Armed Forces; Academia; Civil Society; Private
Sector; CSIRT and IT Leaders from Government and the
Private Sector; Critical national infrastructure; Telecommu-
nications Companies; and Finance Sector. Each focus group
session had approximately 10-15 stakeholders and lasted on
average 2 hours.

In order for the stakeholders to provide evidence on how
many indicators have been implemented by a nation and to
determine the maturity level of every aspect of the model,
a consensus method is used to drive the discussions within
sessions. During focus groups, researchers use semi-structured
questions to guide discussions around indicators. During these

discussions, stakeholders should be able to provide or indicate
evidence regarding the implementation of indicators, so that
subjective responses are minimised.

A. Analysis of maturity level data
Figure 1 illustrates the results from the six African coun-

tries of the CMM maturity levels for the cybersecurity aware-
ness raising dimension. Three countries have been identified
to be at a start-up stage of maturity, two countries have been
identified at a formative stage and one at a start-up stage with
few of the indicators from the formative stage of maturity being
present (this is denoted as from start-up to formative in the
diagram).

The results clearly indicate that the majority of exam-
ined countries in Africa are identified at a start-up stage of
maturity. This translates into lack of a national programme
for cybersecurity awareness raising. The need for awareness
of cybersecurity threats and vulnerabilities across all sectors
is not recognised, or is only at initial stages of discussion.
Furthermore, awareness raising programmes (if existing) may
be informed by international initiatives but are not linked to a
national strategy.

Finally, it was identified that awareness raising pro-
grammes, courses, seminars and online resources might be
available for target demographics from public, private, aca-
demic, and/or civil sources, but no coordination or scaling
efforts have been conducted. In the next section, we provide
further details, based on our qualitative analysis, on these initial
findings.

Figure 1. CMM results from six African Countries

B. Qualitative analysis of results
We have transcribed all the recordings from focus groups

and conducted a thematic analysis on the qualitative data
for each country. We adopted a blended approach (a mix
of deductive and inductive approach) to analyse focus group
data and used the indicators of the CMM as our criteria
for a deductive analysis. The inductive approach is based
on ‘open coding’ meaning that the categories or themes are
freely created by the researcher, while the deductive content
analysis requires the prior existence of a theory to underpin
the classification process.

113

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Excerpts that did not fit into themes were further analysed
to highlight additional issues that stakeholders might have
raised during the focus groups or to inform our understanding
on what the next steps should be for a country.

Overall, we identified eight themes in our qualitative
analysis for every country. Four themes were based on the
aspects described in the CMM model and four themes emerged
from the inductive approach. The themes from the inductive
approach pertained information on what actions African coun-
tries should implement next. Since these eight themes were
common for all six countries, we merged the excerpts for
each theme from every country. We further examined these
excerpts to identify common areas which hindered progress in
cybersecurity awareness raising as well as key actions which
countries should implement next to improve their cybersecurity
posture in awareness raising.

More specifically, the four main themes that emerged from
the deductive approach are: a) the lack of national level
programmes; b) the existence of ad-hoc initiatives; c) the
relationship between ICT literacy (the ability to use digital
technology and tools) and awareness and d) executive aware-
ness. In a similar vein, the inductive approach identified four
themes which revolved around the same concepts described
in the deductive analysis; the difference being that excerpts in
the inductive themes pertained information about recommen-
dations and next steps.

Figure 2. Themes from Inductive and Deductive Analysis

1) Deductive theme analysis: For all countries, it is evident
that a national programme for cybersecurity awareness raising
is absent. In many cases, stakeholders mentioned that ‘lack of
awareness is an institutional problem, not a user problem’ and
also that ‘a proper cyber awareness programme is needed’.
The importance for such a programme was acknowledged
across the various stakeholders in all countries reviewed in
Africa. A main hindrance for the implementation of a national
programme is the general lack of cybersecurity awareness
outside the technical communities, which stakeholders pointed
that its origin is the low ICT literacy in the population of these
countries.

Concerns were also expressed regarding the security of
nationwide projects involving big volumes of personal data.
Participants, mentioned that ‘cybersecurity awareness, in par-

ticular in relation to the protection of personal data, needs to
be prioritised for such projects’.

It was further emphasised that awareness-raising pro-
grammes need to be developed alongside other capacity en-
hancements, such as incident response, training for cyberse-
curity educators, and national and organisational cybersecurity
policies.

Regarding the initiatives theme, there are ad-hoc initia-
tives in cybersecurity awareness raising that are supported
by various institutions. These are being offered from various
organisations such as Facebook while the financial sector, civil
society and academia organise programmes for schools to raise
awareness. According to a stakeholder, ‘some telecommunica-
tion companies and banks are engaged in awareness activities
which includes messages via the media, directed to end-users,
e.g. password security’.

These initiatives, however, are not yet coordinated at the
national level. Therefore, it was widely recognised that a
more centralised awareness-raising programme would greatly
expand a fundamental understanding of cybersecurity capacity.

Often, civil society actors initiate efforts into targeted cy-
bersecurity awareness-raising. Different stakeholders agree that
a ‘common ground’ between government, private sector and
civil society could enable the proliferation of awareness raising
to the broader society. Moreover, often it was mentioned that
the government needs to work alongside existing efforts in
academia to ensure that new initiatives capitalise from the
academic experience. Such synergy is critical to ensure that
awareness-raising efforts are efficient and effective.

As often mentioned by stakeholders ‘people trust social
media and do not expect that someone will harm them, we
are brothers!’. A stakeholder also noted that ’It is common
in African countries that mobile phones are used to access
the Internet, use social media, for e-banking services etc. but
people who use online services are not aware of risks’. Often,
lack of awareness leads to a sense of ‘blind trust online’. A
stakeholder noted that ‘users trust social media and think that
their information is secure, although often websites are still
insecure’.

Another interesting theme that emerged from the analysis
of data is the low ICT literacy rate in Africa. Stakeholders
indicated that awareness of the effective use of ICT is still
only gaining initial traction and that security is seen as only
relevant once ICT and Internet literacy is sufficient. Stakehold-
ers suggested that ’integrating cybersecurity awareness efforts
into ICT literacy courses could provide an established vehicle
for cybersecurity awareness-raising campaigns’.

Regarding the theme revolving around awareness among
executives, both in public and private sectors, cybersecurity
awareness is very limited, which is one reason why cyber-
security awareness raising is not yet perceived as a priority.
This has been identified as an important gap, as executives are
usually the final arbiters on investment into security.

Some major telecommunications companies conduct inter-
nal awareness raising training across all levels, but there is
not a publicly available initiative which targets executives. As
mentioned by a stakeholder, ‘the reason for that is that there
is limited awareness for cybersecurity threats and risks in the
private sector overall, unless in major international organi-

114

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sations, in particular in the banking and telecommunications
sectors which face strategic implications of cybersecurity’.

It was commonly stated that there is a sharp disconnect
between the terminology and priorities of the engineers work-
ing in IT systems and security, and those at the higher level
seeking to make sound business decisions based on risk.

2) Inductive Theme Analysis: Stakeholders mentioned dur-
ing focus group sessions that ‘aspects of cybersecurity need
to be introduced in the school curricula and improve ICT
literacy’. It was also noted that ‘even in universities, people are
not aware of the possible risks and procure without following
standards’. Integrating cybersecurity awareness efforts into
ICT literacy courses could provide an established vehicle for
cybersecurity awareness campaigns.

Culture is another factor that can impact the effectiveness
of cybersecurity awareness programmes. As seen above, the
collectivist cultural aspect that characterises off-line behaviour
in Africa, is also pertained in online behaviour [44].

Currently, due to the lack of national level awareness
programmes, ‘being hacked brings awareness usually’ as
a stakeholder noted. Therefore, the development of such a
programme with specified target groups focusing on most
vulnerable users is identified as necessary [45]. Also, ap-
pointing a designated organisation (from any sector) to lead
the cybersecurity awareness raising programme and engaging
relevant stakeholders from public and private sectors in the
development and delivery of the awareness raising programme
is crucial. As stakeholders mentioned in one of the reviews
in Africa ‘The government realises that lack of awareness is
crucial and recognises the importance of a multi-stakeholder
approach towards this goal’. Moreover, it was noted that
‘People access social media through their smart phones and
security is the last thing on their mind and that convenience
is usually coming first’.

Stakeholders mentioned that ‘even though the telecom-
munications sector has started to place emphasis on cy-
bersecurity standards compliance, small- and medium-sized
enterprises (SMEs) are mostly not worried about adopting
and implementing standards’. An area of particular concern
for SMEs is that of encouraging good security behaviour
by employees [46], [47], [48]. Developing a strong security
culture could address many of the behavioural issues that
underpin data breaches in such companies [49], [50]. Here, the
development of cybersecurity skills involves addressing digital
threats using technology and complementary factors including
policy guidelines, organisational processes, and education and
awareness strategies. By having an organisational security set-
ting where employees intuitively protect corporate information
assets, SMEs could improve their overall security [51].

Regarding the executive awareness raising aspect, devel-
oping a dedicated awareness raising programme for executives
within the public and private sectors is essential. A stakeholder
noted that ‘different levels of authority need different kind
of awareness in order to promote collaboration as well’.
Currently, executives and management are being called upon
to address cyber risk alongside other risks that businesses face.

V. DISCUSSION

Reflecting on the results presented in Section 4, the lack of
a central authority, which is crucial in all modes of operation

as presented by NIST model [16], is evident. The absence
of such authority prohibits the execution of holistic ‘needs
assessments’, amplifies the difficulties in prioritising the areas
in which campaigns should be implemented and renders the de-
sign of ad-hoc campaigns being created by a limited number of
stakeholders. It is imperative that African countries allocate an
authority to conduct a national needs assessment, identify the
areas where campaigns should focus first, develop a strategy
for how these campaigns will be designed and implemented,
and coordinate the ad-hoc efforts of different stakeholders.

The main objectives for cybersecurity in Africa and glob-
ally is online security by improving knowledge, capabilities
and decision making. In order to enable the full benefits
of cyberspace to all African countries, investing in human
capacity development of all the citizens is vital.

Focusing on the design and implementation of awareness-
raising campaigns, literature suggests that successful aware-
ness campaigns need to be a ‘learning continuum’ [52], com-
mencing from awareness, evolving to training and resulting in
education. Our results highlight the need of African countries
to involve stakeholders who are established in all the afore-
mentioned sectors. Our analysis suggests that the audience of
the campaigns should prioritise smartphone users, employees
of SMEs and board members. The goals should be to commu-
nicate the risks from cybercrime, illustrate the need for better
security controls and practices, and the need to establish a chief
information security officer (CISO), respectively.

This means that businesses and government agencies
should start to take steps to increase their awareness and
understanding of cybersecurity with a view of the potential
impact on overall business performance. Lack of boardroom
expertise makes it challenging for directors and councilors to
effectively oversee management’s cybersecurity activities.

Cybersecurity awareness should reach all levels and inform
all users of the internet - from vulnerable, school-going chil-
dren to families, industry, critical national infrastructures, gov-
ernments and the African continent with its unique needs [53],
[54], [55]. This will enhance resilience against cybercrimes and
attacks and inform African policy development.

If a country has already developed a national cybersecurity
strategy, or is working towards that goal, then linking the de-
velopment of the programme to that Strategy will facilitate the
coordination of different capacities towards the development of
the programme and its effective implementation.

Regarding the implementation of these campaigns, there
are several organisations with ad-hoc initiatives that could
facilitate the design and implementation of cybersecurity cam-
paigns, such as ISC Africa [28] and Parents corner [29].
To conclude, it is worth mentioning that the timing for the
development of these campaigns coincides with efforts in
African countries to increase ICT literacy. As our findings
underline, it is a unique opportunity for all African countries
to combine ICT development with cybersecurity awareness. In
contrast to western societies, where cybersecurity campaigns
endeavour to change the norms on how users currently behave
online (behaviour shaped since the inception of the Internet),
campaigns in Africa can reflect on best practice and create
new norms which will encompass cybersecurity requirements.

Creating a single online portal linking to appropriate cyber-
security information and disseminating it via the cybersecurity

115

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

awareness programme can also enhance the effectiveness of
such a programme. Moreover, enacting evaluation measure-
ments to study the effectiveness of an awareness programme
will not only lead to the assessment of the programme but also
identify possible gaps that need to be addressed [45].

Moreover, enacting evaluation measurements to study ef-
fectiveness of the awareness programme will not only lead to
the assessment of the programme but also identify possible
gaps that need to be addressed [16], [45].

VI. CONCLUSIONS AND FUTURE WORK

Several reports are depicting a bleak picture regarding the
unprecedented increase of cybercrime in Africa. Yet, efforts
to raise cybersecurity awareness in the general public and
executives are in an embryonic stage. In this paper, we con-
ducted twelve focus groups in six different African countries
to shed light into the current situation and identify critical
actions which can significantly decrease the success rate of
cybercriminals.

Our results suggest that all six African countries do not
possess a national programme for raising awareness, there are
extremely low ICT literacy levels which hinder any design
of cybersecurity campaigns and that executive members in
organisations myopically underestimate the problem. To better
defend against cybercrime, African countries need to establish
a central authority which will coordinate the existing ad-hoc
efforts in awareness campaigns and identify the target groups
of these campaigns with particular focus on SMEs, mobile-
phone users and executive board members. We believe that
African countries have a unique opportunity to combine ICT
literacy campaigns with cybersecurity principals and shape the
norms of the society towards best practice.

By improving knowledge, cybersecurity can also be en-
hanced as well as capabilities and decision making. In Africa,
but also at the global level the full benefits of cyberspace
can be enabled by investing in human capacity development.
Executives are also users and they need also to be aware of
how cyber risks can threaten their assets in order to make
effective strategy decisions.

At a national and an organisational level, strategies need to
be developed linked to awareness campaigns with clear objec-
tives, design and implementation processes and coordination
of the ad-hoc efforts of different stakeholders. As part of our
future work, we intend to explore the effectiveness of a national
coordinated cybersecurity awareness programme and how it
relates to the actual security posture of a country. Our future
work will be based on data from developed countries where the
CMM has already been applied, as well as on data collected
by other international organisations such as the International
Telecommunication Union - GCI [56], Australian Strategic
Policy Institute - ASPI [57], The Potomac Institute for Policy
Studies - Cyber Readiness Index [58] and World Economic
Forum - Global Competitive Index [59].

*ACKNOWLEDGMENT

The authors would like to thank Ms. Eva
Ignatuschtschenko, Ms. Eva Nagyfejeo, Mr. Taylor Roberts
and Ms. Carolin Weisser from the GCSCC for conducting
field work and data collection. We are also immensely
grateful to Prof. Sadie Creese and Prof. Michael Goldsmith

for their comments on an earlier version of the manuscript.

REFERENCES

[1] M. Bada, B. Von Solms, and I. Agrafiotis, “Reviewing national cy-
bersecurity awareness in africa: An empirical study,” in The Third
International Conference on Cyber-Technologies and Cyber-Systems.
Thinkmind Digital Library, IARIA, 2018.

[2] Trend Micro, “Is there a budding west African underground market?”
2017, uRL: https://www.trendmicro.com/vinfo/us/security/news/
cybercrime-and-digital-threats/west-african-underground, [Last
accessed: 20 Jan 2019].

[3] T. Oladipo, “Cyber-crime is Africa’s ‘next big threat’, experts warn,”
2015, uRL: http://www.bbc.co.uk/news/world-africa-34830724,[Last
accessed: 20 Jan 2019].

[4] Serianu, “Africa cyber security report,” 2016, uRL: http://www.
serianu.com/downloads/AfricaCyberSecurityReport2016.pdf, [Last ac-
cessed: 20 Jan 2019].

[5] A. Okuku, K. Renaud, and B. Valeriano, “Cybersecurity strategy’s role
in raising kenyan awareness of mobile security threats,” Information &
Security, vol. 32, no. 2, 2015, p. 1.

[6] B. van Niekerk and M. Maharaj, “Mobile security from an information
warfare perspective,” in 2010 Information Security for South Africa.
IEEE, 2010, pp. 1–7.

[7] A. Okeowo, “Smss used as a tool of hate in Kenya,” 2008, uRL: https:
//mg.co.za/article/2008-02-19-smss-used-as-a-tool-of-hate-in-kenya,
[Last accessed: 25 Jan 2019].

[8] Symantec, “Cyber crime and cyber security trends in Africa,”
2016, uRL: https://www.thehaguesecuritydelta.com/media/com hsd/
report/135/document/Cyber-security-trends-report-Africa-en.pdf, [Last
accessed: 25 Jan 2019].

[9] T. Skye, “The last mile in IT security: Changing user
behaviors,” 2016, uRL: https://www.wombatsecurity.com/
changing-end-users-behavior-espion, [Last accessed: 25 Jan 2019].

[10] Wombat Security Technologies (Wombat) and the Aberdeen
Group, “African union cybersecurity profile: Seeking a common
continental policy,” 2016, uRL: https://jsis.washington.edu/news/
african-union-cybersecurity-profile-seeking-common-continental-policy/,
[Last accessed: 2 Feb 2019].

[11] M. M. Waldrop, “How to hack the hackers: The human side of
cybercrime,” Nature News, vol. 533, no. 7602, 2016, p. 164.

[12] Global Cyber Security Capacity Centre, “Cybersecurity capacity
maturity model for nations (cmm): Revised edition,” 2017,
uRL: https://www.sbs.ox.ac.uk/cybersecurity-capacity/content/
cybersecurity-capacity-maturity-model-nations-cmm-0, [Last accessed:
25 Jan 2019].

[13] HMG, “Security policy framework,” 2016, uRL: https:
//www.gov.uk/government/uploads/system/uploads/attachment data/
file/316182/Security Policy Framework web April 2014.pdf, [Last
accessed: 25 Jan 2019].

[14] National Institute of Standards and Technology, “Building
an information technology security awareness and training
program,” 2003, URL: https://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-50.pdf, [Last accessed: 25 Feb 2019].

[15] T. R. Peltier, “Implementing an information security awareness pro-
gram,” Information Systems Security, vol. 14, no. 2, 2005, pp. 37–49.

[16] National Institute of Standards and Technology, “Framework
for improving critical infrastructure cybersecurity,” 2014, uRL:
https://www.nist.gov/sites/default/files/documents/cyberframework/
cybersecurity-framework-021214.pdf, [Last accessed: 25 Feb 2019].

[17] Organization of American States, “Cybersecurity awareness toolkit,”
2015, uRL: https://www.sbs.ox.ac.uk/cybersecuritycapacity/system/
files/2015%20OAS%20%20Cyber%20Security%20Awareness%
20Campaign%20Toolkit%20%28English%29.pdf, [Last accessed: 10
Feb 2019].

[18] B. Khan, K. S. Alghathbar, S. I. Nabi, and M. K. Khan, “Effectiveness
of information security awareness methods based on psychological
theories,” African Journal of Business Management, vol. 5, no. 26, 2011,
p. 10862.

116

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] I. Winkler and S. Manke, “Reasons for security awareness failure,” CSO
Security and Risk, 7.

[20] I. Ajzen, “Perceived behavioral control, self-efficacy, locus of control,
and the theory of planned behavior,” Journal of applied social psychol-
ogy, vol. 32, no. 4, 2002, pp. 665–683.

[21] M. W. Kreuter and S. M. McClure, “The role of culture in health
communication,” Annu. Rev. Public Health, vol. 25, 2004, pp. 439–
455.

[22] I. Dlamini, B. Taute, and J. Radebe, “Framework for an African policy
towards creating cyber security awareness,” in Proceedings of Southern
African Cyber Security Awareness Workshop (SACSAW), 2011.

[23] United Nations: Economic Commission for Africa, “The
african information society initiative (aisi) - a decades
perspective,” 2015, uRL: https://www.uneca.org/publications/
african-information-society-initiative-aisi-decade%E2%80%
99s-perspective, [Last accessed: 10 Feb 2019].

[24] AfriNIC, “The internet numbers registry for Africa,” 2018, uRL: https:
//www.afrinic.net, [Last accessed: 10 Feb 2018].

[25] International Telecommunication Union, “Towards a common future,”
2018, uRL: https://www.itu.int/en/action/cybersecurity/Pages/gca.aspx,
[Last accessed: 10 Feb 2019].

[26] The Southern African Development Community, “Global cybersecurity
agenda (gca),” 2018, uRL: http://www.sadc.int/, [Last accessed: 10 Feb
2019].

[27] Information Security Group of Africa, “Profile,” 2018, uRL: http:
//pressoffice.itweb.co.za/isgafrica/profile.html, [Last accessed: 10 Feb
2019].

[28] ISC, “Internet safety campaign,” 2018, uRL: http://iscafrica.net/, [Last
accessed: 10 Feb 2019].

[29] Parents Corner, “Digital curfews — what are they & do your kids need
one?” 2017, uRL: https://parentscorner.org.za, [Last accessed: 10 Feb
2019].

