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Abstract—A system for managing transport-network recovery 
using hybrid-backup operation planes according to the degree 
of a network failure is proposed. Under this management 
system, an entire network is separated into multiple areas. A 
network-management server prepares a three-step recovery 
procedure to cover the degree of network failure. In the first 
step of the recovery, an inside-area protection scheme is used 
to recover current data-transmission paths in each area. In the 
second step, an end-to-end protection scheme is applied to the 
current data-transmission paths. In the third step, the 
operation plane is changed. Each assumed operation plane is 
composed of recovery configurations for restoring failure 
paths for assumed area-based network failures. If a small 
network failure occurs, it is recovered by the inside-area 
protection and end-to-end protection schemes. If a catastrophic 
network failure (caused by a disaster) that cannot be recovered 
by those protection schemes occurs, it is recovered by changing 
the operation plane in accordance with the damaged areas. A 
prototype system composed of a network-management server 
and 96 emulated packet-transport nodes was developed and 
evaluated by configuring 1000 data-transmission paths. In case 
of a small network failure, 500 data-transmission paths were 
damaged, and they were reconfigured by the inside-area 
protection scheme and end-to-end protection scheme in about 5 
seconds. If the network failure was not recovered by those 
protection schemes, 1000 data-transmission paths were 
reconfigured in about 1.2 seconds after the network-
management server decided to change the operation plane. As 
a result, the proposed system could localize a network failure 
and recover a transport network according to the degree of 
network failures. 

Keywords - network management; protection; disaster 
recovery; packet transport 

I.  INTRODUCTION 

Lately, reflecting the rapid growth of the Internet and 
cloud systems, various services, for example, on-line 
shopping, net banking, and social-networking services 
(SNSs), are being provided via networks. Under these 
circumstances, networks have become an indispensable 
service supporting daily life. If a network is out of service 
due to failures of network nodes, people’s lives and 

businesses would be considerably damaged. Therefore, if a 
network fails, it should be recovered promptly. Failures of a 
network can be envisioned as “small” failures (such as a 
failure of a node or a link) or “extensive” failures (due to 
natural disasters). It is therefore a crucial issue to develop a 
scalable network-recovery scheme that can cover recovery 
from either a small network failure or a catastrophic 
network failure. 

In our previous work presented at INNOV 2015 [1], an 
entire system architecture was focused on a scalable 
network-recovery scheme by extending a prior system [2]. 
In this extended work, a prototype system for multiple 
tenant users was implemented, and its performance was 
evaluated in comparison with a conventional system. 

As recovery procedures for network failures, two major 
schemes [3], namely, “protection” and “restoration,” are 
utilized. As for protection, it is possible to recover from a 
network failure promptly because a backup path to a current 
path is prepared in advance. However, to recover from a 
network disaster, numerous backup paths must be prepared. 
Protection is therefore useful for small network failures. On 
the other hand, as for restoration, a recovery path is 
recalculated after a network failure is detected. It therefore 
takes much time to recover from a network failure if 
numerous current paths exist. 

In light of the above-described issues, a robust network-
management scheme is required. The overall aim of the 
present study is thus to develop a network-management 
scheme [1][2] for monitoring and controlling network 
resources so as to quickly restore network services after a 
network disaster.  

The procedure for recovering from a network failure 
consists of three steps: the first step is to quickly detect a 
network failure; the second is to immediately determine 
how to recover from the failure; the third is to promptly 
configure recovery paths. The second step is focused on in 
the present study. In particular, a scalable network-recovery 
scheme—covering failures ranging from small ones to 
extensive ones—is proposed. The target network is a 
transport network, such as a Multi-Protocol Label 
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Switching - Transport Profile (MPLS-TP) network. 
The rest of this paper is organized as follows. Section II 

describes related work. Section III overviews a previously 
proposed system and a requirement to apply it to not only 
catastrophic failures but also small network failures. Section 
IV proposes a new network-disaster recovery system. 
Sections V and VI respectively describe an architecture of a 
prototype system and present some results of evaluations of 
the system’s performance. Section VII concludes the paper. 

 

II. RELATED WORK 

Several standardization activities related to reliable 
networks have been ongoing. The International 
Telecommunication Union - Telecommunication 
Standardization Sector (ITU-T) [4] discussed specifications, 
such as Transport – Multi Protocol Label Switching (T-
MPLS), in the first stage of standardization. In the next stage, 
the ITU-T jointly standardized MPLS-TP specifications with 
the Internet Engineering Task Force (IETF) [5]. Requests for 
comments (RFC) on requirements [6] and a framework [7] 
for MPLS-TP were then issued. In addition, RFCs on a 
framework for MPLS-TP-related operation, administration, 
and maintenance (OAM) [8] and survivability [9] were 
issued. Based on the OAM framework, the previously 
proposed system can detect network failures promptly. 

Several schemes for failure recovery have been proposed. 
One major scheme, called “fast reroute” [10], prepares a 
back-up path. Another recovery scheme (for multiple 
failures) prepares multiple backup paths [11], and another 
one prepares a recovery procedure for multiple modes [12]. 
In the case of these protection schemes, to recover from a 
catastrophic network failure, a huge volume of physical 
resources for preparing a large number of standby paths is 
needed. These schemes are useful for limited network 
failures, namely failures of a few links or nodes. 

In the case of restoration schemes, in contrast to 
protection schemes, recovery paths are calculated after a 
network failure is detected. Restoration schemes for handling 
multiple failures [13] and virtual networks [14] have been 
proposed. A scheme for reducing search ranges by using 
landmark nodes has also been proposed [15]. It is useful for 
recovering a seriously damaged network, since all reroutes 
are calculated after a failure is detected. However, if a large 
number of current paths exist, it might take much time to 
calculate all recovery paths. 
 

III. PREVIOUS SYSTEM AND REQUIREMENTS 

The previously proposed network-recovery system is 
shown in Figure 1 [2]. The target network is composed of 
packet transport nodes (PTNs), such as those in an MPLS-
TP network. The system only focuses on recovery from 
multiple area-based network failures on PTN networks. A 
critical issue in the case of a network disaster is the time 
consumed in recovering the numerous established paths 

(shown as solid blue arrows) in packet networks. (Note that 
“path” means a label-switched path (LSP) [16] and a pseudo 
wire (PW) [17].) A user is connected to one of the PTNs 
through a network such as an IP network. A server located 
in a data center (DC) is also connected to one of the PTNs 
through an IP network.  

The previously proposed system could promptly recover 
from a catastrophic failure of a network by using prepared 
back-up paths (shown as dotted red arrows). However, it 
significantly changes network configurations, even if a 
network failure is small, since network conditions are 
managed on the basis of divided network areas. It must 
therefore be enhanced so that it can recover from a 
catastrophic network failure, as well as a small network 
failure, by using fewer configurational changes based on the 
degree of damage due to the network failure. 

 

User Data center
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(1)
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(3) NW area
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Figure 1. Previously proposed network-recovery system 

 

IV. PROPOSED TRANSPORT NETWORK-RECOVERY 

SCHEME 

To meet the above-described requirements, a three-step 
recovery procedure for covering the degree of network 
failures is proposed. The first step of the procedure is to 
execute “an inside-area protection scheme” to recover small 
failures, such as a node failure in each area formed by 
separating an entire network into small areas. The second 
step is to execute “an end-to-end protection scheme” to 
recover small failures, such as a failure of a link between 
areas not recovered by the inside-area protection scheme. 
The third step is to execute “an operation-plane change 
scheme” to recover extensive failures, such as network 
failures of multiple areas. 
 

A. Path protection for small network failures in each area 

The proposed system should promptly recover a network 
from a small failure, such as a link failure between PTNs or 
a PTN failure. A scheme called “inside-area protection”—
for localizing and swiftly recovering from a small network 
failure—is overviewed in Figure 2. Using a conventional 
scheme (such as cluster analysis), the network-management 
server divides an entire PTN network into multiple (e.g., 
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eight) areas, which it then manages. It configures a current 
path (shown as solid black arrows in the figure), composed 
of a LSP and a PW, for transmitting data from a sender to a 
receiver according to requests by end users. The network-
management server configures a backup path for each 
current path, namely, an inside-area protection path (shown 
as dotted red arrows), between one edge PTN and another 
edge PTN in every area. Specifically, the network-
management server finds an edge PTN pair that is related to 
the current path in every area. For example, PTN 14 and 
PTN 11 are the edge PTN pair in area (1), since packet data 
from PE1 are received by PTN 14 and then transmitted to 
area (5) by PTN 11, as shown in Figure 4. In addition, PTN 
54 and PTN 53, PTN 84 and PTN 83, and PTN 42 and PTN 
43 are the edge PTN pairs that are related to the current path. 
The network-management server calculates a detour path for 
each edge PTN pair by excluding network links that are 
parts of the current path. For example, a detour path 
between PTN 14 and PTN 11 through PTN 13 and PTN 12 
is calculated as the backup path. All calculated detour paths 
in each area become the inside-area protection paths.  

In each area, both edge PTNs exchange OAM packets to 
check if a disconnection exists between the PTNs. If a 
disconnection is detected, they send an alert to the network-
management server, which keeps the received alert and 
monitors the degree of failures, namely, numbers of link and 
PTN failures, and damaged areas. 

In the case shown in Figure 2, a link failure between PTN 
14 and PTN 11 is assumed to occur in area (1). PTN 14 and 
PTN 11 detect the link failure, which is recovered by the 
inside-area protection. Specifically, a direct data-
transmission path from PTN 14 to PTN 11 is changed to a 
backup transmission path through PTN 13 and PTN 12. On 
the other hand, the path between PTN 14 and PTN 11 is a 
part of an end-to-end path between provider-edge 1 (PE1) 
and PE2. The link failure between PTN 14 and PTN 11 is 
therefore temporarily detected by PE1 and PE2, since both 
PEs also exchange OAM packets. However, both PEs wait 
for 100 milliseconds to see whether the link failure is 
recovered by the inside-area protection. Therefore, when the 
link failure is recovered by the inside-area protection, 
neither PE executes further recovery action. 
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Figure 2. Configuration of path protection in each NW area 

B. End-to-end path protection for small network failures 

The proposed system should be able to immediately 
recover from a small failure that is not recovered by the 
above-described protection (such as a link failure between 
areas). A scheme called “end-to-end protection” to promptly 
recover from a failure that is not restored by the inside-area 
protection is overviewed as follows. The network-
management server configures a backup path (called an 
“end-to-end protection path”) for each current path between 
PE1 and PE2. PEs exchange OAM packets to check whether 
a disconnection exists between them.  

Specifically, as shown in Figure 3, the network-
management server configures a current path (shown as 
solid black arrows) between PE1 and PE2 [through areas (1), 
(5), (8), and (4)] for transmitting data packets between a 
user and a DC. In addition, the network-management server 
configures a backup path called an “end-to-end protection 
path (shown as dotted red arrows)” between PE1 and PE2. 
The end-to-end protection path is established so as not to 
travel through the same areas used by the current path as 
much as possible. In Figure 3, the backup path is configured 
to transmit data through areas (2), (6), (7), and (3). 

During network operation, the end-to-end protection is 
executed when the data transmission between PEs is 
disconnected for a while (for example, 100 milliseconds). In 
the case of Figure 3, a link failure between areas (5) and (8) 
is assumed. This failure is not recovered by the inside-area 
protection; instead, it is recovered by the end-to-end 
protection because it occurs between areas. Specifically, a 
data-transmission path is changed from the current path 
(shown as solid black arrows) to a backup path (shown as 
dotted red arrows). 

The end-to-end protection scheme is similar to a 
conventional protection scheme. In the case of a 
conventional scheme, the protection is immediately 
executed after one of the PEs detects a disconnection. 
However, in the case of the proposed end-to-end protection 
scheme, it is not executed for 100 milliseconds so that it can 
be checked whether a failure has been recovered by the 
inside-area protection or not. 
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Figure 3. Configuration of path protection for end-to-end transmission 
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C. Changing operation plane for network-disaster 
recovery 

The proposed system should be able to promptly recover 
not only failures inside a network area and between network 
areas but also catastrophic failures. A recovery scheme that 
changes the operation plane to recover from area-based 
network failures is overviewed in Figure 4. Before starting 
network operations, the network-management server 
prepares multiple backup operation planes for handling 
possible area-based network failures. Each backup operation 
plane is composed of recovery configurations for restoring 
failure paths due to assumed network failures. During 
network operation, if network failures are not recovered by 
both the inside-area protection and the end-to-end protection, 
the failures are recovered by changing an operation plane.  
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Figure 4. Configuration for changing an operation plane for network-

disaster recovery 

 
In Figure 4, as an example, the network-management 

server configures multiple currents paths [through areas (1), 
(5), (8), and (4)] for transmitting data packets between a 
user and a DC. It calculates all recovery paths preliminarily 
by assuming all possible area-based network failures. The 
number of possible combinations of areas is 256 (i.e., 28), 
and it includes a pattern by which no area-based network 
failure occurs. The network-management server therefore 
prepares 255 backup operation planes. It then assigns a 
unique recovery identifier (ID) for each backup operation 
plane, and sends all recovery IDs and recovery 
configurations to each PTN, which stores all received 
recovery IDs and configurations. 

An example area-based network-failure recovery 
procedure is shown in Figure 4. In the figure, area-based 
network failures are assumed to occur in areas (1), (4), (6), 
and (7). In this case, PE1 (namely, an edge node of the 
current path) detects a disconnection between PE1 and PE2. 
PE1 waits 100 milliseconds to check whether the failures 
are recovered by the inside-area protection. It also checks 
the availability of the end-to-end protection path (which is 
not shown in Figure 4) by using OAM packets. If the 
failures are not recovered in 100 milliseconds and the end-
to-end protection path is not available, PE1 sends an alert to 
the network-management server to inform it that the end-to-

end protection is not available. The network-management 
server then checks which areas are not available. In this 
example, by receiving many alerts sent by multiple PTNs, 
the network-management server determines that area-based 
network failures occur in areas (1), (4), (6), and (7). By 
using the determined network-failure information, it then 
determines the most suitable backup operation plane to 
recover. To change an operation plane, the network-
management server sends a recovery ID specifying the 
most-suitable backup operation plane to related PTNs, 
which change data transmissions according to the received 
recovery ID. By means of the above-described procedures, 
the operation plane is changed, and catastrophic network 
failures are swiftly recovered. 

 

V. ARCHITECTURE OF PROTOTYPE SYSTEM  

In this section, the architecture of a prototype system is 
described. Specifically, the structure of the prototype system 
is shown first. Then, recovery procedures are overviewed. 
After that, calculation procedures for the inside-area 
protection paths and the end-to-end protection paths are 
described. (Note that calculation procedures for the backup 
operation planes are not described since they are explained 
in a previous work [2].) At the end of this section, an 
implemented viewer is depicted. 

 

A. Structure of prototype system 

A prototype system was implemented by using three 
servers. The structure of the prototype system—composed 
of an application server, a control server, and a node 
simulator server—is shown in Figure 5. Specifically, 
implemented software components are shown in the figure. 

The application server is in charge of the entire network 
management. Specifically, it manages calculation and 
configuration of current paths and protection paths by 
sending commands. In addition, it calculates and configures 
back-up operation planes with multiple detour paths by 
assuming possible node failures or area-based network 
failures. Besides, it receives alerts and determines the 
degree of network failures. It then selects a recovery back-
up operation plane and sends it an identifier specifying it to 
network nodes. 

The control server is in charge of transmitting command 
messages from the application server to the simulator server. 
Specifically, it receives calculated route information of the 
current paths, protection paths, and back-up operation 
planes and distributes it to the simulated multiple network 
nodes. In addition, it monitors state of connections between 
not only current paths but also protection paths. When it 
detects a disconnection, it prompts the node simulator server 
to activate an alert. On the other side, it transmits alert 
information from the simulator server to the application 
server. 
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Figure 5. Structure of prototype system 

 
The simulator server emulates certain parts of the 

functions of MPLS-TP network nodes. It receives 
configurations of LSP and PW paths and sets data-
transmission paths on the basis of the received path 
information. When it is requested to activate alerts, it sends 
an SNMP trap to the control server. 

 

B. Overview of recovery procedures 

The structure of the proposed transport network-recovery 
scheme is similar to the previously proposed scheme (shown 
in Figure 1). Namely, it is composed of a network-
management sever and multiple PTNs. The network-
management server centrally manages the whole network. 
However, the recovery procedures differ from those of the 
previous system. 
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Figure 6. Overview of proposed recovery procedure 

 

A flow chart of the new recovery procedure is shown in 
Figure 6. First, after starting a network-management 
function, the network-management server divides the whole 
network into multiple areas. It calculates current paths 
(composed of LSPs and PWs) for transmitting data from a 
sender node to a receiver node according to inputs by a 
network manager. The network-management server 
calculates “inside-area protection paths” for each area and 
“end-to-end protection paths” to recover current paths in 
case of network failures. In addition, it calculates virtual 
operation planes for all possible area-failure patterns. The 
protection paths and virtual operation planes are described 
in detail in later sections. The network-management server 
sets the entire configuration of the calculated paths to all 
network nodes and starts to monitor the network for failures. 
When it detects a network failure, it determines the type of 
failure, namely, an area-based or node-based failure. The 
network-management server then executes the appropriate 
failure-recovery procedures according to the determined 
failure degree. 

 

C. Calculation of inside-area protection paths 

An implemented flow chart of the calculation procedure 
of inside-area protection paths is shown in Figure 7.  
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Figure 7. Calculation procedure for inside-area protection paths 

 
The application server selects a current path that does not 

have an inside-area protection path. In addition, it selects an 
area where inside-area-protection for the selected current 
path is not set. Then, it selects two edge nodes on the 
selected current path in the selected area. One is the start 
point and the other is the end point for the selected path in 
the selected area. The application server calculates the 
inside-area protection path between the two selected edge 
nodes and stores it. After that, it checks whether the inside-
area protection paths related to the selected current path are 
calculated or not. If they are calculated, it checks whether 
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all inside-area protection paths for all current paths are 
calculated or not. If they are not calculated, it calculates 
other inside-area protection paths for the remaining current 
paths. If all inside-area protection paths are calculated and 
stored, it terminates the calculation procedures. 

 

D. Calculation of end-to-end protection paths 

An implemented flow chart of the calculation procedure 
for end-to-end protection paths is shown in Figure 8. The 
application server selects a current path that does not have 
an end-to-end protection path. In addition, it sets a high cost 
value for links in areas that the current path passes through. 
It then calculates an end-to-end protection path for the 
selected current path to minimize the cost of the summation 
of the links composing the protection path. After that, it 
checks whether all end-to-end protection paths for all 
current paths are calculated or not. If they are not calculated, 
it calculates other end-to-end protection paths for the 
remaining current paths. If they are calculated and stored, it 
terminates the calculation procedure. 
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Figure 8. Calculation procedure for end-to-end protection paths 

 

E. Calculation of recovery paths for operation-plane 
change 

An implemented flow chart of the calculation procedure 
for recovery paths when changing the operation plane is 
shown in Figure 9. The detailed calculation procedure is 
described in our previous study [2]. The application server 
selects one of all possible patterns of area failures that does 
not have a backup operation plane. In addition, it excludes 
all nodes in the selected failure pattern of area failures. It 
then selects a current path that does not have a recovery path 
and calculates a recovery path for the selected current path. 
After that, it checks whether all recovery paths for the 
selected pattern of area failures are calculated or not. If they 
are not calculated, it calculates other recovery paths for the 
selected pattern of area failures. If they are calculated, it 
calculates recovery paths for other patterns of area failures. 
If all recovery paths for all possible patterns of area failures 
are calculated, it terminates the calculation procedure. 
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Figure 9. Calculation procedure for recovery paths for changing operation 

plane  
 

F. Implementation of viewer 

The primary-screen layout of the prototype system’s 
viewer is shown in Figure 10. The function menu allows 
selection of a topology view or a system-configuration view. 
The operation ID means the number of a selected operation 
planes. If no failure occurs, the number zero is used. The 
recovery indicator shows conditions after execution of one 
of the recovery procedures, namely, inside-area protection, 
end-to-end protection, and a selection of a backup operation 
plane. The condition panel shows current operational status 
of the system. The topology tree shows a list and structure 
of connected nodes. The alert panel shows a list of failures, 
such as node failures. The “area object” tag indicates an 
existence of each area. The “user terminal” tag indicates 
each user terminal. The map location indicates the position 
of the displayed network.  

 
Function menu

Recovery indicator

User name Logout button

Alert panel Map location

Operation ID

Scroll button

Zoom bar

User terminalArea object

Current path

Topology tree

Condition
panel

 
Figure 10. View of primary-screen layout 
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The “current path” tag highlights the currently used path. 
The “zoom bar” button provides a function to change the 
size of the displayed network. The “scroll” button provides 
a function to change the position of the displayed network. 
The “user name” tag shows the name of a current user. The 
“logout” button is used to terminate network management. 
 

VI. PERFORMANCE EVALUATION AND RESULTS 

The above-described recovery procedures were evaluated 
in the case of a small network failure and a catastrophic 
network failure by using the prototype system. In the 
evaluation, the times needed to calculate and to configure a 
table for current data-transmission paths (composed of PWs 
and LSPs) were evaluated. In addition, the times taken to 
configure recovery paths in the case of a failure of a PTN or 
an area-based failure were evaluated. 

A. Evaluation system 

The system used for evaluating the proposed recovery 
procedures is shown in Figure 11. It is composed of a 
network-management server and 96 PTNs. As shown in the 
figure, an entire PTN network is divided into eight areas. 
Each network area is composed of 12 PTNs, as shown in 
NW area (7). In each area, PTNs are connected in a reticular 
pattern. In addition, each user terminal is connected to PTN-
network areas (1) and (2) through PE1 or PE3, and each 
application server in DC1 or DC2 is connected to PTN-
network areas (3) and (4) through PE2 or PE4. 

Note that the PTN networks (composed of 96 PTNs) are 
emulated by a physical server. The user terminal and 
application server are also emulated by the physical server, 
whose specification is listed in Table I. Another physical 
server, which executes the network-management function, 
has the same specifications as the former server. 
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Figure 11. Evaluation system 

 
 
 
 
 

TABLE I.  SPECIFICATION OF SERVER 
# Item Specification 
1 CPU 1.8 GHz, 4 cores 
2 Memory 16 Gbytes 
3 Storage 600 Gbytes 

 

TABLE II.  EVALUATED ITEMS 
# Item Evaluation specification
1 Current-path calculation 

time
Time to calculate 100 (=50+50), 500 
(=250+250), and 1000 (=500+500) PWs

2 Current-path distribution 
time 

Time to distribute all calculated current 
paths in case of 100 (=50+50), 500 
(=250+250), and 1000 (=500+500) PWs 

3 Protection-path calculation 
time for each area  

Time to calculate all protection paths in 
each area for 100 (=50+50), 500 
(=250+250), and 1000 (=500+500) PWs 

4 Protection-path calculation 
time for end-to-end 
protection paths 

Time to calculate all protection paths for 
all end-to-end current paths for 100 
(=50+50), 500 (=250+250), and 1000 
(=500+500) PWs 

5 Recovery-path calculation 
time for changing 
operation plane  

Time to calculate recovery 100 
(=50+50), 500 (=250+250), and 1000 
(=500+500) PWs for all possible area-
failure patterns 

6 Recovery-configuration 
time  

Time to configure all protection paths 
after detecting path failures for 100 
(=50+50), 500 (=250+250), and 1000 
(=500+500) PWs 

7 Recovery-ID distribution 
time 

Time to distribute a recovery ID after 
detecting an area failure for 100 
(=50+50), 500 (=250+250), and 1000 
(=500+500) PWs 

 

B. Evaluation conditions 

The times taken to calculate multiple PWs between PE1 
and PE2 and between PE3 and PE4 were evaluated. Each 
PW was included in a LSP. If a transmission path of a PW 
differed from the path of an already setup LSP, a new LSP 
was setup, and the PW was included in the new LSP. The 
evaluations were executed according to the patterns listed in 
Table II. Specifically, the times taken to calculate current 
paths, to distribute their configuration to all PTNs, and to 
calculate the inside-area protection paths and end-to-end 
protection paths were evaluated by changing the number of 
PWs (namely, 50+50, 250+250, and 500+500 for two users). 
In addition, the times taken to calculate recovery paths for 
changing the operation plane, to configure protection paths, 
and to distribute the recovery ID were evaluated. 

C. Evaluation results 

1) Current-path calculation time 
The times taken to calculate current PWs requested by 

the two users are plotted in Figure 12. User 1 accesses a 
server in DC1 through PE1 and PE2. User 2 accesses a 
server in DC2 through PE3 and PE4. A scalability evaluation 
was executed by changing setup PWs for each user. As 
shown in the figure, the times taken to calculate 100 
(=50+50) current PWs, 500 (=250+250) current PWs, and 
1000 (=500+500) current PWs were respectively about 152, 
570, and 1079 milliseconds. 
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2) Distribution time for configuring current paths  
The times taken to distribute all configurations of the 

calculated current paths to all PTNs are plotted in Figure 13. 
As shown in the figure, the times taken to distribute all 
configurations of the 100 (=50+50) current PWs, 500 
(=250+250) current PWs, and 1000 (=500+500) current PWs 
are respectively about 25, 330, and 923 milliseconds. 