[30] M. Lunika, “Africa rallies in support of safer internet day,”
2018, uRL: http://www.itwebafrica.com/ict-and-governance/523-africa/
242730-africa-rallies-in-support-of-safer-internet-day, [Last accessed:
10 Feb 2019].

[31] J. R. Nurse, S. Creese, M. Goldsmith, and K. Lamberts, “Guidelines
for usable cybersecurity: Past and present,” in Cyberspace Safety and
Security (CSS), 2011 Third International Workshop on. IEEE, 2011,
pp. 21–26.

[32] R. A. Rothrock, J. Kaplan, and F. Van Der Oord, “The board’s role in
managing cybersecurity risks,” MIT Sloan Management Review, vol. 59,
no. 2, 2018, pp. 12–15.

[33] B. Barker, “Emerging cybergovernance discipline protects directors
from new risks,” 2016, uRL: https://www.cybernance.com/
emerging-cybergovernance-discipline-protects-directors-new-risks/,
[Last accessed: 2 Feb 2019].

[34] T. Braithwaite, “Executives need to know: The arguments to include in a
benefits justification for increased cyber security spending,” Information
systems security, vol. 10, no. 4, 2001, pp. 1–14.

[35] Department of Telecommunications and P. Services, “Cybersecurity
readiness report, south africa,” 2017, uRL: https://www.
cybersecurityhub.gov.za/images/docs/Cyber-Readiness-Report.pdf,
[Last accessed: 2 Feb 2019].

[36] ISACA, “State of cybersecurity,” 2017, uRL: https://cybersecurity.isaca.
org/csx-resources/state-of-cyber-security-2017, [Last accessed: 2 Feb
2019].

[37] Global Cyber Security Capacity Centre, “Cyber security
capability maturity model (cmm) v1.2,” 2015, uRL:
https://www.sbs.ox.ac.uk/cybersecurity-capacity/content/
cybersecurity-capacity-maturity-model-nations-cmm, [Last accessed:
25 Jan 2019].

[38] M. Williams, Making sense of social research. Sage, 2002.

[39] J. Knodel, “The design and analysis of focus group studies: A practical
approach,” Successful focus groups: Advancing the state of the art,
vol. 1, 1993, pp. 35–50.

[40] R. A. Krueger and M. A. Casey, Focus groups: A practical guide for
applied research. Sage publications, 2014.

[41] J. Kitzinger, “Qualitative research: introducing focus groups,” Bmj, vol.
311, no. 7000, 1995, pp. 299–302.

[42] A. Gibbs, “Focus groups,” Social Research Update, vol. 19, no. 8, 1997,
pp. 1–8.

[43] J. Kitzinger, “Introducing focus groups,” British Medical Journal, no.
311, 1995, pp. 299–302.

[44] H. C. Triandis, “Cultures and organizations: Software of the mind.”
1993.

[45] M. Bada and A. Sasse, “Cyber security awareness campaigns: Why do
they fail to change behaviour?” arXiv preprint arXiv:1901.02672, 2014.

[46] V. Dimopoulos, S. Furnell, M. Jennex, and I. Kritharas, “Approaches
to it security in small and medium enterprises.” in AISM, 2004, pp.
73–82.

[47] M. Taylor and A. Murphy, “Smes and e-business,” Journal of small
business and enterprise development, vol. 11, no. 3, 2004, pp. 280–
289.

[48] J. R. Nurse, S. Creese, M. Goldsmith, and K. Lamberts, “Trustworthy
and effective communication of cybersecurity risks: A review,” in
2011 1st Workshop on Socio-Technical Aspects in Security and Trust
(STAST). IEEE, 2011, pp. 60–68.

[49] A. Santos-Olmo, L. Sánchez, I. Caballero, S. Camacho, and
E. Fernandez-Medina, “The importance of the security culture in smes
as regards the correct management of the security of their assets,” Future
Internet, vol. 8, no. 3, 2016, p. 30.

[50] B. Contos, “Cyber security culture is a collective effort,” CSO. Retrieved
from, 2015.

[51] S. Dojkovski, S. Lichtenstein, and M. J. Warren, “Fostering information
security culture in small and medium size enterprises: An interpretive
study in australia.” in ECIS, 2007, pp. 1560–1571.

[52] E. Kritzinger, M. Bada, and J. R. Nurse, “A study into the cybersecurity
awareness initiatives for school learners in South Africa and the UK,” in
IFIP World Conference on Information Security Education. Springer,
2017, pp. 110–120.

[53] H. Twinomurinz, A. Schofield, L. Hagen, S. Ditsoane-Molefe, and N. A.
Tshidzumba, “Towards a shared worldview on e-skills: A discourse
between government, industry and academia on the ICT skills paradox,”
South African Computer Journal, vol. 29, no. 3, 2017, pp. 215–237.

[54] E. Kritzinger, “Growing a cyber-safety culture amongst school learners
in South Africa through gaming,” South African Computer Journal,
vol. 29, no. 2, 2017.

[55] ——, “Short-term initiatives for enhancing cyber-safety within South
African schools,” South African Computer Journal, vol. 28, no. 1, 2016,
pp. 1–17.

[56] International Telecommunication Union, “Global Cybersecurity In-
dex,” 2018, uRL: https://www.itu.int/en/ITU-D/Cybersecurity/Pages/
GCI.aspx, [Last accessed: 25 Feb 2019].

[57] Australian Strategic Policy Institute, “Cyber maturity in the Asia Pacific
region,” 2017, uRL: https://www.aspi.org.au/, [Last accessed: 25 Feb
2019].

[58] The Potomac Institute for Policy Studies, “Cyber readiness index
2.0,” 2015, uRL: http://www.potomacinstitute.org/images/CRIndex2.0.
pdf, [Last accessed: 15 Feb 2019].

[59] World Economic Forum, “The global competitiveness
report 20172018,” 2018, uRL: http://reports.weforum.org/
global-competitiveness-index-2017-2018/, [Last accessed: 15 Feb
2019].

117

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

APPENDIX

In this section we present the details of the capacity
maturity model for dimension 3 used to analyse the results
of the qualitative research.

Figure 3. Dimension 3: Cybersecurity Education, Training and Skills for
Awareness Raising Programmes

118

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Dimension 3: Cybersecurity Education, Training and Skills for
Executive Awareness Raising

119

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Speech Interface as an Attack Surface: An Overview

Mary K. Bispham, Ioannis Agrafiotis, Michael Goldsmith
Department of Computer Science

University of Oxford, United Kingdom
Email: {mary.bispham, ioannis.agrafiotis, michael.goldsmith}@cs.ox.ac.uk

Abstract—This paper investigates the security of human-computer
interaction via a speech interface. The use of speech interfaces
for human-computer interaction is becoming more widespread,
particularly in the form of voice-controlled digital assistants.
We argue that this development represents new security vul-
nerabilities, which have yet to be comprehensively investigated
and addressed. This paper presents a comprehensive review of
prior and related work in this area to date. Based on this
review, we propose a high level taxonomy of attacks via the
speech interface. Our taxonomy systematises prior work on the
security of voice-controlled digital assistants, and identifies new
categories of potential attacks, which have yet to be investigated
and thus represent a focus for future research. The attack surface
presented by the speech interface comprises not only the voice-
controlled device itself, but the entire process of human-computer
interaction including the human user. In accordance with this, our
taxonomy categorises attacks via the speech interface according
to human perceptions of the attacks, whilst also aligning the
categories of the taxonomy to vulnerabilities in various parts
of the architecture of voice-controlled systems. This paper is an
extended version of a previous paper in which our taxonomy of
attacks via the speech interface was first presented.

Keywords–cyber security; human-computer interaction; voice-
controlled digital assistants; speech interface.

I. INTRODUCTION

The introduction of a speech interface represents a potential
expansion of a system’s attack surface. With regard to voice-
controlled digital assistants, there are clearly serious security
concerns arising from an increasingly pervasive presence of
such agents. This paper presents a comprehensive overview
of the types of attacks that might be targeted at voice-
controlled systems, and categorises these attacks in a high-level
taxonomy. This paper is an extended version of a previous
paper in which our taxonomy was first presented (Bispham et
al. [1]).

Voice-controlled digital assistants are being used to per-
form an increasing range of tasks, including Web searching
and question answering, diary management, sending emails,
and posting to social media. Such ‘assistants’ are intended
to act as brokers between users and the vastly complex,
often intimidating cyber world. Their functionalities are being
expanded from personal to business use [2]. Sarikaya [3] refers
to personal digital assistants as a “metalayer of intelligence”
between the user and various different services and actions.
With the advent of assistants such as Amazon’s Alexa that
can be used to control smart home devices, control of systems
via a speech interface has extended beyond purely virtual
environments to include also cyber-physical systems. Pogue
[4] describes voice control as a “breakthrough in convenience”
for the Internet of Things. Speech interfaces may eventually
be used in time-sensitive and even life-critical contexts, such
as hospitals, transport and the military [5] [6]. There is some

speculation that communication with computers via natural
language represents the next major development in computing
technology [7].

Notwithstanding its potential benefits, security concerns
associated with such a development have yet to be compre-
hensively addressed. There has been a considerable amount
of debate on the threat to privacy from ‘listening’ devices,
highlighted perhaps most dramatically in a recent request for
speech data from Amazon’s Alexa as a ‘witness’ in a murder
inquiry [8]. By comparison, the security issues associated
with voice-controlled assistants have to date received relatively
little attention. Such security issues are however significant. A
speech interface potentially enables an attacker to gain access
to a victim’s system without needing to obtain physical or
internet access to their device. Thus, the human-like digital
personas intended to give users a sense of familiarity and
control in interactions with their systems may in reality be
exposing users to additional risks. Internet security company
AVG pointed out in 2014 the danger of the speech interface
being exploited as a new attack surface, demonstrating how
smart TVs and voice assistants might respond to synthesised
speech commands crafted by an attacker as well as to their
users’ voices [9]. The reality of this possibility was recently
illustrated by a TV advertisement that contained spoken com-
mands for activation of Google Home on listeners’ phones
for product promotion purposes. The advert was criticised
as a potential violation of computer misuse legislation in
gaining unauthorised access to listeners’ systems [10]. Another
example was an instance in which it was shown to be possible
to open a house door from the outside by shouting a command
to digital assistant Siri (as discussed by Hoy [11]).

This paper provides a review of the research that has been
done to date on attacks via the speech interface, and identifies
the gaps in this prior work. Based on this review, we propose
a new taxonomy of attacks via the speech interface, and make
suggestions for further work. The scope of this taxonomy is
limited to attacks that gain unauthorised access to a system
by sound. It is possible to attack a voice-controlled system
other than by sound - in a security analysis of Amazon’s
Echo, for example, Haack et al. [12] identify three means of
attack on such systems. In addition to sound-based attacks,
the paper identifies network attacks (e.g., sniffing of speech
data in transmission between an individual user’s device and a
provider’s servers) and API-based attacks (which might involve
hacking a voice-controlled assistant’s API, e.g., to change the
default wake-up word). However, such attacks not based on
sound are not within scope of the taxonomy presented here.

The remainder of the paper is structured as follows. Section
II provides general background on human-computer interaction
by speech with reference to the current generation of voice-
controlled digital assistants. Section III contains a review of

120

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

prior work relevant to the security of voice-controlled digital
assistants, as well as of some indirectly relevant work in related
areas of research. This section also includes some speculation
on the potential for attacks via the speech interface that are
not possible on current commercial systems, but may become
possible in future based on current trends in research on
speech dialogue systems. Section IV proposes a new high-
level taxonomy of attacks via the speech interface, including
attacks that have been demonstrated in prior work as well as
attacks that may be possible in the future. Section V concludes
the paper and contains some suggestions for future research.

II. BACKGROUND ON VOICE-CONTROLLED SYSTEMS

Speech interfaces that facilitate the execution of particular
actions in response to voice commands are referred to as ‘task-
based’ speech dialogue systems, as distinct from ‘chatbots’,
whose purpose is simply to hold a conversation with the user
without executing any actions. Current task-based dialogue
systems have some similarity with chatbots in that they are
often anthropomorphosised, with systems being given the
persona of a friendly digital assistant in order to create a sense
of communication with a human-like conversation partner. The
first voice-controlled digital assistant to be released commer-
cially was Apple’s Siri in 2011. Siri was based on an earlier
system named Cognitive Assistant that Learns and Organizes
(CALO), which had been developed with US defence funding.
Siri was followed by the release of Amazon’s Alexa in 2014,
Microsoft’s Cortana in 2015, and most recently in 2016 by
Google Assistant [13].

Input to a speech dialogue system is provided by a micro-
phone that captures speech sounds and converts these from
analog to digital form. Bellegarda and Monz [14] describe
the task of the speech recognition component as the task
of extracting from a set of acoustic features the words that
generated them, and the task of the natural language under-
standing component as the task of extracting from a string of
words a semantic representation of the user intent behind them.
The paper by Bellegarda and Monz conceptualises the process
of a user’s communication of intent to a speech dialogue
system as information transmission across a noisy channel,
whereby the user first formulates their intent in words and
then vocalises these words as speech, and the dialogue system
subsequently extracts from the user’s speech the words that
generated the speech and then extracts from the words a
semantic representation of the intent that generated them. This
process is illustrated in the diagram in Figure 1, copied from
Bellegarda and Monz’s paper.

The typical architecture of a generic speech dialogue
system consists of components for speech recognition, natural
language understanding, dialogue management, response gen-
eration and speech synthesis (see Lison and Meena [15]). In
current systems, the speech recognition and natural language
understanding components are the components most likely to
be targeted in an attack via the speech interface. As explained
further below, in current systems the dialogue management
and subsequent components are fully controlled by input from
the speech recognition and natural language understanding
components, and can therefore not be targeted directly.

Speech recognition is typically performed using Hidden
Markov Models (HMMs). HMMs calculate the most likely
word sequence for a segment of speech according to Bayes’

rule as the product of the likelihood of acoustic features present
in the speech segment and the probability of the occurrence of
particular words in the sentence context (see for example Juang
and Rabiner [16]). HMM-based systems for speech recognition
originally used Gaussian Mixture Models (GMMs) for the
acoustic modelling and n-grams for the language modelling. In
recent years, a shift in modelling methods has been seen with
the advent of deep learning. Huang et al. [17] describe recent
developments in which Deep Neural Networks (DNNs) have
replaced GMMs to extract acoustic model probabilities, and
Recurrent Neural Networks (RNNs), a particular type of DNN,
have replaced n-grams to extract language model probabilities.
Speech recognition technology has become quite advanced. In
2016, Microsoft Research reported that its automatic speech
recognition capability had for the first time matched the
performance of professional human transcriptionists, achieving
a word error rate of 5.9 per cent on the Switchboard dataset
of conversational speech produced by the National Institute of
Standards and Technology (NIST) in the US (see Xiong et al.
[18]).

Natural language understanding in the context of a voice-
controlled system is the task of extracting from a user’s request
a computational representation of its meaning that can be used
by the system to trigger an action. The task of mapping a string
of words to a representation of their meaning is known as
semantic parsing. Liang [19] gives as an example of semantic
parsing the instance where a request to cancel a meeting is
mapped to a logical form that can be executed by a calendar
API. The process of semantic parsing may include syntactic
analysis as an intermediate step. Methods of syntactic analysis
used in voice-controlled systems include dependency parsing,
which is the task of determining syntactic relationships within
a sentence, such as verb-object connections (see for exam-
ple McTear [20]). Current speech dialogue systems typically
use semantic representations known as semantic frames (see
Sarikaya et al. [21]). Semantic frames provide a structure for
representing the meaning of utterances that requires firstly
identification of the general domain or concept that a user
request relates to (such as travel), secondly determination of
the user intent (such as to book a flight), and thirdly slot-filling,
which involves identifying specific information relevant to the
particular request (such as destination city). Sarikaya [3] states
that the tasks of domain identification and intent determination
in semantic parsing to frames are often performed using
support vector machines, whereas slot-fitting is commonly
performed using Conditional Random Fields (CRFs). Some
recent research has indicated that traditional machine learning
methods are now being out-performed in the semantic parsing
task for spoken dialogue systems by neural networks, similar
to the replacement of n-gram-based systems for language
modelling in speech recognition by RNNs. Mesnil et al. [22],
for example, present results showing superior performance by
RNNs on the slot-filling task for the Air Travel Information
System (ATIS) dataset in comparison to the performance of
CRFs on the same task. Despite such efforts, it is clear that,
unlike in the case of speech recognition, the state-of-the-art in
natural language understanding remains far from parity with
human capabilities. This is evident in the occasional failure of
voice assistants to correctly interpret the meaning of a word
in context, despite the correct word or meaning being obvious
to any human listener. Stolk et al. [23] give the examples of

121

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. An example of integrated speech and language processing: personal assistance seen as information transmission across a noisy
channel [14]

Apple’s assistant Siri mistaking the word ‘bank’ in the sense
of ‘river bank’ for a financial institution, and of Siri giving
directions to a casino when asked about a gambling problem.

Dialogue management is the task of determining the most
appropriate action that should be taken in response to a user’s
request. The dialogue management component then instructs
the response generation and (in the case that a verbal action
is required) speech synthesis components of system to take
the necessary action. Sarikaya [3] states that the dialogue
management task in personal digital assistants is far more
challenging than in older speech recognition systems. Older
speech recognition systems were commonly limited to one
general purpose, such as providing travel information. Digital
assistants, by contrast, are designed to perform a large number
of tasks, including providing information on many different
topics, connecting with web applications to fulfil a variety of
user requests, and controlling devices in the Internet of Things.
Sarikaya describes the structure of a dialogue manager in a
digital assistant as consisting of a dialogue state tracker, which
updates the ‘state’ of the dialogue based on the representation
of user intent generated by the natural language understanding
module, and a dialogue policy that controls the execution of
tasks in response to the user request.

The dialogue management component in current speech
dialogue systems is on the whole still rule-based, i.e., it maps
user intent to dialogue states and dialogue states to actions
based on hand-crafted rules, as stated by McTear [20]. The
dialogue management capabilities in current systems are thus
fully dependent on input from the speech recognition and nat-
ural language understanding components and do not therefore
represent a separate point of attack. Rule-based dialogue man-
agement systems have the advantage of limiting the potential
for error and unintended functionality in the dialogue manage-
ment process (see McTear [24]). However, such systems are
also likely to be lacking in flexibility and limited in scope.
There has been some research on the eventual replacement
of current rule-based systems by more sophisticated dialogue
management systems based on reinforcement learning, which
would enable voice assistants to learn directly from their
interactions with users. Young et al. [25] propose ideas for
dialogue management based on Partially Observable Markov
Decision Processes (POMDPs), which model a dialogue as a
Markov process with transition probabilities between states,
for which a probability distribution over all possible states
is continuously maintained. This approach seeks to represent
the uncertainty inherent in the fact that a user’s intent is not
directly observable, but rather inferred probabilistically from
their utterance. Systems based on POMDPs combine Bayesian

inference for belief state tracking to determine the most
likely interpretation of a user’s utterances with reinforcement
learning for optimisation of the dialogue policy, whereby a
reward function is used to train the system as to the most
appropriate action to take in response to a user utterance based
on user feedback.

Modern voice-controlled digital assistants implement the
generic components of speech dialogue systems in the context
of a cloud-based service that enables users to interact by voice
with smartphones and laptop/desktop computers, as well as to
control smart home devices by voice using bespoke hardware.
The speech recognition and natural language understanding
functionalities of these systems are performed in the provider’s
cloud. Chung et al. [26] provide an overview of the typical
ecosystem of modern voice-controlled digital assistants in the
example of Amazon’s Alexa (see Figure 2).

In order to control streaming of audio data to the cloud,
current voice-controlled digital assistants include, in addition
to the generic speech dialogue system components, an activa-
tion component consisting of a wake-up word, which, when
spoken by the user, triggers streaming of the subsequent speech
audio data to the provider’s cloud for processing. Examples
of wake-up words include ‘Ok Google’ for Google Assistant
and ‘Alexa’ for Amazon’s Alexa. Wake-up word recognition
is the only speech processing capability on users’ individual
devices, and consists of a short ‘buffer’ of audio data from
the device’s environment that is continuously recorded and
deleted [27]. Wake-up word activation can be triggered by false
positives. Chung et al. [28], for example, refer anecdotally
to accidental activation of the Alexa assistant by a sentence
containing the phrase ‘a Lexus’ (see also Michaely et al.
[29]), and Vaidya et al. [30] refer to the misrecognition of the
phrase “Cocaine Noodles” as “OK Google”. False positives
in wake-up word recognition may result from misrecognition
of a word as the wake-up word, as in the example given by
Chung et al., or else from use of a wake-up word in the
context of speech not intended to activate a voice assistant,
for example the use of the word ‘Alexa’ as the name of a
person in a conversation. Këpuska and Bohouta [31] discuss
the latter problem of distinguishing between an ‘alerting’ and
a ‘referential’ context in wake-up word recognition. It is also
possible for voice assistants to be activated by background
noise that has frequencies overlapping with those of human
speech (see Islam et al. [32]). The vulnerability of wake-up
word recognition to false positives was demonstrated in an
incident in which an Amazon Alexa device misinterpreted a
word spoken in a private conversation as the wake-up word
‘Alexa’, and subsequently misinterpreted other words in the

122

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Amazon Alexa Ecosystem [26]

conversation as commands to send a message to a contact,
resulting in a recording of a couple’s private conversation in
their home being sent to a colleague [33].

The current generation of voice-controlled digital assis-
tants have also introduced platforms for the development of
third-party voice applications that can be incorporated in the
provider’s cloud and made available to users via the assistant’s
speech interface. Examples of such third-party applications
are Alexa Skills and Google Conversation Actions. Third-
party applications in systems such as Google Assistant can
be accessed by users by asking to ‘speak’ to the voice app
(as named by the developer) [34]. Such apps can be used for
example to enable users to access information services or to
purchase products.

III. ATTACKS VIA THE SPEECH INTERFACE IN PRIOR AND
RELATED WORK

There has been a limited amount of prior work on the
security of speech interfaces and voice-controlled digital assis-
tants, as well as some prior work in related areas of research.
A review of prior work relevant to attacks on the current
generation of voice-controlled digital assistants is presented,
and summarised in Table I. Our review further includes some
speculation on attacks that are not possible in relation to
the current generation of voice-controlled systems, but that
may become possible in the future based on current research
trends. The review is concerned with sound-based attacks only,
whilst recognising that attacks by sound are only a subset
of the potential attacks that might be targeted at a voice-
controlled digital assistant. The review does not analyse the
specific aims of the attacks described in prior work beyond the
general goal of gaining unauthorized access to a system via
a speech interface. Our review of attacks in prior and related
work is organised according the mechanism of attack that they
relate to. These mechanisms are plain speech, inaudible sound
injection, adversarial learning, and active attack.

A. Plain Speech
Several researchers have investigated the ways in which

voice-controlled digital assistants might be exploited simply

by using standard voice commands. This possibility arises
out of the inherently open nature of natural speech. Such
potential vulnerabilities associated with speech-controlled sys-
tems have been highlighted for example by Dhanjani [35],
who describes a security vulnerability identified in Windows
Vista that allowed an attacker to delete files on a victim’s
computer by playing an audio file hosted on a malicious
website or sent to the victim as an email attachment. Dhanjani
speculates that the potential for such attacks is magnified with
the increasing use of speech recognition technology in the
Internet of Things. He postulates a hypothetical attack on
Amazon’s Echo, a device designed to be used for voice control
of home appliances via digital assistant ‘Alexa’, which would
potentially cause psychological or physical harm to the victim
by controlling their smart home environment. This hypothetical
attack involves a piece of malware consisting of JavaScript
code that plays an audio file giving a command to Alexa if
there has been no user activity on the mouse or keyboard after
a certain period of time (thus aiming to play the file at a time
when the user may be away from their computer and therefore
will not hear the audio command being played). Diao et al.
[36] investigate possibilities for gaining unauthorised access
to a smartphone via a malicious Android app that uses the
smartphone’s own speakers to play an audio file containing
voice commands. The attacks proposed by the authors include
an attack in which the smartphone is manipulated to dial a
phone number that connects to a recording device, and then to
disclose information, such as the victim’s calendar schedule,
by synthesised speech that is recorded by the device. Diao et al.
envisage such attacks being executed whilst the victim is asleep
and therefore unable to hear the malicious voice command.
Such an attack might in fact be executed whilst the victim is
neither away from their phone or asleep, but their attention is
merely directed elsewhere.

B. Inaudible Sound Injection

Kasmi and Esteves describe a different type of attack
in which voice commands are transmitted silently to a vic-
tim’s phone via electromagnetic interference using the phone’s
headphones as an antenna [37]. Unlike plain speech attacks,

123

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

this attack is not detectable even if the victim is consciously
present at the time of the attack, although for technical reasons
the attack can only be performed if the attacker is in close
proximity to the victim’s device. The attacks using this mech-
anism envisaged by Kasmi and Esteves include controlling
transmissions from a smartphone by activating or deactivating
Wifi, Bluetooth, or airplane mode, and browsing to a malicious
website to effect drive-by-download of malware. Young et al.
[38] also describe a ‘silent’ attack on smartphones via the
voice command interface that enables an attacker to perform
actions such as calling fee-paying phone numbers, posting to
Facebook in the victim’s name to damage their reputation,
accessing email messages, and changing website passwords
from the victim’s phone. The attack requires a short period of
time during which an attacker has unsupervised physical access
to the phone in order to attach a Raspberry Pi-based tool that
is recognised by the phone as headphones with a microphone.
Zhang et al. [39] and Song and Mittal [40] present methods for
injecting voice commands to voice-controlled digital assistants
at inaudible frequencies by exploiting non-linearities in the
processing of sounds by current microphone technology, which
can lead voice-controlled systems to detect a command as
having been issued within the human audible frequency range,
despite the sound not having been perceptible to humans in
reality. Silent attacks such as these target the ‘voice capture’
stage of voice control, i.e., the process of conversion of speech
sounds by the microphone from analog to digital form prior
to speech recognition.

C. Adversarial Learning
There has also been some prior work towards using adver-

sarial machine learning in attacks on voice-controlled digital
assistants. Adversarial learning can be broadly defined as a pro-
cess of identifying unexpected input that a machine learning-
based system classifies in a way that a human would regard as
erroneous. This is done by some form of systematic exploration
of the system’s input space, with the aim of discovering
‘adversarial examples’ within that space that an attacker can
exploit to their advantage. Some adversarial machine learning
methods involve manipulating inputs based on knowledge of
calculations within the classifier (such ‘white-box’ methods
include approaches such as the Fast Gradient Sign Method
and the Jacobian-based Saliency Map Approach for altering
input to a DNN, as described for example in Goodfellow et
al. [41]). Other methods seek to manipulate input on a ‘black-
box’ basis, i.e., without knowledge of the inner workings of a
target system. McDaniel et al. [42] explain that processes of
adversarial machine learning rely on identifying ‘adversarial
regions’ in a classification category that have not been covered
by training examples. The exact reasons for the effectiveness
of particular adversarial examples are difficult to determine,
as the decision-making process in a neural network cannot
be precisely reverse-engineered (see for example Castelvecchi
[43]). In this sense, whilst some adversarial learning methods
require more knowledge of the target network than others, all
attacks on DNN-based systems are of necessity ‘black-box’
attacks, although attacks requiring detailed knowledge of the
system’s functionality are referred to here as white-box in order
to distinguish them from attacks not requiring such detailed
knowledge.

Adversarial learning to attack DNN-based systems was first
demonstrated in image classification (see for example Szegedy

et al. [44]), but has recently also been applied to speech
recognition. One example is the work presented by Vaidya
et al. [30], who used audio mangling to distort commands
issued to the precursor to Google Assistant, Google Now (this
‘mangling’ involved reverse MFCC, where MFCC features
extracted from a speech sound were used to generate a man-
gled version of the sound). The mangled commands included
commands to open a malicious website, make a phone-call
and send a text, in addition to the Google Now wake-up
command ‘Ok Google’. The work showed that the distorted
commands continued to be recognised by the speech recogni-
tion system despite being no longer recognisable by humans,
who perceived them instead as mere noise. Thus, the distorted
commands represented adversarial examples for the target
system. The work by Vaidya et al. was expanded by Carlini et
al. [45], who also proved the possibility of prompting Google
Now to execute mangled commands that had been shown to
be unintelligible to humans in an experiment using Amazon
Mechanical Turk. The attacks by Vaidya et al. and Carlini
et al. on Google Now were ‘black-box’ attacks, i.e., they
were constructed without knowledge of the inner workings
of the speech recognition system. Carlini et al. additionally
conducted a successful ‘white-box’ attack on Carnegie Mellon
University’s SPHINX speech recognition system (based on
GMMs rather than DNNs), in which ‘mangled’ adversarial
commands were crafted with knowledge of the workings of
the system.

Other work on adversarial learning targeting speech recog-
nition includes that by Iter et al. [47], who used two adver-
sarial machine learning methods originally applied in image
classification to manipulate a speech recognition system based
on Google DeepMind’s WaveNet technology to mistranscribe
a number of utterances. This included prompting the system
to transcribe the utterance “Please call Stella” as “Siri call
police”. The attacks by Iter et al. are white-box attacks, i.e.,
they rely on some knowledge of the details of the target neural
network. The authors mention the possibility of developing a
black-box attack methodology in future work. Similar to Iter et
al., Cisse et al. [48] were also able to prompt mistranscription
of utterances, including mistranscription by Google Voice in
a ‘black-box attack’, using an adversarial machine learning
method called Houdini. Alzantot et al. [49] used a black-box
attack method based on a genetic algorithm to engineer mis-
classification of speech command words, such as ‘on’, ‘off’,
‘stop’, etc., by a machine learning-based speech recognition
system. Carlini and Wagner [50] have demonstrated a white-
box attack on Mozilla’s DNN-based DeepSpeech speech-to-
text transcription in which it was shown to be possible to
prompt mistranscription of a speech recording as any target
phrase, regardless of its degree of similarity to the original
phrase, by making perturbations to the original recording
that did not affect the original phrase as heard by humans.
Schöenherr et al. demonstrate a similar type of attack on open-
source speech recognition system Kaldi [51]. In contrast to
the attacks by Vaidya et al. and Carlini et al., which would
be perceived by victims as unexplained noise, attacks based
on methods such as those developed by Iter et al., Cisse
et al., Carlini and Wagner and Schöenherr et al. would be
perceived by victims as ordinary speech and would therefore
by more difficult to detect. Schöenherr et al. refer to this type
of attack as “psychoacoustic hiding”. To date, such work has

124

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. SUMMARY OF PRIOR AND RELATED WORK RELEVANT TO ATTACKS VIA THE SPEECH INTERFACE

Paper Attack Mechanism Target Component Human Perception of Attack

Dhanjani [35] plain speech speech interface in PC (Windows Vista) standard voice command
Diao et al. [36] plain speech speech interface in voice-controlled digital assistant (Google Voice

Search)
standard voice command

Kasmi and Esteves [37] inaudible sound injection voice capture in voice-controlled digital assistant (Google Now, Siri) silence
Young et al. [38] inaudible sound injection voice capture in voice-controlled digital assistant (Siri) silence
Zhang et al. [39] inaudible sound injection voice capture in voice-controlled digital assistant (Apple Siri, Amazon

Alexa, Microsoft Cortana and others)
silence

Song and Mittal [40] inaudible sound injection voice capture in voice-controlled digital assistant (Google Now, Ama-
zon Alexa)

silence

Vaidya et al. [30] adversarial learning speech recognition in voice-controlled digital assistant (Google Now) white noise
Carlini et al. [45] adversarial learning speech recognition in voice-controlled digital assistant (Google Now)

/ speech recognition (CMU Sphinx)
white noise

Yuan et al. [46] adversarial learning speech recognition in speech transcription system (Kaldi) music
Iter et al. [47] adversarial learning speech recognition in speech transcription system (WaveNet) unrelated language
Cisse et al. [48] adversarial learning speech recognition in voice-controlled digital assistant (Google Voice) unrelated language
Alzantot et al. [49] adversarial learning speech recognition in speech transcription system (TensorFlow) unrelated language
Carlini and Wagner [50] adversarial learning speech recognition in speech transcription system (DeepSpeech)

speech recognition in speech transcription system (DeepSpeech)
music
unrelated language

Schöenherr et al. [51] adversarial learning speech recognition in speech transcription system (Kaldi) unrelated language
Papernot et al. [52] adversarial learning natural language understanding in sentiment analysis system nonsensical language
Liang et al. [53] adversarial learning natural language understanding in text classification system unrelated language
Jia and Liang [54] adversarial learning natural language understanding in question answering system unrelated language
Alzantot et al. [55] adversarial learning natural language understanding in sentiment analysis and textual

entailment systems
unrelated language

Kuleshov et al. [56] adversarial learning natural language understanding in spam filtering, fake news detection
and sentiment analysis systems

unrelated language

Li et al. [57] adversarial learning natural language understanding in sentiment analysis and toxic content
detection systems

unrelated language

Bispham et al. [58] adversarial learning speech recognition in Google Assistant
natural language understanding in Amazon Alexa Skills

nonsensical language
unrelated language

been limited to speech-to-text transcription, i.e., it has not yet
demonstrated mistranscription of voice commands capable of
executing an action.

In addition to prompting mistranscription of speech, Car-
lini and Wagner demonstrated the possibility of manipulating
music recordings so as to prompt them to be transcribed
by DeepSpeech as a given string of words, demonstrating
for example that a recording of Verdi’s Requiem could be
manipulated to be transcribed by DeepSpeech as “Ok Google,
browse to evil.com”. Yuan et al. [46] similarly demonstrate
the possibility of hiding voice commands in music. Unlike
the attacks crafted by Carlini and Wagner, the attacks crafted
by Yuan et al. are reportedly effective over the air as well as
via audio file input, although their attacks are also white-box
attacks and are limited to speech-to-text transcription rather
than being demonstrated on voice-controlled digital assistants
as such. Another type of adversarial learning attack on speech
recognition is presented by Bispham et al. [58], who present
the results of work demonstrating a black-box attack in which
voice commands to a target system are hidden in nonsensical
word sounds that are perceived as meaningless by humans.
One further, currently hypothetical, type of adversarial learning
attack on speech recognition arises from the development of
voice-controlled systems that are capable of interacting with
users in more than one language (see for example Lopez-
Moreno et al. [59]). It could be possible for attackers to identify
instances where input in one language is misclassified by a
system as a different input in another language. Depending on
the language capabilities of the human listener, an adversarial
learning attack prompting mistranscription of a utterance in
one language as a different utterance in another language
would be perceived by the human listener either as unrelated
speech, or else as nonsensical or unintelligible speech.

Adversarial learning has also recently been applied to
some areas of natural language understanding. This work has
been performed mainly outside the context of voice-controlled
systems, although there has been some preliminary work on
attacks targeting natural language understanding in voice-
controlled digital assistants, as discussed below. The generation
of adversarial examples in natural language understanding is
more complex than the generation of adversarial examples in
image or speech recognition. Unlike in the case of continuous
data such as image pixels or audio frequency values, adver-
sarial generation of natural language is not a differentiable
problem. As word sequences are discrete data, it is not possible
to change a word sequence representing an input to a machine
learning classifier directly by a numerical value in order to
effect a change in output of the classifier. The areas focussed
on in prior work include sentiment analysis (see Papernot et
al. [52]), text classification (see Liang et al. [53]), and question
answering (see Jia and Liang [54]). Papernot et al. [52] use the
forward derivative method, a white-box adversarial learning
method, to identify word substitutions that can be made in
sentences inputted to an RNN-based sentiment analysis system
so as to change the ‘sentiment’ allocated to the sentence. In
contrast to adversarial examples in image classification and
speech recognition, in which alterations made to the origi-
nal input are imperceptible to humans, the alterations made
to sentences in order to mislead the RNN-based sentiment
analysis system targeted in the work by Papernot et al. are
easily perceptible to humans as nonsensical, albeit that the
attack intent remains hidden. For example, substituting the
word ‘I’ for the word ‘excellent’ in an otherwise negative
review is shown in the paper to lead it to being classified as
having positive sentiment. Whereas the altered sentence will
appear unnatural to a human, the target system is not capable

125

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of identifying the nonsensical nature of the adversarial input.
Papernot et al. state that the lack of naturalness of the

adversarial examples in their attacks on natural language
understanding will need to be addressed in future work. By
contrast to Papernot et al., Liang et al. [53] demonstrate a lin-
guistically plausible attack on a natural language understanding
system. The authors adapt the Fast Gradient Sign Method from
adversarial learning in image classification to make human-
undetectable alterations to a text passage (by adding, modify-
ing and/or removing words) so as to change the category that
is allocated to the passage by a DNN-based text classification
system. The attack by Liang et al. is white-box, requiring
details of the calculations inside the network. Jia and Liang
[54] also demonstrate a linguistically plausible attack in the
context of question answering. Their work involves misleading
a number of question answering systems by adding apparently
inconsequential sentences to text passages from which the
systems extract answers to questions. The method works by
first choosing a target wrong answer to a given question, and
then crafting a sentence containing information leading to this
wrong answer that can be inserted into the original passage
without noticeably changing its overall import. The attack
method proposed by Jia and Liang is a black-box method,
not requiring knowledge of the internal details of the target
network.

Kuleshov et al. [56] use a word replacement approach in
an adversarial learning attack targeting spam filtering, fake
news detection and sentiment analysis. Their attack selects
acceptable replacement words according to a semantic sim-
ilarity measure based on ‘thought vectors’ in the form of
averages of individual word vectors, and a syntactic similarity
measure based on a language model, with the stated aim of
‘formalising’ the process of generating adversarial examples
in natural language classification. The attacks demonstrated
by Kuleshov et al. are white-box attacks, in that they rely
on knowledge of objective function calculations in order to
optimise the attack. Li et al. [57] demonstrate an attack on
sentiment analysis and toxic content detection systems under
both white-box and black-box conditions, using different types
of perturbation of text including deliberate misspellings as well
as word replacement. They note that character-level pertur-
bations have a higher success rate in generating adversarial
examples than word-level perturbations. Whilst all of the
attacks on natural language understanding described above are
demonstrated outside the context of voice-controlled systems,
Bispham et al. [58] present a proof-of-concept study for attacks
targeting natural language understanding in a voice-controlled
digital assistant, using third-party Skills for Amazon Alexa as a
specific example of a target system. The attack concept devel-
oped in the proof-of-concept study involves word replacement
in a target command, as well as the transplant of content words
from a target command to another meaning context where they
are used in a different sense. These processes are shown to
generate adversarial utterances that trigger target actions in
a dummy Alexa Skill, whilst appearing to humans to have
an unrelated meaning. The examples of attacks on natural
language understanding described here are indicative of the
fact that natural language understanding technology currently
represents only a crude approximation of human language
understanding that is easily destabilised.

In the specific context of voice-controlled digital assistants,

the need to circumvent the wake-up word activation presents a
potential issue of linguistic plausibility for adversarial learning
attacks on natural language understanding, in that unlike
in the case of adversarial learning attacks targeting speech
recognition, it is difficult to incorporate a device’s wake-up
word as part of an attack based on confusion of meaning.
However, given the known presence of false positives with
respect to wake-up word recognition, this type of attack should
not be dismissed as impossible.

D. Active Attack

All of the attacks described in the prior and related work
summarised above are ‘passive’ attacks, in the sense that
they seek to exploit vulnerabilities that are already present
in a target system. There is also the possibility of ‘active’
attacks that seek to undermine the functionality of the system
itself. Miller et al. [60] refer to these attack types as ‘foiling’
and ‘tampering’, respectively. An example of active attack
on a natural language interface was seen in an attempt by
Microsoft to launch a social media chatbot named Tay. Tay was
intended to learn human-like language use from interactions
with humans on social media platform Twitter. Within a short
time of launching the chatbot had to be closed down on
account of having been flooded by some users with offensive
language and views, which it then proceeded to imitate (see
Følstad and Brandtstæd [61]). In the context of cloud-based
voice assistants, active attacks might involve manipulating the
response behaviour of the system for malicious ends. Rather
than passively exploiting weaknesses in the speech recognition
and natural language understanding functionalities of a voice-
controlled system, such attacks would seek actively to under-
mine the system’s ability to respond appropriately to spoken
input by manipulating the dialogue management functionality.
The potential for active attacks on voice-controlled digital
assistants arises from the aim of providers of such systems
to enable cloud-based assistants to continually ‘improve’ in
interactions with their users. The capacity of voice-controlled
digital assistants to learn from feedback from user conver-
sations can be expected to increase with the introduction of
commercially available voice assistants based on reinforcement
learning. This capacity for learning might be abused by at-
tackers aiming to confuse the system using various means,
such as inconsistent verbal inputs over time, incongruous
feedback in dialogue turns, or inappropriate corrections of a
target system’s responses. Attackers might for example launch
a denial of service-type attack by mass disconfirmation of
legitimate commands. Such attacks remain hypothetical at
time of writing, as the current generation of voice-controlled
digital assistants still use rule-based rather than reinforcement
learning-based dialogue management technology, as explained
above. However, this type of attack may become significant in
future.