3) Protection-path calculation time for all current paths 
in each area  

The times taken to calculate protection paths 
corresponding to all current PWs in each area are plotted in 
Figure 14. As shown in the figure, the times required for 
calculating all the inside-area protection paths for 100 
(=50+50) current PWs, 500 (=250+250) current PWs, and 
1000 (=500+500) current PWs are respectively about 600, 
1392, and 2095 milliseconds. 

4) Protection-path calculation time for all end-to-end 
current paths 

The times taken to calculate end-to-end protection paths 
to all current PWs are plotted in Figure 15. As shown in the 
figure, the times taken to calculate all the end-to-end 
protection paths for 100 (=50+50) current PWs, 500 
(=250+250) current PWs, and 1000 (=500+500) current PWs 
are respectively about 230, 952, and 1983 milliseconds. 

5) Recovery-path calculation time for operation-plane 
change 

The times taken to calculate all recovery PWs for 255 
possible area-based network-failure patterns are plotted in 
Figure 16. As shown in the figure, the times taken to 
calculate all recovery PWs for 255 area-based network-
failure patterns and 100 (=50+50) current PWs, 500 
(=250+250) current PWs, and 1000 (=500+500) current PWs 
are respectively about 12.2, 44.8, and 85.5 seconds. 

6) Recovery-configuration time required by both 
protection schemes for each area and end-to-end path 

The times taken to set recovery configuration and to store 
a configured network topology by the inside-area protection 
and end-to-end protection schemes after detecting a path 
disconnection are plotted in Figure 17. Specifically, recovery 
configuration time was evaluated by intentionally invoking a 
node failure in area (5). In this case, half of the PWs were 
damaged and recovered. In the evaluation, if a disconnected 
path is not recovered for 100 milliseconds by the inside-area 
protection, it is automatically recovered by the end-to-end 
protection. Actually, disconnected paths were recovered by 
the end-to-end protection. As shown in the figure, the times 
to set recovery configurations for 100 (=50+50) current PWs, 
500 (=250+250) current PWs, and 1000 (=500+500) current 
PWs by both protections are respectively about 0.8, 2.2, and 
4.7 seconds. 

7) Recovery-ID distribution time for changing operation 
plane  

The times taken to distribute the recovery ID to related 
PTNs and recover after the last area-based network failure is 
detected in the case of 100 (=50+50) current PWs, 500 
(=250+250) current PWs, and 1000 (=500+500) current PWs 

are plotted in Figure 18. Three area-based network-failure 
patterns, namely, failures of network areas (1) and (6), 
failures of network areas (1), (6), and (4), and failures of 
network areas (1), (6), (4), and (7), were evaluated. As 
shown in the figure, in the case of 100 (=50+50) current PWs, 
the times taken to recover from the last failure for the three 
area-based network-failure patterns are respectively about 
167, 177, and 167 milliseconds. In the case of 500 
(=250+250) current PWs, the times taken to recover from the 
last failure for the three area-based network-failure patterns 
are respectively about 533, 569, and 564 milliseconds. In the 
case of 1000 (=500+500) current PWs, the times taken to 
recover from the last failure for the three area-based 
network-failure patterns are respectively about 1227, 1134, 
and 1205 milliseconds. As a result, tables that are used for 
data transmission on 1000 (=500+500) PWs are reconfigured 
by changing an operation plane in about 1.2 seconds. 

In Figure 18, the proposed method is compared with a 
conventional restoration method in terms of the time taken to 
calculate and configure PWs. With the conventional method, 
the times to set recovery configurations for 100 (=50+50) 
current PWs, 500 (=250+250) current PWs, and 1000 
(=500+500) current PWs are respectively about 177, 900, 
and 2002 milliseconds. 
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Figure 12. Calculation time for current paths 
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Figure 13. Distribution time for current-path configuration 
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Figure 14. Calculation time for protection paths in each area 
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Figure 15. Calculation time for end-to-end protection paths 
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Figure 16. Calculation time for changing operation plane  
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Figure 17. Recovery-configuration time in the cases of using protection 

paths in NW areas and end-to-end protection paths 
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Figure 18. Recovery-configuration time in the case of changing operation 

plane  

 

D. Discussion 

The times taken to recover from failures, such as 
disconnection of paths, are plotted in Figure 17. In this 
evaluation, a PTN failure was intentionally invoked in area 
(5). As a recovery procedure, inside-area protection is 
expected to be appropriate, since the failure was invoked in 
area (5). However, end-to-end protection was also used. As 
for the proposed system, updated PWs and LSPs are always 
stored after changing data-transmission paths by one of the 
recovery procedures, such as inside-area protection. In 
addition, if a failure that is not recovered by the inside-area 
protection for 100 milliseconds occurs, it is recovered by the 
end-to-end protection. Over 100 milliseconds were taken to 
store the PWs and LSPs updated by the inside-area 
protection; therefore, the PTN failure in area (5) was 
recovered by both the inside-area protection and the end-to-
end protection. The PTN failure was recovered in about 5 
seconds for 1000 (=500+500) current PWs, which is a little 
longer than expected recovery times as a protection, since 
recovery paths are sequentially configured one by one by 
using emulated nodes on a server. In addition, a configured 
network topology was detected and stored. Therefore, the 
times taken by both protection schemes to recovery are a 
little longer compared to the recovery time by changing an 
operation plane. In future work, the times taken to manage 
multiple updated PWs and LSPs should thus be shortened.  

The times taken to distribute the recovery ID and store 
updated PWs and LSPs are shown in Figure 18. As shown in 
the figure, the times taken to recover are almost independent 
of the number of area-based network failures, although they 
are dependent on the number of setup PWs. In the case of 96 
PTNs, tables for data transmission on 1000 (=500+500) 
current PWs were reconfigured in about 1.2 seconds. The 
times for recovery are short because the times for setting up 
real PWs are not included; instead, the times for configuring 
tables to transmit data are included. In addition, all tables for 
data transmission are changed at once by switching the 
operation plane. According to the results of this evaluation, 
the proposed system can provide a faster recovery procedure 
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than recalculating and transmitting recovery paths to PTNs 
(since it omits the recalculation process).  

In summary, a transport-network-recovery management 
system, which can recover from both a small network failure 
and a major network disaster, was proposed and evaluated. 
Specifically, for small failures, inside-area protection and 
end-to-end protection were proposed. In addition, for major 
failures, an area-based recovery procedure was proposed. As 
described above, updated data-transmission paths of PWs 
and LSPs are always stored in a database. Therefore, 
transmission paths composed of PWs and LSPs updated by 
changing the operation plane are also stored in the database. 
As a result, the times taken to recover from the network 
disaster by changing the operation plane depend on the 
number of PWs. However, as shown in Figures 16 and 17, 
the proposed system could promptly recover from both a 
small network failure and a catastrophic network failure 
(which is not covered by conventional network-recovery 
schemes). 

 

VII. CONCLUTION 

A system for managing transport-network recovery based 
on the degree of network failures is proposed. Under this 
management scheme, an entire network is separated into 
multiple areas. A network-management server executes a 
three-step recovery procedure. In the first step, an inside-
area protection scheme is applied to the current data-
transmission path in each area. In the second step, an end-
to-end protection scheme is applied to the current data-
transmission path. In the third step, the operation plane is 
changed. Each assumed operation plane is composed of 
recovery configurations for restoring failure paths under the 
assumption of area-based network failures. If a small 
network failure occurs, it is recovered and localized by the 
inside-area protection and end-to-end protection schemes. If 
a catastrophic network failure (due to a disaster) that is not 
recovered by the protection schemes occurs, it is recovered 
by changing the operation plane according to damaged areas. 

A prototype system composed of a network-management 
server and 96 emulated packet-transport nodes was 
developed and evaluated by configuring 1000 (=500+500) 
data-transmission paths. In the case of a small network 
failure, 500 data-transmission paths composed by LSPs and 
PWs were damaged and reconfigured by the inside-area 
protection and end-to-end protection schemes in about 5 
seconds. If a network failure was not recovered by the 
protection schemes, all tables for 1000 (=500+500) data 
transmission paths were reconfigured to recover from the 
failure by changing the operation plane in about 1.2 seconds. 
As a result, the proposed system could provide a faster 
recovery procedure than recalculating and transmitting 
recovery paths to PTNs. In addition, it could localize and 
recover a network failure according to the degree of network 
failures. 

Although the protection scheme could recover 500 data 

transmission paths from a small network failure, it took the 
network-management server about 5 seconds to configure 
and store changed-data transmission paths. If numerous 
current paths exist, it will take too much time to assess 
changed paths. Accordingly, the protection scheme will be 
further developed so that it can promptly manage a large 
number of recovered paths. 
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Abstract—Network overlays play a key role in the adoption of
cloud oriented networks, which are required to scale and grow
elastically and dynamically up/down and in/out, be provisioned
with agility and allow for mobility. Cloud oriented networks
span over multiple sites and interconnect using Virtual Private
Network (VPN) like services across multiple domains. These
connections are extremely slow to provision and difficult to
change. Current solutions to support cloud based networks
require combination of several protocols in data centers and
across provider networks to implement end to end virtual network
connections using different overlay technologies. However, they
still do not necessarily meet all the above requirements without
adding operational complexity or without new modifications
to base protocols. This paper discusses a converged network
virtualization framework called Cloudcasting, which is a single
technology for virtual network interconnections within and across
multiple sites. The protocol is based on minimal control plane
signaling and offers a flexible data plane encapsulation. The
biggest challenge yet for any virtual network solution is to
distribute and inter-connect virtual networks at global scale
across different geographies and heterogeneous infrastructures.
Data center operators are faced with the predicament to re-design
networks in order to support a specific virtualization approach.
Cloudcasting technology can be easily adopted to interconnect or
extend virtual networks with in a massive scale software defined
data centers, campus networks, public, private or hybrid clouds
and even container environments with no change to physical
network environment and without compromising simplicity.

Keywords–Network Overlay; Network Virtualization; Routing,
Multi-Tenancy Virtual Data Center; VXLAN; BGP; EVPN.

I. INTRODUCTION

The Cloud adoption continues to grow; there is an upward
trend of applications and services being built in platform
independent manner and the scope of connectivity is no longer
limited to a single site or a fixed location. As the cloud based
applications evolve, the isolated operation and management of
tenant networks (sharing common network access) that host
these application becomes extremely complex and is different
than the underlying physical networks. While infrastructure
networks focus on delivering basic functions to ensure that
the physical links are reliably available and reachable; the
tenants concern with mechanisms to allocate and/or withdraw
resources on-demand from different sites and network resource
pools. The leading requirement for tenants is to use the net-
works in the most economical manner and still have sufficient
resources available when needed.

The above mentioned motivation was first mentioned in the
original Cloudcasting paper [1], which described a network

virtualization framework that addresses many shortcomings
of existing solutions. The present paper expands on concepts
described in the original paper and covers details about proto-
type experiences, applications and advanced concepts of using
Cloudcasting. Since the original work, we have observed that
the Cloudcasting architecture applies to almost all virtualiza-
tion scenarios and can be considered as a generalized frame-
work for infrastructure indepedent virtual networking. The
later sections of this paper further validates our observation.

The key characteristics of Cloud-oriented network ar-
chitectures are resource virtualization, multi-site distribution,
scalability, multi-tenancy and workload mobility. These are
typically enabled through network virtualization overlay tech-
nologies. Initial network virtualization approaches relate to
layer-2 multi-path mechanisms such as, Shortest Path Bridging
(SPB) [2] [3] and Transparent Interconnection of Lots of Links
(TRILL) [4] to address un-utilized links and to limit broadcast
domains. Later, much of the focus was put into the data plane
aspects of the network virtualization, for example, Virtual eX-
tensible Local Area Networks (VXLAN) [5], Network Virtu-
alization using Generic Routing Encapsulation (NVGRE) [6],
and Generic Network Virtualization Encapsulation (GENEVE)
[7]. These tunneling solutions provide the means to carry layer-
2 and/or layer-3 packets of tenant networks over a shared
IP network infrastructure to create logical networks. Though,
due to their lack of corresponding control plane schemes,
the overall system orchestration and configuration becomes
complex for virtual network setup and maintenance [8].

Even more recently, MultiProtocol-Border Gateway Pro-
tocol (MP-BGP) based Ethernet VPN (EVPN) [9] has been
proposed as a control plane for virtual network distribution,
and has foundations of the VPN style provisioning model. This
requires additional changes to an already complex protocol
that was originally designed for the inter-domain routing. The
deployment of MP-BGP/EVPN in data center networks also
brings in corresponding bulky configurations, for example,
defining Autonomous System (AS), that are not really relevant
to the data center infrastructure network. The solutions like
TRILL, SPB and MP-BGP are a class of virtual network ar-
chitectures that consume data structures of physical (substrate)
network protocols, therefore, we refer to them as Embedded
Virtual Networks. The term substrate network henceforth will
be used to describe a base, underlying, or an infrastructure
network upon which tenant networks are built as virtual
network overlays. Whereas Cloudcasting protocol is referred to
as Extended Virtual Network because it inter-connects different
types of virtual networks through its own routing scheme. It
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can be organized over any substrate network topology and
routing arrangements. As a note to the reader, with in the
scope of this document, a virtual, customer or tenant network
are used interchangeably and mean the same. A cloud is a
location and infrastructure network. A virtual network is an
entity that shares physical network resources and access with
other similar entities; virtual networks are isolated from each
other. In the context of this paper agility is understood as
being able to responds to the changes in virtual network in
real time or as quickly as needed to best serve the customer
experience. Whereas elasticity refers to an ability to grow or
shrink resource requirements on-demand.

Even though Embedded Virtual Network (the term is
inspired from [10]) solutions mentioned above are quite func-
tional, they are faced with several limitations. Of which the
most significant and relevant to cloud-scale environments is
their dependence on the substrate networks. In addition to
being scalable and reliable, a cloud scale network must also be
elastic, dynamic, agile, infrastructure-independent, and capable
of multi-domain support. There has not been any converged
architecture for network virtualization yet. In [1], we proposed
Cloudcasting, an Extended Virtual Network framework that
operates on top of any substrate network and offers primitives
for cloud auto-discovery, dynamic route distribution as needed.
As an extension to original paper, several operational concepts
have been described. We have provided details of the prototype
but most important section deals with the scalable distribution
of virtual networks across geographically remote sites.

The rest of the paper is organized as follows. We have
kept Section II and III intact from original paper to introduce
the reference model and its major functions. Section IV
explains different deployment scenarios where cloudcasting
applies to. While Section V discusses scalability at global
level of the solution, Section VI introduces the Cloudcasting
policy framework where in constraints on virtual networks
may be specified. Section VII has the qualitative analysis
and implementation details and in Section VIII comparison
with a few most common already existing solutions are made.
Lastly, Section IX briefly lays out an interesting extension of
cloudcasting combining services and mobile networks.

II. CLOUDCASTING MODEL

A converged virtual routing scheme can be described by
two primary factors; an infrastructure-independent virtual net-
work framework, and a unified mechanism to build an overlay
of various types of tenant networks with different address
schemes. On these basis, a new virtual routing scheme called
Cloudcasting, is proposed with the following characteristics

1) Auto discovery: A signaling scheme that enables us to
add, delete, expand and virtualize a tenants network
with minimum configuration.

2) Auto distribution: A signaling scheme that connects
multiple virtual networks with each other or asym-
metrically as needed.

3) Auto Scale: The ability to provide and serve high
scale of tenants in a location-agnostic manner.

A cloudcasting network is an IP network, which is shared and
used by multiple tenant clouds to route traffic within a single
virtual network or between different virtual networks. We use
the terminology of tenant cloud to emphasize that a tenant or

Figure 1: Cloudcasting Reference Model.

Figure 2: Cloudcasting Framework.

a user network may reside anywhere on the substrate network
with a highly dynamic routing table. The IP address space in
one tenant cloud may overlap with that in another cloud and
these are not exposed to the shared IP infrastructure network.
The cloudcasting reference model, is shown in Fig. 1. Each
customer has its own network shown as Tenant Cloud A, B
and C, a shared substrate IP network that was built indepen-
dently and can encompass multiple administrative domains.
This model describes a centralized conversational scheme, in
which tenant clouds or Virtual Extensible Networks (VXNs)
announce their presence as well as membership interests to
a centralized designated authority, called Cloudcasting Ren-
dezvous Point (CRP), via a cloudcasting network virtualization
edge element called Cloudcasting Switching Point (CSP). To
communicate among the network elements, a new signal-
ing protocol, called CloudCasting Control (CCC) protocol is
defined with three simple primitives facilitating cloud auto-
discovery and cloud route distribution. The protocol primitives
are defined as below and are further illustrated in Fig. 2.

• Register message: A virtual network interest and self-
identifying announcement primitive from CSP to CRP.

• Report message: A response from CRP to all CSPs
with similar virtual network interests.

• Post message: A CSP to CSP virtual network route
distribution primitive.

The details of aforementioned cloudcasting network elements
and their properties in cloudcasting framework are discussed
as below.



51

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Virtual Extensible Network
A Virtual Extensible Network is a tenant cloud or a user

network. It is represented by a unique identifier with a global
significance in cloudcasting network. Using this construct, it
is possible to discover all its instances on the substrate IP
fabric via CRP. VXN identifiers are registered with CRP from
CSPs to announce their presence. There are various possible
formats to define the VXN, for instance, an alphanumeric
value, number or any other string format. In the preliminary
work we have defined it as a named string that is mapped to
a 28-bit integer identifier, thus enabling support for up to 256
million clouds.

B. Cloud Switch Point
A Cloud Switch Point is a network function that connects

virtual networks on one side to the substrate IP network on the
other side. It can be understood as an edge of a virtual network
that originates and terminates virtual tunnels. A CSP holds
mappings of L3 routes or L2 MAC forwarding information
of a virtual network. A CSP is cloudcasting equivalent of a
Virtual Tunnel End Point (VTEP) [5] in VXLAN networks or
an Ingress/Egress Tunnel Router (xTR) in the LISP domain
[11] and may similarly be co-located with either on a service
providers edge (PE) router, on a top of rack (ToR) switch in
a data center, or on both. A CSP participates in both auto-
discovery and auto-route distribution. In order to establish a
forwarding path between two endpoints of a virtual network
or of two different virtual networks, a CSP first registers with
the CRP its address and VXN identifiers it intends to connect
to. Then the CRP will report to all CSPs that have interest
in same VXN. Finally, the CSP will communicate with those
other CSPs and exchange their routing information. On the data
forwarding plane, a CSP builds a virtual Forwarding Informa-
tion Base (vFIB) table on per VXN basis and route/switch
traffic to the destination virtual networks accordingly.

C. Cloud Rendezvous Point
A Cloud Rendezvous Point is a single logical entity that

stores, maintains and manages information about CSPs and
their VXN membership. The CRP maintains the latest VXN
to CSP membership database and distributes this information
to relevant CSPs so that they can form peer connection
and exchange virtual network routes automatically. A report
message is always generated whenever there is a change in
the virtual network membership database. However, CRP is
oblivious to any change in vFIB (described above in CSP).

III. CLOUDCASTING COMMUNICATION PRIMITIVES

Now, we describe cloudcasting communication primitives
used among CRP and CSPs. Fig. 3 illustrates the layering
of the virtual routing over any substrate layer and overlay
control messages between CSP and CRP. The encapsulation
message format is shown above in Fig. 4. A predefined TCP
destination port identifies the cloudcasting protocol and CCC
header contains the specification for the register, report and
post messages.

A. Cloudcasting Register Message
An auto-discovery of virtual networks involves two mes-

sages. The first message is the Cloudcasting Register that
originates from CSPs to announce CSP is interested in a VXN

Figure 3: Cloudcasting Protocol Primitives

Figure 4: Cloudcasting Control Message Format

with the CRP. A Register message specification includes the
CSP address and list of VXNs it is interested in. An interest is
defined as an intent to participate in a specific virtual network.
For example, a vxnred on csp1 expresses interest to join vxnred
on csp2. As an example, consider virtual networks vxnred
and vxngreen are attached to csp1. Then, the register message
contains a tuple as follows

Register{sender: csp1, [vxnred, vxngreen]}

After the CRP receives a cloudcasting register message,
it scans its CSP membership database to look for the same
VXN identifiers. If it finds one (or more), a cloudcasting report
message is generated and sent to all the CSPs with same
interest, otherwise, it simply logs the VXN in its CSP database.

B. Cloudcasting Report Message

The CRP generates cloudcasting report messages in re-
sponse to a cloudcasting register message to inform CSPs of
other CSPs address and their associated VXN identifiers. If the
CRP finds other CSP(s) with the same VXN membership (or
interested VXNs), then the Report messages are generated for
that CSP as well as the other found CSPs. A Report message
is sent to each CSP, that contains other CSP addresses for the
shared VXNs. As an example, consider CRP already has csp2
with interest in vxnred. Upon receiving a cloudcasting register
message from csp1 as described earlier, two report messages
are generated as below for csp2 and csp1, respectively:

Report (csp2) {to: csp1, [interest: vxnred]}
Report (csp1) {to: csp2, [interest: vxnred]}
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Figure 5: Cloudcasting GVE Protocol Encapsulation

In this manner, auto-discovery of virtual network locations
is accomplished that is based on interest and announcement
criteria.

C. Cloudcasting Post Message
The cloudcasting post messages facilitate route distribution

as needed. As a cloudcasting report message is received,
the CSP will connect with other CSPs to exchange their
routing information that includes VXN identifiers, a Generic
VXN encapsulation (GVE) tag and the network reachability
information within the VXN along with the address family.
The list of network reachability information type includes but
not restricted to IP prefixes (such as, IPv4, IPv6), VLANs,
MAC addresses or any other user defined address scheme. As
an example, when a report as described earlier is received,
the following Post will originate from csp1. Post (csp1, csp2)
vxnred, gve: i, [AF: IPv4, prefix list] In the example above,
it is shown that csp1 sends a post update to csp2 stating
that vxnred will use encapsulation tag i; and that it has
certain ipv4 prefixes in its IP network. The routing (network
reachability) information has the flexibility to support various
address families (AF) defined by Internet Assigned Numbers
Authority (IANA) as well as certain extensions not covered
under the IANA namespace.

D. Cloudcasting Transport - Generic VXN Encapsulation
In a cloudcasting network, all network devices will work

exactly the same as before on the data plane except the Cloud
Switch Points (CSP). A CSP will perform encapsulation and
decapsulation by following the VXN vFIB table. A VXN vFIB
table includes the routing information for a virtual network on
a remote CSP where a packet should be destined to. The route
information was learned by exchanging Post messages between
CSPs.

The format for VXN encapsulation is shown in Fig. 5 above
in which IP protocol is set to GVE and following IPv4 header
is the 32-bit GVE-header. If and when Cloudcasting dataplane
is adopted by IETF, the protocol number for GVE will be
assigned by IANA.

IV. USE CASES

The cloudcasting architecture can be used to deploy tenant
networks under many different scenarios. As the cloud based
architectures become more prevalent, it will be far more
efficient to use a single virtualization technology (at least in

Figure 6: Cloudcasting Enabled Deployment

control plane) both within a site and for interconnection across
multiple sites. The cloudcasting protocol can be deployed for
the following use cases

1) Multi-Tenancy Virtualized Data Centers
2) Multi-Site Interconnection of Data Centers
3) Interconnection of Hybrid Clouds
4) VPN Accesses in service provider environments

In the following sections, these deployments are described
in more details, note that the same concept is easily extensible
to any environment that requires infrastructure network to
provide connectivity for tenant networks.

A. Cloudcasting in virtualized data center

Fig. 6 shows a cloudcasting-enabled virtualized data center.
As discussed earlier in Section I, the CRP is a logically
centralized node that is accessible by all the CSPs.

A leaf-spine switch architecture is used as a reference
to explain cloudcasting deployment. A plausible co-location
for CRP could be with the spine node, however, it may be
anywhere in the substrate network as long as CSPs can reach
it with the infrastructure address space. In Fig. 6, several
tenant networks are shown as connected to different CSPs
and CSP function itself is co-resident with the leaf switches.
Each CSP has a virtual FIB table for both encapsulation and
decapsulation of traffic along with the tenant network to CSP
memberships (dynamically learned through auto-discovery).

The cloudcasting control protocol flow is shown in lighter
color lines between CRP and CSPs and among CSPs.