A different type of active attack affecting human interac-
tion with voice-controlled systems in future might arise from
the voice-controlled systems themselves, via the evolution of
machine-generated languages that diverge from human lan-
guage use. Whilst mismatches between human and machine
understanding of natural language have generally been viewed
as failure on the part of machines to attain human levels
of language understanding, it is also possible to view such
mismatches as a failure on the part of humans to grasp

126

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the way in which meaning is represented by a machine.
This was illustrated by an instance in which two bots were
observed to develop a language for communication between
themselves that was unintelligible to humans. This occurred
as an unintended consequence of research by Lewis et al.
[62], the aim of which was to train two bots to negotiate
with one another in natural language using reinforcement
learning. In the course of the learning process, the bots
began to deviate from natural English in their language use,
instead using apparently nonsensical strings of words in their
communication with each other. This deviation was presumed
to have effected more efficient communication between the two
bots in achieving an optimal outcome in their negotiations.
The development of bots capable of autonomously evading
human language understanding may represent an increasingly
significant future security threat, given the potential for loss
of control over the behaviour of such systems by their human
users. A malicious actor might be able to trigger a machine-
machine reinforcement learning process in a target system with
the specific aim of prompting it to behave in a way that was
unintended by its human developers.

IV. TAXONOMY OF ATTACKS VIA THE SPEECH
INTERFACE

Reflecting on the review of prior work and related work in
Section III, we propose a high-level taxonomy of categories of
attacks via the speech interface. This taxonomy is presented
in Figure 3. The principle behind the taxonomy is to identify
the various categories of non-speech and speech sounds that
humans are capable of perceiving, and to group attacks via
the speech interface according to these categories, rather than
according to the attack mechanism used by an attack or by
the specific technical vulnerability that it exploits. The last
column of Table I shows the perceptual category that might
be allocated to the attacks described above by humans. By
applying this categorisation principle, our taxonomy is capable
of encompassing attack types that have been shown to be pos-
sible in relation to the current generation of voice-controlled
systems, as well as attacks that may become possible in
future as the state-of-the-art in voice control advances. Thus
our taxonomy fulfils the dual purpose of systematising prior
work whilst also identifying new directions for future research.
Attacks via the speech interface as categorised under our
taxonomy might be targeted at any voice-controlled system,
including any voice-controlled digital assistant and any third-
party applications accessible through it, and might be delivered
via any speaker-enabled device capable of producing sound in
the target system’s environment.

In the taxonomy, attacks via the speech interface are pri-
marily grouped into two categories: ‘overt’ attacks, which seek
to gain unauthorised access to systems using the same voice
commands as might be given by a legitimate user and are thus
easily detectable by a human, and ‘covert’ attacks, which seek
to gain access using speech commands that have been distorted
in some way so as to escape detection by the victim. Another
way of characterizing this division is as a distinction between
attacks that make illicit use of the intended functionalities of
a speech dialogue system, and attacks that exploit unintended
functionalities. Overt attacks use plain speech to exploit an
inherent vulnerability in voice-controlled systems that arises
from the difficulty of controlling access to a system via the

‘speech space’. Covert attacks exploit gaps in the processes of
capturing human speech or of translating the captured speech
input into computer executable actions in a voice-controlled
system. Covert attacks include attacks using inaudible sound
injection, adversarial learning, and active attack, as discussed
above.

Within the two primary categories of overt and covert
attacks, attacks are grouped hierarchically into six final sub-
categories based on human perceptual categories, as shown in
Figure 3 and explained further below. Malicious inputs in overt
attacks consist by definition of ordinary speech. Thus a single
sub-category of ‘plain-speech’ attacks was identified for overt
attacks. The attacks demonstrated in prior work using standard
voice commands, such as those demonstrated by Dhanjani et
al. [35] discussed above, fall into this sub-category. Malicious
inputs in covert attacks may include input that consists in
human terms of silence, as for example in the attacks demon-
strated by Zhang et al. [39], noise, as for example in the attacks
demonstrated by Carlini et al. [45], music, as for example
in the attacks demonstrated by Yuan et al. [46], nonsense,
as for example in the attacks on Google Assistant hiding
malicious commands in nonsensical word sounds demonstrated
by Bispham et al. [58], and unrelated speech, as for example
in the attacks demonstrated by Carlini and Wagner [50]. Based
on these examples of attacks in prior work, and in accordance
with the categorisation principle chosen for the taxonomy of
grouping attacks according to the nature of attacks as they
might be perceived by a human listener, five sub-categories of
covert attacks via a speech interface were identified, namely
attacks consisting of silence, music, noise, ‘nonsense’, and
‘missense’. Nonsense as a malicious input in covert attacks is
defined as input that is made up of words or sounds that are in
legitimate use in the relevant language, but that combines them
in such a way that they do not convey any meaning in terms of
human understanding. Missense is defined as unrelated speech
that is misheard or misinterpreted by the target system as a
target command.

Our taxonomy accords with established criteria for attack
taxonomies, as described for example in Hansman and Hunt
[63]. These criteria include the requirement that a taxonomy
should be ‘complete’, i.e., cover all possible attacks within its
scope, and unambiguous, i.e., it should be possible clearly to
allocate every attack to one category within the scope of the
taxonomy. The principle of categorising attacks according to
human perception ensures that the taxonomy is complete, as
all attacks via a speech interface can be allocated to one of
the six sub-categories. The taxonomy is also unambiguous, in
that it is not possible to allocate the same voice attack to more
than one of the six final sub-categories.

At the bottom of Figure 3, the attack categories based on
human perceptual distinctions as identified in the taxonomy are
aligned to the technical vulnerabilities in the architecture of
the current generation of voice-controlled systems that might
be targeted by each type of attack. The taxonomy of attacks
categorised according to human perception as aligned to tech-
nical vulnerabilities at various points of the handling of speech
input by voice-controlled systems represents the entire attack
surface presented by a speech interface. To the extent that
speech processing by voice-controlled systems mimics human
speech processing, the attack categories in the taxonomy based
on human perception correspond to vulnerabilities in the parts

127

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Taxonomy of Attacks via the Speech Interface aligned to Vulnerabilities in the Architecture of Voice-Controlled Systems

of the architecture of voice-controlled systems that represent
equivalent human processes, although this correspondence is
not exact. The alignment presented in Figure 3 covers the tech-
nical vulnerabilities that are present in the current generation
of voice-controlled digital assistants, namely the vulnerability
arising from the inherent difficulty of controlling access to a
system by sound, vulnerabilities in the voice capture process,
vulnerabilities in speech recognition, and vulnerabilities in
natural language understanding. Whilst the categories of attack
based on human perception can be expected to remain stable
over time, their alignment to vulnerabilities in the architecture
of voice-controlled systems might be expected to shift in future
to include new vulnerabilities as the state-of-the-art in voice-
controlled systems progresses. Thus, for example, missense
attacks might be aligned in future not only to vulnerabilities
in the speech recognition and natural language understanding
components of voice-controlled systems, but also to vulnera-
bilities in the dialogue management component, such as the
vulnerability presented by the potential for mistraining in the
context of dialogue management functionality based on rein-
forcement learning, as well as the vulnerability presented by
the potential for the evolution in reinforcement learning-based
systems of bot-generated language that is incomprehensible to
humans, as discussed above.

As reflected in the alignment in Figure 3, attacks in plain-
speech exploit the inherent vulnerability of speech interfaces
on account of the difficulty of controlling access to a system by
sound. Attacks in silence attacks exploit vulnerabilities in the
voice capture process, as is shown by the alignment of silent
attacks to the voice capture component of the architecture
in Figure 3. Attacks that use music and noise as malicious
input exploit unintended functionality in speech recognition,
as is shown by the alignment of these attack categories to the

speech recognition component of the architecture. As further
reflected in the alignment in Figure 3, nonsense attacks on
current voice-controlled systems might be targeted either at
the speech recognition or the natural language understanding
components of a target system. The attacks in which malicious
voice commands were hidden in nonsensical word sounds
demonstrated by Bispham et al. [58] can be categorised as
nonsense attacks targeting the speech recognition level of
handling of speech input in a voice-controlled system. As
regards attacks targeting the natural language understanding
level, nonsense attacks have yet to be demonstrated with
respect to voice-controlled systems directly, although there has
been some related work that could be described as nonsense
attacks on natural language understanding, such as in the
attacks on a sentiment analysis system by Papernot et al. [52]
by making nonsensical alterations to text discussed in Section
III. Similar attacks might be demonstrated in the context of
voice-controlled digital assistants in future.

Similar to nonsense attacks, missense attacks might also be
targeted at either the speech recognition or natural language
understanding component of current voice-controlled systems,
as is also shown in the alignment in Figure 3. Missense
attacks targeting speech recognition rely on mistranscription
of adversarial input by a target system as a target command. In
a missense attack that targets natural language understanding
functionality, on the other hand, words might be transcribed
correctly by the target system, but their meaning would be
misinterpreted. This type of missense attacks would seek to
exploit the shortcomings of current natural language under-
standing functionality in voice-controlled digital assistants in
terms of being able to identify the correct meaning of words
in context. Prior work on missense attacks in voice-controlled
systems has to date been focussed primarily on attacks on

128

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

speech recognition as incorporated in such systems, as for
example in the work of Carlini and Wagner [50]. The attacks
described in the proof-of-concept study presented by Bispham
et al. [58] for attacks that trigger a target command in an
Amazon Alexa Skill using unrelated utterances would fall into
the category of missense attacks targeting natural language
understanding. There has also been more extensive work
demonstrating missense attacks that target natural language
understanding functionality in related research areas, such the
attacks on question answering by Jia and Liang [54] by making
apparently inconsequential alterations to text, or in the work
by Kuleshov et al. [56] using word replacement to mislead
spam filtering, toxic content detection and sentiment analysis
systems, as described in Section III.

As discussed above, attacks on future systems may also
include attacks targeting speech recognition in multilingual
systems, prompting a target system to mistranscribe input
in one language as different input in another. Such attacks
would be classed as either nonsense or missense attacks,
based on whether or not the cover language used by an
attacker was understood by a human listener. As also discussed
above, future attacks might further include attacks in which
a target system’s ability to respond appropriately to spoken
input is actively undermined by mistraining of a dialogue
management component based on reinforcement learning, as
well as attacks that are based on facilitating the evolution
of human-incomprehensible languages in autonomous bot-to-
bot interactions in reinforcement learning-based systems. The
former type of attack would represent a missense attack, with
the adversarial input being perceived by human listeners as
unrelated language, whereas the latter type of attack would
represent a nonsense attack, with the adversarial input being
perceived by human listeners as nonsensical language.

V. CONCLUSION AND FUTURE WORK

This paper proposes a taxonomy of attacks via the speech
interface that covers attacks investigated in prior and related
work, as well as attacks that may be possible in the future.
The review of prior and related work in this paper indicates
that the potential for attacks via a speech interface has yet
to be comprehensively assessed. The scope of attacks via a
speech interface can be expected to expand with the increasing
sophistication of voice-controlled systems. Consequently, there
is a need for further security-focussed research in the area of
voice-controlled technology.

Future work should seek more extensively to demonstrate
the potential for attacks in the various categories of the
proposed taxonomy in the context of different technologies and
use-case scenarios. Among the taxonomy categories, nonsense
and missense attacks targeting the natural language under-
standing functionality of voice-controlled systems represent
types of attacks that have yet to be explored fully in practice.
Thus, such attacks should be a special focus of future work.
Looking further into the future, attacks based on language
confusion in multilingual systems, as well as attacks based
on mistraining of dialogue management or facilitation of bot-
generated languages in reinforcement learning-based systems,
may become a reality requiring the attention of security
researchers.

The results of future work should ultimately be used as a
basis for the development of more effective defence measures

to improve the security of voice-controlled digital assistants
and other voice-controlled systems. As a first step in this
direction, Bispham et al. [64] present some attack and defence
modelling work in which the attack categories in the taxonomy
presented here are mapped to currently available defences
against attacks via the speech interface, enabling an assessment
of the effectiveness of current defences against the various
types of attack.

ACKNOWLEDGMENT

This work was funded by a doctoral training grant from
the Engineering and Physical Sciences Research Council (EP-
SRC).

REFERENCES
[1] M. K. Bispham, I. Agrafiotis, and M. Goldsmith, “A taxonomy of

attacks via the speech interface,” Proceedings of Third International
Conference on Cyber-Technologies and Cyber-Systems, 2018.

[2] “Why Amazon’s Alexa may soon become your new colleague,” 2017,
URL: https://www.inc.com/emily-canal/amazon-alexa-for-business.html
[accessed: 2019-05-05].

[3] R. Sarikaya, “The technology behind personal digital assistants: An
overview of the system architecture and key components,” IEEE Signal
Processing Magazine, vol. 34, no. 1, 2017, pp. 67–81.

[4] D. Pogue, “At your command,” Scientific American, vol. 315, no. 1,
2016, pp. 25–25.

[5] C. Franzese and M. Coyne, “The promise of voice: Connecting drug
delivery through voice-activated technology,” vol. 2017, 12 2017, pp.
34–37.

[6] “British navy warships ‘to use Siri’ as technology transforms warfare,”
2017, URL: https://www.theguardian.com/uk-news/2017/sep/12/british-
navy-warships-to-use-voice-controlled-system-like-siri [accessed: 2019-
05-05].

[7] “The Voice-AI Revolution is a Conversational Interface of Everything,”
2017, URL: https://medium.com [accessed: 2019-05-05].

[8] “A Murder Case Tests Alexa’s Devotion to Your Privacy,”
2017, URL: https://www.wired.com/2017/02/murder-case-tests-alexas-
devotion-privacy [accessed: 2018-07-20].

[9] “Voice Hackers Will Soon Be Talking Their
Way Into Your Technology,” 2014, URL:
https://www.forbes.com/sites/jasperhamill/2014/09/29/voice-hackers-
will-soon-be-talking-their-way-into-your-technology/ [accessed:
2019-05-05].

[10] “Burger King triggers Google Home devices with TV ad,”
2017, URL: https://nakedsecurity.sophos.com/2017/04/18/burger-king-
triggers-ok-google-devices-with-tv-ad/ [accessed: 2019-05-05].

[11] M. B. Hoy, “Alexa, Siri, Cortana, and more: An introduction to voice
assistants,” Medical Reference Services Quarterly, vol. 37, no. 1, 2018,
pp. 81–88.

[12] W. Haack, M. Severance, M. Wallace, and J. Wohlwend, “Security
analysis of the Amazon Echo,” MIT, 2017.

[13] “Google uses Assistant to square up to Siri in AI arms
race,” 2017, URL: https://www.ft.com/content/f9423056-7efe-11e6-
8e50-8ec15fb462f4 [accessed: 2019-05-05].

[14] J. R. Bellegarda and C. Monz, “State of the art in statistical methods
for language and speech processing,” Computer Speech & Language,
vol. 35, 2016, pp. 163–184.

[15] P. Lison and R. Meena, “Spoken dialogue systems: the new frontier in
human-computer interaction,” XRDS: Crossroads, The ACM Magazine
for Students, vol. 21, no. 1, 2014, pp. 46–51.

[16] B.-H. Juang and L. R. Rabiner, “Automatic speech recognition–a brief
history of the technology development,” Georgia Institute of Technol-
ogy. Atlanta Rutgers University and the University of California. Santa
Barbara, vol. 1, 2005, p. 67.

[17] X. Huang, J. Baker, and R. Reddy, “A historical perspective of speech
recognition,” Communications of the ACM, vol. 57, no. 1, 2014, pp.
94–103.

129

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] W. Xiong et al., “Achieving human parity in conversational speech
recognition,” arXiv preprint arXiv:1610.05256, 2016.

[19] P. Liang, “Learning executable semantic parsers for natural language
understanding,” Communications of the ACM, vol. 59, no. 9, 2016, pp.
68–76.

[20] M. McTear, Z. Callejas, and D. Griol, The conversational interface.
Springer, 2016.

[21] R. Sarikaya et al., “An overview of end-to-end language understand-
ing and dialog management for personal digital assistants,” in IEEE
Workshop on Spoken Language Technology, 2016, pp. 391–397.

[22] G. Mesnil et al., “Using recurrent neural networks for slot filling in
spoken language understanding,” IEEE/ACM Transactions on Audio,
Speech and Language Processing (TASLP), vol. 23, no. 3, 2015, pp.
530–539.

[23] A. Stolk, L. Verhagen, and I. Toni, “Conceptual alignment: how brains
achieve mutual understanding,” Trends in Cognitive Sciences, vol. 20,
no. 3, 2016, pp. 180–191.

[24] M. McTear, “Conversational modelling for chatbots: Current approaches
and future directions,” Technical report, Ulster University, Ireland, Tech.
Rep., 2018.

[25] S. Young, M. Gašić, B. Thomson, and J. D. Williams, “Pomdp-based
statistical spoken dialog systems: A review,” Proceedings of the IEEE,
vol. 101, no. 5, 2013, pp. 1160–1179.

[26] H. Chung, J. Park, and S. Lee, “Digital forensic approaches for amazon
alexa ecosystem,” Digital Investigation, vol. 22, 2017, pp. S15–S25.

[27] “Alexa and Google Home Record What You Say, But What Happens
To That Data?” 2016, URL: https://www.wired.com/2016/12/alexa-and-
google-record-your-voice/ [accessed: 2019-05-05].

[28] H. Chung, M. Iorga, J. Voas, and S. Lee, “Alexa, can I trust you?”
Computer, vol. 50, no. 9, 2017, pp. 100–104.

[29] A. H. Michaely, X. Zhang, G. Simko, C. Parada, and P. Aleksic,
“Keyword spotting for Google Assistant using contextual speech recog-
nition,” in Proceedings of ASRU, 2017, pp. 272–278.

[30] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields, “Cocaine noodles:
exploiting the gap between human and machine speech recognition,”
Presented at WOOT, vol. 15, 2015, pp. 10–11.

[31] V. Këpuska and G. Bohouta, “Improving wake-up-word and general
speech recognition systems,” in Dependable, Autonomic and Secure
Computing, 15th Intl Conf on Pervasive Intelligence & Computing, 3rd
Intl Conf on Big Data Intelligence and Computing and Cyber Science
and Technology Congress (DASC/PiCom/DataCom/CyberSciTech),
2017 IEEE 15th Intl. IEEE, 2017, pp. 318–321.

[32] M. T. Islam, B. Islam, and S. Nirjon, “Soundsifter: Mitigating over-
hearing of continuous listening devices,” in Proceedings of the 15th
Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 2017, pp. 29–41.

[33] “Amazon Alexa heard and sent private chat,” 2018, URL:
https://www.bbc.co.uk/news/technology-44248122 [accessed: 2019-05-
05].

[34] “How to use third-party Actions on Google Home,” 2017,
URL: https://www.cnet.com/uk/how-to/how-to-use-third-party-actions-
on-google-home/ [accessed: 2019-05-05].

[35] N. Dhanjani, Abusing the Internet of Things: Blackouts, Freakouts, and
Stakeouts. ” O’Reilly Media, Inc.”, 2015.

[36] W. Diao, X. Liu, Z. Zhou, and K. Zhang, “Your voice assistant is mine:
How to abuse speakers to steal information and control your phone,”
in Proceedings of the 4th ACM Workshop on Security and Privacy in
Smartphones & Mobile Devices. ACM, 2014, pp. 63–74.

[37] C. Kasmi and J. L. Esteves, “IEMI threats for information security: Re-
mote command injection on modern smartphones,” IEEE Transactions
on Electromagnetic Compatibility, vol. 57, no. 6, 2015, pp. 1752–1755.

[38] P. J. Young, J. H. Jin, S. Woo, and D. H. Lee, “Badvoice: Soundless
voice-control replay attack on modern smartphones,” in Ubiquitous and
Future Networks (ICUFN), 2016 Eighth International Conference on.
IEEE, 2016, pp. 882–887.

[39] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu, “Dolphi-
nattack: Inaudible voice commands,” arXiv preprint arXiv:1708.09537,
2017.

[40] L. Song and P. Mittal, “Inaudible voice commands,” arXiv preprint
arXiv:1708.07238, 2017.

[41] I. Goodfellow, N. Papernot, and P. McDaniel, “cleverhans v0. 1: an
adversarial machine learning library,” arXiv preprint arXiv:1610.00768,
2016.

[42] P. McDaniel, N. Papernot, and Z. B. Celik, “Machine learning in
adversarial settings,” IEEE Security & Privacy, vol. 14, no. 3, 2016,
pp. 68–72.

[43] D. Castelvecchi, “Can we open the black box of AI?” Nature News,
vol. 538, no. 7623, 2016, p. 20.

[44] C. Szegedy et al., “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199, 2013.

[45] N. Carlini et al., “Hidden voice commands,” in 25th USENIX Security
Symposium (USENIX Security 16), Austin, TX, 2016.

[46] X. Yuan et al., “Commandersong: A systematic approach for practical
adversarial voice recognition,” arXiv preprint arXiv:1801.08535, 2018.

[47] D. Iter, J. Huang, and M. Jermann, “Generating adversarial examples
for speech recognition,” Stanford, 2017.

[48] M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling deep
structured prediction models,” arXiv preprint arXiv:1707.05373, 2017.

[49] M. Alzantot, B. Balaji, and M. Srivastava, “Did you hear that? adver-
sarial examples against automatic speech recognition,” arXiv preprint
arXiv:1801.00554, 2018.