At the bottom of Fig. 6 only the logical GVE data path
tunnels with dotted lines for tenant 1 on CSP-1, CSP-3 and
CSP-4 are shown.
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Figure 7: Cloudcasting with Data Center Interconnect

Figure 8: Cloudcasting for multi-site virtual private networks access to Data Centers

B. Cloudcasting As Data Center Interconnect

In a data center inter connect situation, typically data
center operator leases MPLS circuits or dedicated link from
the service provider. There are several different protocols to
provide interconnection between the two data centers such as
TRILL, SPB, EVPN, and L3VPN depending upon what is
supported by the provider. Instead, cloudcasting can enable
all these interconnections very easily without requiring to wait
for service provider enabled circuits. In Fig. 7, there are two
data centers; both running spine-leaf topologies along with
cloud casting enabled network. There are 2 cases shown in
this figure. First case is an example that the CSPs in either
data centers that need interconnection across data center has
infrastructure spaces public IP address. This address is globally
routable and therefore, it is possible to directly setup a GVE
tunnel in the following manner. Both the CSPs with global
space IP address send a CC Register to logical CRP, which fa-
cilitates CC Reports. Since CSPs can reach each other, a GVE
tunnel can be directly established and CC Post updates may be
exchanged as well. This case implements scenario where cloud
networks are hosted in two different public clouds, if there
are CSPs with global space IP address, the communication
between the 2 networks can take place. Often distribution and
maintenance of public IP address in not feasible; then a CSP

gateway on either data centers can provide a straight forward
functionality to translate internal VXNS and bundle multiple
GVEs over a single service provider connection.

C. Cloudcasting as VPN in service provider networks

Fig. 8 shows a multi-site VPN connection through cloud-
casting. Extending the same concept of CSPs being hosted on
each site and they connect to a single logical CRP, cloudcast-
ing enabled VPNs can be formed in the similar manner as
described in previous sections. The flexibility of cloudcasting
allows to carry layer 2, VLAN, VXLAN, IP or any other
network address family through a single virtual routing scheme
in a topology independent manner. There is an additional
discussion on cloudcasting vs existing technologies in the later
section.

V. SCALABILITY AND EXTENSIBILITY IN THE CLOUD

The vision of cloudcasting protocol is many-fold. Firstly, it
envisions geographically dispersed Internet-wide multi-tenancy
enabled over global infrastructure at a massive scale through
a single control signaling mechanism. Secondly, it aims to
integrate the data-plane methods in order to normalize the
tenant networks forwarding paths.
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Figure 9: Growth in CRP-CSP connections at scale

Figure 10: Hierarchical CRP System

A. Scalability in Controlplane
Cloudcasting is a virtual routing scheme for cloud based

environments that maybe hosted across multiple service
provider networks or at multiple sites. In the preceding section,
it is assumed that the CRP is a single centralized entity.

1) Hierarchical CRP-system: Cloud networks are expected
to be distributed beyond a local site, for example, a tenant
network is not scoped with in a single provider domain, but
needs to communicate with entities residing behind multiple
provider domains. Assuming there are millions of such tenants,
then a single CRP managing high number of sessions with
as many CSPs in the Internet becomes unmanageable with a
flat architecture as shown above in Fig. 9. A centralized CRP
node can cause severe performance bottlenecks when servicing
large number of CCC messages such as Register and Reports
originating from high number of CSPs simultaneously.

The ability to scale is the most important requirement for
cloudcasting routing scheme, otherwise, it does not provide
a converged deployable solution. With in the cloudcasting
protocol a distributed and hierarchical system of CRPs is
proposed to exchange CRP control plane signaling. The system
builds a connected graph of CRP instances across service
provider domains. In order to create a hierarchy, a CRP node
is associated with a scope. The scope maybe up to a local
site (CRP-site), provider-specific (CRP-SP) or inter-provider

(CRP-IP). The definition of cloud networks is also extended
now to have scope with in (a) local site, (b) a single provider
or (c) multiple providers.

An example of a 3-tier CRP hierarchical system is shown
in Fig. 10. In this figure, the CRPs inside the dashed lined
box connected together form a CRP system. A CRP-Site
(nodes with IP address 3.1.1.10, 3.1.1.20, 1.1.1.10, 1.1.1.20
and 2.1.1.10) is an instance of a local CRP where CSPs from
a physical location or a site connect to and is at the lowest
level node in CRP system hierarchy. A CRP-SP (nodes with IP
address 30.1.1.1, 10.1.1.1, 20.1.1.1) corresponds to a middle-
tier CRP in a provider specific space and has a role of in-
terconnecting multiple CRP-Sites in a given region in a single
administrative domain. Finally, at the highest-tier of CRP hier-
archy is a CRP-IP that supports inter-provider communication.
The communication between CRP-Site to CRP-SP and CRP-
SP to CRP-IP respectively is required to exchange discovery
of cloud networks that are scoped to extend beyond a specific
site, administrative domain respectively. In Fig. 10, it is shown
multi-provider CRPs, CRP-IPs form a cluster together. Each
node (IP address 300.1.1.1, 200.1.1.1, 100.1.1.1) cluster has
equal status of cloud network Cloudcasting Information Base
(CCIB).

2) CC Protocol Extensions: In order to extend cloudcasting
signaling to Hierarchical CRP the following additions to the
base protocol are proposed

• Originating CRP TLV: It identifies the source of a
CC Register in a CRP system hierarchy. It is used
maintain mapping of CRP-Site and cloud networks or
VXNs in CRP-SP. In addition, CRP Role Attribute
(local, provider, global) is also included to determine
the scope of CRP.

• VXN Scope Attribute: It is used to describe the scope
of a cloud network.

• Cloudcasting Information Base (CCIB): The CCIB is
the control information base maintained at each CRP
is aware of the scope of a signaling and originating
source of the request. It is a stateful table that is learnt
and looked at upon receiving Register and Reports
from neighboring CRPs. Additionally, the CCIB state
in each CRP may be stored separately for upstream
and downstream in CRP-SP. A CC Report is generated
and distributed in a similar manner.

3) Single provider scenario: Consider a scenario of single
administrative domain on the left side of the Fig. 10 CRP-
SP (30.1.1.1) and two CRP-Site with IP address 3.1.1.10 and
3.1.1.20. Further assume that a cloud network Cn is scoped in a
single provider SP1 (30.1.1.1). As left CRP 3.1.1.10 receives a
Register message from one of connected CSPs, it finds scope to
be provider specific and relays message to CRP-SP (30.1.1.1).
Before doing so, TLV extensions as per previous sections are
added. Receiving CRP-SP maintains (3.1.1.10, Cn) mapping
in its information base. At a later time if another CRP say
3.1.1.20 sends a CC Register for cloud network Cn, CRP-SP,
30.1.1.1 generates a CC Report for both CRPs 30.1.1.10 and
30.1.1.20. Finally, CSPs receive Register from their respective
CRPs and can continue with route distribution.

4) Multi-provider scenario: A more elaborate collaboration
is required to distribute cloud networks across multiple admin-
istrative domains, more so when these domains are geograph-
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Figure 11: Normalized GVE Data Encapsulation

ically distributed. Therefore, CRP-IP (CRPs for inter provider
communications) are clustered to store identical Cloudcasting
information base. In this scenario, all CRP-IPS have identical
database of cloud networks that are to be distributed beyond
administrative domains. A CC Register of scope global is sent
from CRP-Site to CRP-SP to adjoining CRP-IP. The receiving
CRP-IP distributed this information to all other CRP-IPs in
the cluster. Each CRP-IP is then responsible for downstream
distribution of CC-Register to attached CRP-SPs, if and only
if it has some knowledge in its information base that a CRP-
site has interest in same cloud network. For example, lets
assume a new global-scoped cloud network Cn is created
by CSP attached to CRP-site 3.1.1.20. This CRP sends CC
Register with extended TLV to its attached CRP-SP, 30.1.1.1,
which in turn relays it to its attached CRP-IP, 300.1.1.1 by
replacing originating CRP as itself in the extended TLV. This
CC Register is distributed everywhere in CRP-IP cluster. As
this is a new cloud and no instances exist, the request stays in
the cluster. Similarly, at a later time when a CSP attached to
CRP-site, 1.1.1.10 generates a CC Register for Cn, it reaches
CRP-IP 100.1.1.1, which determines from its information base
that CC Registers need to be sent to 1.1.1.10, does so and also
send CC Registers to 3.1.1.20. The CC Reports are generated
in exactly the same manner and finally a GVE tunnel is
established.

B. Extensibility through normalized data plane

The second important aspect of extensibility in cloudcast-
ing protocol is related to the normalization of data plane
encapsulation. In preceding section, the GVE encapsulation
is defined and Fig. 11 further illustrates it to be highly
flexible and scalable. GVE is extensible by virtue of con-
necting 2 heterogeneous clouds through the multi-protocol
information it carries. The figure also illustrates that GVE
expects flexibility in terms of its position in outer header.
It maybe carried as layer-2, layer-3 or MPLS payload and
is capable of translating multiple encapsulations for example
IP, MAC, VLAN, VXLAN, NVGRE and so on. The protocol
also allows that an instance of a cloud networks at a site may
use NVGRE encapsulation and another site of the same cloud
may continue to use VXLAN encapsulation. It is of great
advantage to migration of connecting 2 islands of a cloud
network transparently without changing anything on the local
site except for enabling cloudcasting between the edges or
gateways.

Figure 12: 3-Dimensional Policy Framework for Cloudcasting

VI. POLICY FRAMEWORK FOR CLOUD NETWORKS

A smart policy framework can help build simple orches-
tration platforms that do not need to excessively interact with
the infrastructure and can also adapt independently to policy
changes within the virtual networks. Even in the cloudcasting
framework, most traffic within and across the cloud networks
is still required to be subjected to forwarding or application
specific policies. In this section a brief discussion of a new
policy model is presented that in general suits better with
the cloud networks. The policies in any network of scale
such as an enterprise or a campus tend to be fairly diverse,
complex and yet quite similar from one tenant to the other. It is
difficult to describe network policies because they are designed
and created from a business logic perspective. The business
logic itself is created centrallly but must be disaggregated and
applied in parts across different network segments. In case of
cloud-centric environments, it is further obscured because now
the environment is virtualized and physical location agnostic.
The state of art of policy framework is far too fragmented [12]
[13] [14] [15] both in terms of policy description language
and common specifications for policy distribution. There are
several vendor specific approaches as well open policy frame-
works as well. In our view, it is much simpler to break down
network policies for cloud networks across three dimensions
to address different aspects. In cloudcasting architecture, we
separate policy-based interfaces as shown in Fig.12 associating
CSP, CRP and the substrate network through 3 different types
of policies and their scope. These are explained as below.

1) Cross-Network Policies: In this case, considerations
are made to propagate rules that permit or disallow traffic
across different cloud networks to the other through policies
or Service Level Agreements (SLAs). These type of policies
interface at higher level of abstraction. For example, it may
also be necessary to specify if dev-test clouds can access the
database from production clouds. Within cloudcasting, this is
an interface between CRP and CSP. It is extremely simple
to associate such policies on CRP, then when the Register
request is made, CRP may deny or accept the request to join
a certain cloud network. The dotted lines on right-hand side
of the Fig.12 shows the scope of such policies.

2) Inter Cloud Network Policies: It is very common to
setup policies in a network so that traffic must get steered
through specific service chains. For example, traffic from an
ingress port is first subjected to firewall then load balancer
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and finally to an application server. Such policies are not
infrastructure related and are within a cloud network that
may need distribution within a site or across multiple sites.
Once tenant networks are discovered, CSPs have a path to
distribute policies through CSP-CSP policy interface. This
scope is shown as CSP-CSP through solid line on the bottom
right of Fig.12.

3) Tenant to Substrate Network Policies: In section II, it
is explained that cloud centric tenant networks borrow and
consume resources from substrate networks and tenants do not
own any physical resources themselves. Yet, it is necessary to
allocate resources to support quality assurance and bandwidth
guarantees. Since tenant network operators cannot reserve
resources they do not own and any bulk pre-allocation does
not align with infrastructure independence, a separate tenant to
substrate network policy interface is mandatory. This interface
is not related to cloudcasting and therefore, should not be
part of cloudcasting. However, there is a need for generalized
reservation and administration method, be it a protocol or API
based that may be used between tenant and substrate networks.
This scope is shown on the left-hand side of the Fig.12.

In previous two sections additional features of cloudcasting
such as extensibility, scalability, normalization and policy
interfaces were briefly explained to demonstrate that cloud-
casting framework is entirely viable solution for interconnec-
tivity of cloud networks. In this paper, emphasis is on core
architecture extensions and many details relating to extended
TLVs are omitted out. For the same reason, policy interface
details are excluded from the paper.

VII. EVALUATION AND ANALYSIS

The cloudcasting architecture and primitives have been
implemented in our research laboratory. We have successfully
used the cloudcasting architecture and control protocol to
implement the above mentioned use cases. First and foremost,
we emphasize that the cloudcasting architecture represents a
paradigm shift. It is a truly converged technology for virtual
networks, clouds, and VPNs. No matter what the structure of
the underlying substrate network is, any/all types of virtual
tenant networks can be constructed in the same way by using
cloudcasting.

A. Qualitative Analysis
The Cloudcasting suitability and applicability can only be

verified vis-a-vis characteristics of the cloud-scale environ-
ments. Therefore, we have laid importance on the primary
characteristics of cloud centric networks that are elasticity,
efficiency, agility, and distribution. The Cloudcasting control
plane is elastic, because it can grow and shrink independently
of (1) the heterogeneous protocols of the substrate network,
(2) number of virtual network attachment points, the CSPs,
(3) number of domains (autonomous systems), (4) number of
routes within a users virtual network, and (5) mobile nature of
the host stations. The Cloudcasting control plane is efficient,
because (1) no CSP distributes routes to other CSPs that they
are not interested in, (2) thus, no CSP receives and stores
routes of virtual networks of non-interest or the ones it is not
connected to. In addition, the control plane is fully distributed
in such a manner that through a single primitive (post-update);
change in the tenant networks can be announced immediately,
from the spot of change without configuration changes. The

Cloudcasting allows for agile networking. Every time when a
new CSP is added, it is only required to configure the newly
added CSP by using a few lines of commands. Every time
when a CSP is deleted, no additional configuration change
or for that matter nothing else needs to be done. This is
because cloudcasting has a built-in auto-discovery mechanism
that has not been seen in the embedded virtual networks.
The Cloudcasting data plane scales as well. Its default GVE
encapsulation protocol allows to support 256 million clouds.
In other technology such as, VXLAN, it only up to 16 million
clouds are supported. Due to the limitation of space, we wont
discuss and describe other more desirable characteristics.

B. Prototype Implementation
In our lab, three small-scale data centers were implemented

for the demonstration of functionality. Each data center had
a CSP network element and also connected to the CRP in
cloudcasting enabled network. In addition, each data center
also comprised of one or two hosts; and each host had at least
2 VMs spawned with their own private IP addresses. All the
traffic from VMs or hosts was default forwarded to the CSP,
which performed the data plane encapsulation/decapsulation
and forwarding between CSPs. One of the data centers served
as media server center and others were clients. The purpose
of this setup is to show isolation with in a virtual network
domain and VM mobility from one data center to the other. The
setup also has a network management system that provisions
CSPs about virtual networks and VM hosted with in them.
The development environment is entirely based on open source
code or is in-house developed. The code is implemented in the
following categories -

1) CSP control plane software: CSP software is based on
quagga (0.99.24) [16] open source, because it provides an
ideal and quick router/switch like development environment
to use many features such as command line for configuration,
message parsing, daemon and process communication features
that are already build in quagga. A csp daemon was created in
quagga base and new code was written to provide following
functions
• CSP-CRP Connection: CSPs listen to a TCP port and

connect to CRP, which is a configurable IP address.
On this channel Register and Report messages are
exchanged.

• CSP-CSP Communication: CSPs listen to another
TCP port to connect to CSP IP addresses received
in Report messages. This channel is used for Post
updates for virtual route exchanges. Once the routes
are learnt from peer CSPs, the datapath process is
updated.

• CSP Network Management Interface: CSP also in-
terfaces with a management entity to receive virtual
network specifications or changes thereafter. These
changes are pushed as an XML file and can easily
be changes to REST APIs.

2) CSP datapath: CSP data plane is implemented as an-
other daemon using pcap library [17] to perform tunneling
functions for traffic between hosts and CSPs. It maintains two
forwarding rules passed from CSP control process, viz. host-
CSP and CSP-host. Since the aim was proof of concept and
data plane is implemented in software, it is irrelevant to discuss
the forwarding path throughput.
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3) CRP control plane software: While, CSP control and
data plane are developed in C; CRP code is entirely written
in Java, consequently both Java and C code base for the CCC
protocol exists. CRP uses neo4j [18] based highly scalable
graph databases to store and visualize relationships between
the virtual networks and CSPs.

4) Network Management Interface: The management sys-
tem is in-house developed software for a network operator.
Written using C# as a web application on IPAD, an operator
is able to add or delete new virtual networks to a specific data
center as well as add, delete and move VMs from one data
center to the other.

The above code may be made available to those interesting
in further research in cloudcasting. Due to lack of testbeds
and other resources quantitative comparison has not been
performed adequately and results are not available yet. It is our
intent to demonstrate controlplane efficiency through analysis
of bytes and messages transferred under several approaches.

VIII. RELATED WORK

There are several works available that partially solve net-
work virtualization problem; however, they do not provide a
complete and consistent solution that sufficiently fulfills all
basic requirements discussed earlier in this paper. In what
follows, we discuss and compare a few prominent network-
overlay approaches.

A. IETF NVO3
The cloudcasting architecture and protocol shares some

goals chartered by the IETF working group NVO3 (Network
Virtualization Overlays over Layer 3) [19]. The purpose of
NVO3 is to develop a set of protocols and/or protocol exten-
sions that enable network virtualization within a data center
environment that assumes an IP-based underlay. Cloudcasting
varies from NOV3 in that cloudcasting is not just restricted
to the data center, and it does not expect a specific structure
or protocol conventions in the underlay. The control plane of
NVO3 may seem to be a reformulation of the BGP architec-
ture, where NVEs (Network Virtualization Edge) and NVA
(Network Virtualization Authority) resemble iBGP speakers
and Route Reflectors, respectively, and NVO3-VNTP [20]
resembles BGP update messages between an iBGP speaker
and its Route Reflector. Therefore, NVA needs to learn and
store routes from an NVE and then distribute those routes
to other NVEs. In contrast, in Cloudcasting virtual route
information is a function between CSPs, the routes are only
distributed between the CSPs, the CRP is not involved in
routes. CRP is used for cloud membership auto-discovery
and thus enables agile provisioning. Auto-discovery functions
are also missing from NVO3, where are they are natural to
cloudcasting protocol. We should emphasize that CRP has
no route database inside that has a significant impact on the
size of the database in CSP. This differentiation is common
with other related work discussed in the following sections.
NVO3 suffers from the existence of multiple encapsulations,
the working group has not been able to make progress on a
native control plane design and most often resort to EVPN
control plane. The group is also divided on the subject of
data plane format whether the group shall support a single
or multiple encapsulations. In this regard, Cloudcasting GVE
supports multiple types of data plane encapsulations inherently
as is discussed in earlier extensibility section V (B).

B. VXLAN and EVPN
VXLAN is a data plane format for network overlay en-

capsulation and decapsulation, and EVPN has been proposed
as the control plane for VXLAN [21] [9] [22]. BGP was
originally designed for inter-domain routing across service
provider networks. Although, EVPN is the only IETF defined
distributed control plane protocol, BGP in data center network
virtualization leads to may operational overheads as explained
in the following ways

1) In order to deploy EVPN, the network operator must
configure something like an AS (autonomous system)
in substrate networks, which is not really a data center
design concept. In addition to this many other BGP-
VPN related constructs such as route-targets (RT)
are route-distinguisher (RD) must be defined. Con-
figurations can be templatized to reduce complexity,
yet to keep the network consistent these parameters
must be carefully chosen and during network outages,
trouble shooting is extremely difficult because an
operator has to be aware of the mappings of RTs
and RDs to virtual networks, not to mention that
higher number of configuration parameters adds to
management traffic. A sample configuration maybe
found at [23].

2) Running BGP in a data center requires VTEPs to be
iBGP speakers. This can also lead to serious scal-
ability problems of a full-mesh of peering sessions
between iBGP speakers (VTEP-BGP). Typically, to
address this problem, deployment of Route Reflectors
(RR) is recommended. RRs then speaks with every
other VTEP-BGP to synchronize their BGP-RIB. As
a result, no matter if a VTEP needs a route or not,
all the other VTEPs will always send their routes to
the VTEP through a Route Reflector, and the VTEP is
required to filter out not needed routes through Route
Target and other BGP policies. Distribution of not
needed virtual routes from RR to VTEP-BGP levies
an unnecessary overhead on the substrate network and
burn CPU power, processing these BGP messages.

3) BGP in the data centers not only makes operational
cost of data centers as high as that of a service
providers network it also lacks the agility because
BGP heavily relies on configurations (it is well known
that configuration errors are a major cause of system
failures [8]). For example, when a new BGP-VTEP
is added/removed the operator has to configure all
the BGP peering relationships by stating which BGP
neighbors are peering among each other.

Observe that when BGP was first designed, some distribution
and peering principles were built-in; for example, iBGP peers
should have received and synchronized the same copies of
routes. In the case of clouds, many such principles are not
applicable and exceptions need to be added to BGP protocol
to address requirements for the cloud networks. Cloudcasting
architecture does not suffer from the drawbacks described
above. By means of auto-discovery and route distribution, only
specific routes of a virtual network are distributed. Moreover,
the role of CRP does not require it to be an intermediate
hop between two CSPs to distribute the routes. The detailed
comparison and evaluation is still in progress and will be
published at a later stage.
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C. LISP based data center virtualization
Although Locator ID Separation Protocol (LISP) [11] is

not an inherent data center virtualization technology, it has a
framework to support network overlays. LISP achieves this by
distributing encapsulated tenant (customer) routing information
and traffic over provider (substrate) network through its control
plane based on a mapping system. The LISP architecture
includes Ingress/Egress Tunnel Routers (xTRs) and a mapping
system (MS/MR) that maintains mappings from LISP Endpoint
Identifiers (EIDs) to Routing Locators (RLOCs). LISP requires
mapping information to be pulled on-demand and data-driven,
xTRs also implement a caching and aging mechanism for local
copies of mapping information. Cloudcasting CSPs and LISP
xTRs are similar in that they are the virtualization tunnel
endpoints performing encapsulation and decapsulation. But
the VXN route database and LISP’s mapping databases are
different as below

1) LISPs mapping system [24] is a separate proto-
col element and is based on hierarchical design of
Domain Name Server (DNS). The xTRs work in
collaboration with mapping server (MS) and map
resolvers (MR). First and foremost, an xTR must
register its EIDs with the mapping system. When a
remote xTR is ready to exchange data for an EID,
it will query mapping system to find the xTR where
EID is located, create the local mapping cache (is
referred to as pull method) where entries are aged
when not needed. In comparison, CSPs are able to
discover each other on the basis of VXN, without
registering any EIDs with CRP. Once CSPs and VXN
mappings are formed vFIBs are built by post updates.
Thus, routes are local and significant only to the CSP.

2) An xTRs local database is built on demand after
receiving a data packet without knowing its mapping
information, which may expose sender to security
risks because the destination is unknown, while CSPs
VXN CCIB is signaled through the cloudcasting
control protocol over an authorized communication
channel. The infrastructure can flexibly make the
channel as secure as it prefers using security and
encryption protocols.

3) A CSP can auto-discover other CSPs that join the
same VXNs, while LISP xTR can only know about
another particular xTR after querying the mapping
database.

IX. VIRTUALIZATION IN MOBILE NETWORKS USING
CLOUDCASTING

During our research and study of policy based constraints
in Cloudcasting, we came across Fifth Generation (5G) net-
work slices. We concurred with the authors of Next Generation
Mobile Networks (NGMN) [25] white paper that 5G networks
will be a collection of service aware logical networks. It was
obvious that a higher degree of automation is vital in 5G for
services to be discovered, provisioned and resources to be ap-
portioned/released. Authors have discussed using Cloudcasting
as fundamental block in [26] for auto-discovery of services in
mobile network supporting cloud hosted environments. In this
work, a network slice corresponds to a VXN in cloudcasting,
while service extensions (resource specifications) are newly
added and associated with a network slice. The main idea

in this paper deviates from symmetric VXN relationship of
Cloudcasting. 5G services in [26] have asymmetric producer
and consumer association. First, network segments participate
in cloudcasting system and network slices are bound to those
segments. Then in a producer role, the services announce
themselves, their location in the system and their resource
requirements. Thus services become available and discoverable
with in those slices. Subsequently, in the consumer role, an
end user or device attaches itself to the service; network
resources are allocated across different network segments. The
procedures just described are done dynamically that allows a
mobile network system to be easily managed. The idea of auto-
discovery is fairly advanced and prototyping of this approach
is still being done.

X. FUTURE WORK

In this paper, we have presented several extensions to
Cloudcasting protocol in terms of policy, services and scal-
ability that makes it more complete. Cloudcasting can be
thought of as a generalized virtual routing framework. Its
validity, scalability and extensibility as a single mechanism
for implementing cloud centric networks. There are several
scenarios not explored yet include containers, microservices
and SD-WAN.

Since the publishing of original paper, we have designed
an integrated policy model as the basis of interface between
substrate and virtual network. The model allows distribution
of tenant policies using the base protocol. However, resource
allocations over substrate network were not found to be as
simple and in fact led to new work as an extension to
cloudcasting protocol. The corresponding data structures and
prototype implementation are an open for further research at
the time of writing this paper.

Previous section alluded to Cloudcasting extensions for
service distribution in mobile networks. The 5G network
slice definition is still evolving, therefore, an opportunity lies
in exploring this topic further both from prototyping and
validation perspective. Finally, although the prototype for base
protocol is available, further comparison study, assessment of
control plane signaling overheads, robustness and datapath op-
timizations related work is not complete yet and we welcome
contributions from interested research community.

XI. CONCLUSION

Cloud-scale networking environments require a technology
where virtual networks are first class objects; such that the
coarse policies and routing decisions can be defined and
applied on the virtual networks. Cloudcasting is a routing
system based on converged, unified network virtualization and
will evolve better because of lower provisioning costs and
enhanced agility through auto discovery. This paper presented
several new concepts; it extended original idea from single
data center to explain global scale distribution of VXNs
across multiple providers, sites and domains. Many use cases
are further discussed in great detail. We also shared our
perspective on policy model, which plays an important role
in interaction between virtual and physical infrastructures to
provide operation and management functions. The prototype
implementation is discussed at great length and interested
readers are encouraged to contact the authors for code. As an
interesting application, we have taken the idea of cloudcasting



59

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for virtual networks and extended it to the auto-discovery of
services in the 5G network slicing context that further bolsters
adaptability and flexibility of the framework.
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Abstract—According to the widespread of Internet of Things
(IoT) services with a huge number of IoT devices, service 
providers will face the challenges how to grasp the product 
quality of the IoT devices by themselves in order to make IoT 
services highly reliable and dependable. The cumulative failure 
rate is an important reliability index for evaluating the product 
quality and service reliability of IoT devices. However, in the 
horizontal specialization business model, IoT service 
infrastructure is often operated by multiple players such as 
service providers and device vendors, and device management 
information that is necessary to obtain the cumulative failure 
rate is independently and uncoordinatedly owned by them. In 
this paper, we propose a method of calculating the cumulative 
failure rate in such environment. We design an algorithm to 
aggregate and organize such distributed, uncoordinated 
information to derive the device operating history, which is fed 
into the cumulative failure rate calculation formula. Through 
several simulation experiments, we show the effectiveness of 
our method in several realistic scenarios, where we also 
arrange several uncoordinated cases.

Keywords - IoT; Service eliability; Cumulative failure rate;
Operating history; Multiple players; Horizontal specialization 
business model

I. INTRODUCTION

Recently, the concept of Internet of Things (IoT) has 
been widely penetrating into our daily lives and IoT device 
reliability is one of fundamental, technical issues to achieve 
IoT-enabled world. We have been focusing on such IoT 
device reliability in reference [1] and this issue enhances the 
concept of IoT device reliability management for more 
realistic cases.

According to [2], the number of devices which are 
available for mobile access is expected to grow to
approximately 50 billion units (6.58 units per user) by 2020.
In IoT enabled systems, a huge number of IoT devices are 
being interconnected, and such infrastructure becomes more 
sophisticated and smarter to support our lives.
Simultaneously, as it becomes more indispensable, it should 
be more reliable to achieve sufficient service availability [3]-
[5]. This cannot be achieved without high reliability and 
dependability of IoT devices themselves.

In the research field of reliability engineering, there are 
several kinds of reliability-indexes such as Mean Time 
Between Failure (MTBF), Mean Time To Repair (MTTR), 
Mean Time To Failure (MTTF) and Failure in Time (FIT)
[6]. In addition, cumulative failure rate is often utilized as a 

device reliability index [7]. It is a probability of failure
occurrence in a certain time period starting from the time 
when the device becomes in operation. The cumulative 
failure rate is usually derived using the failure rate for every 
unit of time, which is defined as a ratio of the number of 
failed devices to the number of devices being in operation in 
the unit of time. Here, the devices being in operation may 
vary at every moment not only due to device failure but also 
due to operational activities such as new device installation, 
removal and replacement. Therefore, we need to trace the 
operating history of each device to calculate accurate 
cumulative failure rate.

However, in order to obtain the operating history of each 
device, it is required to obtain the dates of device-associated 
events such as installation of the device, suspension and 
resumption of device utilization and failure. If the device 
manufacturers, simply called vendors, themselves provide
services (this way of service provision is called vertically 
integrated business model [8]), such information can be 
obtained easily as everything is managed at a single place. In 
contrast, in horizontal specialization business model [9]-[11]
where service providers (simply called providers) purchase 
the devices from vendors and use them (this style is often 
seen in smart meter services and the Internet access services), 
device operating history is owned and managed partially and 
uncoordinatedly by multiple business operators called 
players. Furthermore, by changing business environment 
around the providers, e.g., the number of IoT devices is 
dramatically increased and demand for service reliability 
becomes much more severe, we believe each provider itself 
is required to expand the quality management of devices 
which the vendors have been dealing with and responsible 
for. Accordingly, the possibility of lack of information from 
the perspective of providers is newly exposed. Therefore, the 
horizontal specialization business model will causes a 
significant issue in building a single, consistent view of 
operating history.

We introduce an example case to explain how and why 
such a situation is seen in the horizontal specialization 
business model in the following. In smart meter services, an 
electric company (i.e., a provider) purchases power meters in 
bulk from a vendor, lends them to subscribers, and stocks the 
rest as spares. When a power meter becomes out of order, the 
provider supports to replace it. Since the provider entrusts 
the repair service to the vendor, the vendor receives the 
failed power meter directory from a user and repairs it in 
order to mitigate the provider’s tasks. Then, the vendor is 
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able to manage the product-related information such as the
production date and the model number of the meter as well 
as the failure-related information such as the date and reason 
of failure and the repair process. However, the device 
operating status (e.g., operating start date) is not observed by 
the vendor. Meanwhile, the provider has to manage the 
subscriber information including the asset information (e.g.,
the current meter location). Hence, it is not necessary to trace 
back the information about failure and others. Consequently, 
in order to obtain a consistent history of meters, it is 
necessary to design a method of aggregating the 
management information that are separately and 
uncoordinatedly managed by multiple players to enable 
calculation of the cumulative failure rates.

In this paper, we propose a method of calculating the 
cumulative failure rate, which is an important reliability 
index that represents device reliability. We assume that 
services are provided (i) using a large quantity of
homogeneous devices and (ii) following the horizontal 
specialization business model where multiple players are 
involved and management information are owned separately 
and uncoordinatedly by them. Then, the method aggregates 
and analyzes those distributed information to derive the 
operating history of each IoT device to enable the calculation 
of cumulative failure rates.

The contributions of this work are four-fold.
We deal with a significant issue of IoT device 
management inspired by our business experience on 
how we grasp and measure the device reliability,
which is mandatory to maintain the quality of large-
scale IoT service infrastructure operated by multiple 
players in the horizontal specialization business
model.
We propose a method to obtain the operating
history of each IoT device from various types of
management information. We would like to 
emphasize that calculating the cumulative failure 
rate using complete device history is normally done 
in device management, but taking into account 
those devices that are often replaced, repaired and 
reused at different times and locations is not 
straightforward.
We present the experimental result of measuring the 
accuracy of cumulative failure rates with realistic 
scenarios where a part of the information is missing.
Such a situation often occurs in the real 
environment.
To prove wide applicability of our proposed method,
we further evaluate the additional but promising 
uncoordinated case in which additional information 
elements are added from the middle, i.e., after the 
service was launched, due to emerging new 
operational requirements.

This paper is organized as follows. Section II 
summarizes related work and Section III introduces a service 
scenario in IoT infrastructure with multiple players. Section 
IV presents our method and experimental results are shown 
in Section V. Section VI considers the additional 

uncoordinated case in which some information elements are 
added after the service launch. Finally, we conclude this 
work in Section VII.

II. RELATED WORK

There have been various activities on evaluating product 
quality and device reliability [6][7][12]-[19] including the 
research field of reliability engineering [6][7]. Several 
studies on Operation And Management (OAM) issues of IoT 
devices in IoT service infrastructure [20]-[27]have also been 
conducted.

As the reliability terms, based on the methods and 
procedures for lifecycle predictions for a product, there are 
several kinds of reliability indexes [6]. Mean Time Between 
Failure (MTBF) is a reliability term in which the average 
time form the up time after the repair following a failure to 
the next failure. Mean Time To Failure (MTTF) is that the 
average length of time before failure of a device. While 
MTBF is used for repairable device, MTTF is used for non-
repairable device. Mean Time To Repair (MTTR) is the term
that the average length of time to repair a failed item.
Furthermore, Failure in Time (FIT) reports the number of 
expected failure per one billion hours of operation for a 
device. Moreover, cumulative failure rate is often utilized as 
a device reliability index [7]. It is a probability of failure
occurrence in a certain time period starting from the time 
when the device becomes in operation. The cumulative 
failure rate is usually derived using the failure rate for every 
unit of time, which is defined as a ratio of the number of 
failed devices to the number of devices being in operation in 
the unit of time.

References [12]-[14] present evaluation methods at the 
design or production phase of devices, where the cumulative 
failure rate is estimated by modeling the occurrence of major 
failures at the component level of devices. Reference [12]
focuses on how to calculate the failure rate of N-channel 
Metal Oxide Semiconductor (NMOS) devices under Hot 
Carrier Injection (HCI) mechanism and Time Dependence 
Dielectric Breakdown (TDDB) failure mechanism. The 
failure rate models and hypothesis test are proposed for each 
HCI and TDDB. Reference [13] discusses how to determine 
a new parameter from failure factors observed in the field, 
e.g., electrostatic discharge inrush current, to integrate it into 
a conventional estimation method for more accurate
cumulative failure rate at the product design phase.
Reference [14] proposes how to use the failure statistics to
obtain the failure rate of a particular component according to 
its real conditions. It also demonstrates how the proposed 
methodologies are applied for failure rate estimation of 
power circuit breakers. The methodologies can be used for 
condition-based reliability analysis for electric power 
networks, in order to obtain an optimized maintenance 
strategy. Reference [15] proposes an approach to estimating
the failure rate for Time-varying Failure Rate (TFR) of the 
relay protection device with the field data using random 
failure and aging failure. These approaches assume that all 
information elements, which are necessary for calculating 
also the cumulative failure rate, are maintained by the vendor
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manufacturing the devices, and it is not considered that the 
number of devices varies by factors other than failures.

The bathtub curve is a common feature of product failure 
behavior [16]. It is a lifetime of a population of products 
using a graphical representation. The typical bathtub curve 
has three phases. The first part is the birth-in period, which is 
characterized by a high and rapidly decreasing failure rate.
The second part is the useful period, when the failure rate 
remains almost constant. The third part has an increasing 
failure rate, known as the wear-out period. The bathtub curve 
can be useful for predicting the device failure if the age of 
each device is known, however only the characterizations are 
known.

Reference [17] proposes a one line prognostic algorithm 
for the power module devices using the operating history of 
the device to detect the time of failure quickly during 
operation. Reference [18] proposes the calculating 
probability of failure using an equipment age model that is 
relaxed the independence assumption of individual 
measurements of usage intensity and operating conditions.
Moreover, it shows practitioners how to develop a more 
complete maintenance strategy that allows for both
corrective maintenance (CM) and condition-based 
maintenance model (CBM) using the simple decision routine.

On the other hand, in the telecommunication network, it 
is difficult to calculate the failure rate accurately by 
reliability engineering methods because the failure rate is 
calculated by the number of devices and time differentiation 
of the cumulative number of failure devices at the given 
timing of elapsed time. References [19][20] propose 
evaluation methods for product reliability based on the 
observation of each device’s operation history considering 
device changes due to non-failure, which is not taken into 
account in the existing work [7][21]. In reference [19], the 
instantaneous failure rate of a repairable device for the 
communication network is calculated as the limit of the 
average failure rate that is available for the increase and 
decrease of the number of devices. Namely, the number of 
cumulative failure rate and the number of devices are 
estimated as the continuing functions to times. In contrast in
[20], they study the applicable condition of the mathematical 
model for the proposed method.

All the above assume a vertical integration structure in 
which all the information elements for calculating the 
cumulative failure rate (or a similar index) are maintained by 
only one player. In contrast, we are focusing on IoT service 
infrastructure in which multiple players (e.g., providers and 
vendors) are collaboratively involved. In such a horizontal 
specialization structure, which is expected to penetrate the 
IoT market in the future [11], the followings should be done 
to manage the product reliability of IoT devices for realizing 
dependable infrastructure; 1) coordinating the management 
information provided by each player, 2) extracting and 
deriving information elements and 3) reconstructing the 
device operation history from the information elements. As
far as we know, this is the first activity focusing on IoT 
device management with multi-player issues.

Meanwhile, there have been many approaches so far 
toward IoT device applications [22]-[27], which basically 

focus on the management and configuration of remote sensor 
devices over the Internet. For example, Ref. [22] implements 
IPv6 over 6LoWPAN and RPL and provides CoAP-based 
control to facilitate sensor device management over the 
Internet. Reference [23] also takes a remote-management 
approach where MQ Telemetry Transport is utilized for IoT 
application and management. In Reference [24], the authors 
discuss the necessity of wireless sensor network management 
in a unified manner. They consider that the industrial 
authorities should be able to provide a network infrastructure 
supporting various WSN applications and services to 
facilitate the management of sensor devices, and industrial 
ecosystem and industrial device management standards have 
been introduced. Reference [26] is rather unique in the sense 
that a distributed approach is introduced for IoT device 
management from a social network point of view, where a 
social network theory is applied to model the services. 
Reference [27] discusses cloud-resource management for 
multi-agent IoT systems, which is also important for entire 
system coordination. However, they basically focus on the 
protocol and architecture issues and do not deal with the IoT 
device management processes and operations. 

III. SERVICE SCENARIO

In this paper, we assume IoT infrastructure with multiple 
players in the horizontal specialization business model.
Under this assumption, we explain the device operating and 
management information that are separately and 
uncoordinatedly managed by multiple players. The scenario
is based on our own experience, so cases hereafter are likely 
to be seen in the real world business.

As explained briefly in Section I, we target a service 
provider such as an electric company or a network provider
that purchases the devices in bulk from an IoT device vendor
and lends them to subscribers (users). If the IoT device fails, 
the provider lends an alternative IoT device that is stocked in 
their warehouse to the subscriber. After receiving it, the user 
sends the failed IoT device to vendor. As the provider 
service, it is a common business model that the user lends the 
device from the provider, such as STB [28].

Figure 1 illustrates the interactions between each player 
and user. We explain the service provision scenario using 
this figure.

(1) IoT Device Purchase and Stocking:

The provider purchases IoT devices from the vendor and 
stocks them as spares. Lending an IoT device from the 
provider to a user and returning it by the user due to 
cancellation is conducted via the provider’s warehouse. The 
provider records the current location of the purchased IoT 
devices in asset management information. The vendor
records the product-related information such as the shipping 
date and model number of IoT devices in shipment 
management information.

(2) Service Startup:

The provider creates the contract-related information for 
every user and manages it. The provider lends an IoT device 
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to a user, starts the service and records the service start date 
in user contract information. 

(3) IoT Device Failure and Replacement:

When an IoT device fails at a user location, the user 
contacts the provider to tell his/her device has been failed.
The provider sends an alternative IoT device from their 
warehouse to the subscriber. After receiving it, the user 
sends it back to the vendor directly using a preprinted 
address label included with the alternative IoT device for
optimizing the physical transport route. The vendor repairs 
the failed IoT device and records the failure-related 
information such as date and model number (or send-back 
date or receiving date as the date of failure). After the 
repaired IoT device is sent from the vendor to the provider, it 
is stocked in the warehouse. The provider updates the 
records related to these two devices (i.e., the current 
locations of failed and alternative devices). The vendor
records the user’s location ID from the address label as the 
evidence for the provider to check whether the user returns
the failed IoT device.

(4) Service Cancellation:

When a user cancels its contract, he/she returns his/her
IoT device to the provider. The provider re-stocks it in the 
warehouse and updates the current location information of 
the IoT device. Furthermore, the service end date of this user 
is recorded in the contract-related information.

Figure 1. Interaction among multiple players and user.

In summary, the provider maintains a) contract 
information with users and b) asset management information 
of IoT devices, the vendor maintains c) shipment-related 
information of IoT devices and d) the failure-related 
information. Here, b) is usually sufficient for asset 
management by the provider. This is because the provider 
does not care about whether an IoT device was installed at 
different locations in the past.

On the other hand, as described in Section I, it is required 
to obtain the occurrence dates of device-associated events 
such as installation of the device, suspension and resumption
of device utilization and failure to calculate the cumulative 
information such as the service start date and suspension and 
resumption of the device date in this scenario, and the 
provider does not observe the information such as the failure 
date. Therefore, each player cannot collect and build
complete device-associated information. This is our 
motivation to provide a method to build complete operating
history of each IoT device from such partial, distributed 
operating and management information as indicated by the 
above a) to d).

TABLE I. SERVICE OPERATING AND MANAGEMENT DATA 

LIST-A) CURRENT DEVICE LIST
(MANAGED BY PROVIDER)

List created date (=Today) (Tc) : 2016/09/01

Location 
(L)

Service start date 
(T1)

Current device 
(SN)

Operating start date of 
current device at L (T4)

1 2016/01/01 a -

3 2016/05/01 b -

4 2016/03/01 c -

: : : :

LIST-B) FAILED DEVICE LIST 
(MANAGED BY VENDOR)

Location 
(L)

Failed date 
(T2)

Failed device
(SN)

Operating start date of 
failed device at L (T5)

1 2016/02/01 a -

3 2016/04/01 a -

1 2016/04/01 b -

: : : :

LIST-C) RETURN DEVICE LIST
(OUT OF MANAGEMENT BY PROVIDER)

Location
(L)

Return date 
(T3)

Return device
(SN)

Operating start date of 
return device at L (T6)

3 2016/03/01 c -

5 2016/06/01 d -

2 2016/07/01 e -

: : : :

                                                 (        : unknown )

Provider

(1) Purchasing and Stocking
IoT Devices

(3) IoT Device Failure and 
Replacement

(4) Service cancellation

d) Failure management Info. b) Device current location Info.

Vendor Provider User

Provider User

: IoT devices

Provider User

(2) Service Startup

a) User contract Info.
b) Device current location Info.

b) Device current location Info.c) Shipment Info.

Vendor

a) User contract Info.
b) Device current location Info.
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Firstly, from a) and b), we try to obtain List-A of Table I
with its created date Tc. Each pair of the sequence number 
SN and its location L can be obtained from b). This L is 
matched with that in a) to associate this pair with the service 
start date T1 contained in a). If this device has not been 
failed since the day of initial installation at a user, we can 
obtain the history indicating that device SN has been working 
without failure between T1 and Tc, which results in the fact 
that the operation start date T4 is T1 (T4=T1). Meanwhile, if 
there was a failure, T1 is set to the date when an alternative 
device is started working at location L. In this case, T4, the 
operating start date of the original device SN, is left unknown.

Secondly, we try to obtain List-B of Table I from a) and 
d). In this scenario, the vendor records the location where the 
failure occurred (this kind of information is generally useful 
for such vendors which need some statistics of failure 
occurrence patterns). Here, we should consider how we will 
obtain column T5, which is the operation start date of each 
failed device. To do this, we associate date T2 of failure, the 
sequence number SN and location L with contract 
information of a). Then, we obtain T5 and the history 
indicating that device SN installed at location L had been 
working from T5 until T2 and then failed at T2.

In addition, from Figure 1 (3), the provider might 
maintain the information corresponding to d) that is 
maintained by the vendor. However, we consider that such 
information is not necessary for the provider’s asset and the 
provider may not be motivated to maintain it. In other case, 
the provider might start maintaining it later. However, the 
information before starting cannot be obtained. Hence, we 
assume the worst case that the provider does not maintain it.

Moreover, a) contains the service end date T3 and the 
service start date T1. If we have sequence number SN of the 
device that was returned from location L, we can obtain List-
C of Table I containing T6, the operation start date of the 
returned device. We note that the provider may not be 
motivated to record sequence number SN. Similarly with the 
List-A case, from this List-C, we can obtain the history 
indicating that the returned device SN had been working 
from T6 until T3 without failure. Under a certain condition, 
T6 is equal to T1.

In the next sections, we present how T4, T5 and T6 are 
obtained using List-A, B and C, and how the cumulative 
failure rate is calculated using the history.

IV. PROPOSED METHOD

A. Overview 
In this section, we explain how to obtain the cumulative 

failure rate of IoT devices whose management information is 
maintained separately and uncoordinatedly by multiple 
players. Our proposed method consists of the following three
Steps;

Step1: Reconstructing the operating history of each 
IoT device,

Step2: Counting the operating days, and
Step3: Calculating the cumulative failure rate.

Specifically, our proposed method basically uses List-A
and B for reconstructing the operating history, and List-C as 
well as (if exists). Note that even without List-C, the method 
can reconstruct the history but some error may occur because 
T3, and T6 in List-C are not plotted on the time-sequence 
diagram (See Figure 2 in Section IV-B). We numerically 
evaluate the impact of such error in Section V.

B. Design Details

Step1: Reconstruct the operating history of IoT device.

Step1-1) Create time-sequence diagram per location.
(1) First, the time-sequence diagram per location is 

created as shown in Figure 2 (i) where x- and y-axes 
are # of days passed (denoted as T) from the 
reference date “0” and location L (1, 2, …), 
respectively. Current date Tc, failed date T2 and 
return date T3 in List-A, B, and C are plotted as 
square boxes on the diagram at (x,y)=(Tc/T2/T3,
relevant L), respectively. Note that for easy 
understanding, in Figure 2, we assign a numeral 
number j to each plot as ID. It is denoted inside the 
square box corresponding to the plot.

Figure 2. Time-sequence diagrams for reconstructing the operating 
history of each IoT device.
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(2) For each plot j, device SN and device operating 
status x=”Failed” or o=”Normal” at the relevant 
date are associated as its attribute. For instance in 
Figure 2 (i), plot j=8 with <a,x> (at T=3 and L=5) 
means that the device a was “Failed” at location 
L=5 (then it was sent back to the vendor for repair). 
Plot j=7 with <b,o> means that the device b was
“Normal” at L=4 (therefore, it is in-operation now 
(T=7)). Plot j=9 with <d,o> means that the device d
was “Normal” at L=5 (because it was returned to 
the provider without failure due to user cancellation 
at T=5). 

(3) Service start date T1 at location L in List-A is 
plotted on the diagram.

(4) We assume that the failed device is replaced to 
another device on the same day for non-stop service. 
Along the time-sequence of each location L, the 
plots on it are traced back from the current date Tc
(T=7) to the reference date (T=0) in order to 
determine the start date (referred to as Sj) of each 
plot j at the location. The date of j’s previous plot is 
regarded as the start date of j. For example, the start 
date of device b at plot j=2 ((x,y)=(3,1)) is 
determined as S2=1 because its previous plot (j=1) is 
at T=1 ((x,y)=(1,1)).

(5) The operating term for each plot j can be extracted 
as the term from Sj to T of plot j. For example, 
device b at plot j=2 is operated from S2=1 to T=3 so
the term is 2 days. As another example, device b at 
j=7 ((x,y)=(7,4)) is operated from S7=5 to T=7 (now 
in-operation) so the term is also 2 days.

Step1-2) Transform time-sequence diagram per location to 
per IoT device.

(1) The time-sequence diagram per IoT device (see 
Figure 2 (ii)) is transformed from Figure 2 (i). At 
first, each plot j in Figure 2 (i) is re-plotted on 
Figure 2 (ii) according to the device SN in its 
attribute. Note that the device operating status x/o in 
its attribute is inherited. For instance, plot j=2 with 
<b,x> ((x,y)=(3,1)) in Figure 2 (i) is re-plotted to 
j=2 with [x] ((x,y)=(3,b)) in Figure 2 (ii).

(2) For each plot j, the relevant operating term from Sj
to T of the plot j is drawn on Figure 2 (ii). It is easy 
to obtain each IoT device’s operating history by 
collecting operating terms per device from Figure 2
(ii). For instance, the operating history of device b
includes two operating terms, i.e., S2=1 to T=3 
(Failed) and S7=5 to T=7 (Normal).

Step2: Counting the operating days.
Two types of operating days are counted per IoT device 

from the operation histories. The first type is referred as 
“Failed days” (P) which is ended with a plot derived from 
T2, i.e., failed date. The second type is referred to as 
“Normal days” (Q) which is ended with a plot derived from 
T3 or Tc, i.e., return or current date without failure. For 
counting the operating days of each IoT device, an operation 

term of the device is selected in chronological order and 
checked whether the term is ended by T3 or not. If so, the 
term should be concatenated to the next operating term (if 
any) as a single piece of operating days. For example in 
Figure 2 (ii), the device b is set P=2 and Q=2, while the 
device c is set P=4(=1+3), and the device d is set Q=3(=2+1). 
P and Q of each device are shown in Table II.  