[50] N. Carlini and D. Wagner, “Audio adversarial examples: Targeted
attacks on speech-to-text,” arXiv preprint arXiv:1801.01944, 2018.

[51] L. Schönherr, K. Kohls, S. Zeiler, T. Holz, and D. Kolossa, “Adversarial
attacks against automatic speech recognition systems via psychoacoustic
hiding,” arXiv preprint arXiv:1808.05665, 2018.

[52] N. Papernot, P. McDaniel, A. Swami, and R. Harang, “Crafting ad-
versarial input sequences for recurrent neural networks,” in Military
Communications Conference, MILCOM 2016-2016 IEEE. IEEE,
2016, pp. 49–54.

[53] B. Liang, H. Li, M. Su, P. Bian, X. Li, and W. Shi, “Deep text
classification can be fooled,” arXiv preprint arXiv:1704.08006, 2017.

[54] R. Jia and P. Liang, “Adversarial examples for evaluating reading
comprehension systems,” arXiv preprint arXiv:1707.07328, 2017.

[55] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, and K.-
W. Chang, “Generating natural language adversarial examples,” arXiv
preprint arXiv:1804.07998, 2018.

[56] V. Kuleshov, S. Thakoor, T. Lau, and S. Ermon, “Adversarial examples
for natural language classification problems,” 2018.

[57] J. Li, S. Ji, T. Du, B. Li, and T. Wang, “Textbugger: Generat-
ing adversarial text against real-world applications,” arXiv preprint
arXiv:1812.05271, 2018.

[58] M. K. Bispham, I. Agrafiotis, and M. Goldsmith, “Nonsense attacks on
Google Assistant and missense attacks on Amazon Alexa,” Proceed-
ings of International Conference on Information Systems Security and
Privacy, 2019.

[59] I. Lopez-Moreno, J. Gonzalez-Dominguez, O. Plchot, D. Martinez,
J. Gonzalez-Rodriguez, and P. Moreno, “Automatic language iden-
tification using deep neural networks,” in 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2014, pp. 5337–5341.

[60] D. J. Miller, X. Hu, Z. Qiu, and G. Kesidis, “Adversarial learning: a crit-
ical review and active learning study,” arXiv preprint arXiv:1705.09823,
2017.

[61] A. Følstad and P. B. Brandtzæg, “Chatbots and the new world of HCI,”
interactions, vol. 24, no. 4, 2017, pp. 38–42.

[62] M. Lewis, D. Yarats, Y. N. Dauphin, D. Parikh, and D. Batra, “Deal or
no deal? End-to-end learning for negotiation dialogues,” arXiv preprint
arXiv:1706.05125, 2017.

[63] S. Hansman and R. Hunt, “A taxonomy of network and computer
attacks,” Computers & Security, vol. 24, no. 1, 2005, pp. 31–43.

[64] M. K. Bispham, I. Agrafiotis, and M. Goldsmith, “Attack and defence
modelling for attacks via the speech interface,” Proceedings of Interna-
tional Conference on Information Systems Security and Privacy, 2019.

130

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Threat Analysis using Vulnerability Databases
– Topic Model Analysis using LDA and System Model Description –

Katsuyuki Umezawa
Department of Information Science

Shonan Institute of Technology
Fujisawa, Kanagawa 251–8511, Japan
e-mail: umezawa@info.shonan-it.ac.jp

Yusuke Mishina
Cyber Physical Security Research Center (CPSEC)

National Institute of Advanced Industrial Science and Technology (AIST)
Koto-ku, Tokyo 135–0064, Japan
e-mail: yusuke.mishina@aist.go.jp

Sven Wohlgemuth
Research & Development Group

Hitachi, Ltd.
Yokohama, Kanagawa 244–0817, Japan

e-mail: sven.wohlgemuth.kd@hitachi.com

Kazuo Takaragi
Cyber Physical Security Research Center (CPSEC)

National Institute of Advanced Industrial Science and Technology (AIST)
Koto-ku, Tokyo 135–0064, Japan
e-mail: kazuo.takaragi@aist.go.jp

Abstract—We proposed a threat analysis method utilizing topic
model analysis and vulnerability databases. The method is based
on attack tree analysis. We create an attack tree on a evaluation
target system and some attack trees on a known vulnerability,
and combine the two types of attack trees to create more concrete
attack trees. This enables us to calculate the probability of
occurrence of a safety accident and to utilize attack trees in
future analysis. In this paper, we formulate a topic model analysis
and confirm the feasibility of matching known attack cases to
vulnerability databases using a topic model analysis tool. In
addition, we show that our proposed method can use the results
of past threat analysis for the next one. Moreover, we create a
system model description based on the attack tree of Tesla’s case
created using our proposed method. It shows that fake commands
can be transmitted from the external information system to
the in-vehicle control system. Our approach to automatic threat
analysis supports risk analysis in discovering previous unknown
relationships and so threats including their potential escalation
within an connected IT system.

Keywords–Threat Analysis; Vulnerability Information; Attack
Tree; Topic Model Analysis; System Model Description.

I. INTRODUCTION

We proposed a threat analysis method utilizing topic model
analysis and vulnerability databases [1]. The background of
this proposal is as follows.

Interference and interruption to safety due to security inci-
dents are recognized as a big problem in safety critical systems,
such as those for electric power, information communication,
automobile, aviation, railway, and medical care. For security
of in-vehicle communication in the EVITA project [2], authors
have conducted a risk management process. Specifically, risk
analysis, security requirement setting, architecture design, pro-
totyping, and demonstration was held. The EVITA project uses
attack trees for risk analysis. One way to analyze the causal
relationship between safety (hazard) and security (threat) is
to express that relationship with a combination of a Fault
Tree (FT) and Attack Tree (AT) [3]. The US-based MITRE
Corporation provides several tools for vulnerability reporting
and aggregation in a vulnerability database (DB). In Common
Vulnerabilities and Exposures (CVE) [4], individual software
vulnerabilities are stored in a DB. In Common Weakness
Enumeration (CWE) [5], common vulnerabilities are cata-
loged with a focus on the cause of the vulnerability. Further-

more, Common Attack Pattern Enumeration and Classification
(CAPEC) [6] is a DB classified by attack pattern. Scientific
literature related to safety analysis using FTs is, nowadays, ma-
ture. However, the complexity of the problem has significantly
increased in security analysis. Elaborate attacks occur with
multiple combinations of those vulnerabilities. It is not easy to
create an AT that comprehensively captures such possibilities.

We have focused on such problems and proposed a threat
analysis method using a vulnerability DB as a practical
approach [7][8]. First, we assumed that many attacks were
imitations or minor changes of known attacks. Therefore, we
believed that expressing attack cases that occurred in the past
by using an AT could enable a designer (defender) to become
aware of related attacks (recognize the danger). By gradually
and continuously applying this approach, it can be useful for
reducing vulnerability.

We proposed an algorithm that includes a process for
matching each node of an AT described in natural language
[7][8]. However, the matching method utilized was not speci-
fied. We evaluated the feasibility of this unspecified matching
process using a topic model analysis method. In this paper, in
addition to our study, we add the formulation of our proposed
algorithm, application to examples of a Tesla case [9], the
formulation of a topic model, and the possibility of recognizing
dangers by using the system model description.

In Section II, we summarize the threat analysis method
we proposed in our previous studies [7][8]. In Section III,
we formulate the algorithm shown in Section II. We apply
the proposed algorithm to the Tesla case examples in Section
IV. In Section V, we introduce the topic model analysis. In
Section VI, we verify the feasibility of matching attack cases
to vulnerability DBs and show the result. We describe a
system model description using the attack tree created from
the proposed algorithm in Section VII. Section VIII concludes
this paper by summarizing the key points and providing an
outlook on future activities.

II. THREAT ANALYSIS USING VULNERABILITY
DATABASES

This section presents a summary of our proposed method
[8]. An overview of the threat analysis method using the
vulnerability DB is shown in Figure 1. The proposed threat
analysis method conducts the following three procedures:

131

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Overview of proposed threat analysis method

• Create vulnerability model information.
• Create lower-level component information embedded

in software.
• Perform threat analysis on the basis of design infor-

mation of analysis target system.

A. Creating vulnerability model information
The MITRE Corporation has published several forms of

vulnerability DBs [4]–[6]. However, it is difficult to create an
AT for a concrete target (for example, a connected car) simply
by referring to these DBs, because elaborate attacks occur with
multiple combinations of vulnerabilities. We will create an AT
with a reference to existing attack case literature, reports, etc.
Thus, let the AT be obtained from the existing vulnerability
DB and existing attack report be called the first AT. This
first AT is hierarchically drawn into a top node, a collection
of intermediate nodes and bottom nodes. A single first AT is
created for each vulnerability. A vulnerability DB such as CVE
monotonically increases, so it is not necessary to recreate the
first AT once it has been generated.

B. Proposal of component database
In some configurations of embedded systems, such as those

for automobiles and in general the Internet of Things (IoT), re-
quired lower-level components embedded within the software,
not the software itself, are incorporated. However, a vulnera-
bility DB such as CVE only includes vulnerability information
for software and does not describe information on the lower-
level components embedded within the software. Therefore,

a correspondence table between the software version and the
version for its lower-level components would be beneficial.
This makes it easy to check vulnerability information at the
manufacturing stage of embedded systems such as those in IoT
devices.

Specifically, using Tesla’s browser hacking case as an
example, the “UserAgent” property defined in Tesla’s browser
is “Mozilla / 5.0 (X11; Linux) AppleWebKit / 534.34 (HTML,
like Gecko) QtCarBrowser Safari / 534.34.” In contrast, the re-
lated vulnerability outlined in CVE describes “Google Chrome
before 16.0.912.77”. In this case, Chrome itself is not used, but
the WebKit component built into Chrome is used. Therefore, a
correspondence table indicating the version of the component
built into certain software is required. Table I shows an
example of Google Chrome’s component DB. The method to
create a component DB is outside the scope of this proposal.

TABLE I. Example of Google Chrome’s component DB

Version Release date Layout engine
0.2.149 2008-09-02 WebKit 522
0.3.154 2008-10-29 WebKit 522
0.4.154 2008-11-24 WebKit 525
· · · · · · · · ·

10.0.648 2011-03-08 WebKit 534.16
11.0.696 2011-04-27 WebKit 534.24
12.0.742 2011-06-07 WebKit 534.30
13.0.782 2011-08-02 WebKit 535.1
14.0.835 2011-09-16 WebKit 535.1
· · · · · · · · ·

56.0.2924 2016-12-08 Blink 537.36

132

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Threat analysis algorithm (cited from reference [8])

C. Threat analysis algorithm
This section describes the threat analysis algorithm. It

corresponds to the “Safety & Security Threat Analysis” section
in Figure 1. The algorithm, which is based on the vulnerability
model shown in Section II-A, the component DB shown in
Section II-B, and the design information of the analysis target
system, is as follows:

(1) Create a second AT with the top node as a safety
accident related to the evaluation target system. At this time,
even if the component is not directly included in the evaluation
target system, a component judged to be related by referring
to the component DB is included in the second AT (the black
circle node in Figure 2 (2)). The second AT is hierarchically
depicted using the top node, the multiple intermediate nodes,
and the lowest nodes. Thus, a second AT is created (Figure 2
(2)).

(2) One of the top nodes or intermediate nodes of the
second AT is selected and Natural Language Processing (NLP)
is used to mechanically determine whether there are first ATs
having a natural language expression similar to nodes of the
second AT (Figure 2 (3)). If this is the case, the first AT is
temporarily added to the second AT (Figure 2 (4)). OR gate
is attached to the node of the second AT temporarily, and the
first AT is attached below it. This is done for all nodes of
the second AT. As a result, the second AT is expanded more
after considering the existing vulnerability database, that is,
the entire set of the first AT.

(3) The focus is now on the temporary added nodes
in the expanded second AT. We check whether the added
node is necessary. Specifically, we define a node unrelated
to the component of the second AT (different components or
different versions) as FALSE nodes, and the FALSE node and
the AND gate that is just above the FALSE node are deleted
(Figure 2 (5)).

(4) Repeat steps 1–3 for all the first ATs that are related to
the second AT as described above. After the modification, we
evaluate the occurrence probability of the top node by using
the modified second AT.

Figure 3. Example of AT (quoted from Figure 2, cited from reference [3])

III. FORMULATION OF PROPOSED ALGORITHM

In this section, we formulate the algorithm shown in
Section II-C.

A. Definition

The definition of the attack tree AT according to reference
[3] is shown below. An example of AT is shown in Figure 3.

133

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

G = {gi} : AttackGoals (1)
O = {oi} : Operations (2)
AS = {asi} : Assertions (3)
V = {vi} : V ulnerabilities (4)
R = {ri} : Relationships (5)

Here, an attack goal is the goal of all potential cyber
attacks, and operations represent all the basic actions (reads,
writes, etc.) that can be performed by either the attacker or the
operator of the system. An assertion is a statement (for exam-
ple, ”Web server is not patched”) representing“ conditions to
be verified” in order to take account of the actual branching
of the attack tree. Vulnerability is a known vulnerability.
Relationships are relationships that exist between elements
that make up an attack tree (that is, attack goals, operations,
assertions, vulnerabilities). The attack tree ATk is defined as
follows.

ATk = {gi,Oi,ASi,Vi,Ri} (6)

Here, gi ∈ G,Oi ⊆ O,ASi ⊆ AS,Vi ⊆ V ,Ri is a set
of relationships.

All ATs have one main goal g, and the logic gate output
(upper side) becomes an assertion.

B. Formulation of proposed algorithm
The first attack tree AT 1

k and the second attack tree AT 2

are defined as follows.

AT 1
k = {gk,Ok,ASk,Vk,Rk} (7)

AT 2 = {gj ,Oj ,ASj ,Vj ,Rj} (8)

Next, look for k, which is gj = gk or asl ≈ gk. However,
it is asl ∈ ASj . In addition, look for n and m, which is
asn ≈ asm. However, asn ∈ ASk, asm ∈ ASj .

Here, x ≈ y means “Comparing the descriptions of both
sides with words, it is judged that x and y are close.”

Next, update the second attack tree AT 2 as follows.

AT 2 = { gj ,Oj ∪Ok ∪On,ASj ∪ASk ∪ASn,

Vj ∪ Vk ∪ Vn,Rj ∪Rk ∪Rn\R′} (9)

Here, \ represents the difference set. Also, R′ is R′ =
R′

OR ∪R′
AND. R′

OR is the relationship of the FALSE node,
and R′

AND is the relationship of the upper nodes of the AND
relationship just above the FALSE node. A FALSE node is
o ∈ Ok∪On, as ∈ ASk∪ASn, v ∈ Vk∪Vn that is unrelated
to the components of AT 2 (such as different components and
different versions).

C. Calculation of attack probability
According to the formulation in the previous section, it is

possible to calculate the probability of attack with the follow-
ing formula using the calculation method of the conventional
research [3].

If the inputs to the logic gates are independent, the proba-
bility of the output value from the ith AND gate PoutANDi

and the probability of the output value from the ith OR gate
PoutORi are as follows.

PoutANDi =

n∏
k=1

Pin(k, i) (10)

PoutORi =

n∑
k=1

Pin(k, i) (11)

However, Pin(k, i) is the probability of the input of the kth
input to the ith gate with n inputs (1 ≤ k ≤ n).

In addition, in reference [3], calculation formulas when the
inputs to the logic gates are not independent are also shown.
Furthermore, reference [3] suggests rewriting the operation
node with an AND gate and an assertion in order to obtain
the probability of the top event (attack goal) of the attack
tree. Specifically, replace the operation node with an AND
gate, substitute the description of the original operation as an
assertion, and input it as an input to the AND gate. With
this replacement, the description of the operation disappears
from the attack tree, and the probability of the top event can
be calculated by sequentially calculating the above expression
(10) and expression (11). In addition, reference [8] describes
the application of actual cases of car attacks [9][10].

IV. APPLICATION OF PROPOSED METHOD TO ACTUAL
CASE

In this section, we apply the proposed algorithm to exam-
ples in the Tesla case [9].

A. Creating first AT

First, a first AT is created on the basis of the vulnerability
DB. We must create first ATs for all vulnerabilities. In this
case, we created a first AT for CVE-2011-3928 as shown in
Figure 4.

Figure 4. first AT created from CVE-2011-3928 (cited from reference [8])

134

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. second AT created from Tesla model S case

B. Application to case of Tesla model S

Next, we attempted to create a second AT for the Tesla
model S case [9]. The second AT we created is shown in
Figure 5. The dashed-line area of Figure 5 is the resultant
subtree of combining the second AT with the first AT shown
in Figure 4.

To apply our method to this case, matching of the nodes
shown in gray in Figure 4 and Figure 5 was performed
manually by humans. The next section will outline how this
matching process will be performed automatically using topic
model analysis.

V. TOPIC MODEL ANALYSIS

In this section, we describe latent Dirichlet allocation
(LDA), which is a method of topic model analysis and cosine
similarity.

A. LDA

Topic models are formed under the notion that a document
contains a number of latent topics, with each keyword either
attributing to a certain topic or being generated as a result
of said topic. In topic model analysis, we estimate latent
topics from keywords. One of the analysis methods of topic
models is LDA [12]. This is a language model that assumes
the probability distribution of the topic (parameter θ of the
multinomial distribution) follows the Dirichlet distribution. In
LDA, topics are selected in accordance with the Dirichlet
distribution and words are selected in accordance with the
probability distribution of words for that topic.

B. Formulation of LDA
The LDA can be represented by the graphical model shown

in Figure 6.

Figure 6. Graphical model representation of LDA (cited from reference [12])

Here, d is the number ID of a document, n is the number
ID of a word in a document, and k is the number ID of a topic.
M is the number of documents and N and K are the number
of words and topics in a document, respectively. The number
of words in document d is represented as Nd. The ranges of
d, n, and k are 1 ≤ d ≤ M , 1 ≤ n ≤ Nd, and 1 ≤ k ≤ K,
respectively. wdn represents the nth word of document d. zdn
represents the latent topic of the nth word in the document
d. θdk is the mixing ratio of the latent topic k of document
d. For example, if the number of topics of document d is 3,
the mixing ratios of topics 1, 2, and 3 are 10%, 70%, and
20%, respectively then θd1 = 0.1, θd2 = 0.7, θd3 = 0.2, in
which θd = {0.1, 0.7, 0.2}. α is a hyper parameter related
to the mixing ratio of the latent topic, and β is one related
to the word generation rate. A set of documents is called a

135

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

corpus, and a corpus of M documents is denoted by D =
{w1,w2, · · · ,wM}. We obtain the probability of a corpus as
follows:

p(D|α,β) =

M∏
d=1

∫
p(θd|α)

 Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn,β)

 dθd (12)

Here, we can only observe the word wdn. We want to
know from which topic those words were generated. In other
words, when document d is given, we calculate the probability
distribution of θd and z as follows:

p(θ, z|w,α,β) =
p(θ, z,w|α,β)

p(w,α,β)
(13)

The variable Bayes method [12], Markov chain Monte
Carlo (MCMC) [13], Gibbs sampling method [14], which is
one kind of MCMC, etc. are proposed as a method to solve
the above equation.

C. Cosine similarity

We can compute the similarity between document d and d′

by calculating the cosine similarity for θd obtained approxi-
mately by the above LDA method. The cosine similarity can
be expressed by the following equation.

simcos(d, d
′) =

∑K
k=1 θdkθd′k√∑K

k=1 θdk
2
√∑K

k=1 θd′k
2

(14)

D. Topic model analysis tool

The National Institute of Advanced Industrial Science
and Technology (AIST) has developed a security requirement
analysis support tool using topic model analysis technology
including LDA [15]. We preliminarily used this tool to verify
whether the vast number of vulnerabilities CVE [4] listed in
the order of discovery can be organized into a hierarchical
structure by topic model analysis. Figure 7 shows the result
of using 1500 cases from CVE-2011-3001 to CVE-2011-4500
after translating it to Japanese using Google Translate [16].
As shown in Figure 7, we see that similar vulnerabilities are
classified near the hierarchical structure. Figure 7 is written in
Japanese, the boxes in CVE-2011-3017 to CVE2011-3077 are
described as “Use-after-free vulnerability in Google Chrome
before xx.0.xxx.xx allows remote attackers to cause ... or
possibly have unspecified other impact ...”.

VI. MATCHING ATTACK CASES TO VULNERABILITY
DATABASE

In this section, we describe the method and results of ex-
periments that match attack cases and vulnerability databases.

Figure 7. Example segment of vulnerability DB CVE hierarchy

A. Outline explanation
As mentioned in Section II-C(2), we used NLP when

matching and connecting the first AT and the second AT
nodes. We verified the feasibility of this matching process.

We have investigated on various reports to find vulnera-
bilities that should be related in the second AT of the target
system. However, depending on the report, the procedure of
attack is shown but the concrete CVE number is not speci-
fied. Even in such a case, we can extract the corresponding
CVE number from the attack description described in natural
language.