TABLE II. THE OPERATING DAYS FOR EACH SN IN FIGURE 2 (ii)

SN # of operating days
(# of terms)

Operating days [days]
1st 2nd

a 2 (2) P=1 P=1

b 2 (2) P=2 Q=2

c 1 (2) P=4
(=1+3) -

d 1 (2) Q=3
(=2+1) -

e 1 (1) Q=4 -

Step3: Calculating the cumulative failure rate.
From both Failure days and Normal days in Step2, the 

cumulative failure rate is calculated. Let f(x) denote the 
failure density function, the failure occurrence probability 
until time i has passed, i.e., the cumulative failure ratio F(i),
is expressed in equation (1) [6].

( ) = ( )   
We can approximately obtain the following difference 

equation by differentiating equation (1) and substituting 
infinitesimal di to the unit time (a day).( ) ( 1) = ( ) 

Here, let ( ) denote the failure rate of i-th unit time.
Since f(i) is expressed as( ) = 1 ( 1) ( )  
we can obtain the following equation:( ) = ( 1) + 1 ( 1) ( ), 
where (0) = 0,  ( ) ( )( ) ( )  ( = 1, 2, … ). 
Note that n(i) and N(i) are the number of failed devices (P = 
i-1) at day i, and the number of in-operation devices at the 
end of day i, respectively. From the above discussions, the 
cumulative failure rate can be calculated from the operating 
history. 
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In addition, m(i) denotes the number of returned devices,
which is suspended at day i, is given by the following 
equation: ( ) = ( 1) ( ) + ( )  
Assuming that ( ) is the same regardless of the devices, the 
cumulative failure rate is not affected even if suspended 
devices exist.

V. EXPERIMENTAL EVALUATION

We verify that the proposed method expressed in Section 
IV can reconstruct operating histories and calculate the 
cumulative failure rate. In addition, we evaluate the accuracy 
of the cumulative failure rate when some information 
elements are missing.

A. Experimental Setup
In order to validate the effectiveness of our proposal, we 

develop the simulator implementing the proposed method.
The input data set for this simulator consists of List-A, B, 
and C (if any) without T4, T5, and T6. From these input data 
sets, the simulator complements the unknown fields (T4, T5,
and T6), then reconstructs operating histories and calculates
the cumulative failure rate. This simulator is a Ruby program 
with approximately 17,000 lines, executing on a PC whose
specification is shown in Table III. 

TABLE III. SPECIFICATION OF PC FOR SIMULATION

Parameters Values

PC

CPU E5-2650L v2@1.70GHz

Memory 126GBytes

OS CentOS 6.6

Program Ruby 1.9.3

TABLE IV. PARAMETERS OF CREATING EVALUATION DATA

Parameters Values

Failed rate U [%/day] 0.2, 0.5, 0.8

Return rate R [%/day] 0, 0.2, 0.4, 0.6, 0.8, 1.0

The number of simulation days T [days] 1,826 (= 5 years)

The number of devices [units] 15,000 ~ 70,000

The number of locations [locations] 100 ~ 10,000

Evaluation data sets as shown in Table IV are arranged
with various return rates R and failure rates U, both of which 
follow uniform distribution irrespective of T. Simulation 
days T is 1,826 days (= 5 years), the maximum number of 
devices is 70,000 [units], and the maximum number of 
locations is 10,000. We assume no IoT devices are in-
operation at T=0, and the replacement of failed device is 
finished on the same day as the failure occurs. In addition,
we assume the followings to simplify the simulation.

- Just after a user cancels his/her contract at location L,
a new user at Location L’ starts his/her contract and 
uses another device.

- Through the simulation, we regard L and L’ are 
equivalent, i.e., the total number of devices and that 
of locations are never changed by return events.

TABLE V. VERIFICATION CASES

Case # List-C
management / non-management unknown data

Case1 Management (=use List-C) T4, T5, T6

Case2 Non-management (=not use List-C) T4, T5, List-C*

                              *T6: unknown because of List-C unmanaged

For accurate evaluation results, we arranged 180 data sets
in total, because 18 R/U pairs are specified and 10 random 
data sets are generated per R/U pair. Note that these data sets 
are given as List-A, B and C. At first, a data set consists of 
all the information elements in List-A, B and C are generated 
(we call it “reference data set”). Then, an evaluation data set 
is created from it by omitting unknown fields, i.e., T4, T5
and T6 or T4, T5 and whole List-C, according to the case in 
Table V.

B. Verification of proposed method
We verify that the proposed method can complement the 

unknown fields in List-A, B, and C in Case1 and Case2 by 
comparing with the reference data sets. We also reconstruct 
operating histories and calculate cumulative failure rates 
from all the evaluation data sets. 

As a result, we confirm that the simulator successfully 
completes the above processes for any data sets in any cases. 
In Case1, all T4, T5 and T6 of event start dates are 
completely matched with those in the reference data sets. In 
contrast, in Case2, T4 and T5, which are operating start dates 
of failed and current devices respectively, are unmatched 
from those in the reference data sets due to the lack of List-C. 
Here, let K denote the unmatched rate of start dates. In 
percentage terms, K is given by the following equation: = (( 1 + 2) ( 1 + 2)) × 100
where v1 and v2 denote the number of unmatched T4, T5,
respectively, while w1 and w2 denote the total number of 
failure events and in-operation events, respectively. 

Figure 3 shows the unmatched rate of the start dates K
where the failure rate U varies from 0.2 to 0.8. From this 
figure, we can easily find that K is increased as R does, and
decreases in proportion to U. For example, K becomes 
77.3%, 62.2% and 52.2% at R=1.0 of U=0.2, 0.5 and 0.8,
respectively. Note that K is 0% irrespective of U when R=0.0
(no return event occurs) because there is no influence due to 
lack of List-C.

On the other hand, the example computation time to 
obtain the operating history and the cumulative failure rate 
are approximately 3 [min] and 1 [min], respectively, in the 
case of U=0.8 and R=1.0 with 70,000 IoT devices.
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Figure 3. Unmatched rate of start date K vs. return rate R.

C. Effect of cumulative failure rate by return rate R
We evaluate the reliability by calculating the cumulative 

failure rate F(i) various rerun rate R. Figure 4 shows the 
cumulative failure rate F(i) in each failure rate U where the 
return rate R varies from 0.0 %/day to 1.0 %/day at 
0.2 %/day intervals. Each plot indicates the average of F(i)
values individually calculated from 10 random data sets
arranged per R/U pair.

It is clear in Figure 4 that F(i) increases in proportion to 
R irrespective of U and that the larger R becomes, the more 
rapidly the cumulative failure rate F(i) increases. As for the 
errors of F(i) (referred to as ) between R=0.0 and 1.0,
=0.143 at i=400, =0.138 at i=159, and =0.130 at i=105,
respectively. So the error decreases with increase of U.

Figure 4 also indicates that our method conservatively 
underestimates the cumulative failure rate. In the case hat 
List-C is unmanaged, the operating terms of return events,
such as device d at S9=3 to T=5 and device c at S6=1 to T=2 
in Figure 2 (ii), are lost. As a result, N(i) in equation (5) can 
be smaller so that F(i) in equation (4) tends to be increased in 
a short time as R increases. From the provider’s perspective, 
the calculated rate can be still useful when the provider 
discloses it to the vendor for encouraging more improvement 
on the product quality and reliability of IoT devices. 

However, in the reverse direction from the vendor to the 
provider, such underestimation may mislead the vendor, e.g., 
vendor may consider he need not do anything next. 
Conversely, the vendor should recognize that the actual 
failure rate may be higher. Meanwhile if multiple vendors 

exist, the cumulative failure rate can be still used as an 
important index for comparing device qualities between 
these vendors.

Therefore, the calculated failure rate should be 
interpreted carefully according to the player’s role.

VI. ADDITIONAL UNCOORDINATION CASE

Practically there could be wide variations on what 
management information is maintained by each player. In the 
scenario described in Section III, we assume that each player 
is dedicated to playing his role and does not have any 
incentive to maintain extra management information beyond 
his role. However, in the real world, it is probable that 
players may add some management information due to 
emerging new operational requirements after the service 
starts. For example, similar service infrastructures and their 
providers are often unified in real cases.

Here, we qualitatively discuss how to handle such 
management information change, especially in the case that 
some useful information elements can be obtained after a 
certain date. For example, in Sec. III, it is considerable that 
the service is started with a very small number of users and it 
is not so important for the provider to improve product 
reliability of IoT devices at this moment. However, the 
number of IoT devices increases as the service grows, and 
the provider wants to improve the product reliability of IoT 
devices so that the provider starts maintaining List-C on a 
certain date (T=Y).

In such a case, return date T3 in List-C is on and after the 
date Y and there are no previous records before it, i.e., from 
T=0 to Y-1. For calculating the cumulative failure rate, we 
can choose one of the following three options.

Option 1)
The calculation is conducted using recorded T3
( ) only, assuming that no return event (service 
cancelation), occurs at any T where T<Y.

Option 2)
The calculation is conducted after complementing T3
at T (T<Y) based on R calculated from recorded T3
( ).

Option 3) 
The calculation is conducted without List-C.

Figure 4. Cumulative failure rate F(i) vs. operating days i with different return rates R.
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Among above three options, Option 3 is equivalent to the 
result of R=0.0 in each U in Figure 4. According to the 
results in Figure 4, it is expected qualitatively that the 
cumulative failure rate F(i) in Option 2 is the most increasing 
trend, i.e., seems the worst product quality, followed in order 
by F(i) in Option 1 and F(i) in Option 3. Hereafter, we 
describe it as “Option 2 > Option 1 > Option 3”.

To verify the above qualitative analysis, we conduct the 
quantitative evaluation of the three options. At each option,
the evaluation data are emulated as follows, then the 
cumulative failure rate F(i) is calculated.

Option1) 
Return events occurring at T<Y are deleted from 
reference data. Then, the start dates of all events
(return, failure, and current) are calculated.

Option2) 
Return events occurring at T<Y are deleted from 
reference data, and return rate R’ at T (T Y) is
calculated. Then, the return events are inserted at T
(T<Y) based on R’. Finally, the start dates of all 
events are calculated.

Option3)
All the return events are deleted. Then, the start 
dates of all events are calculated. 

Evaluation data sets are arranged with different return 
rates R (0.2, 0.5, and 0.8) and failure rates U (0.0 to 1.0 at 0.2 
intervals), and other parameters are set as shown in Table IV. 
In addition, Y is set to 365, 730, 1,095 or 1,460 [days]
considering one year as a unit. For accuracy of evaluation 
results, we arrange 1,620 data sets in total. Concretely, 72 
R/U/Y sets are specified and 10 random datasets are 
generated per R/U/Y sets in Options 1 and 2. In Option 3, 18 
R/U pairs are specified and 10 random data sets are 
generated per R/U pairs. Note that at Option 3, the
calculation is conducted without List-C regardless of T.

TABLE VI. MAXIMUM ERROR RATE (ABSOLUTE VALUE) OF R’ IN
OPTION 2 AT EACH Y

Y [days] 365 730 1,095 1,460

Max.  | R’ R | / R 0.023 0.029 0.026 0.028

Before presenting the evaluation results, we confirm the 
error rate of the estimated return rate R’ to the ground truth at 
each Y in order to verify whether or not R’ was given 
accurately when the data sets of Option 2 are created. The 
maximum error rates (absolute values) of R’ for different Y’s
in 24 data sets are shown in Table VI. Consequently, the 
errors are between 0.023 and 0.029, which are negligibly
small. Hence we conclude that R’ can be regarded as R in 
Option 2.

Figure 5 shows the cumulative failure rate F(i) in each 
option, where failure rates U are 0.2, 0.5 and 0.8 and return 
rates R are between 0.0 and 1.0 at 0.2 %/day intervals. We 
note that only F(i) in Y=730 case is shown in Figure 5 for 
better visualization. In all options, F(i) increases rapidly as U
becomes larger. In Options 1 and 2, F(i) increases 
proportionally to R. On the other hand, in case of Option 3, 
F(i) is almost samei for the different R values.

Next, we evaluate the cumulative failure rate F(i) in each 
option quantitatively. F(i) where return rates R are 0.0 and 
1.0 at Y=730 is shown for each U in Figure 6. It is clear in 
each case of U, the cumulative failure rate F(i) at R=1.0 
increases rapidly where the increasing rates of three options 
are: Option 2 > Option 1 > Option 3. As for the errors of F(i)
between Options 2 and 1 (referred to as ) and between 
Options 2 and 3 (referred to as ) where the values of U are
0.2, 0.5, and 0.8, we obtain =0.05, 0.04 and 0.03, =0.13, 
0.13 and 0.12, respectively.

i Only negligible difference caused by failure events generated 
randomly in each data set is observed.

Figure 5. Cumulative failure rate F(i) vs. operating days i with different return rate R and failure rate U in each Option (Y=730).
(thin dot, thick dot and solid lines correspond to U=0.2, 0.5 and 0.8 cases, respectively)
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Figure 6. Cumulative failure rate F(i) vs. operating days i with differenet Option/R pairs in each U value (Y=730).

Figure 7. Cumulative failure rate F(i) vs. operating days i with different Y/R pairs in each Option (U=0.5).

Furthermore, we confirm the impact of starting the 
maintenance of List-C at Y on the cumulative failure rate F(i).  
Figure 7 shows F(i) at each Y when U is 0.5.  For comparing 
the results, in all figures, we plot Y=0 (black solid and dotted
lines) as the references in which List-C is maintained from 
the beginning as well as List-A and List-B. In Option 2 at 
R=1.0, F(i) is almost the same irrespective of Y. On the other 
hand in Option 1, F(i) becomes larger as Y decreases. In 
addition, F(i) at Y>0 is smaller than that at Y=0. Furthermore, 
as for comparison of Options 1 and 2, F(i) in Option1 is 
smaller than that in Option 2 at Y=365 (the smallest value of 
Y in this evaluation).

These results prove the correctness of our qualitative 
expectation for the cumulative failure rate F(i), i.e., Option 2 
> Option 1 > Option 3 (see Section VI). Note that the above 
order is not changed irrespective of Y, the date for starting 
the maintenance of List-C. 

VII. CONCLUSION

In this paper we proposed a method of calculating the 
cumulative failure rate in IoT service infrastructure operated 
by multiple players such as service providers and device 

vendors in the horizontal specialization business model.
According to changing business environment around 
providers such as massive numbers of IoT devices and 
strenuous demand on its service availability, we believe each 
provider itself is also required to expand the quality 
management of devices instead of or together with vendors.

We revealed the possibility on lack of information from 
the provider’s perspective, and proposed the method which 
aggregates and analyzes distributed information to derive the 
operating history of each IoT device to enable calculation of 
cumulative failure rates. We also verified that the proposed 
method can derive operating histories and calculate the 
cumulative failure rate. In addition, we evaluated the 
accuracy of the derived cumulative failure rates when some 
information about device operation are missing. From the 
experimental evaluation, our method conservatively 
underestimates the cumulative failure rate. So, the calculated 
failure rate should be interpreted carefully according to the 
player’s role. Even if such underestimation exists, from the 
provider’s perspective, it is considered to be useful because it 
becomes some evidence to encourage the vendor to improve 
the product quality and reliability of IoT devices more.
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Furthermore, to prove wide applicability of our proposed 
method, we also evaluated the additional but promising 
uncoordinated case in which additional information elements 
are added after the service was launched, due to emerging 
new operational requirements. We quantitatively analyzed 
the cumulative failure rate using three types of options for
calculating methods.

We are now planning to apply our method to further
different cases. We believe that we have shown the 
applicability of our method by introducing well-seen,
representative cases in this paper, but examination of our 
approach in a variety of scenarios is part of our future work.
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Abstract—We consider a scenario of two sites connected over
a dedicated, long-haul connection that must quickly fail-over in
response to degradations in host-to-host application performance.
The traditional layer-2/3 hot stand-by fail-over solutions do
not adequately address the variety of application degradations,
and more recent single controller Software Defined Networks
(SDN) solutions are not effective for long-haul connections. We
present two methods for such a path fail-over using OpenFlow-
enabled switches: (a) a light-weight method that utilizes host
scripts to monitor application performance and dpctl API for
switching, and (b) a generic method that uses two OpenDaylight
(ODL) controllers and REST interfaces. For both methods, the
restoration dynamics of applications contain significant statistical
variations due to the complexities of controllers, north bound
interfaces and switches; they, together with the wide variety
of vendor implementations, complicate the choice among such
solutions. We develop the impulse-response method based on
regression functions of performance parameters to provide a
rigorous and objective comparison of different solutions. We
describe testing results of the two proposed methods, using
TCP throughput and connection rtt as main parameters, over a
testbed consisting of HP and Cisco switches connected over long-
haul connections emulated in hardware by ANUE devices. The
combination of analytical and experimental results demonstrate
that the dpctl method responds seconds faster than the ODL
method on average, even though both methods eventually restore
original TCP throughput.

Keywords–Software defined networks; OpenFlow; Opendaylight;
controller; long-haul connection; impulse-response; testbed.

I. INTRODUCTION

We consider scenarios where two remote sites are con-
nected over a dedicated long-haul connection with hundreds
of millisecond latency, such as a transcontinental fiber or
satellite link [1], as illustrated in Figure 1(a). Different client-
server application pairs are executed at different times on host
systems located at the sites, which range from data transfers
to on-line instrument monitoring to messaging. Applications
may incorporate different methods to account for network
losses and jitter; for example, they may utilize TCP or UDT
for guaranteed delivery, UDP for loss tolerant cases, custom
buffering methods and others at application level to account
for jitter. Furthermore, their performance may be optimized
or customized to connection parameters such as latency, jitter
and loss rate; for example, TCP parameters may be tuned for
long-haul connections and buffers of interactive codes may
be tuned for long latencies and jitter of satellite links. The
connection quality can degrade due to a variety factors such
as equipment failures, weather conditions, and geographical
events, which may be reflected in host-to-host application
performance. Indeed, the client-server application pairs may
respond differently to various degradations, such as decreased
throughput of file transfers, increased jitter in streaming, loss
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Figure 1. Two sites connected over long-haul connections.

of end-to-end control in computational steering, and in some
cases (such as messaging) having very little effect. As a miti-
gation strategy, a physically diverse and functionally equivalent
standby path is switched to when the performance of currently
running application pairs degrades.

The performances of application pairs are continuously
monitored on host systems, and the current primary path is
switched out when needed, for example, by modifying Virtual
Local Area Networks (VLAN) and route tables on border
switches and routers, respectively. In our use cases, human
operators watch host-level performance monitors, and invoke
Command Line Interface (CLI) commands or web-based in-
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terfaces of network devices for path switching. Typically, the
path fail-overs are accomplished either by manual configu-
ration or through device-specific scripts. Since triggers for
path switching are dynamically generated by application pairs,
they are not adequately handled by conventional hot standby
layer-2/3 solutions that solely utilize connection parameters.
For example, certain losses may be tolerated by messaging
applications but not by monitoring and control applications of
instruments and sensors. Currently, the design and operation
of such application-driven fail-over schemes require a detailed
knowledge of host codes, and the specialized interfaces and
APIs of switches, such as custom TL1, CURL and python
scripts, which currently vary significantly among vendor prod-
ucts. Furthermore, in our use cases such fail-over operations
must be coordinated between two physically-separated opera-
tions centers located at the end sites. The combination of recent
advances in host and network virtualization technologies [2]
offers very promising and potentially game changing solutions
to seamlessly automate the dynamic fail-over workflows that
integrate diverse application monitors and network elements.

We are interested in exploiting the network and host
virtualization layers to unify and automate such monitoring
and path switching operations. Automated scripts for these
tasks provide the following advantages over current practices:
(i) improved response time, since scripts can be executed
much faster than manual configurations, (ii) reductions in
performance degradations due to human errors in application
monitoring and path switching, and (iii) reductions in site
operations costs of host systems and network devices.

A. SDN Solutions
The rapidly evolving Software Defined Networks (SDN)

technologies [3], [4] seem particularly well-suited for automat-
ing the path switching tasks, when combined with host moni-
toring codes. In particular, the northbound interfaces of SDN
controllers can be used to communicate the path degradations
information to trigger path switching; then, the path can be
switched by installing flow entries that divert traffic onto the
standby path using the southbound controller interfaces [5].
Thus, SDN technologies provide two distinct advantages over
current network operations:

(a) trigger modules of new applications can be “dropped
in place” with no no major software changes by using
communications via generic northbound interfaces, and

(b) switches from different vendors with virtual interfaces can
be simply be swapped, avoiding the re-work often needed
to account for custom interfaces and operating systems.

While the problem space of our use cases is somewhat straight-
forward, their SDN solution space is much more complex: due
to the rapid developments in underlying technologies, these is
a wide array of choices for controllers and switches, which in
turn leads to a large number of solution combinations. Indeed,
their complexity and variety requires systematic analysis and
comparison methods to assess their operational effectiveness
and performance, such as recovery times. In addition, com-
pared to certain data-center and network provisioning scenarios
for which SDN technologies have been successfully applied,
these long-haul scenarios present additional challenges. First,
single controller solutions are not practical for managing the
border switches at end sites due to the large latency. Second,

solutions that require a separate control-plane infrastructure
between the controllers and switches are cost prohibitive, in
sharp contrast to the connection-rich data-center or Internet
scenarios.

B. Outline of Contributions
In this paper, we present automated software solutions for

path fail-over by utilizing two controllers, one at each site,
that are coordinated over a single connection through mea-
surements. We first describe a light-weight, custom designed
dpctl method1 for OpenFlow border switches that uses host
Linux bash scripts to: (i) monitor the connection parameters,
such as rtt or TCP throughput, at the host-level and detect
degradations that require a fail-over, and (ii) utilize dpctl API
to install and delete flow entries on the border switches to
implement path fail-over when needed. This script is about
hundred lines of code, which makes it easier to analyze for
its performance and security aspects. We then present a more
generic ODL method that utilizes two OpenDaylight Hydro-
gen (ODL) controllers [6] located at the end sites. We use
REST interface of ODL controller to communicate the trigger
information for path switching in the form of new OpenFlow
entries to be installed on border switches. We also utilize Linux
bash scripts to monitor the connection performance to gener-
ate fail-over triggers, and invoke python REST API scripts
to communicate new flow entries to ODL controllers. The
executional path of this approach is more complex compared
to the dpctl method since it involves communications using
both northbound and southbound ODL interfaces and invoking
several computing modules within ODL software stack. Thus,
a complete performance and security analysis of this method
requires a closer examination of much larger code base that
includes both host scripts and corresponding ODL modules,
including its embedded http server.

We present implementation and experimental results using
a testbed consisting of Linux hosts, HP and Cisco border
switches, and ANUE long-haul hardware connection emulation
devices. We utilize TCP throughput as a primary performance
measure 2 for the client-server applications, which is effected
by the connection rtt and jitter possibly caused by path
switching, and the available path capacity. Experimental results
show that both dpctl and ODL methods restore the host-to-host
TCP throughput within seconds by switching to the standby
connection after the current connection’s RTT is degraded (by
external factors). However, the restoration dynamics of TCP
throughput show significant statistical variations, primarily as
a result of interactions between the path switching dynamics of
controllers and switches, and the highly non-linear dynamics
of TCP congestion control mechanisms [7]–[9]. As a result,
direct comparisons of individual TCP throughput time traces
corresponding to fail-over events are not very instructive in
reflecting the overall performance of the two methods.

To objectively compare the performance of these two
rather dissimilar methods, we propose the impulse-response

1Note that dpctl is originally intended for diagnosis purposes, which we
utilize as a controller.

2The overall approach is applicable to other application-level performance
measures such as response times, which typically degrade under connection
disruptions and recover when connection is restored. Our choice of TCP
is based on its widespread use for guaranteed packet delivery and its rich
dynamics.
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method that captures the average performance by utilizing
measurements collected in response to a train of path degra-
dation events induced externally. We establish a statistical
basis for this method using the finite-sample theory [10] by
exploiting the underlying monotonic properties of performance
parameters during the degradation and recovery periods. This
analysis enables us to objectively conclude that on the average
the dpctl method restores the TCP throughput several seconds
faster than the ODL method for these scenarios. This paper is
an expanded version of an earlier conference paper [1] with
additional explanations and details of SDN implementations,
and it also provide a complete derivation of the performance
equations for the impulse response method using finite sample
statistical analysis.

The organization of this paper is as follows. Two-site sce-
narios with dedicated long-haul connections are described in
Section II. A coordinated controllers approach for connection
fail-over, and its implementation using dpctl and ODL methods
are described in Section III. An experimental testbed consisting
of Linux servers and HP and Cisco switches is described in
Section IV-A, and the results of experiments using dpctl and
ODL methods using five different configurations are presented
in Section IV-B. The impulse response method to assess the
overall fail-over performance is presented in Section V-A, and
its statistical basis is presented in Section V-B. Conclusions
are presented in Section VI.

II. LONG-HAUL CONNECTION SWITCHING

We consider scenarios consisting of two sites connected
over a long-haul connection such as transcontinental fiber
routes or satellite connections as shown in Figure 1(a). The
sites house multiple workstations on which server and client
applications are executed, which form the client-server appli-
cation pairs over the long-haul connection as shown in Figure
1(b). The client-server application performance depends on
the quality of the connection specified by parameters such as
latency, loss rate, and jitter. These connection parameters may
degrade due to external factors such as equipment failures,
fiber cuts and weather events. Such factors will be reflected
in the degradation in client-server performance, which may be
detected by the performance monitoring software implemented
at application-level, for example, using Linux scripts. To pro-
tect against such factors, a parallel standby path is provisioned
that can be switched-over to when performance degradations
are detected. The border switches or routers at the sites are
connected to both the primary long-haul connection that carries
the traffic, and the stand-by connection whose traffic can
be activated as needed. In our case, these connections are
implemented as layer-2 VLANS at the border switches, which
can be modified to implement the fail-over. All traffic between
the sites is carried by the single long-haul connection, in-
cluding client-server communications and other traffic needed
for coordinating network operations; in particular, it is not
cost-effective to provision a separate “control” connection for
supporting the network configuration operations unlike in other
cases, such as in UltraScienceNet [11] a decade ago and more
recently in SDN based solutions.

Application codes on host systems continually monitor the
client-server performance, such as iperf for TCP throughput
and UDP loss rate. Under path degradations, these parameters
would be out of normal range, and such events are detected
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Figure 2. Configurations of dpctl and ODL controllers.

and alerts are sent to network operations. Typically, human
operators receiving the alerts modify the VLANS on border
switches to implement path switching, for example, by invok-
ing CLI or TL1 or curl scripts, or manually making the changes
through CLI or web interfaces. Due to different organizational
zones at the sites and the long separation between them, it is
not practical for a single network operations center to handle
connection switching at both sites, particularly, if the same
“degraded” connection is used for these communications as
well. Instead, such tasks are typically coordinated between the
two site organizations using other means such as telephone
calls. Due to the multi-step process needed here, the fail-
over operation can take anywhere between few minutes to
hours. Thus, it is highly desirable to automate the entire fail-
over work flow that includes application-level monitoring and
network-level switching as described in Introduction section.

III. COORDINATED SDN CONTROLLERS

For the long-haul scenarios considered here, a single
controller solution is not effective, although such approaches
with stable control-plane connections have been effective in
path/flow switching over local area networks using OpenFlow
[12], [13] and cross-country networks using customized meth-
ods [11], [14]. Since the controller has to be located at a
site, when primary connection degrades, it may not be able to
communicate effectively with the remote site. Our approach
is to utilize two controllers, one at each site, which are “in-
directly” coordinated based on the monitored application-level
performance parameters. When path degradation is inferred by
a host script, the controller at that site switches to the fail-over
path by installing the appropriate flow entries on its border
switch. If the primary path degrades, for example, resulting in
increased latency or loss rate, its effect is typically detected at
both hosts by the monitors, and both border switches fail-over
to the standby path approximately at the same time. If border
switch at one site fails-over first, the connection loss will be
detected at the other site which in turn triggers the fail-over at
the second site. Also, one-way failures lead to path switching
at one site first, which will be seen as a connection loss at the
other site, thereby leading to path switching at that site as well.
Due to recent developments in SDN technologies, both in open
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software [3], [4], [15] and specific vendor implementations
[16], [17], there are many different ways such a solution can
be implemented. We restrict here to OpenFlow solutions based
on open standards and software [12].

A. dpctl Method

As a part of OpenFlow implementation, some vendors
support dpctl API which enables hosts to communicate with
switches to query the status of flows, insert new flows and
delete existing flows. It has been a very useful tool primarily
for diagnosing flow implementations by using simple host
scripts; however, some vendors such as Cisco do not provide
dpctl support. We utilize dpctl API in a light-weight host script
that constantly monitors the connection rtt and detects when it
crosses a threshold and invokes dpctl to implement the fail-over
as shown in Figure 2(a). The OpenFlow entries for switching
to the standby path are communicated to the switch upon
the detection of connection degradation. This script consists
of under one hundred lines of code and is flexible in that
the current connection monitoring module can be replaced
by another one such as TCP throughput monitor using iperf.
Compared to methods that use separate OpenFlow controllers,
this method compresses both performance monitoring and
controller modules into one script, and thereby avoids the
northbound interface altogether; for ease of reference, we refer
to this host code as the dpctl controller. This small footprint of
the code makes is easier to analyze both from performance and
security perspectives. Also, the executional path of this code
is very simple since it involves application monitoring directly
followed by communications with the switch; in particular, this
method does not require a separate controller that is constantly
running at the end sites.

B. OpenDaylight Method

We now present a method that utilizes two ODL Hy-
drogen controllers and REST interfaces to implement fail-
over functionality using OpenFlow flows as shown in Figure
2(b). ODL is an open source controller [6] that communicates
with OpenFlow switches 3, and is used to query, install and
delete flow entries on them using its southbound interface.
The applications communicate with ODL controller via the
northbound interface to query, install and delete flows. ODL
software in our case runs on linux workstations called the
controller workstations, and the application monitoring codes
can be executed on the same workstation in the local mode
or can be executed on a different workstation in the remote
mode.

The same performance monitoring codes of the dpctl
method above are used in this case to detect path degradations
but are enhanced to invoke python code to communicate
new flows for switching paths to ODL controllers via REST
interfaces; the content of these flow entries are identical to
previous case. Thus, both the software and executional paths
of this method are much more complicated compared to
previous case, and also the ODL controllers are required to
run constantly on the servers at end sites. Also, this Hydrogen

3ODL provides interfaces to much broader classes of switches and appli-
cations, but we limit our discussions to the functionalities that are directly
related to long-haul scenarios described in Section II.

linux 
workstation 

long-haul connection 
emulation 

server/client 
host 

linux 
workstation 

ANUE OC192 
emulator 

ANUE 10GigE 
emulator 

controller 
host 

OpenFlow 
switch 

Cisco 
3064 

HP 
5406zl 

two OpenFlow switches 

OpenFlow 
switch 

linux 
workstation 

controller 
host 

server/client 
host 

linux 
workstation 

Figure 3. Testbed of two sites connected over local fiber and emulated
connections.

ODL code4 is much more complex to analyze since it involves
not only the REST scripts but also the ODL stack which by
itself is a fairly complex software. The execution path is more
complex since it involves additional communication over both
northbound and southbound interfaces of ODL controllers.

The dpctl and ODL methods represent two different fail-
over solutions, and the choice between them depends on their
recovery performance in response to triggers. In the next
section, we describe a set of experiments using HP and Cisco
switches that highlight the performances of controllers and
switches. However, a direct comparison of the measurements
between various configurations is complicated by their sta-
tistical variations, which we account for using the impulse
response method described in Section V.

IV. EXPERIMENTAL RESULTS

In this section, we first describe the details of testbed and
tests using dpctl and ODL controllers, and then describe the
experimental results.

A. Emulation Testbed
The experimental testbed consists of two site LANs each

consisting of multiple hosts connected via 10GigE NICs to
the site’s border switch. The border switches are connected
to each other via local fiber connection of few meters in
length and ANUE devices that emulate long-haul connections
in hardware, as shown in Figure 3. Tests are performed in
configurations that use pairs of HP 5064zl and Cisco 3064
devices as border switches. These switches are OpenFlow-
enabled but only HP switches support dpctl interface. We only
utilize OC192 ANUE device in our tests, which can emulate
rtts in the range of [0-800] milliseconds with a peak capacity
of 9.6 Gbps. These devices are utilized primarily to emulate
the latencies of long-haul connections, both transcontinental

4Later ODL releases starting with Helium, including Lithium and Beryllium,
support more agile code builds wherein only the needed service modules are
loaded (as karaf features [6]), thereby significantly reducing its size. However
the execution path remains the same as in Hydrogen.
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fiber and satellite connections, to highlight the overall recovery
dynamics. However, no efforts are made to highlight their ca-
pacity differences, for example, by limiting the latter to typical
satellite connection capacities, which could have resulted in
somewhat muted dynamics. The conversion between 10GigE
LAN packets from the border switches and long-haul OC192
ANUE packets is implemented using a Force10 E300 switch,
which provides 10GigE LAN-PHY and WAN-PHY conversion
as shown in Figure 4.
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Figure 4. Remote and local modes of ODL controller configurations.

Two classes of Linux hosts are connected to the border
switches. The controller hosts (feynman1 and feynman2) are
utilized to run ODL controllers, and client and server hosts
(feynman3 and feynman4) are used to execute monitoring and
trigger codes along with client server codes, for example iperf
clients and servers. Five different configurations are employed
in the tests as shown in Table I. The dpctl tests utilize only
the client and server hosts to execute both monitoring and
switching codes. In these tests, dpctl is used to communicate
flow modification messages between the hosts and HP 5064zl
switches, and Cisco switches are not used. Configuration
A corresponds to these tests with the monitoring and dpctl

Table I. Five test configurations with two controllers, two connection
degradation methods and two switch vendors.

test controller path switch
configuration method degradation vendor

A dpctl path switch HP
B ODL local path swith HP
C ODL remote path switch HP
D ODL remote rtt extension HP
E ODL remote rtt extension Cisco

scripts running on server/client hosts, and it uses HP border
switches. For ODL remote mode tests, the monitoring codes on
client/server hosts utilize REST interface to communicate flow
message needed for fail-over; both HP and Cisco switches are
used in these tests. Configurations C-E implement these tests,
which employ ODL controllers running on controller hosts
and monitoring scripts running on server/client hosts. In ODL
local mode tests, the monitoring and client/server codes are
executed directly on control hosts. Configuration B implements
these tests, and it is identical to Configuration C except its
scripts are executed on controller hosts. The measurements in
Configurations B and C are quite similar, and hence we mostly
present results of the latter.

In the experiments, connection degradation events are im-
plemented by external codes using two different methods:

(a) Path switching using dpctl: The current physical path with
a smaller rtt is switched to a longer emulated path, whose
rtt is sufficient to trigger the fail-over. This switching
is accomplished by using dpctl or ODL by installing
OpenFlow entries on the border switches to divert the
flow from the current path to longer path. The packets
enroute on the current path will be simply be dropped
and as a result the short-term TCP throughput becomes
zero. After the fail-over, the path is switched back to the
original path, and the TCP flow recovers gradually back
to previous levels.

(b) RTT extension using curl scripts: The current connec-
tion’s rtt is increased by changing the setting on ANUE
device to a value above the threshold to trigger the fail-
over. This is accomplished using http interface either
manually or using curl scripts. Unlike the previous case,
the packets enroute on the current path are not dropped
but are delayed; thus, the instantaneous TCP throughput
does not always become zero but is reduced significantly.
After the fail-over, the original rtt is restored, and TCP
throughput recovers gradually to previous levels.

The first degradation method using dpctl to switch the paths is
only implemented for configurations with HP border switches
in Configurations A - C. The second method is used for both
HP and Cisco system in Configurations D and E, and since the
curl scripts are used here to change delay settings on ANUE
devices, and border switches are not accessed.

B. Controller Performance
TCP throughput measurements across the long-haul con-

nection are constantly monitored using iperf. The default
CUBIC congestion control module [18] for Linux hosts is
used in all tests. The rtt between end hosts is also constantly
monitored using ping, and path switching is triggered when
it crosses a set threshold; this module can be replaced by a
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more general application-based trigger module, for example, to
detect when throughput falls below or jitter exceeds thresholds.
The path degradations are implemented as periodic impulses
and the responses are assessed using the recovery profiles of
TCP throughput captured at one second intervals. Also, the
ANUE dynamics in extending the rtt affect the TCP throughput
recovery, and we obtain additional baseline measurements by
utilizing a direct fiber connection that avoids packets being
routed through ANUE devices. Thus, TCP throughout traces
in our tests capture the performances of: (a) controllers,
namely, dpctl and ODL, in responding to fail-over triggers
from monitoring codes, and in modifying the flow entries on
switches, typically by deleting the current flows and inserting
the ones for standby path, and (b) border switches in modifying
the flows entries in response to controller’s messages and re-
routing the packets as per new flow entries.

  Example Trace:  

path switch 

TCP throughput loss 

latency increase 

input 
impulse train 

throughput 

rtt 

Figure 5. Trace of impulse response of TCP throughput for dpctl method
with local primary path and path switching degradation.

An example TCP throughput trace of a test run in Config-
uration A is shown in Figure 5 for the dpctl method, with fiber
connection as the primary path, and using the path switching
degradation method. The connection rtt is degraded at the
periodicity of 50 seconds by externally switching to the longer
ANUE path, and the change is detected as shown in the bottom
plot, which in turn triggers the fail-over. TCP throughput
parameters on the hosts are tuned to achieve 10Gbps for the
default rtt, and it degrades once the connection rtt is increased
to 30ms after path switching. Upon the detection of increased
rtt, the default path is restored, which in turn restores TCP
throughput to the original value as shown in the middle plot
of Figure 5. Note that throughput trace shows significant
variations during the recovery periods following the fail-over,
even in this simplest among the test configurations.

The restoration profiles of TCP throughput in these tests
reflect the detection of connection degradation and fail-over,
followed by the recovery response of the non-linear dynamics
of CUBIC congestion control mechanism. Three different TCP
recovery profiles from the tests are shown in Figure 6: (a)
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Figure 6. TCP throughput for dpctl method for configuration A and ODL
methods for configuration D and E.

Configuration A: dpctl method using HP switches with con-
nection degradation by path switching, (b) Configuration D:
ODL method using HP switches with connection degradation
by rtt extension, and (c) Configuration E: ODL method using
Cisco switches with connection degradation by rtt extension.
As seen in these plots, TCP response dynamics contain sig-
nificant variations for different degradation events of the same
configuration as well as between different configurations.

The individual TCP throughput recovery responses to
single path degradation events reveal more details of the
difference between configurations as shown in Figure 7. The
delayed response of ODL method compared to dpctl method
can be seen in Figure 7(a) for Configurations A and B.
Since the packets in transit during the switching are simply
lost during path switching, the instantaneous TCP throughput
rapidly drops to zero for Configuration A. On the other
hand, some of the packets in transit when rrt is extended
are delivered, and as a result TCP throughput may be non-
zero in some cases, as shown in Figure 7(b). Another aspect
is that, TCP throughput recovers to 10Gbps when the direct
fiber connection is used between the switches, but only peaks
around 9 Gbps when packets are sent via ANUE connection
with zero delay setting as shown in Figure 7(b). Also, the
recovery profiles are different between HP and Cisco switches
in otherwise identical Configurations E and F as shown in
Figure 7(c). Thus, TCP dynamics depend both on the controller
primarily in terms of recovery times, and on the switches
in terms of the peak throughput achieved and its temporal
stability.

We now consider more details of the dpctl and ODL
methods using HP switches with path switching degradation
shown in Figure 7(a) with the primary fiber connection. Here,
the TCP throughput becomes zero and rtt crosses the threshold
immediately following the path switching degradation, and
both controllers respond to the fail-over triggers and switch
the path back to original fiber connection. Since these config-
urations are identical except the controllers, the recovery time
of ODL method is a few seconds slower than dpctl method.
However, the complex dynamics and statistical variations of
TCP profiles make it harder to draw general conclusions
about their comparative performance based on such single
degradation events.
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(b) Configurations A and D

10 20 30 40 50 60 70 80 90 100
1

2

3

4

5

6

7

8

9

10

11

time (sec)

G
bp

s

TCP throughput profiles

 

 

odl−hp−anue
odl−cisco−anue

(c) Configurations D and E

Figure 7. Trace of impulse response of TCP throughput for dpctl method
with local primary path and path switching degradation.

C. Switch Performance

TCP performance is effected by the path traversed by
the packets between the border switches, in addition to its
dependence on dpctl and ODL methods as described in the
previous section (Figure 7(b)), thereby indicating the effects
of the connection modality on client-server performance. In
configurations A and B, the primary connection is few me-
ters of fiber between the switches, and TCP throughput is
restored to around 10 Gbps after the fail-over as shown in
Figure 7(a). In Configurations D and E, the packets are sent

through the emulated connection, which consists of long-haul
Force10 E300 switch and OC192 ANUE emulator with the
peak capacity of 9.6 Gbps. In this case, both peak value and
the dynamics of TCP throughput are effected as shown in
Figure 7(b); as expected, the peak is below 9.6 Gbps but there
are significant variations in the throughput. Furthermore, the
connection modality effects HP and Cisco switches differently
as shown in Figure 7(c) in that the latter reached somewhat
lower peak throughput and exhibited larger fluctuations 5.

Although we focussed on TCP throughput measurements
in this section, the overall approach is applicable to other
performance parameters such as latency in reporting sensor
measurements, response times of remote control operations,
and loss of quality in voice and video transmissions. In
general, we consider that the chosen performance parameter
degrades when the current connection properties degrade, and
it recovers when stand-by connection is restored. This overall
characterization is used to develop a method to systematically
compare the measurements under different configurations.

V. IMPULSE RESPONSE METHOD

We present the impulse response method in this section
that captures the overall recovery response by “aggregating”
generic (scalar) performance measurements (such as TCP
throughput as in previous section) collected in response to
periodic connection degradations. It enables us to objectively
compare the performances of different methods and devices
by extracting the overall trends from measurement traces of
multiple fail-over events. While our discussion is centered
around TCP measurements described in the previous section,
the overall approach is more generically applicable for compar-
ing configurations with different controllers and switches, and
it is particularly useful when the recovery throughput traces
are not amenable to simple, direct comparisons.

A. Response Regression Function
A configuration X that implements the fail-over is specified

by its SDN controller and switches that implement the fail-
over, and also the monitoring and detection modules that
trigger it. Let δ(t − iT ), i = 0, 1, . . . , n denote the input
impulse train that degrades the connection at times iT + TD,
where t represents time, T is the period between degradations
and TD < T is the time of degradation event within the period.
Let TX(t) denote the parameter of interest at time t, such
as TCP throughput, as shown in Figure 6 for configurations
X=A,D,E. Let RX(t) = B − TX(t) denote the response
that captures the “unrealized” or “unused” portion of the peak
performance level B. For example, over a connection with
capacity B it is the residual bandwidth at time t above TCP
throughput TX(t); it is close to zero when throughput is close
to the peak and it is close to B during the fail-over period when
throughput is close to zero. We define the impulse response
function RX(t) such that

RXi (t) = RX(t− iT ), t ∈ [0, T )

is the response to ith degradation event δ(t − iT ), for i =
0, 1, . . . , n. An ideal impulse response function is also an

5No connection-specific TCP optimizations are performed in these tests,
and it is quite possible that different optimizations may be needed to achieve
comparable throughput in these two configurations.
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Figure 8. Examples of impulse response functions for Configurations A-E
for a single path degradation.

impulse train that matches the input, wherein each impulse rep-
resents the instantaneous degradation detection, fail-over and
complete recovery the parameter. But in practice, each RXi (t)
is a “flattened” impulse function whose shape is indicative of
the effectiveness of the fail-over. In particular, its leading edge
represents the effect of degradation and its trailing edge repre-
sents the recovery, and the narrower this function is the quicker
is the recovery. Examples of RX1 (.) are shown Figure 8 for
configurations A-E; these TCP measurements show significant
temporal variations that persist across the different degradation
events, which make it difficult to objectively compare these
single-event time plots. In general, such variations are to be
expected in other performance parameters such as latency and
response time associated with sensor and control applications.
Nevertheless, certain general trends seem apparent such as the
faster TCP response of the dpctl method compared to the ODL
method.

We define the response regression of configuration X as

R̄X(t) = E
[
RXi (t)

]
=

∫
RXi (t)dPRX

i (t),

for t ∈ [0, ), where the underlying distribution PRX
i (t) is

quite complex in general since it depends on the dynamics
of controllers, switches, end hosts, application stack and mon-
itoring and detection modules that constitute X . It exhibits
an overall decreasing profile for t ∈ [0, TD + TI ] followed
by an increasing profile for t ∈ (TD + TI , T ], where TI is
the time needed for the application to react to connection
degradation. After the fail-over, TCP measurements exhibit an
overall increasing throughput until it reaches its peak as it
recovers after becoming nearly zero following the degradation.
We consider that a similar overall behavior is exhibited by the
general performance parameters of interest.

We define the response mean R̂i(t) of R̄i(t) using the
discrete measurements collected at times t = jδ, j =
0, 1, ..., T/δ, as

R̂X(jδ) =
1

n

n∑
i=1

(
RXi (jδ)

)
which captures the average profile. Examples of R̂Xi (.) for
TCP throughput are shown Figure 9 for different configurations
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Figure 9. Impulse response regressions for n = 10 and T = 50 sec: (a)
top-left: A and C, (b) top-right: A and D, (c) bottom-left: D and E , and (d)

bottom-right: all.
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Figure 10. Comparison of response means of dpctl (configuration A) and
ODL (configuration C) methods using 100 path degradations with T = 50

seconds.
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based on 10 path degradations with T = 50 seconds between
them, which show the following general trends.

• The dpctl method responds seconds faster than ODL
method as indicated by its sharper shape although their
leading edges are aligned as shown in Figure 9(a).

• The connection degradation implemented by the rtt ex-
tension has a delayed effect on reducing the throughput
compared to the path switching degradation method as
indicated by its delayed leading edge in Figure 9(b).

• The dynamic response of regression profiles of HP 5604zl
and Cisco 3064 switches are qualitatively quite similar
as shown in Figure 9(c), but the latter achieved some-
what lower peak throughput overall; note that the larger
throughput variations at individual switching events of the
latter case are “averaged” in these plots.

In view of the faster response of dpctl method, we collected
additional measurements in configurations A and C using
100 path degradations, and the resultant response means are
somewhat smoother compared to 10 degradations as shown in
Figure 10 (a) for both dpctl and ODL methods. Furthermore,
the response mean of ODL method remained consistent with
more measurements, and a histogram of the relative delays of
ODL method compared to dpctl method is plotted in Figure
10(b), and they are in the range of 2-3 seconds in majority of
cases. These measurements clearly show the faster response
of the dpctl method for these scenarios. Such performance is
expected because of its much simpler code and execution path,
both in terms of computation and communication.

In general, dpctl is primarily intended for diagnostic pur-
poses and has not been used for control, and as a result its
performance for the latter has not been investigated much,
in particular, its scalability with respect to the number of
flow entries. We tested the effectiveness of dpctl method with
respect to the number of flow entries used for path switching;
in above tests, for each path fail-over, two flow entries are
used by both dpctl and ODL methods on each border switch.
We increased the number of additional flow entries to 10
and 100 for each fail-over in dpctl method, and the resultant
TCP throughput measurements are shown in Figure 11(a),
along with those of the original ODL method. The impact
of additional flow entries in dpctl method is not apparent
from a visual inspection of these plots, primarily due to TCP
throughput variations. The response means for these cases are
plotted in Figure 11(b) which show no significant differences
due to the additional flow entries. But, they show that the
response of dpctl method is still 2-3 seconds faster than ODL
method on average even with the additional flow entries.

From an engineering perspective, the above performance
comparisons based on the measurements seem intuitively
justified, but the soundness of such conclusions is not that
apparent. In the next section, we provide a statistical justi-
fication for the use of response mean R̂(t) as an estimate
of the response regression R̄(t) by exploiting the underlying
monotonic properties of the performance parameter, namely
its degradation followed by recovery, as illustrated by TCP
throughput measurements. Due to the somewhat technical
nature of the derivations, these details are relegated to separate
next section.

(a) TCP traces

(b) response means

Figure 11. Comparison of response means of dpctl (configuration A) with 10
and 100 additional flows and original ODL (configuration C) methods using

100 path degradations with T = 50 seconds.

B. Finite Sample Statistical Analysis

A generic empirical estimate R̃X(t) of R̄(t) based on
discrete measurements collected at times t = jδ, j =
0, 1, ..., T/δ, is given by

R̃X(jδ) =
1

n

n∑
i=1

[
g
(
RXi (jδ)

)]
for an estimator function g. We consider that the function class
M of R̃X(.) consists of unimodal functions, each of which
consists of degradation and recovery parts when viewed as a
function of time. For ease of notation, we also denote R̃X(.)
by f in this section such that it is composed of a degradation
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function fD and a recovery function fR as follows:

f(Ri(t)) =

{
fD(Ri(t)) if t ∈ [0, TD + TI ]

fR(Ri(t)) if t ∈ (TD + TI , T ]
(1)

where fD ∈ MD and fR ∈ MR correspond to the leading
and trailing edges of the response regression. The expected
error I(f) of the estimator f is given by

I(f) =

∫
[f(t)−RXi (t)]2dPRX

i (t),t

=

∫
[0,TD+TI ]

[fD(t)−RXi (t)]2dPRX
i (t),t

+

∫
(TD+TI ,T ]

[fD(t)−RXi (t)]2dPRX
i (t),t

= ID(fD) + IR(fR).

The best expected estimator f∗ = (f∗D, f
∗
R) ∈ M minimizes

the expected error I(.), that is

I(f∗) = min
f∈M

I(f).

The empirical error of an estimator f is given by

Î(f) =
δ

Tn

n∑
i=1

T/δ∑
j=1

[
f(jδ)−

(
RXi (jδ)

)]2
.

The best empirical estimator f̂ = (f̂D, f̂R) ∈ M minimizes
the empirical error Î(.), that is,

Î(f̂) = min
f∈M

Î(f).