To achieve this, we must find a node of the second AT
that conceivably matches the description in CVE. However,
a mechanical word matching process will probably not lead
to a correct result as it is dependent on the words used to
describe sentences. The context or meaning of the known at-
tack description in each report should be thoroughly examined.
Therefore, we have focused on the sentences of existing papers.
Specifically, we have focused on the actual case of a car attack
[9]. The process flow is as follows.

We translated the paper [9] into Japanese by using Google
Translate because the tool we used only corresponded to
Japanese. An advantage of utilizing such a translation is that
it can prevent notation fluctuation of terms. The impact of
Google translation will be discussed in the appendix. Since
the section on BROWSER HACKING is long and its content
is related to two vulnerabilities, it was divided into two. The
vulnerabilities in question were CVE-2011-3928 and CVE-
2013-6282. CVE-2011-3928 is described in the section on
BROWSER HACKING, and CVE-2013-6282 is described in

136

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Matching attack cases to vulnerability DBs

the section on LOCAL PRIVILEGE ESCALATION. If “CVE-
2011-3928” or “CVE-2013-6282” is included as a keyword,
it may be detected by keyword matching, so the keywords
“CVE-2011-3928” and “CVE-2013-6282” were deleted from
BROWSER HACKING and LOCAL PRIVILEGE ESCALA-
TION, respectively.

However, regarding BROWSER HACKING, there is a
problem of component inclusion relationship stated in Section
II-B, and the keyword “Google Chrome” is added to the
sentences in which WebKit is described. This is considered to
be equivalent to referring to the component DB of the proposed
method. Since the topic analysis tool used has an upper limit on
the number of items to be handled, it was not possible to cover
all CVEs, so we targeted 500 items before and after including
the target vulnerability. The limitation of 500 items is not a
constraint of the topic model analysis, but an implementation
limitation of the tools we used.

We specifically targeted CVEs from CVE-2011-3501 to
CVE-2011-4000 including CVE-2011-3928 and those from
CVE-2013-6001 to CVE-2013-6500 including CVE-2013-
6282. For each section of the paper and each CVE vulnerabil-
ity, similar sentences were evaluated by topic model analysis.
The keyword extraction method was known as “noun and
Kana”, the feature quantity extraction method was “LDA”, and
the sentence similarity “Cosine” option was used.

B. Analysis result
The result of matching each section of the paper to each

CVE vulnerability is shown in Figure 8. Figure 9 shows the

enlarged view of BROWSER HACKING section of Figure
8, and Figure 10 shows enlarged view of the description of
“CVE-2011-3928” in Figure 8. When we click on a sentence
in the left pane, this tool will highlight similar sentences in
the right pane. The solid lined area in the left pane is the
BROWSER HACKING section with the keyword “CVE-2011-
3928” deleted. When clicking on this area, the dashed lined
area, which is the description of CVE-2011-3928 in the right
pane, is highlighted and is judged to be similar. The number
of items that included the appropriate CVE from the original
500 was filtered down to 22. It can be said that the smaller
the number, the better. Regarding CVE-2013-6282, a similar
result was obtained by matching the information of LOCAL
PRIVILEGE ESCALATION with that of CVE, in this case 23
out of the 500.

C. Consideration of topic model analysis
In this research, we used a topic model, which treats a

document as a set of words, and replaces distances between
different documents with distances between different “sets of
words” to measure proximity. Topic model analysis is one of
the so-called AI methods that enables high-speed processing
of big data and excels in clarifying the reason for the results.
For example, the number of pages in the Tesla attack case
paper [9], IRB 140 industrial robot attack case paper [11],
and Jeep Cherokee attack cases paper [10] are 16, 48, and
91, respectively. Manually analyzing such a large amount of
materials requires a great, if not greater, amount of work,
placing a heavy burden one those doing it. Furthermore,

137

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Enlarged view of BROWSER HACKING section shown in Figure 8

Figure 10. Enlarged view of “CVE-2011-3928” description shown in Figure 8

considering that the number of attack papers will increase in
the future, the proposed method of processing attack papers
automatically with a topic model is significant.

VII. SYSTEM MODEL DESCRIPTION

In this section, we create a system model description using
the second attack tree shown in Figure 5 created using the
proposed algorithm. This shows that we can recognize the
dangers of related attacks using the description. We analyze
the input and output of messages in the nodes directly under
the attack goal node “Attacker takes remote control of Tesla
Model S” in Figure 5 using the system model description. As a
result, we achieve transparency in escalation of fake commands
from an external information system to the in-vehicle control
system.

A. Date flow diagram
A system model description of Tesla’s threat analysis

target system is shown in Figure 11, which is the description
result of the data flow diagram used for safety verification.
The system to be analyzed consists of four hardware blocks,
five software function modules, an operating system (OS),
Web browser, Web server (WS), and various networks. The
electronic control unit (ECU), communication gateway (GW),
and center information display (CID) of the hardware block
are installed inside the vehicle. The CID of the vehicle is
connected to the WS over the Internet via Wi-Fi.

First, the in-vehicle control system will be described.
The CID executes the vehicle information display function
module, which inputs an instruction from the driver and creates
a corresponding vehicle control command (for example, a
command for monitoring the operating state of the engine, a
command for unlocking the door, etc.) to the GW. The vehicle
communication control function module of the GW converts
the received command into an ECU command and transmits

it to the ECU via the CAN bus. The vehicle control function
module of the ECU activates the control logic inside the unit
corresponding to the received ECU command and executes the
vehicle control instructed by the driver.

Next, the external information system will be described.
The Web information display function module of the CID
inputs a driver’s instruction, creates a necessary Web page
request command (for example, a GET command of the HTTP
protocol), and transmits it to the WS via Wi-Fi. The Web server
function module of the WS searches the corresponding Web
page in accordance with the received command and returns
the search result (for example, HTML content or JavaScript
code).

At this stage, a safety analysis is carried out assuming
that there is no vulnerability. Figure 11 shows that the in-
vehicle control system and the external information system
are separate systems, and there is no interference with each
other.

B. Add vulnerability
Figure 12 expands the data flow diagram shown in Figure

11 to include the possibility of attack by adding Input / Output
by vulnerability attributes as depicted by the gray boxes and
dotted arrows.

As shown in Figure 5, the CID vulnerability is established
by satisfying three conditions: “CID gets malicious JavaScript
page from fake WS,” “Browser processes malicious JavaScript
page and executes arbitrary code generating unauthorized
ECU command,” and “Browser gets privilege escalation and
sends unauthorized ECU command.” The first condition is
established by “CID has hard-coded SSID and password.” The
second condition applies to both “Browser has UAF (Use-
after-free) Vulnerability in DOM handling” and “Apple WebKit
before 535.7.” The third condition is established by “Linux has
Kernel API vulnerability (CVE-2013-6282).”

138

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. System model description

At this stage, as shown in Figure 12, it is possible to create
a data flow diagram with attributes of these vulnerabilities
added. Safety analysis is performed on this new data flow
diagram. As a result, it became clear that fake commands can
be transmitted from the external information system to the in-
vehicle control system. With a fake command, it is possible
to open and close the door of a running vehicle, and so on,
demonstrating that a vehicle can be in danger.

VIII. CONCLUSION

In this paper, we propose a threat analysis method using
topic model analysis and vulnerability DBs. We confirmed the
feasibility of matching known attack cases to vulnerability DBs
using a topic model analysis tool. Moreover, we showed that
our proposed method can use the results of past threat analysis
for the next threat analysis. In addition, we created a system
model description based on the attack tree of Tesla’s case
created using the proposed method. We achieve transparency
in escalation of fake commands from an external information
system to the in-vehicle control system. We have shown by
the results of our work, that our approach to automatic threat
analysis support risk analysis in discovering previous unknown
relationships and so threats including their potential escalation
with an connected IT system.

However, this approach does not guarantee discovery and
prevention of new sophisticated attacks that are completely
different from those that occurred in the past. To detect
previously unknown critical vulnerabilities, it is necessary to
apply this method to advanced security engineering by artificial
intelligence that utilize vulnerability DBs and system design
information and evaluate it in actual cases.

ACKNOWLEDGMENT

Sven Wohlgemuth’s contribution to this work is based on
his research at Albert-Ludwig University, Freiburg, Germany,
and other organizations before he joined Hitachi, Ltd. in
February 2017. This work was supported by the Cabinet
Office (CAO), Cross-ministerial Strategic Innovation Promo-
tion Program (SIP), “Cybersecurity for Critical Infrastructure”
(funding agency: NEDO).

REFERENCES

[1] K. Umezawa, Y. Mishina, S. Wohlgemuth, and K. Takaragi, “Threat
Analysis using Vulnerability Databases – Matching Attack Cases and
Vulnerability Database by Topic Model Analysis –,” Proceeding of
the Third International Conference on Cyber-Technologies and Cyber-
Systems (CYBER 2018), pp. 74-77, Nov. 2018.

[2] A. Ruddle et al., “Deliverable D2.3: Security requirements for automo-
tive on-board networks based on dark-side scenarios,” Seventh Research
Framework Programme of the European Community, July 2008, pp. 1–
138.

[3] I. N. Fovino, M. Masera, and A. D. Cian, “Integrating cyber attacks
within fault trees,” Reliability Engineering and System Safety 94, 2009,
pp. 1394–1402.

[4] MITRE Corporation, “CVE - Common Vulnerability and Exposure,”
https://cve.mitre.org/ [retrieved: May, 2019]

[5] MITRE Corporation, “CWE List - Common Weakness Enumeration,”
https://cwe.mitre.org/data/ [retrieved: May, 2019]

[6] MITRE Corporation, “CAPEC - Common Attack Pattern Enumeration
and Classification,” https://capec.mitre.org/ [retrieved: May, 2019]

[7] K. Umezawa, Y. Mishina, K. Taguchi, and K. Takaragi, “A Proposal
of Threat Analyses using Vulnerability Databases,” Proceeding of the
Symposium on Cryptography and Information Security (SCIS2018),
1C2-6, January 2018, pp. 1–8.

139

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. System model description with vulnerabilities

[8] Y. Mishina, K. Takaragi, and K. Umezawa “A Proposal of Threat
Analyses for Cyber-Physical System using Vulnerability Databases,”
2018 IEEE International Symposium on Technologies for Homeland
Security (IEEE HST), October 2018.

[9] S. Nie, L. Liu, and Y. Du, “Free-Fall: Hacking Tesla from Wireless to
Can Bus,” Briefing, Black Hat USA 2017, July 2017. pp. 1–16.

[10] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered
Passenger Vehicle,” Briefing, Black Hat USA 2015, pp. 1–91.

[11] D. Quarta, M. Pogliani, M. Polino, A.M. Zanchettin, and S. Zaner,
“Rogue Robots: Testing the Limits of an Industrial Robot’s Security,”
Briefing, Black Hat USA 2017, July 2017.

[12] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet Allocation,” Journal
of Machine Learning Research, 2003, pp. 1107–1135.

[13] T. L. Griffiths and M. Steyvers, “Finding scientific topics,” Proceedings
of the National Academy of Science, 2004, pp. 5228-5235.

[14] Y. W. Teh, D. Newman, and M. Welling, “A Collapsed Variational
Bayesian Inference Algorithm for Latent Dirichlet Allocation,” Pro-
ceedings of Advances in Neural Information Processing Systems 19,
NIPS ’07, Cambridge, MA, pp. 1353–1360, 2007.

[15] K. Handa, H. Ohsaki, and I. Takeuti, “Security Requirements Analysis
Supporting Tool: TACT,” Information Processing Society of Japan
(IPSJ) SIG Software Engineering (SIGSE), Proceeding of the Winter
Workshop 2017. pp. 5–6.

[16] Y. Wu et al. “Google’s Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation,” arXiv:1609.08144,
2016. pp. 1–23.

[17] G. Biggs, T. Sakamoto, and T. Kotoku, “A profile and tool for modelling

safety information with design information in SysML,” Software &
Systems Modeling 15, 1 (Jan 2016), pp. 147–178.

APPENDIX

As shown in Section VI, we translate English documents
into Japanese by Google translator for tool constraints before
analyzing. This section examines the effect of this translation.

Figures 13 and 15 show the descriptions from Figures 9
and 10 translated back into English using Google Translate,
respectively. Figures 14 and 16 show the original English
descriptions.

The word underlined is the one of attention by the analysis
tool. The topic model analysis assumes a model ignoring the
order of words and relations between words. Therefore, it is
considered that the difference in the order of the Japanese and
English words does not affect the analysis result. Also, when
comparing Figure 13 and 14, only a few words that are similar
in meaning with double underline (such as “established” and
“founded”, “occur” and “triggered”) were different. We can
see that most other words are being retranslated to the same
word. In other words, it can be said that there is almost no
mixing of errors due to translation.

140

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Description re-translated Figure 9 into English

Figure 14. Original description before translating Figure 9

Figure 15. Description re-translated Figure 10 into English

Figure 16. Original description before translating Figure 10

141

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Don’t Wait to be Breached!
Creating Asymmetric Uncertainty of Cloud Applications via Moving Target Defenses

Kennedy A. Torkura

Hasso Plattner Institute
University of Potsdam, Germany

Email: kennedy.torkura@hpi.de

Christoph Meinel

Hasso Plattner Institute
University of Potsdam, Germany
christoph.meinel@hpi.de

Nane Kratzke

Lübeck University of Applied Sciences
Lübeck, Germany

nane.kratzke@th-luebeck.de

Abstract—Cloud applications expose besides service endpoints
also potential or actual vulnerabilities. Therefore, cloud security
engineering efforts focus on hardening the fortress walls but
seldom assume that attacks may be successful. At least against
zero-day exploits, this approach is often toothless. Other than
most security approaches and comparable to biological systems
we accept that defensive “walls” can be breached at several
layers. Instead of hardening the “fortress” walls we propose
to make use of an (additional) active and adaptive defense
system to attack potential intruders - an immune system that is
inspired by the concept of a moving target defense. This “immune
system” works on two layers. On the infrastructure layer, virtual
machines are continuously regenerated (cell regeneration) to wipe
out even undetected intruders. On the application level, the
vertical and horizontal attack surface is continuously modified to
circumvent successful replays of formerly scripted attacks. Our
evaluations with two common cloud-native reference applications
in popular cloud service infrastructures (Amazon Web Services,
Google Compute Engine, Azure and OpenStack) show that it
is technically possible to limit the time of attackers acting
undetected down to minutes. Further, more than 98% of an
attack surface can be changed automatically and minimized,
which makes it hard for intruders to replay formerly successful
scripted attacks. So, even if intruders get a foothold in the system,
it is hard for them to maintain it. Therefore, our proposals are
robust and dynamically change due in response to security threats
similar to biological immune systems.

Keywords–zero-day; exploit; moving target defense; microser-
vice; cloud-native; application; security; asymmetric

I. INTRODUCTION

This paper extends ideas presented in [1] to improve
cloud application security in the context of unknown zero-
day exploits and reports on ongoing research in this field.
Cloud computing enables a variety of innovative IT-enabled
businesses and service models. Several research studies and
programs focus on responsibly developing systems to ensure
the security and privacy of users. But compliance with stan-
dards, audits, and checklists, does not automatically equal

TABLE I. Some popular open source elastic platforms

Platform Contributors URL

Kubernetes Cloud Native Found. http://kubernetes.io
Swarm Docker https://docker.io
Mesos Apache http://mesos.apache.org/
Nomad Hashicorp https://nomadproject.io/

security [2] and there is a fundamental issue remaining. Zero-
day vulnerabilities are computer-software vulnerabilities that
are unknown to those who would be interested in mitigating
the vulnerability (including the entity responsible for operating
a cloud application). Until a vulnerability is mitigated, hackers
can exploit it to adversely affect computer programs, data,
additional computers or a network. For zero-day exploits,
the probability that vulnerabilities are patched is zero, so the
exploit should always succeed. Therefore, zero-day attacks are
a severe threat, and we have to draw a scary conclusion: In
principle, attackers can establish footholds in our systems
whenever they want.

This contribution deals with the question how to build “un-
fair” cloud systems that permanently jangle attackers nerves.
We present the latest results from our ongoing research that
applies Moving Target Defense (MTD) principles on cloud
runtime environment and cloud application layer.

Recent research [3], [4] made successfully use of elastic
container platforms (see Table I) and their “designed for
failure” capabilities to realize transferability of cloud-native
applications at runtime. By transferability, the conducted re-
search means that a cloud-native application can be moved
from one IaaS provider infrastructure to another without
any downtime. These platforms are more and more used as
distributed and elastic runtime environments for cloud-native
applications [5] and can be understood as a kind of cloud
infrastructure unifying middleware [6]. It should be possible to
make use of the same features to immunize cloud applications
simply by moving an application within the same provider
infrastructure. To move anything from A to A makes no sense
at first glance. However, let us be paranoid and aware that
with some probability and at a given time, an attacker will be
successful and compromise at least one virtual machine [7]. A
transfer from A to A would be an effective countermeasure –
because the intruder immediately loses any hijacked machine
that is moved. To understand that, the reader must know
that our approach does not effectively move a machine, it
regenerates it. To move a machine means to launch a com-
pensating machine unknown to the intruder and to terminate
the former (hijacked) machine. Whenever an application is
moved its virtual machines are regenerated. Moreover, this
would effectively eliminate undetected hijacked machines.

However, attackers can run automated attacks against re-
generated machines that will incorporate the same set of
vulnerabilities. Therefore, this extended paper shows how we
further can improve the regenerating security measure by

142

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. The cyber attack life cycle model. Adapted from the cyber attack lifecycle used by the M-Trends reports, see Table II.

employing MTD at the application layer [8] to change the
attack surface of the application itself to let even automated
and formerly successful attack scripts fail (at least partly).
Primarily, this is achieved by diversifying the application in a
way that its containerized components are dynamically trans-
formed at runtime. The two abstraction layers that compose
microservice applications (application layer and the container
image layers) are dynamically changed by changing the pro-
gramming languages of the applications, and consequently, the
container images are built to conform to the requirements
of the corresponding applications. This combined approach
is enforced at runtime to transform the attack surface of
cloud-native applications, thereby reducing the possibility of
successful attacks.

The remaining of this paper is outlined as follows: Section
II presents a cyber-attack lifecycle model to show where our
approach intends to break the continuous workflow of security
breaches. Section III presents an approach on how MTD can be
applied on cloud runtime environment (infrastructure) level to
regenerate the ”infrastructure cells” of a system continuously,
leveraging the inherent ”designed-for-failure” capabilities of
modern container platforms like Kubernetes, Swarm, or Mesos.
This continuing regeneration will wipe out even undetected
attackers in a system. However, attackers might recognize that
they periodically loose foothold in a hijacked system and might
try to automate their breaches. To overcome this, Section IV
will present how even the attack surface of an application
can be continuously changed and therefore extends our ideas
shown in [1]. We have to consider that our approach has some
limitations. We will discuss these limitations in Section V and
present corresponding related work in Section VI. We conclude
our findings in Section VII.

II. CYBER ATTACK REFERENCE MODEL

Figure 1 shows the cyber attack life cycle model, which
is used by the M-Trends Report [9] to present current devel-

opments in cyber attacks over the years. According to this
model, an attacker passes through different stages to complete
a cyber attack mission. It starts with initial reconnaissance and
compromising of access means. Social engineering methodolo-
gies [10] and phishing attacks [11] very often supports these
steps. Intruders aim to establish a foothold near the target. All
these steps are not covered by this paper, because technical
solutions are not able to harden the weakest point in security –
the human being. The following steps of this model are more
important for this paper. According to the life cycle model,
the attacker’s goal is to escalate privileges to get access to the
target system. Because this leaves trails on the system, which
could reveal a security breach, the attacker is motivated to
erase this forensic trail. According to security reports, attackers
increasingly employ counter-forensic measures to hide their
presence and impair investigations. These reports refer to
techniques used to clear event logs and securely delete arbitrary
files. The technique is simple, but the intruders’ knowledge of
forensic artifacts demonstrate increased sophistication, as well
as their intent to persist in the environment. With a barely
detectable foothold, the internal reconnaissance of the victim’s
network is carried out to allow lateral movement to target
systems. This process is a complex and lengthy process and
may even take weeks. So, infiltrated machines and application
components have worth for attackers and tend to be used for as
long as possible. Table II shows the average period an intruder
remains on a victim system undetected. So, basically there
is the requirement, that (1) an undetected attacker should
lose access to compromised nodes of a system as fast as
possible. Furthermore, there is the requirement that it (2) must
be hard for an attacker to regain foothold in a system by
automating successful attacks. However, how?

Section III will deal with the (1) requirement showing that
it is possible to regenerate possibly compromised infrastructure
continuously even to get rid of undetected attackers. Section

143

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. Undetected days on victim systems reported by M-Trends.
External and internal discovery data is reported since 2015. No data could

be found for 2011.