Since the response mean R̂(t) is the mean at each observation
time jδ, it achieves zero mean error, which in turn leads to
zero empirical error, that is, Î

(
R̂
)

= 0; thus, it is a best
empirical estimator. By ignoring the minor variations for the
smaller values of n, we assume that R̂ is composed of a non-
decreasing function R̂D followed by a non-increasing function
R̂R that correspond to decreasing and increasing parts of the
performance parameter (such as TCP throughput), respectively.
This assumption is valid for the response means of dpctl and
ODL methods in Configurations A and C, respectively, shown
in Figure 10. In both cases, the response mean is composed
of an increasing part followed by a decreasing part once the
small variations in the tail of ODL method are ignored.

We will now show that Vapnik-Chervonenkis theory [19]
guarantees that the response mean R̂(t) is a good approxi-
mation of the response regression R̄(t), and furthermore its
performance improves with more measurements from connec-
tion degradation events. Such performance guarantee is a direct
consequence of the monotone nature of the underlying fD
and fR functions. Furthermore, this performance guarantee is
distribution-free, that is, independent of the underlying joint
distributions of controllers and switches, and is valid under
very general conditions [10] on the variations of performance
parameter (such as TCP throughput) measurements. We note
that the underlying distributions could be quite complicated
and generally unknown, since they depend on complex inter-
actions between controller software and switches, which are
individually complex.

We now provide a complete proof of the above performance
result which was briefly outlined in [1]. Let R̂ =

(
R̂D, R̂R

)
such that the estimator is decomposed into two monotone parts,
namely non-decreasing R̂D and non-increasing R̂R such that

Î(R̂) = ÎD(R̂D) + ÎR(R̂R).

We now apply Vapnik-Chervonenkis theory [10] in the fol-
lowing to show that the error of estimator R̂, given by I

(
R̂
)

,
is within ε of the optimal error I(f∗) with a probability that
improves with the number of observations n. More precisely,
we show that the probability

P
{
I
(
R̂
)
− I(f∗) > ε

}
decreases with n independent of other factors related to
controller and switch distributions. We will establish this result
in the following three basic steps. In the first step, we have
the basic inequality

P
{
I
(
R̂
)
− I(f∗) > ε

}
≤ P

{
I
(
R̂D

)
− I(f∗D) > ε/2

}
+P

{
I
(
R̂R

)
− I(f∗R) > ε/2

}
,

which follows from the observation that the negation of the
condition in either right term implies the negation of the con-
dition in left term. Then, by applying the uniform convergence
property of the expected and empirical errors over function
classes MD and MR corresponding to the first and second
terms on the right hand side [10], respectively, we obtain

P
{
I
(
R̂
)
− I(f∗) > ε

}
≤ P

{
max
h∈MD

|ID (h)− ÎD(h)| > ε/4

}
+P

{
max
h∈MR

|IR (h)− ÎR(h)| > ε/4

}
.

Then, by applying the uniform bound ( [20], p. 143) provided
by Vapnik-Chervonenkis theory to both right hand side terms,
we obtain

P
{
I
(
R̂
)
− I(f∗) > ε

}
≤ 16N∞

( ε

2B
,MD

)
ne−ε

2n/(8B)2

+16N∞
( ε

2B
,MR

)
ne−ε

2n/(8B)2

where N∞ (ε,A) is the ε-cover size of function class A
under L∞ norm. Detailed properties of the ε-cover can be
found in [20], and for our purpose, we note that the ε-cover
size is a deterministic quantity that depends entirely on the
function class. Consequently, the above probability bounds are
distribution-free in that they are valid for any joint distribution
of controllers and switches at the sites, since the ε-covers here
depend entirely on the function classes MD and MR.

Then, the monotonicity of functions in MD and MR es-
tablishes that their total variation is upper bounded by B. This
property in turn provides the following upper bound for the ε-
cover sizes of both function classes [20]: for A =MD,MR,
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we have

N∞
( ε

2B
,A
)
< 2

(
4n

ε2

)(1+2B/ε) log2(2ε/B)

.

By using this bound, we obtain

P
{
I
(
R̂i

)
− I(f∗) > ε

}
< 64

(
4n

ε2

)(1+2B/ε) log2(2ε/B)

ne−ε
2n/(8B)2 .

This bound provides qualitative insights into this approach
when “sufficient” number of measurements are available. The
exponential term on the right hand side decays faster in n than
the growth in other terms, and hence for sufficiently large
n it can be made smaller than a given probability α. Thus,
the expected error I(R̂) of the response mean used in the
previous section is within ε of the optimal error I(f∗) with
a probability that increases with the number of observations,
and is independent of the underlying distributions. An indirect
evidence of this artifact is noticed in the increased stability of
the response mean as we increase the number of connection
degradation events from 10 to 100 in Figures 9(a) and 10,
respectively.

The above probability estimates are not necessarily very
tight in part due to the distribution-free nature of the per-
formance guarantee. Nevertheless, this analysis provides a
sound statistical basis for using the response mean R̂ as an
approximation to the underlying response regression R̄ for
comparing different controllers and configurations.

VI. CONCLUSIONS

We considered scenarios with two sites connected over
a dedicated, long-haul connection, which must fail-over to a
standby connection upon degradations that affect the host-to-
host application performance. Current solutions require sig-
nificant customizations due to the vendor-specific software
of network devices and applications, which often have to be
repeated with upgrades and changes. Our objective is to exploit
the recent network virtualization technologies to develop faster
and more flexible software fail-over solutions. The presence
of a single long-haul connection and application-level triggers
in these scenarios necessitate a solution that is different from
usual single controller methods commonly used in many SDN
solutions.

We first presented a light-weight method that utilizes host
scripts to monitor the connection rtt and dpctl API to imple-
ment the fail-over. We then presented a second method using
two OpenDaylight (ODL) controllers and REST interfaces.
We performed experiments using a testbed consisting of HP
and Cisco switches connected over long-haul connections
emulated in hardware by ANUE devices. They show that both
methods restore TCP throughput, but their comparison was
complicated by the restoration dynamics of TCP throughput
which contained significant statistical variations. To account
for them, we developed the impulse-response method based
on statistical finite-sample theory to estimate the response
regressions. It enabled us to compare these methods under
different configurations, and conclude that on the average the
dpctl method restores TCP throughput several seconds faster
than the ODL method.

It would be of future interest to generalize the proposed
methods to trigger fail-overs based on parameters of more
complex client-server applications that utilize TCP for reliable
delivery. The performance analysis of such methods will likely
be much more complicated since the application dynamics may
be modulated by the already complicated TCP recovery dy-
namics. Our test results are based on using CUBIC congestion
control mechanism [18] which is the default on Linux systems,
and it would of future interest to test the performance of other
congestion control mechanisms, including high-performance
versions for long-haul [21] and satellite [22] connections.

Currently there seems to be an explosive growth in the
variety of SDN controllers including open source products,
such as Helium, Lithium and Beryllium versions of ODL,
Floodlight [23], ONOS [24] Ryu [25] and others, and also
vendor specific products and adaptations. Furthermore, there
is a wide variety of implementations of OpenFlow standards
by switch vendors, ranging from building additional software
layers on existing products to developing completely native
implementations. It would be of future interest to develop
general performance analysis methods that enable us to com-
pare various SDN solutions (that comprise of controllers,
switches, docker containers and application modules) for more
complex scenarios such as data centers and cloud services
distributed across wide-area networks. In particular, it would
be of interest to develop methods that directly estimate the
performance differences between different configurations from
measurements using methods such as the differential regression
method [26].

It would be of future interest to generalize the approach
of this paper to develop a baseline test harness wherein a
controller or a switch can be plugged into a known, fixed
configuration. The general approach is to develop canonical
configurations each with fixed components of the harness, such
as application trigger modules, physical network connections
and others. Then, impulses responses of different controllers,
switches or other SDN components can be generated in these
configurations, and they can be objectively compared to assess
their relative performance.
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Abstract—Due to the scale and dynamism of cloud computing,
there is a need for new tools and techniques for its management.
This paper proposes an approach to quantitative modelling of
cloud components’ behaviour, using double weighted Directed
Acyclic Multigraphs (DAM) through the different abstraction
levels of components. With this formalism, it is possible to analyse
load propagation and its effects on the cloud elements from an
Anything as a Service (xAAS) perspective. Such model enables
the comparison, analysis and simulation of clouds, which assist
the cloud management with the evaluation of modifications in
the cloud structure and configuration. The existing solutions
either do not have mathematical background, which hinders
the comparison and production of structural variations in cloud
models, or have the mathematical background, but are limited
to a specific area (e.g., energy-efficiency), which does not provide
support to the dynamic nature of clouds and to the different needs
of the managers. In contrast, our model has a formal math-
ematical background and is generic. Furthermore, we present
formalisms and algorithms that support the load propagation
and the metrics of services, systems, third-parties providers and
resources, such as: computing, storage and networking. To demon-
strate the applicability of our solution, we have implemented a
software framework for modelling Infrastructure as a Service,
and conducted numerical experiments with hypothetical loads
and behaviours.

Keywords-Autonomic Cloud Computing; Cloud Computing
Management; Simulation; Multigraph.

I. INTRODUCTION
The management of pooled resources according to high-

level policies is a central requirement of the as a service
model, as fostered by Cloud Computing (CC). The two major
functions in CC management, planning and decision making,
are challenging and are still an open issues in the field. In our
previous work [1], we have presented a formal model, based
on Direct Acyclic Multigraphs (DAM) [2], to model the cloud
elements’ behaviour regarding loads and evaluations. This
formal model intents to reduce the gap between Autonomic
CC [3], [4] management and well-established approaches in
decision theory [5] and managerial science [6]. In this regard,
was presented a managed elements model which make easier
the inference of states, actions and consequences. These states,
actions and consequences are the bases for planning models
and the core of our proposal to fulfil the lack between CC and
decision methods. This lack of formal models is highlighted
by our previous efforts to develop methods for CC autonomic
management: [4][7][8] and formalisms based on Service Level
Agreement (SLA) [9].

Currently, the existing solutions which provide CC models

can be classified into two main groups: general models, usually
represented by simulators; and specific models, devised for
a particular field (e.g., energy saving). The former lacks
a mathematical formalisation that enables comparisons with
variations on the modellings. The latter usually have the formal
mathematical background but, since they are specific, they do
not support reasoning on different management criteria and
encompass only cloud elements related to the target area.

The main obstacle to establish formal general models is
to express the conversion of loads from abstract elements
(i.e., services or systems) to their concrete components (i.e.,
physical machines or third-party services). However, such
model is mandatory to simulate and analyse qualitatively and
quantitatively the CC elements’ behaviour, which facilitate the
evaluation of managerial decisions, especially if the model
deals with abstraction and composition of these elements.
The need of this model do express managerial knowledge
increases as concept of CC moves away from the concept
of infrastructure and Anything as a Service (xAAS) providers
build high level cloud structures. To address this gap in the
literature, we analyse the domain elements and characteristics
to propose the Cloud Computing Load Propagation (C2LP)
graph-based model, which is a formal schema to express the
load flow through the cloud computing components, and the
load’s impact on them. This schema is required because the
system analysis is performed in design time and focus on the
behaviour of data when passing through the cloud structures,
however, the cloud management requires a view about the
behaviour of the structures when the loads are passing through
them, in runtime. Therefore, we define a load as the type and
amount of effort to process services’ requests in systems or
resources.

For example, the (C2LP) model enables the comparison of
different cloud structures, the distinction of load bottlenecks,
the expression of conversion of loads units (change in type)
between elements, the quantitative analysis of the load prop-
agation and the evaluation of the effects of processing a load
on the cloud structure. In more general terms, such solution
unifies heterogeneous abstraction levels of managed elements
into a single model and can assist the decision-making tasks
in processes, such as: load balance, resource allocation, scale
up/down and migrations. Moreover, simulations performed
using our model can be useful to predict the consequences
of managerial decisions and external events, as well as the
evolution of baseline behaviour, in several abstraction levels.

More specifically, we model the basic components of CC:
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(i) services; (ii) systems; (iii) resources, in which systems are
deployed, that can be computing, storage and networking; and
(iv) third-party clouds that deploy services. This taxonomy per-
mits putting together, based on Directed Acyclic Multigraphs,
the CC elements on different abstraction levels. It enables
the manager to access consolidated graph analytical tools
to, e.g., measure the components interdependencies, which is
used to improve the availability and resource allocation. In
order to demonstrate the applicability and advantages of the
C2LPmodel, we present a use case where our model is used
to compare and evaluate different managerial configurations
over several quantitative behaviour in load propagation and
evaluation.

This article is organised as follows. Section II discusses the
existing cloud models, the works that inspired the definition
of this model and the background information necessary for
the appreciation of this work. In Section III, we present an
overview of the model, formalise it, the propagation algorithm,
and the evaluation process. Section IV describes the implemen-
tation and the analysis performed on a use case. Finally, in
Section V, we discuss the limitations and the future directions
for the research.

II. RELATED WORK
This section presents the related works that propose models

to describe and simulate clouds. We have analysed them from
a cloud provider management perspective, considering their
capacity to: express general cloud models, define components
of the managed cloud instance; compare structures; simulate
behaviours and provide formal specifications with mathemati-
cal background. Table I summarises model’s comparisons and
the discussion about the survey is presented as follows.

We grouped the proposals into two classes: general and
specific. General models, such as CloudSim [10], GreenCloud
[12], iCanCloud [14], EMUSIM [15] and MDCSim [17], are
usually associated with simulators and used to evaluate several
criteria at the same time. On the other hand, specific models are
commonly associated with particular criterion evaluation, such
as performance [18], security [20][21], accounting [22][23] or
energy [24].

CloudSim [10] was originally built on top of GridSim
[11] and focus on modelling data centres. Its framework is
Java based and loads are modelled through a class called
“CloudLet”, or an extension of it. Depiste its popularity,
CloudSim does not have a strong mathematical background.
This lack of formalism hinders the investigation of data cross-
ing between states and configuration parameter, which limit
the exploration of the cloud behaviours. Furthermore, the core
classes of CloudSim model data centre elements as: physical
machines, virtual machines (VMs), networks and storages; and
requires customisations to deal with more abstract elements,
e.g., services. Finally, also the comparison of simulation struc-
tures is not straightforward with CloudSim.

Kliazovich et al. in [12] presented GreenCloud, an exten-
sion of the network simulator NS2 [13] that offers a fine-
grained modelling of the energy consumed by the elements
of the data centre, such as servers, switches, and links. Green-
Cloud is a programmatic framework based in C++ and TCL
scripts that, despite having the statistic background of NS2,
does not have itself an underlying mathematical formalism.
It also focuses on the data centres view and need extensions
to consider abstract elements as services and systems. Even

though the authors provided a comparison between data centre
architecture in [12], the model does not favor the comparison
of simulation structures.

The simulator iCanCloud, presented in [14], is also a gen-
eral data centre simulation tool. Based in C++, it has classes
as “Hypervisor”, “Scheduler” and “VM” in the core class
structure, which demonstrates its high level of coupling with
infrastructure. Although the authors proposed iCanCloud as
“targeted to conduct large experiments”, it does not offer native
support to compare structural changes between simulations. As
the other general simulator, iCanCloud lacks of mathematical
formalisms.

EMUSIM [15] is an emulator and simulator that enables the
extraction of information from the application behaviour – via
emulation – and uses the information to generate a simulation
model. The EMUSIM has been built on top of two frameworks:
Automated Emulation Framework (AEF) [16] (an emulation
testbed for grid applications) and CloudSim [10]. The objective
of EMUSIM understand application’ behaviour profiles, to
produce more accurate simulations and, consequently, to adapt
the Quality of Service (QoS) and the budget required for
hosting the application in the Cloud. Although EMUSIM
partially addresses the lack of capacity to model application
of CloudSim, adding higher level modelling layer, it still lacks
mathematical formalisms as well as the support to compare
simulation structures.

Finally, MDCSim presents a multi-tier data centre sim-
ulation platform. However, this multi-tier modelling works
with concrete elements, in resource level, as a front-end
tier/web server, a mid tier/application server, and a back-
end tier/database server. The MDCSim also works with some
metrics in a higher abstraction level on specific Java elements
as EJBs and Tomcat. This approach still lacks a representation
for abstract elements, such as services and systems, where
metrics and parameters are related to groups of elements (e.g.,
availability of a service depending on several elements).

Overall, works proposing general models are data centre fo-
cused and have evolved from Grid Computing, which may hin-
ders their usage on service orchestration level and with third-
parties cloud infrastructures, where data centre concepts are
not applicable. Designers of autonomic management methods
require the generation of cloud architectures and behaviours in
a combinatorial fashion, in order to test plans, decisions and
consequences on a wide number cloud architectures, features
that not supported in these models.

In the second group of proposals, that is, frameworks
devised for a specific area, in-depth analysis based on robust
formalisms are usually provided, such as queue theory [24]
[18], probability [20], fuzzy uncertainty [23] and heuristics
[22]. However, their models do not fit well in integrated
management methods that intend to find optimal configurations
considering several criteria of distinct types. Moreover, specific
optimisation models are usually sensible to structural changes,
having no robustness to support the dynamic nature of the
clouds.

Vilaplana et al. in [18] presented a queue theoretic mod-
elling for performance optimisation for scale CC. The model
has a strong mathematical background and is able to evaluate
jobs and VM scheduling policies using simulations. Never-
theless, this optimisation is dependent on strong assumptions,
i.e., that the back-end tier is modelled as an Open Jackson
network [19]. The model is focused on evaluation and it is
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only partially capable of performing simulation. In fact, in
the paper the authors employed CloudSim to implement the
simulations used in the experiments.

In [20], Silva et al. proposed a model, based on equations
to quantify the degree of exposure to risk, deficiency in risk
modelling, and impact on an information asset. The model is
used to evaluate cloud service providers and has a mathemat-
ical background. Although in our previous work [1] we have
considered that the ability to generate hypothetical scenarios
and evaluate them as a “simulation” feature, we reconsidered
and redefined it as “feature not supported” since the model
does not support runtime simulations.

Nesmachnow et al. in [22] introduced a broker that resells
reserved VMs in IaaS providers as on-demand VMs for the
customers. The authors presented a specific model to deal with
the Virtual Machine Planning Problem, which was defined
as an optimisation problem that maximises the profit of the
broker. This problem is mathematically well formed as well
as the model that supports the broker representation and the
static components. We consider the experiments presented in
the paper as simulations that were performed using real data
gathered from public reports. However, we considered the
simulation feature only as partially covered since the work
does not enable runtime simulations.

Decision models for service admission are presented in
[23], all with mathematical background and covering fuzzy
uncertainty. The proposed models are specific for admission
control and explicitly used to perform simulations. On the
other hand, the resource types used to model different elements
in the cloud (e.g., CPU, storage) do not cover the concept
of “component”. In fact, the model considers the existence
of resources, from which services depend, but it just models
classes of resources and their economical behaviour related
to service admission. Thus, we consider the concept feature
“component” only partially covered. Also, the models pre-
sented can be compared with respect to revenue and service
request acceptance rate, but the general structure of the models
lacks comparison parameters.

In [24] an energy-saving task scheduling algorithm is
presented, based on the vacation queueing model. The mod-
elling is specific for task scheduling and energy consumption
optimisation. The work has a strong mathematical background
which enables the comparison of results, but does not have
ability to compare the model structure, resulting in a partial
coverage for “comparison” criterion. The evaluation of energy
consumption in nodes motivated us to define the feature
“components” as covered. Finally, the criterion “simulation”
was reviewed from the previous analysis in [1] and we consider
the model’s characterisation as covered since the authors used
discrete event simulation tool in Matlab, that is equivalent to
runtime-like simulators as the CloudSim.

The comparison between the related works is presented
schematically in Table I, where: the column “Class” specifies
if a work is general or specific; “Formalism” evaluates the
mathematical background that supports the models; the column
“Components” presents the capacity of a model to express
cloud components; the ability to compare structures is depicted
in the column “Comparison”; and, “Simulation” expresses the
capacity to perform simulations using the models.

Considering the gap in the existing cloud modelling tech-
niques, our proposal intents to model the load propagation
and evaluation functions over a graph to obtain expressiveness,

TABLE I: COMPARISON BETWEEN RELATED MODELS. �
REPRESENTS A FEATURE COVERED, � A PARTIALLY COVERED

ONE AND - WHEN THE FEATURE IS NOT SUPPORTED.

Model Class Formalism Components Comparison Simulation
CloudSim [10] General - � - �

GreenCloud [12] General - � - �
iCanCloud [14] General - � - �
EMUSIM [15] General - � - �
MDCSim [17] General - � - �

Chang[24] Specific � � � �
Püschel [23] Specific � � � �

Nesmachnow [22] Specific � � � �
Silva [20] Specific � � � -

Vilaplana [18] Specific � � � �
C2LP General � � � �

whilst keeping the mathematical background and components’
details. We opt to model the “load flow” because it is one
of the most important information for managerial decisions,
such as: load balance, resource allocation, scale up/down and
migrations.

III. MODELLING LOAD FLOW IN CLOUDS
In this section we discuss the main components of cloud

structures and propose a formal model based on a directed
acyclic multigraph to represent the load flow in clouds. In
the Subsection III-A we present the concept of load and its
importance for cloud management, as well as, its representa-
tion in different abstraction levels. Subsection III-B presents
the structural model and its main components. In Subsection
III-C, we formally define the data structures to represent
loads, configurations, states and functions. Finally, Subsection
III-D discusses the computational details of the propagation
of the loads and the evaluation of the states for each cloud
component.

A. Loads and Abstraction Levels
The concept of load is central in CC management literature

and it is related to the qualitative and quantitative effort that
an element requires to perform a task. However, in CC, it
is necessary to manage components related to processing,
networking, storage and complex systems, in several abstrac-
tion levels. Materially, the loads and the consumers’ data that
must be transformed, transported and persisted are the same
thing. Nevertheless, the system analysts are focused on the
behaviour of data through the cloud structures, whereas the
cloud manager must pay attention to the behaviour of cloud
structures when the data is passing through them.

In a view based on data centre elements, the loads are
traditionally mapped to metrics of processing, networking and
storing. This concrete view is not complete for CC since the
providers can work with elements in other levels of abstraction.
Providers in a xAAS fashion can have any type of elements
in their structures which must be modelled – from physical
resources, till only third-party services as resources of an
orchestration system. This heterogeneity in the abstraction
levels of managed cloud elements, and their compositional
nature (or fractal nature), produces the need to model the load
propagation through the abstraction levels.

This load propagation through the technology stack is
fundamental to understand how the abstract loads on services’
interfaces become concrete loads in the resources. For ex-
ample, supposing a photography storage service with mobile
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and web interfaces, the upload of an array of photos can
represent a load in the server-side interface (expressed in
number of photos), whereas, the same load must be expressed
in several loads on (virtual) links, (virtual) processors, and
(virtual) storages, not necessarily related to time. In fact, the
upload of an array of photos is an abstract load and can be an
useful to perform billing metrics, but it can be not useful to
measure performance, requiring the detailing to concrete loads,
according to the cloud’s service implementation. An autonomic
manager agent, responsible for planning and decision making
in runtime, must understand the quantitative relations into the
managed cloud structure to work in real time.

Thus, using a graph to express the dependences between
elements in different levels, the abstracter elements (services’
interface) must appear in the roots of the graph, the con-
creter elements (resources) must appear in the leaves, whereas
the intermediary elements (systems) orchestrate resources in
order to implement the services. These concepts of services
interfaces, systems and resources become relative terms which
can adapted for any cloud implementation, independent of
absolute level of operation regards to the IaaS, PaaS and SaaS
taxonomy.

B. Modelling Clouds with C2LP
In C2LP, the structural arrangement of cloud elements

is based in a directed acyclic multigraph (DAM) where the
nodes of the graph represent components. To start a horizontal
decomposition must be considered the four main types for CC
elements:
• Resources are the base of any cloud, and can be clas-

sified in three elementary computational function: as
Computing, Storage and Networking; Therefore, these
components are always leaf nodes, even when virtualized
or based on service orchestration (e.g., a storage block
device built on email accounts). The elements with these
computational functions constitute the sources of comput-
ing power into a cloud. The term “computing power” is
used here not only for processing, but also for networking
and storage, since the CC paradigm effectively offer these
last as services, exposing their economical value.

• Systems are abstractions of orchestrated resources that
implement services. They can be, e.g., applications and
platforms. In the model, systems must be directly linked
to at least one of each type of resource: computing, stor-
age and networking. Nevertheless, these resources might
be replaced by other systems or third-party services. In
such cases, the relationship between the system and the
element that represents the resource (e.g., another system
or the third-party service) must be explicitly defined
using stereotypes (virtual computing, virtual networking
or virtual storage).

• Third-Party Services represent: (i) resources to system
components, when the relation is explicitly annotated with
the appropriated stereotype, and (ii) entire systems which
provide services and abstract the underlying layers (e.g.,
email services). The latter models, for example, hybrid
clouds or composed services.