Year External notification Internal discovery Median

2010 - - 416
2011 - - ?
2012 - - 243
2013 - - 229
2014 - - 205
2015 320 56 146
2016 107 80 99

IV will deal with the (2) requirement and demonstrate that it
is possible to change attack surfaces of applications in a way
that successful attacks cannot be repeated 1:1.

III. MOVING TARGET DEFENSE MECHANISMS ON THE
CONTAINER RUNTIME ENVIRONMENT LEVEL

Our recent research dealt [12] mainly with vendor lock-in
and the question how to design cloud-native applications that
are transferable between different cloud service providers. One
aspect that can be learned from this is that there is no common
understanding of what a cloud-native application is. A kind of
software that is “intentionally designed for the cloud” is an
often heard but empty phrase. However, noteworthy similarities
exist between various viewpoints on cloud-native applications
(CNA) [5]. A common approach is to define maturity levels
in order to categorize different kinds of cloud applications
(see Table III). [13] proposed the IDEAL model for CNAs.
A CNA should strive for an isolated state, is distributed,
provides elasticity in a horizontal scaling way, and should be
operated on automated deployment machinery. Finally, its
components should be loosely coupled.

Balalaie et.al [14] stressed that these properties are ad-
dressed by cloud-specific architecture and infrastructure ap-
proaches like Microservices [15], API-based collaboration,
adaption of cloud-focused patterns [13], and self-service
elastic platforms that are used to deploy and operate these
microservices via self-contained deployment units (containers).
Table I lists some of these platforms that provide additional
operational capabilities on top of IaaS infrastructures like
automated and on-demand scaling of application instances,
application health management, dynamic routing and load
balancing as well as aggregation of logs and metrics [5].

A. Regenerating cloud application runtime environments con-
tinuously

If the reader understands and accepts the commonality that
cloud-native applications are operated (more and more often)
on elastic – often container-based – platforms, it is an obvious
idea to delegate the responsibility to immunize cloud appli-
cations to these platforms. Recent research showed that the
operation of these elastic container platforms and the design of
applications running on top of them should be handled as two
different engineering problems. This point of view often solves
several issues in modern cloud-native application engineering
[4]. Also, that is not just true for the transferability problem
but might be an option to tackle zero-day exploits. These kinds
of platforms could be an essential part of the immune system
of modern cloud-native applications.

Furthermore, self-service elastic platforms are really “bul-
letproofed” [17]. Apache Mesos [18] has been successfully
operated for years by companies like Twitter or Netflix to
consolidate hundreds of thousands of compute nodes. Elastic
container platforms are designed for failure and provide
self-healing capabilities via auto-placement, auto-restart, auto-
replication, and auto-scaling features. They will identify lost
containers (for whatever reasons, e.g., process failure or node
unavailability) and will restart containers and place them on
remaining nodes. These features are necessary to operate
large-scale distributed systems resiliently. However, the same
features can be used intentionally to purge “compromised
nodes”.

In [3], a software prototype that provides the control
process shown in Figure 2 and Figure 3 was presented. This
process relies on an intended state ρ and a current state σ
of a container cluster. If the intended state differs from the
current state (ρ 6= σ), necessary adaption actions are deduced
(creation and attachment/detachment of nodes, creation and
termination of security groups) and processed by an execution
pipeline fully automatically (see Figure 3) to reach the intended
state ρ. With this kind of control process, a cluster can be
simply resized by changing the intended amount of nodes in
the cluster. If the cluster is shrinking and nodes have to be
terminated, affected containers of running applications will be
rescheduled to other available nodes.

The downside of this approach is that this will only
work for Level 2 (cloud resilient) or Level 3 (cloud-native)
applications, (see Table III) which by design, can tolerate
dependent service failures (due to node failures and container
rescheduling). However, for that kind of Level 2 or Level 3
application, we can use the same control process to regenerate
nodes of the container cluster. The reader shall consider a
cluster with σ = N nodes. If we want to regenerate one node,
we change the intended state to ρ = N + 1 nodes, which will
add one new node to the cluster (σ′ = N + 1). Moreover,
in a second step, we will decrease the predetermined size of
the cluster to ρ′ = N again, which affects that one node of
the cluster is terminated (σ′′ = N). So, a node is regenerated
simply by adding one node and deleting one node. We could
even regenerate the complete cluster by changing the cluster
size in the following way: σ = N 7→ σ′ = 2N 7→ σ′′ = N .
However, this would consume much more resources because
the cluster would double its size for a limited amount of time.

TABLE III. Cloud Application Maturity Model, adapted from OPEN
DATA CENTER ALLIANCE Best Practices [16]

Level Maturity Criteria

3 Cloud - Transferable across infrastructure providers at
native runtime and without interruption of service.

- Automatically scale out/in based on stimuli.

2 Cloud - State is isolated in a minimum of services.
resilient - Unaffected by dependent service failures.

- Infrastructure agnostic.

1 Cloud - Composed of loosely coupled services.
friendly - Services are discoverable by name.

- Components are designed to cloud patterns.
- Compute and storage are separated.

0 Cloud - Operated on virtualized infrastructure.
ready - Instantiateable from image or script.

144

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. The control theory inspired execution control loop compares the intended state ρ of an elastic container platform with the current state σ and
derives necessary scaling actions. These actions are processed by the execution pipeline explained in Figure 3. So, platforms can be operated elastically in a

set of synchronized IaaS infrastructures. Explained in details by [3].

A more resource efficient way would be to regenerate the
cluster in N steps: σ = N 7→ σ′ = N + 1 7→ σ′′ = N 7→
... 7→ σ2N−1 = N + 1 7→ σ2N = N . The reader is referred
to [4] for more details, especially if the reader is interested in
the multi-cloud capabilities that are not covered by this paper
due to page limitations.

Whenever such regeneration is triggered, all – even unde-
tected – hijacked machines would be terminated and replaced
by other machines, but the applications would be unaffected.
For an attacker, this means losing their foothold in the system
entirely. Imagine this would be done once a day or even more
frequently?

B. Evaluation
The execution pipeline presented in Figure 3 was evaluated

by operating and transferring two elastic platforms (Swarm
Mode of Docker 17.06 and Kubernetes 1.7). The platforms
operated a reference “sock-shop” application being one of
the most complete reference applications for microservices
architecture research [19]. Table IV lists the machine types
that show a high similarity across different providers [20].

The evaluation of [4] demonstrated that most time is spent
on the IaaS level (creation and termination of nodes and
security groups) and not on the elastic platform level (joining,

TABLE IV. Used machine types and regions for evaluation

Provider Region Master type Worker type

AWS eu-west-1 m4.xlarge m4.large
GCE europe-west1 n1-standard-4 n1-standard-2
Azure europewest Standard A3 Standard A2
OS own datacenter m1.large m1.medium

TABLE V. Durations to regenerate a node (median values)

Provider Creation Secgroup Joining Term. Total

AWS 70 s 1 s 7 s 2 s 81 s
GCE 100 s 8 s 9 s 50 s 175 s
Azure 380 s 17 s 7 s 180 s 600 s
OS 110 s 2 s 7 s 5 s 126 s

draining nodes). The measured differences on infrastructures
provided by different providers are shown in Figure 4. For the
current use case, the reader can ignore the times to create and
delete a security group (because that is a one time action).
However, there will be many node creations and terminations.
According to our execution pipeline shown in Figure 3, a node
creation (σ = N 7→ σ′ = N + 1) involves the durations to
create a node (request of the virtual machine including all
installation and configuration steps), to adjust security groups
the cluster is operated in and to join the new node into the
cluster. The shutdown of a node (σ = N 7→ σ′ = N − 1)
involves the termination of the node (this includes the plat-
form draining and deregistering of the node and the request to
terminate the virtual machine) and the necessary adjustment
of the security group. So, for a complete regeneration of a
node (σ = N 7→ σ′ = N + 1 7→ σ′′ = N) we have to add
these runtimes. Table V lists these values per infrastructure.

Even on the “slowest” infrastructure, a node can be regen-
erated in about 10 minutes. In other words, one can regenerate
six nodes every hour or up to 144 nodes a day or a cluster of
432 nodes every 72h (which is the reporting time requested
by the EU General Data Protection Regulation). If the reader
compares a 72h regeneration time of a more than 400 node
cluster (most systems are not so large) with the median value
of 99 days that attackers were present on a victim system in
2016 (see Table II) the benefit of the proposed approach should
become apparent.

IV. MOVING TARGET DEFENSE MECHANISMS ON THE
MICROSERVICE ARCHITECTURE LEVEL

MTD techniques introduce methods for improving the
security of protected assets by applying security-by-diversity
tactics and security diversification concepts. While most MTD
techniques do not have formal requirements for diversifying,
i.e., when, how and why to diversify, we employ a cyber risk-
based technique as the primary diversification decision making
factor on the application level [8]. Our motivation for this is
to overcome the high number of vulnerability infection among
container images as shown by several recent researchers[21],
[22]. Therefore, our MTD techniques are designed to improve
this state of insecurity by reducing the window of vulnerability

145

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. The execution pipeline processes necessary actions to transfer the current state σ into the intended state ρ. See [4] for more details.

146

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

20

40

60

80

100

120

140

Time to create
a security group [seconds]

0

10

20

30

40

50

60

Time to adjust
a security group [seconds]

0

50

100

150

200

250

300

350

400

Time to delete
a security group [seconds]

AWS OS GCE Azure
0

100

200

300

400

500

600

Time to create
a node [seconds]

AWS OS GCE Azure
0

20

40

60

80

100

120

Time to join a node
 into a cluster [seconds]

AWS OS GCE Azure
0

50

100

150

200

250

Time to terminate
a node [seconds]

Figure 4. Infrastructure specific runtimes of IaaS operations see [4].

exposure via diversification and commensurate attack surface
randomization.

A. Cyber Risk Analysis for Microservice Diversification
Larsen et al. [23] assert that a common challenge when

employing diversification strategies is deciding on when, how
and where to diversify. We present a cyber risk procedure
to support decision making or satisfy the afore-mentioned
requirements. We leverage security metrics to design a cyber
risk-based mechanism, and security metrics are useful tools
for risk assessment. These metrics are computed by deriv-
ing security risks per microservice and after that employing
vulnerability prioritization such that diversification is a func-
tion of microservice risk assessment, i.e., microservices are
diversified in order risk severity. We introduce the notion of
Diversification Index - Di as an expression of the depth of
diversification to be implemented. Di defines if microservices
are to be globally or selectively diversified e.g., diversifying 2
out of 4 microservices can be expressed as 2:4. We formally
define Di as:

Di =
md

m
(1)

where,
md = number of microservices to be diversified,
m = total number of microservices in the application.

In order to decide on the value of Di, it is important to an-
alyze the security state of the microservice application. There
are several techniques for arriving at what may be defined as
the security state of a microservice application. Traditionally,
several security metrics have been defined to evaluate the
security state of computing environments, therefore we employ
security risk techniques, following two approaches:

1) Risk Analysis Using CVSS: The Common Vulnerability
Scoring System CVSS [24] is a widely adopted vulnerability
metrics standard. It provides vulnerability base scores, which
express the severity of damage the referred vulnerability might
impact upon a system if exploited. In order to derive the
microservice security state (Security Risk - SR), base scores
of all the vulnerabilities detected can be summed and averaged
as expressed below:

SR =
1

N

N∑
i=1

Vi (2)

where SR is the Security Risk, Vi is the CVSS base score
of vulnerability i, and N is the total number of vulnerabilities
detected in microservice m. However, averaging vulnerabilities
to obtain a single metric to signify a system’s security state is
not optimal. Derived values are not sufficiently representative
of other factors such as the public availability of exploits.
Therefore, we employ another scoring technique called shrink-

147

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

age estimator, an approach, which has been popularly used for
online rating systems, e.g., IMDB. The shrinkage estimator
considers the average rating and the number of votes. Hence,
it provides a more precise value for SR, than mere averaging
(Equation (2)). Therefore, leveraging the shrinkage estimator,
we can derive a more precise SR as follows:

SR =
v

v + a
R+

a

v + a
C (3)

where,
v = the total number of vulnerabilities detected in a

microservices,
a = minimum number of vulnerabilities to be detected in

a microservice assessment before it added in the risk analysis,
C = the mean severity score of vulnerabilities detected in

a microservice
R = the average severity score of all vulnerabilities infect-

ing a microservice-based application
The Pearson’s correlation coefficient is derived to deter-

mine the dependence relationship between the microservices.
2) Risk Analysis Using OWASP Risk Rating Methodology:

The risk assessment method described in the previous sub-
section is limited to vulnerabilities contained in the Common
Vulnerability Enumeration (CVE) dictionary. CVE is a public
dictionary for publishing known vulnerabilities. These vul-
nerabilities are analyzed and assigned vulnerability security
metrics using the CVSS. However, the CVE contains only
a handful of web application vulnerabilities. Thus, we need
to derive another risk assessment methodology for application
layer vulnerabilities. This additional step is necessary since
microservices are essentially web/REST-based applications.
We opt for the OWASP Risk Rating Methodology (ORRM),
which is specifically designed for web applications [25]. This
methodology is based on two core risk components: Likelihood
and Impact formally expressed as:

Risk = Likelihood ∗ Impact (4)

In order to derive these metrics, risk assessors are required to
consider the threat vector, attacks to be used and the impacts
of successful attacks.

B. Dissecting Microservice Attack Surfaces
An important aspect of our security-by-diversity tactics is

to manipulate microservice attack surfaces against possible
attackers through random architectural transformations. There-
fore, the attack surfaces are altered by randomizing the entry
and exit points, which are commonly used for identifying
attack surfaces [27], [28]. A detailed understanding of these
attack surfaces is imperative. Therefore, we categorize mi-
croservice attack surface into: horizontal and vertical attack
surfaces and thereafter employ vulnerability correlation to
identify vulnerability similarities.

1) Horizontal Vulnerability Correlation: The objective of
correlating vulnerabilities horizontally is to analyze the rela-
tionship of vulnerabilities along the horizontal attack surface,
i.e., the parts of the applications users directly interact with.
Figure 5 illustrates the multi-layered attack surface of the
PetClinic application [26]. The application layer horizontal
attack surface consists of the interactions and exit/entry points

Figure 5. Typical Microservice Attack Surfaces illustrated with the PetClinic
Application [26]

from the API gateway to the Vets, Visits and Customer services
application layers. Requests and responses are transversed
along this layer, providing attack opportunities for attackers.
The vulnerability correlation process is similar to security
event correlation techniques [29], though rather than clustering
similar attributes, e.g., malicious IP addresses, we focus on
Common Weakness Enumeration (CWE) Ids. The CWE is a
standardized classification system for application weaknesses
[30]. For example, CWE 89 categorizes all vulnerabilities
related to Improper Neutralization of Special Elements used
in an SQL Command (SQL Injection) [31] and can be mapped
to several CVEs, e.g., CVE-2016-6652[32], a SQL injection
vulnerability in Spring Data JPA. If this vulnerability exists in
all PetClinic’s microservices, an attacker could easily conduct
a correlated attack (Attack Paths 2, 4, 5, and 6 of Figure 5)
resulting to correlated failures and eventual application failure
since each microservice works ultimately to the successful
functioning of the PetClinic application.

2) Vertical Vulnerability Correlation: The vertical correla-
tion technique is similar to the horizontal correlation. However,
the interactions across application-image layers are analyzed.
This analysis, therefore, employs security-by-design tactics
across the vertical attack surface. Attack Path 1 illustrates the
exploitation of vulnerability across the vertical attack surface,
and the attacker initiated an attack against the API Gateway
of the PetClinic application, from the application layer to the
image layer. From there, another attack is launched to the
Customers service application layer, across the image layer
and finally, the database is compromised. The same attack
can be repeated against the other microservices if affected
by the vulnerabilities. Hence we need to express such casual
relationships in vulnerability correlation matrices.

Correlated vulnerabilities can be represented with correla-
tion matrices, more specifically referred to as microservices
vulnerability correlation matrix. Therefore, we are influenced
by [33] to define the microservices vulnerability correlation
matrix as a mapping of vulnerabilities to microservice in-
stances in a microservice-based application. The microservices
vulnerability correlation matrix presents a view of vulner-
abilities that concurrently affect multiple microservices. An

148

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V1 V2 . . . Vn

M1 1 1 · · · . . .
M2 1 0 · · · . . .

...
...

. . .
...

Mn 1 1 · · · . . .

Figure 6. Microservice Vulnerability Correlation Matrix

TABLE VI. Vulnerabilities Detected in PetClinic App-Layer

CWE-ID API-GATEWAY CUSTOMERS-SERVICE VETS-SERVICE VISITS-SERVICE
CWE-16 31 4 2 2

CWE-524 48 17 6 11
CWE-79 0 3 0 1

CWE-425 0 0 20 0
CWE-200 14 6 0 0
CWE-22 0 1 0 0

CWE-933 1 0 0 0
TOTAL 94 31 28 14

example of the microservice correlation matrix is Figure 6,
where the microservices M1 and M2 will have a correlated
failure under an attack that exploits vulnerability V1 since they
share the same vulnerability. However, an attack that exploits
V2 can only affect M1, while M2 remains unaffected.

C. Evaluation
The PetClinic application was used for our evaluation.

PetClinic is a Spring application that demonstrates cloud-native
application capabilities. It has been used for demonstration
purposes in several industry and academic scenarios [19].
However, we were forced to modify the original PetClinic
by adding OpenAPI support. Two experiments have been
conducted: (1) Security risk comparison to verify the efficiency
of our security-by-diversity tactics (2) Attack surface analysis
to evaluate the improvement in the horizontal and vertical
attack surfaces.

In order to perform Security Risk analysis, we leveraged
the Cloud Aware Vulnerability Assessment System (CAVAS)
[34]. The vulnerability scanners integrated into CAVAS (An-
chore and OWASP ZAP), are used for launching vulnerability
scans against PetClinic images and microservice instances
respectively. The detected vulnerabilities were persisted in the
Security Reports and CMDB. First, the diversification index

Figure 7. Homogeneous PetClinic Vulnerabilities

TABLE VII. Risk Scores By CWE

CWE-ID OWASP T10 Risk Category Risk Score
CWE-16 A6 - Security Misconfiguration 6.0
CWE-524 Not Listed 3.0
CWE-79 A6 - Security Misconfiguration 6.0
CWE-425 Not Listed 3.0
CWE-200 A3 - Sensitive Data Exposure 7.0
CWE-22 A5 - Broken Access Control 6.0
CWE-933 Not Listed 3.0

is derived by computing risks per PetClinic microservices to
obtain the Security Risk - SR. Hence, we inspect the results for
the image vulnerability scan and notice that the vulnerabilities
are too similar (Figure 7). Therefore, SR will be too similar for
meaningful vulnerability prioritization. Since the prioritization
step is imperative for ranking microservices in order of risk
severity, we compute SR using the ORRM (Section IV-A2).
The application layer scan results are retrieved from the
database and analyzed. Scores are assigned to the detected
vulnerabilities based on the risk scores for OWASP Top-10
2017 web vulnerabilities. This is a reasonable approach given
OWASP uses ORRM for deriving the Top-10 web application
vulnerability scores. Also, this affords objective assignment
of scores [35], which are publicly verifiable. Table VI is the
distribution of detected vulnerabilities, while a subset of the
mapping between CWE-Ids and OWASP Top-10 is on Table
VII. From Table VII, it is obvious that the API-Gateway
has the most severe risks followed by the Customer, Vets,
and Visits microservices. Therefore, we apply diversification
based on this result using a diversification index of 3:4, i.e.,
three out of four microservices. The diversified PetClinic is
retested and the results are shown in Figure 8. We observe that
the diversified PetClinic application layer vulnerabilities are
reduced with about 53.3 %. However, the image vulnerabilities
increased especially for the Customer and Vets service, which
are transformed to NodeJS and Ruby respectively. Impor-
tantly, the microservices are no longer homogeneous, and
the possibilities for correlated attacks have been eliminated.
Also, the vulnerabilities in the API Gateway’s image are
drastically reduced from 696 to 6, while the application layer
vulnerabilities reduced from 94 to 24. The reduction is due
to reduced code base size, a distinct characteristic of Python
programming model. The API Gateway is the most important
microservice since it presents the most vulnerable and sensi-
tive attack surface of the application, therefore consider the
security of PetClinic improved, our results mean that out of
94 opportunities for attacking the API Gateway, only 24 were
left.

D. Attack Surface Analysis
Here we analyze the attack surfaces of the homogeneous

and diversified PetClinic versions. We consider direct and
indirect attack surfaces, i.e., vulnerabilities that directly/ in-
directly lead to attacks respectively. From the vulnerability
scan reports, each detected vulnerability is counted as an
attack surface unit (attack opportunities concept [36], [37]).
Figure 9 compares the horizontal app layer attack surface
for both PetClinic apps. Notice a reduced attack surface in
the diversified version, showing better security. Essentially,
the attackability of PetClinic has been reduced. However,
the results for the vertical attack surface are different. This
attack surface portrays attacks transversing the app-image layer

149

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Diversified PetClinic Vulnerabilities

(Figure 5). While there are fewer correlated vulnerabilities in
the diversified API-Gateway, correlated vulnerabilities in the
Customers and Vets Services have increased. This increment
is due to the corresponding increase of image vulnerabilities.
However, the attackability due to homogeneity is reduced.
We want to emphasize that intruders would observe this
approach as permanently changing attack surfaces increasing
dramatically the effort to breach the system.

V. CRITICAL DISCUSSION

The idea presented in Section III of an immune system like
approach to remove undetected intruders in virtual machines
seems to a lot of experts intriguing. Nevertheless, according to
the state of the art, this is currently not done. There might be
reasons for that and open questions the reader should consider.

It is often remarked that the proposal can be compared with
the approach to restart periodically virtual machines that have
memory leak issues and has apparently nothing to do with
security concerns, and could be applied to traditional (non-
cloud) systems as well. So, the approach may have even a
broader focus than presented (which is not a bad thing).

Another question is how to detect “infected” nodes? The
presented approach selects nodes simply at random and will
hit every node at some time. The same could be done using
a round-robin approach, but a round-robin strategy would be
better predictable for an attacker. However, both strategies will
create a lot of additional regenerations, and that leaves room
for improvements. It seems obvious to search for solutions like
presented by [38], [39] to provide some “intelligence” for the
identification of “suspicious” nodes. Such a kind of intelli-
gence would limit regenerations to likely “infected” nodes. In
all cases, it is essential for anomaly detection approaches to
secure the forensic trail [40], [41].

Furthermore, to regenerate nodes periodically or even ran-
domly is likely nontrivial in practice and depends on the state
management requirements for the affected nodes. Therefore,
this paper proposes the approach only as a promising solution
for Level 2 or 3 cloud applications (see Table III) that
are operated on elastic container platforms. These kinds of
applications have desirable state management characteristics.
However, this is a limitation to applications following the
microservice architecture approach.

Figure 9. Horizontal Attack Surface Analysis

One could be further concerned about exploits that are
adaptable to bio-inspired systems. Stealthy resident worms dat-
ing back to the old PC era would be an example. This concern
might be especially valid for the often encountered case of
not entirely stateless services when data-as-code dependencies
or code-injection vulnerabilities exist. Furthermore, attackers
could shift their focus to the platform itself in order to disable
the regeneration mechanism as a first step. On the other hand,
this could be easily detected – but there could exist more so-
phisticated attacks. In order to efficiently employ this strategy,
efficient real-time security monitoring is required. This could
be achieved via two major approaches, the first requires log
aggregation and analysis using either machine learning prac-
tices or other anomaly detection techniques. Otherwise, it is
also possible to deploy run-time security monitoring agents in
the cloud as recommended by the NIST Application Container
Security Guide [42]. For example, Falco [43] is an open-source
behavioral activity monitor for detecting anomalous activities
in containers. When deployed, it can trigger the regeneration
of new cells when malicious activities are detected, however
the system has to automate the management of traffic (requests
and responses) in a manner that evades service disruption.

The “immunization” results on the infrastructure level (see
Section III) are impressive but should be combined with secure
coding practices in development pipelines, i.e., coordinated
with continuous security assessments. We presented how to
automate security in CNA development environments [34].
In these cases, detected web vulnerabilities, e.g., X-Content-
Type-Options Header Missing, can be resolved by appending
appropriate headers, as described and advised in CAVAS
reports. Furthermore, image vulnerabilities can be reduced
by using more secure container images. For example, Alpine
Linux images can replace Ubuntu images as base images due
to smaller footprint, which equals smaller attack surfaces [44].

Of course, this is in line with the current trend of moving
security of microservices leftwards, i.e., integrating security
in the development pipelines [45]. Similarly, it is imperative
to implement continuous security monitoring techniques for
deployed containers to detect vulnerabilities discovered after
the deployment of containers in production environments.
This approach provides an efficient possibility of patching
vulnerable images and redeploying the appropriate containers.
However, it adds an overhead for the development pipelines

150

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

since it requires additional deployment, management and in-
volvement of security teams/architects.

Our MTD approach presented in Section IV leverages
automatic code generation techniques on the application level
via Swagger CodeGen library. We discovered that over 150
companies/projects use Swagger CodeGen in production [46],
hence the library is mature and capable of transforming large
microservice applications. Nevertheless, in this work a basic
application has been used to introduce the concepts, more
complex applications will be tested in the future. There are
however several obstacles to the realization of the proposed
MTD, our techniques can be applied only to OpenAPI compat-
ible microservices. This implies that the target microservices
have to be compatible with the OpenAPI standard, this is
achievable via several programming frameworks, and also a
positive addition since OpenAPI seems to be the leading API
exchange standard. Also, Swagger Codegen currently supports
about 30 programming languages/frameworks and this might
be a limitation in terms for possible combinations (entropy),
although more languages can be added via customization.
There might be a need for manual efforts to check if the
transformation output is functionally compatible especially for
complex applications. A possible challenge for real deploy-
ments might be the need to have development teams that are
proficient in multiple programming languages.

An event-based technique might interestingly enhance our
MTD technique by detecting attacks and triggering commensu-
rate diversification. Conventionally, Web Application Firewalls
(WAF) are deployed in front of web applications to detect and
stop malicious traffic (which might also indicate an ongoing
attack). Hence WAF can be deployed at the API Gateway
and configured with attack thresholds. Once a threshold is
breached, the WAF would trigger the diversification of the
entire microservice application or only the endangered mi-
croservices. A scheduled diversification routine might support
this methodology. These techniques can comfortably be ap-
plied across cloud platforms using orchestration technologies,
e.g., Kubernetes.

VI. RELATED WORK

To the best of the authors’ knowledge, there are currently
no approaches making intentional use of virtual machine
regeneration for security purposes neither on the infrastructure
nor on the application level. However, the proposed approach is
derived from multi-cloud scenarios and their increased require-
ments on security. Moreover, several promising approaches
are dealing with multi-cloud scenarios. So, all of them could
show equal opportunities. However, often, these approaches
come along with much inherent complexity. A container-based
approach seems to handle this kind of complexity better. There
are some good survey papers on this [47], [48], [49], [50].

MTD via software diversity was first introduced by Forest
et al. [51], since then the concept has been applied at different
abstraction levels. Baudry et al. [52] introduced sosiefication,
a diversification method, which transforms software programs
by generating corresponding replicas through statement dele-
tion, addition or replacement operators. These variants still
exhibit the same functionality but are computationally diverse.
Williams et al. [53] presented Genesis, a VM-based dynamic
diversification system. Genesis employed the Strata VM to
distribute software components such that every version became

unique, hence difficult to attack. A detailed comparison of
automated diversification techniques was presented in [23].
The authors have not found a prior work that applied MTD
concepts to microservices.

VII. CONCLUSION

There is still no such thing as an impenetrable system.
Once attackers successfully breach a system, there is little to
prevent them from doing arbitrary harm but we can reduce the
available time for the intruder to do this. Moreover, we can
make it harder to replay a successful attack. The presented
approach evolved mainly from transferability research ques-
tions for cloud-native applications. Therefore, it is limited to
microservice-based application architectures but provides some
unusual characteristics for thinking about security in general.

Basically we proposed an “immune system” inspired ap-
proach to tackle zero-day exploits. The founding cells are
continuously regenerated. The primary intent is to reduce the
time for an attacker acting undetected massively. Therefore,
this paper proposed to regenerate virtual machines (the cells
of an IT-system) with a much higher frequency than usual to
purge even undetected intruders. Evaluations on infrastructures
provided by AWS, GCE, Azure, and OpenStack showed that
a virtual machine could be regenerated between two minutes
(AWS) and 10 minutes (Azure). The reader should compare
these times with recent cybersecurity reports. In 2016 an
attacker was undetected on a victim system for about 100
days. The presented approach means for intruders that their
undetected time on victim systems is not measured in months
or days any-more, it would be measured in minutes.

However, regenerated virtual machines will incorporate
the same set of application vulnerabilities. So, a reasonable
approach for intruders would be to script their attacks and
rerun it merely. Although they might lose their foothold within
minutes in a system, they can regain it automatically within
seconds. Therefore, we propose to alter the attack surface of
applications by randomizing the entry and exit points, which
are commonly used for identifying attack surfaces [27], [28].
Based on horizontal and vertical microservice attack surfaces
we demonstrated how to employ a vulnerability correlation
to identify vulnerability similarities on the application layer
and how to adapt the attack surface accordingly. This attack
surface modification would let even automated and formerly
successful attack scripts fail (at least partly). We propose and
demonstrate the feasibility to diversify the application via
dynamic transformations of its containerized components at
runtime. In our presented use cases, we could show that it is
possible to change the attack surface of a reference application
incorporating over 600 container image vulnerabilities and
approximately 80 application vulnerabilities to a surface with
no image vulnerabilities and only 24 application vulnerabilities
anymore. That is a reduction of almost 98%. What is more,
the surface of the application can be changed continuously
resulting that scripted attacks fail with each surface change.
That is a nightmare from an intruders point of view.

The critical discussion in Section V showed that there is a
need for additional evaluation and room for more in-depth re-
search on both levels: continuously infrastructure regeneration
and application surface modifying. However, several reviewers
remarked independently that the basic idea is so “intriguing”,
that it should be considered more consequently.

151

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

This research is partly funded by the Cloud TRANSIT
project (13FH021PX4, German Federal Ministry of Education
and Research). The authors would like to thank Bob Duncan
from the University of Aberdeen for his inspiring thoughts on
cloud security challenges.

REFERENCES

[1] N. Kratzke, “About an Immune System Understanding for Cloud-
native Applications - Biology Inspired Thoughts to Immunize the Cloud
Forensic Trail,” in Proc. of the 9th Int. Conf. on Cloud Computing,
GRIDS, and Virtualization (CLOUD COMPUTING 2018, Barcelona,
Spain), 2018.

[2] B. Duncan and M. Whittington, “Compliance with standards,
assurance and audit: does this equal security?” in Proc. 7th Int.
Conf. Secur. Inf. Networks - SIN ’14. Glasgow: ACM, 2014,
pp. 77–84, [Accessed 10 February 2019]. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2659651.2659711

[3] N. Kratzke, “Smuggling Multi-Cloud Support into Cloud-native Appli-
cations using Elastic Container Platforms,” in Proc. of the 7th Int. Conf.
on Cloud Computing and Services Science (CLOSER 2017), 2017.

[4] ——, “About the complexity to transfer cloud applications at runtime
and how container platforms can contribute?” in Cloud Computing and
Service Sciences: 7th International Conference, CLOSER 2017, Revised
Selected Papers, Communications in Computer and Information Science
(CCIS). Springer International Publishing, 2018, to be published.

[5] N. Kratzke and P.-C. Quint, “Understanding Cloud-native Applications
after 10 Years of Cloud Computing - A Systematic Mapping Study,”
Journal of Systems and Software, vol. 126, no. April, 2017.

[6] N. Kratzke and R. Peinl, “ClouNS - a Cloud-Native Application Refer-
ence Model for Enterprise Architects,” in 2016 IEEE 20th Int. Enterprise
Distributed Object Computing Workshop (EDOCW), September 2016.

[7] L. Bilge and T. Dumitras, “Before we knew it: an empirical study of
zero-day attacks in the real world,” in ACM Conference on Computer
and Communications Security, 2012.

[8] K. A. Torkura, M. I. Sukmana, and A. V. Kayem, “A cyber risk based
moving target defense mechanism for microservice architectures,” in
2018 IEEE Intl Conf on Parallel & Distributed Processing with Appli-
cations, Ubiquitous Computing & Communications, Big Data & Cloud
Computing, Social Computing & Networking, Sustainable Computing
& Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom).
IEEE, 2018, pp. 932–939.

[9] FireEye, “M-trends 2019 report,” [Accessed 07 November
2017]. [Online]. Available: https://www.fireeye.com/current-threats/
annual-threat-report.html

[10] K. Krombholz, H. Hobel, M. Huber, and E. Weippl, “Advanced social
engineering attacks,” Journal of Information Security and Applications,
vol. 22, 2015.

[11] S. Gupta, A. Singhal, and A. Kapoor, “A literature survey on social
engineering attacks: Phishing attack,” 2016 International Conference
on Computing, Communication and Automation (ICCCA), 2016, pp.
537–540.

[12] N. Kratzke and P.-C. Quint, “Technical Report of the Project Cloud-
TRANSIT - Transfer Cloud-native Applications at Runtime,” October
2018, technical report.

[13] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns: Fundamentals to Design, Build, and Manage Cloud
Applications. Springer Publishing Company, Incorporated, 2014.

[14] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Migrating to Cloud-
Native Architectures Using Microservices: An Experience Report,” in
1st Int. Workshop on Cloud Adoption and Migration (CloudWay),
Taormina, Italy, 2015.

[15] S. Newman, Building Microservices. O’Reilly Media, Incorporated,
2015.

[16] S. Ashtikar, C. Barker, B. Clem, P. Fichadia, V. Krupin,
K. Louie, G. Malhotra, D. Nielsen, N. Simpson, and C. Spence,
“Open Data Center Alliance Best Practices: Architecting Cloud-
Aware Applications Rev. 1.0,” 2014, [Accessed 10 February

2019]. [Online]. Available: https://www.opendatacenteralliance.org/
docs/architecting cloud aware applications.pdf

[17] M. Stine, Migrating to Cloud-Native Application Architectures.
O’Reilly, 2015.

[18] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center.” in 8th USENIX Conf.
on Networked systems design and implementation (NSDI’11), vol. 11,
2011.

[19] C. M. Aderaldo, N. C. Mendonça, C. Pahl, and P. Jamshidi, “Benchmark
requirements for microservices architecture research,” in Proc. of the 1st
Int. Workshop on Establishing the Community-Wide Infrastructure for
Architecture-Based Software Engineering, ser. ECASE ’17. Piscat-
away, NJ, USA: IEEE Press, 2017.

[20] N. Kratzke and P.-C. Quint, “About Automatic Benchmarking of IaaS
Cloud Service Providers for a World of Container Clusters,” Journal of
Cloud Computing Research, vol. 1, no. 1, 2015.

[21] J. Gummaraju, T. Desikan, and Y. Turner, “Over 30% of official images
in docker hub contain high priority security vulnerabilities,” BanyanOps,
Tech. Rep., 2015.

[22] R. Shu, X. Gu, and W. Enck, “A study of security vulnerabilities on
docker hub,” in Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, 2017.

[23] P. Larsen, S. Brunthaler, L. Davi, A.-R. Sadeghi, and M. Franz, “Auto-
mated software diversity,” Synthesis Lectures on Information Security,
Privacy, & Trust, vol. 10, no. 2, 2015, pp. 1–88.

[24] P. Mell, K. Scarfone, and S. Romanosky, “Common vulnerability
scoring system,” IEEE Security & Privacy, 2006.

[25] OWASP, “Owasp risk rating methodology,” [Accessed 08 January
2019]. [Online]. Available: https://www.owasp.org/index.php/OWASP
Risk Rating Methodology

[26] Pivotal, “Distributed version of spring petclinic built with spring
cloud,” [Accessed 08 January 2019]. [Online]. Available: https:
//github.com/spring-petclinic/spring-petclinic-microservices

[27] A. Younis, Y. K. Malaiya, and I. Ray, “Assessing vulnerability ex-
ploitability risk using software properties,” Software Quality Journal,
2016.

[28] P. K. Manadhata, Y. Karabulut, and J. M. Wing, “Report: Measuring
the attack surfaces of enterprise software.” ESSoS, vol. 9, 2009, pp.
91–100.

[29] M. Ficco, “Security event correlation approach for cloud computing,”
International Journal of High Performance Computing and Networking
1, 2013.

[30] S. Christey, J. Kenderdine, J. Mazella, and B. Miles, “Common weak-
ness enumeration,” Mitre Corporation, 2013.

[31] M. Corporation., “Cwe-89: Improper neutralization of special elements
used in an sql command (’sql injection’),” [Accessed 16 May 2019].
[Online]. Available: https://cwe.mitre.org/data/definitions/89.html

[32] NIST, “Cve-2016-6652 details,” [Accessed 16 May 2019]. [Online].
Available: https://nvd.nist.gov/vuln/detail/CVE-2016-6652

[33] P.-Y. Chen, G. Kataria, and R. Krishnan, “Correlated failures, diver-
sification, and information security risk management,” MIS quarterly,
2011, pp. 397–422.

[34] K. A. Torkura, M. I. Sukmana, and C. Meinel, “Cavas: Neutralizing
application and container security vulnerabilities in the cloud native
era (to appear),” in 14th EAI International Conference on Security and
Privacy in Communication Networks. Springer, 2018.

[35] OWASP, “Top 10-2017 details about risk factors,” 2017, [Accessed 07
January 2019]. [Online]. Available: https://www.owasp.org/index.php/
Top 10-2017 Details About Risk Factors

[36] M. Howard, J. Pincus, and J. M. Wing, “Measuring relative attack
surfaces,” in Computer security in the 21st century. Springer, 2005,
pp. 109–137.

[37] OWASP, “Attack surface analysis cheat sheet,” [Accessed 08 January
2019]. [Online]. Available: https://www.owasp.org/index.php/Attack
Surface Analysis Cheat Sheet

[38] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution Anomaly Detection
in Distributed Systems through Unstructured Log Analysis,” in 2009
Ninth IEEE Int. Conf. on Data Mining, 2009.

152

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/security/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[39] M. Wurzenberger, F. Skopik, R. Fiedler, and W. Kastner, “Applying
High-Performance Bioinformatics Tools for Outlier Detection in Log
Data,” in CYBCONF, 2017.

[40] B. Duncan and M. Whittington, “Cloud cyber-security: Empowering the
audit trail,” Int. J. Adv. Secur., vol. 9, no. 3 & 4, 2016, pp. 169–183.

[41] ——, “Creating an Immutable Database for Secure Cloud Audit Trail
and System Logging,” in Cloud Comput. 2017 8th Int. Conf. Cloud
Comput. GRIDs, Virtualization. Athens, Greece: IARIA, ISBN: 978-
1-61208-529-6, 2016, pp. 54–59.

[42] M. Souppaya, J. Morello, and K. Scarfone, “Application container
security guide,” 2017. [Online]. Available: https://doi.org/10.6028/
NIST.SP.800-190

[43] FalcoSecurity, “Falco: Container native runtime security,” [Accessed
08 January 2019]. [Online]. Available: https://github.com/falcosecurity/
falco

[44] H. Gantikow, C. Reich, M. Knahl, and N. Clarke, “Providing security in
container-based hpc runtime environments,” in International Conference
on High Performance Computing. Springer, 2016.

[45] H. Myrbakken and R. Colomo-Palacios, “Devsecops: a multivocal
literature review,” in International Conference on Software Process
Improvement and Capability Determination. Springer, 2017, pp. 17–
29.

[46] SmartBear, “Swagger codegen repository,” [Accessed 08 January 2019].
[Online]. Available: https://github.com/swagger-api/swagger-codegen

[47] A. Barker, B. Varghese, and L. Thai, “Cloud Services Brokerage:
A Survey and Research Roadmap,” in 2015 IEEE 8th International
Conference on Cloud Computing. IEEE, June 2015.

[48] D. Petcu and A. V. Vasilakos, “Portability in clouds: approaches and
research opportunities,” Scalable Computing: Practice and Experience,
vol. 15, no. 3, October 2014.

[49] A. N. Toosi, R. N. Calheiros, and R. Buyya, “Interconnected Cloud
Computing Environments,” ACM Computing Surveys, vol. 47, no. 1,
May 2014.

[50] N. Grozev and R. Buyya, “Inter-Cloud architectures and application
brokering: taxonomy and survey,” Software: Practice and Experience,
vol. 44, no. 3, March 2014.

[51] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer
systems,” in Operating Systems, 1997., The Sixth Workshop on Hot
Topics in. IEEE, 1997, pp. 67–72.

[52] B. Baudry, S. Allier, and M. Monperrus, “Tailored source code trans-
formations to synthesize computationally diverse program variants,” in
Proceedings of the 2014 International Symposium on Software Testing
and Analysis. ACM, 2014.

[53] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C. Knight,
and A. Nguyen-Tuong, “Security through diversity: Leveraging virtual
machine technology,” IEEE Security & Privacy, 2009.

www.iariajournals.org

International Journal On Advances in Intelligent Systems

issn: 1942-2679

International Journal On Advances in Internet Technology

issn: 1942-2652

International Journal On Advances in Life Sciences

issn: 1942-2660

International Journal On Advances in Networks and Services

issn: 1942-2644

International Journal On Advances in Security

issn: 1942-2636

International Journal On Advances in Software

issn: 1942-2628

International Journal On Advances in Systems and Measurements

issn: 1942-261x

International Journal On Advances in Telecommunications

issn: 1942-2601