• Services are interfaces between the cloud and the con-
sumers. They must be connected with a respective system
that implement them and never are directly linked to
resource or third-party services. Services interfaces are
the points on which the specification of the consumer’s

needs (SLAs) are attached. In your model the services
interfaces can receive loads from a hypothetical common
source (*), that symbolizes the consumer.

Directed edges define to which elements each cloud com-
ponent can transmit load. Nodes have two main processes:
propagation of the load; and evaluation of the impact of the
load in the node itself. Remarkably, the resources components
do not propagate load and are the only nodes that actually
run the assigned load, while other elements are abstract (e.g.,
applications, middlewares, platforms and operations systems).
Moreover, we consider in the model also the configurations
settings of nodes, which impact the propagation and evaluation
processes.

Providers offers services and receive requests from con-
sumers. These request represent an economical demand by
work, which in providers’ assets represent workloads, or just:
loads. The loads vary according to each cloud component and
are changing in quality and quantity along the computing chain
that compose the providers’ assets. Therefore, each node in the
DAM represents a function that convert the input load to output
load, from the services (sources) to the resources (sinks). In the
resources occurs the work, realizing the load and consuming
computing power.

In fact, just low abstraction loads would need to be
represented in the model, e.g., supposing an IaaS provider:
link, processor and storage. However, the patterns of be-
haviour in low level loads become chaotic and unmanageable
without information about the abstract component that guide
the resources usage. Therefore, distributing load propagation
functions over a graph is a simple way to represent complex
function compositions on a conceptual network. Assuming
that the loads flow from the sources (services) to the sinks
(resources), and a node must have all incoming loads available
to compute the outgoing loads, the propagation must be made
in a breadth-first fashion.

Since loads might have different forms, we model these
relations enabling multiple edges between nodes, which sim-
plifies the understanding of the model. For example, a ser-
vice transmits 10 giga FLoating-point Operations Per Second
(FLOPS) and 100 giga bytes of data to third-party service.
This case is modelled using two edges, one for each type of
load to the third-party. In case of change in the structure (e.g.,
the executor of the loads finds a cheaper storage provider)
the model can be adjusted simply by removing the storage
edge between these nodes and adding it to this new third-party
provider.

When the loads are realized in the resources, they produce
several effects which can be measured by the monitoring. For
example: resource usage, energy consumption, fails, costs, etc.
The modelling of qualitative and quantitative relations between
loads and their effects over the resource is a mandatory task
to enable managerial planning and decision making. Neverthe-
less, measurable effects in resources can also signify metrics in
system and services. For example, the sum of energy consumed
in the processors, network and storage, in order to download
a photo of 10GB, means the amount of energy consume do
resolve a load of type “download photo” of size “10GB”, in
service level.

However, is not only the loads which determine the
behaviours of the resources, but also the configuration
parametrized by the cloud manager, and the accumulated ef-



87

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fects from previous loads. On the other hand, non-leaf elements
– which the evaluations depend of lower level elements – must
consider: incoming loads, the accumulated state (a priori) and
the state of lower elements (target nodes). This is represented
in the model as distinct evaluation functions. In the C2LP were
modelled a set of evaluated functions for leaf nodes, with two
inputs, and a set for non-leaf nodes, with three inputs. The both
type of functions output a new node state which can contain
several sub-evaluations (measures).

The propagation of evaluations is done after the propaga-
tion of loads, from bottom to top. This procedure will provide
the amount of loads in each element of the model. With the
loads and the configurations and accumulated state (a priori
state) in the resources elements, it is possible to compute the
new configurations and accumulated state (the a posteriori
state). So, in the non-leaf nodes it is possible to compute
the a posteriori state with its the a priori state and the a
posteriori states of its dependencies (lower level elements). To
perform the evaluation of whole graph, from the root nodes,
it is necessary to perform a depth-first computing though the
graph.

Figure 1 presents the modelling of a scenario, in which a
cloud provides two services: an email and Infrastructure-as-a-
Service (IaaS). The IaaS is provided by a third-party cloud.
The email service instead, employs a system component to
represent a software email server (in this case a Postfix). This
component uses local computing and networking and storage
from a third-party cloud. The relation (edge) between these
components is annotated accordingly.

In the proposed scenario, we exemplify the load propaga-
tion with a request from consumers to send 2 new emails using
the email service. These 2 emails are converted by the service
component into 2 loads of type “transaction” and sent for the
email server where they are converted into another types of
load and propagated to the resources linked to the server.

The evaluation process of this scenario uses different
metrics in each node and is marked as “eval:“. For example, in
the service level, the load of 2 emails was measured in terms
financial cost and energy necessary to complete the request.

C. Formalisation of the Model
Formally, in C2LP model, a cloud C can be expressed as

C = (V,E, τV , σ,Φ, φ,Γ, γ,Γ′, γ′), where:
• V is the set of nodes V = {v1, v2, . . . , vn} of the

multigraph, such that every item in V represents one
element of the cloud and has one respective node-weight
wv , that usually is a vector of values;

• E is the set of directed edges where E =
{e1, e2, . . . , em}|e = (v, v′), that describes the ability of
a source node v to transmit a load to node v′, such that
each em also has a respective edge-weight wv,v′ ;

• τV : V → TV is a bijective function which
maps the nodes with the respective type, where
the set TV is the set of types of nodes, such
that TV = {′computing′, ′storage′, ′networking′,
′system′, ′service′, ′third party′};

• σ : E{→system,→third−party} → {none, vComputing,
vStorage, vNetworking} is a function which maps the
edges that have systems and third-party services as target
with the respective stereotype, characterising the relation
between the source element with the target;

• Φ represents the set of propagation functions, where

NetworkingComputing

Third-party
IaaS

Consumers

Email
Service

Postfix
Server

Third-party

Cloud

load: 2 New Emails

load: 2 Transactions

load: 1 gFLOP

 load: 2.5mbload: 20 kb

<v-Storage>

eval:
(2 kw,10 sec)

eval:
(0.3 Euros)

eval:
(1 kw)

eval:
 (3 kw, 0.8 Euros)

eval: 
 (3 kw, 0.8 Euros)

load: 2 mb

IaaS

Figure 1: Example of the propagation of loads and the evaluation
processes using the C2LP model.

Φ = {f1, f2, . . . , fv} and φ is a bijective function
φ : V → Φ that maps each node for the respective
propagation function. Each function in the set Φ is defined
as fv : Nn,Ri → Ro, where: the set Nn represents
the space where the n-tuple for the configuration is
contained; the set Ri represents the space where the n-
tuple of incoming edge-weights is contained; and, Ro is
the space where the n-tuple of the outgoing edge-weights
is contained. To simplify the model and the algorithms,
we consider that configurations are stored in the node-
weight, such that wconf

v represents the configuration part
of the node-weight vector.

• Γ is the set of sets that contains the evaluation functions
for the leaf nodes, such that there exists one function
for each distinct evaluation metric (e.g., energy use,
CO2 emission, . . . ). Then, Γ = {Γ1,Γ2, . . .Γk}, such
that Γk = {gn+1, gn+2, . . . , gm}. Each set Γk is re-
lated to a leaf node v ∈ V[leaf ] through the bijective
function γ : V[leaf ] → Γ. Every gn+m is stored in
a distinct position of the node-weight vector of the
respective node – representing a partial state of v –
such that the full new state can be computed through
the expression: w′v = (c1, . . . , cn, gn+1(c1, . . . , cn, w

i
v),

gn+2(c1, . . . , cn, w
i
v), . . . , gn+m(c1, . . . , cn, w

i
v)), where:

c1, . . . , cn is the n-tuple with the configuration part of
the node-weight wv; wi

v is the n-tuple with all incoming
edge-weights w∗,v of v; and w′v is the new node-weight
(full state) for v. The complete evaluation procedure is
detailed in Figure 6;

• Γ′ is the set of sets that holds the evaluation functions
for non-leaf nodes. Therefore, Γ′ = {Γ′1,Γ′2, . . . ,Γ′l},
such that each set Γ′l = {g′n+1, g

′
n+2, . . . , g

′
m} con-

tains the evaluation functions g′n+m. Every Γ′l is as-
sociated with a non-leaf node v through the bijective
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edge-weight edge-weight edge-weight edge-weight

(node-weight)

f(...)

edge-weight edge-weight edge-weight edge-weight

Figure 2: Illustration of load propagation in root or non-leaf nodes.

function γ′ : Vnon−leaf → Γ′. Since the result of
each function g′n+m is stored in a distinct position
of w′v , it represents a partial state of the respective
node v. A new full state of non-leaf nodes can be
computed through the expression: w′v = (c1, . . . , cn,
g′n+1(c1, . . . , cn, w

i
v, w

′
uv

), g′n+2(c1, . . . , cn, w
i
v, w

′
uv

),
. . . , g′n+m(c1, . . . , cn, w

i
v, w

′
uv

)); where w′v is the new
node-weight of v, c1, . . . , cn is the n-tuple with the
configuration part wconf

v of the node-weight, wi
v is the

n-tuple with the incoming edge-weights e∗,v of v, and
w′uv

is a tuple which puts together all node-weights of
the successors of v (see Figure 6 for details).

The main objective of these formalisms is to specify
the data structures that support a model validation, the load
propagation, and elements evaluations. The details of each
procedure concerned with propagation and evaluations are
described in Subsection III-D.

D. Details on the Propagation and Evaluation
The load propagation consists in a top-down process that

uses the breadth-first approach. In a breadth-first algorithm,
all the incoming loads are available for a node before the
inference of its outgoing loads. In the specific case on C2LP
the algorithm starts from the loads on the services, correspond-
ing to the requests received from consumers. The Figure 2
illustrates the load propagation. The blue oblong represents a
non-leaf element that has incoming edges, which the weights
represent incoming loads. Alto, there is the node-weight that
represents the a priori state, that contains the configurations
and accumulated states. Both, the incoming loads and node-
weight, are used as inputs for the node attached propagation
function f(...), that produces a tuple with the output edge-
weights.

The propagation process uses a queue with the service
nodes (the roots of the graph). Then, a node v is picked
from this queue and all its children are placed into the queue.
Afterwards, a function fv = φ(v) is executed to distribute the
load, that is, to define all edge-weights for the outgoing edges
of v. This procedure is repeated while the queue is not empty.

1: procedure BREADHTFIRSTPROPAGATION(C,WV ,WE) .
Requires a cloud model C = (V,E, τV , σ,Φ, φ), the
set of node-weights WV |∀v ∈ V ∧ ∃!wv ∈ WV and
the set of edge-weights WE |∀ev,v′ ∈ E ∧ ∃!wv,v′ ∈
WE .

2: queue← ∅
3: enqueue(∗)
4: repeat
5: v ← dequeue()
6: for each u ∈ successorSet(v) do
7: enqueue(u)
8: end for . enqueues the sucessor of each node
9: fv ← φ(v)

10: wconf
v ← configurationPart(wv) . gets the

config. part of the node-weight (state).
11: wi

v ← (w1,v, w2,v, . . . , wu,v) . builds the
incoming edge-weights in a tuple wi

v .
12: wo

v ← fv(wconf
v , wi

v) . wo
v contains the result of

the propagation function.
13: for each wv,u ∈ wo

v do
14: WE ←WE ⊕ wv,u . replaces the old value

of wv,u.
15: end for. assign the values for the outgoing edges

of v.
16: until queue 6= ∅

return WE

17: end procedure

Figure 3: Breadth-first algorithm used for the load propagation.

The well defined method is detailed in Figure 3.
When the load is propagated to resources components (leaf

nodes), they execute the load. This execution requires power
and resources and can be evaluated in several forms. For exam-
ple, energy (kw), performance, availability, accounting, secu-
rity, CO2 emissions and other cloud specific feature units. This
evaluation process takes every function gn+m ∈ Γk in order
and computes each partial states, storing them into a position of
the new node-weight w′v . A finer description can be defined as:
w′v = (wconf

v , gn+1(wconf
v , wi

v), . . . , gn+m(wconf
v , wi

v), such
that w′v represents the a posteriori state for the node v, wconf

v
are the configurations (a priori state) of v, wi

v are the incoming
edge-weights of v, and gn+m ∈ γ(v) are the evaluation
functions associated with the node.

The process of evaluation in leaf nodes is depicted in the
Figure 4, where the pink oblong represents a leaf node. In these
nodes the edge-weights and the a priori node-weight serve as
inputs for each function in the vector of evaluation functions,
which produce a single value each one. These single values are
grouped in a tuple that results in the a posteriori node weight.

The evaluations also include the non-leaf nodes since
the load also passes through them and it is useful, e.g., to
understand the load distribution and to identify bottlenecks.
In the case of non-leaf nodes, the evaluation requires also the
evaluation results of the bottom nodes. Therefore, this process
is performed from the leaves to the roots using a depth-first
approach.

A non-leaf node receives the tuples (config, loads,
children states), and evaluates by the processing
of all g′n+m ∈ γ′(v) functions. A representation
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(node-weight)
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(node-weight')
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Figure 4: Illustration of evaluations in leaf nodes.

of this process can be described as: w′v =
(wconf

v , g′n+1(wconf
v , wi

v, w
′
uv

), . . . , g′n+m(wconf
v , wi

v, w
′
uv

),
such that w′v represents the new node-weight (a posteriori
state) for the node v, wconf

v are the configuration part (a
priori state) of node-weight into v, wi

v represent the incoming
edge-weights of v, w′uv

are the computed node-weights of
the successors of v, and g′n+m ∈ γ′(v) are the evaluation
functions associated with the node.

The evaluation in a non-leaf node is depicted in the Figure
5, where the blue oblong represents a non-leaf. In this figure it
is possible to observe the a posteriori node-weights from the
lower level elements being “transmitted” through the edges.
The proximity of node-weights with edges do not represent the
association between them, but the transmission of one through
the other. Into the node is depicted the vector of evaluation
functions, which will receive: the a priori node-weight of
the node itself and the a posteriori node-weights from the
lower elements; and produce single values which are grouped,
in order to compose a posteriori node-weight tuple for the
node itself. This a posteriori node-weight is propagated for
the upper elements through the edges. The node-weight in the
superior edges have the same value, the computed a posteriori
node-weight, for all edges. Also, the arrows do not represent
the direction of the edges, but the information flow.

The complete evaluation process is detailed in Figure 6,
where a stack is used to perform a depth-first computation.
The first non-visited child of a current node is placed into the
stack and will be used as current node. When all children of a
node are evaluated, then the node is evaluated. If the node is a
leaf node the g functions are used to compute the evaluations,
otherwise, the g′ functions are used instead.

These mathematical structures and algorithms provide a
general framework for modelling and evaluation of clouds’
elements behaviour in different abstraction levels. They can
express and compute how service level loads are decomposed
and converted, through the systems, till become resource level
loads. In resource level, on concrete elements, the loads can
be evaluated according to performance, availability and other
objective metrics. At end, the same structures and algorithms
can be used to compute objective metrics for abstract elements.
The whole model serves to simulate and compare the impact of
configuration’s changes in any point of the cloud, supporting

(node-weight') (node-weight') (node-weight') (node-weight')

(node-weight') (node-weight') (node-weight') (node-weight')

(node-weight')

(node-weight)

(g'(...),...,g'(...))

Figure 5: Illustration of evaluations in non-leaf nodes.

the managerial decision making.

IV. EXPERIMENTS AND RESULTS
This section presents numerical experiments with the C2LP

model, based on a service modelling. These experiments serve
to: (i) test the applicability of the model; (ii) illustrate the
modelling with our formalism with an example; and (iii)
demonstrate the model capacity to generate quantitative be-
haviours to manage loads, combining variations of propagation
and evaluation functions.

To perform these experiments, we have implemented a
use case using our model. This use case exemplifies the
model’s usage and serves to test its feasibility. The example of
model’s usage was made using hypothetical functions, since
its objective is to prove the generation of simulations, the
propagation and the evaluation. Nevertheless, our model can
be used for modelling real-world clouds, provided that the
propagation and evaluation functions are adjusted to the cloud
instance.

As use case, we defined an IaaS service where consumers
perform five operation: deploy VM, undeploy VM, start VM,
stop VM, and execute tasks. To meet the demand for these
services, we designed a hypothetical cloud infrastructure with
which is possible to generate quantitative scenarios of propaga-
tion and evaluation – in a combinatorial fashion. Using this hy-
pothetical infrastructure, we have tested some managerial con-
figurations related to load distribution over the cloud elements,
in order to evaluate the average utility for all quantitative
scenarios. At the end, the configurations which achieve the best
average utility for all quantitative scenarios were highlighted,
depicting the ability of the model to simulate configuration
consequences for the purpose of selecting configurations.

A. Use Case Modelling
To deal with the consumers’ loads (deploy, undeploy,

start, stop and execute) at service abstraction level, the in-
frastructure manages: the service interface; systems, such as
load balancers, cloud managers and cloud platforms; and
resources, such as servers, storages and physical networks.
All operations invoked by consumers represent an incoming
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1: procedure DEPTHFIRSTEVALUATION(C,WV ,WE) .
The same input described in Figure 3.

2: β ← ∅ . initializes the set of visited nodes.
3: stack ← ∅ . initializes the stack.
4: push(∗) . starts from the hypothetical node.
5: while stack 6= ∅ do
6: v ← peek() . gets a node without to remove it.
7: for each u ∈ successorSet(v) do
8: if u /∈ β then
9: push(u)

10: continue while
11: end if
12: end for. if the for loop ends, all successors have

been evaluated.
13: wconf ← configurationPart(wv) . gets the

config. part for v.
14: wi

v ← (w1, w2, . . . , wu,v) . builds the n-tuple
with the incomings of v.

15: if isLeaf(v) then
16: w′v ← (wconf

v , gn+1(wconf
v , wi

v), . . . ,
gn+m(wconf

v , wi
v)),∀gn+m ∈ γ(v)

. computes the partial states and builds
the new node-weight.

17: else
18: w′uv

← (w′u1
, w′u2

, . . . , w′uo
) .

builds the computed node-weights for all
u|∃ev,u ∈ E.

19: w′v ← (wconf
v , g′n+1(wconf

v , wi
v, w

′
uv

), . . . ,
g′n+m(wconf

v , wi
v, w

′
uv

)),∀g′n+m ∈ γ′(v) .
computes the partial states and builds the
new node-weight.

20: end if
21: WV ←WV ⊕ w′v . replaces the old state of v

into the node-weights.
22: if v /∈ β then
23: β ← β ∪ v
24: end if . puts v in the visited set if it is not there.
25: v ← pop() . gets and removes v from the stack.
26: end while

return WV

27: end procedure

Figure 6: Depth-first algorithm to evaluate in specific metrics the
impact of the load in each node.

load on the service interface, which is propagated to resources.
In the resources the loads are evaluated to provide measures
about performance, availability, accounting, security and CO2
emissions. Once computed these measures for resource level
elements it is possible to compute they also for systems and,
at the end, for the service interfaces, getting service level
measures.

The modelling of the use case was devised considering
21 components: 1 service, 9 systems, and 11 resources. The
services represent the interface with customers. In this use
case, the systems are: a load balancer; two cloud manager
systems; and six cloud platforms. Also, between the resources
there are: 8 physical computing servers (6 work servers and 2
managerial), 2 storages (1 work storage and 1 managerial), and
1 physical network. A detailed list of components is presented
in Appendix I.

Regarding the edges and loads, each consumer’s operation

is modelled as an incoming edge in a service interface node
– with the respective loads in the edge-weights. The service
node forwards the loads for a load balancer system, where
the propagation function decides to which cloud manager the
load will be sent, whereas the manager servers, the manager
storage and the physical network receive the loads by its
operation. In the cloud mangers, the propagation function must
decide to which cloud platform the loads will be sent and, at
the same time, generate loads for the managerial resources. The
cloud platform system effectively converts its loads into simple
resource loads when uses the work server, work storage and
physical network. The complete relation of load propagation
paths is presented in Appendix I, where an element at the left
side of an arrow can propagate loads for an element at the right.
Furthermore, a graphical representation of these tables, which
depicts the graph as a whole, is also presented in Appendix I.

Besides the node and the edges, the use case model
required the definition of: • 4 types of propagation functions
– one for the service and tree for each type of system; • 6
types of leaf evaluation functions – two specific performance
evaluations, one for computing resources and another for stor-
age and networking; plus, four common evaluation functions
(availability, accounting, security and CO2 emissions) for each
type of resource; • 5 types of non-leaf evaluations functions.

We have modelled the possible combinations to dis-
tribute the loads {1-deployVM, 2-undeployVM, 3-startVM, 4-
stopVM, 5-compute} as a partition set problem [25], resulting
in 52 distinct possibilities of load propagation. Also, we intro-
duced 2 possible configurations into each evaluation function
for leaf nodes. These configurations are related to the choice
of constants into the function. For example, the performance
of a computing resource depends on its capacity, that can
be: a = 50GFLOPs or b = 70GFLOPs. Considering 5
distinct evaluation functions over 11 leaf nodes, we have got
(25)11 = 255 possible distinct configurations to test.

B. Evaluations
The numerical experiments were performed running the

propagation procedure, followed by the evaluation of every
simulation. For each possible propagation, we tested and
summarised the 255 configurations for evaluation functions.
Then, we analysed the average time (p, in seconds), average
availability (av, in %), average accounting (ac, in currency
units), average security (s, in % of risk of data exposition),
and average of CO2 emissions (c, in grammes). Each value
was normalised according to the average for all propagations,
tested and summarised in a global utility function, described
in (1) – where the overlined variables represent the normalised
values.

Such results can be used by cloud managers to choose
the best scenario according to the priorities of the policy or
to provide as input for a decision-making process, such as
Markov Chains.

u = −(av + s− (p+ ac+ c)) (1)

The four best results of the fifty two numerical experiments
are presented in Table II in ascending order. The configuration
that achieves the best average utility is highlighted in bold. The
code line in the table represents the propagation configuration,
whereas the other lines contain the values obtained for each
distinct evaluation type. The last row present the average utility
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TABLE II: SUMMARY OF AVERAGE EVALUATIONS FOR EACH
CONFIGURATION.

Criteria Configuration
Code 11221 11231 11232 11212
Time 180.59976 180.5999 180.60004 180.59991

Availability 0.9979606 0.99795955 0.9979587 0.99795926
Accounting 78.69924 78.69926 78.699234 78.699265

Security 0.9979606 0.99795955 0.9979587 0.99795926
Emissions 82848.31 82848.14 82848.51 82848.74

Utility 1.0526400204 1.0526410547 1.0526477776 1.0526491889

defined in Equation 1. To represent configuration we have
adopted a set partition notation to express the propagation
paths, such that each position in the code represents a type
of load: 1-deploy, 2-undeploy, 3-start, 4-stop, and 5-compute.
Considering that at leaves of the propagation graph there are
6 cloud platforms, a code 11212 indicates that the loads of
type 1,2 and 4 were allocated on cloud platform 1, whereas
the loads 3 and 5 ware allocated in the cloud platform 2.

These experiments present evidences that our model works
as an engine to simulate and measure the impact of the
propagation of loads through the several elements in the cloud.
With the distribution of simple functions on a graph, we have
demonstrated the capacity to compute a model that is rather
complex,when treated purely with function composition and
arithmetic. These experiments also shows that the metrics of
behaviour can be simulated with the combinatorial representa-
tion of the parameters settings which generated the behaviour.

The breadth-first algorithm ensures that the nodes compute
all loads before estimating their outputs. On the other hand,
the model and the depth-first algorithm ensure that the com-
puted measures generated by the actual resource consumption,
which occurs in the leaves of the modelled cloud, can be
composed. The loads are converted into different types (and
units), according to the elements and specified functions. Also,
the adjusts in the parameters in the node-weight allow the
testing of several computed loads and measures, in different
configuration scenarios. These parameters can be treated with
combinatorics instead of programmatic simulators, since the
total set of possible configurations becomes a well defined
combinatorial problem.

V. CONCLUSION AND FUTURE WORKS
Several solutions have been proposed to model clouds.

However, to the best of our knowledge, none is general and
has mathematical formalism at the same time, which are
essential characteristics for evaluation of decision making and
autonomic management.

In this study, we have presented an approach with these
characteristics to model clouds based in Directed Acyclic
Multigraph, which has the flexibility of general models and
the formalism of the specifics. Therefore, C2LP is a flexible
well-formed modelling tool to express flows of loads through
the cloud components. This model supports the specification
of elements in distinct abstraction levels, the generation of
combinatorial variations in a use case modelling and the
evaluation of the consequences of different configuration in
the load propagation.

We developed a simulation software tool for the modelling
of IaaS services and demonstrated the applicability of our
approach through a use case. In this use case, we simulated
several graph network theoretic analysis, evaluated and com-

pared different configurations and, as a result, supplied the
cloud managers with a numeric comparison of cost and benefits
of each configuration. These experiments, demonstrated that
this tools provides an essential support for the management of
cloud.

In the future works we intent to develop a description
language to specify the rules of association between cloud
elements in order to compose de graph. Yet, we intent to study
the fractal phenomena in cloud structures, in order to improve
the managerial view about the relation between abstract and
concrete elements, and the model’s granularity. Also, is our
desire to investigate how the different models – among the
possible aggregations of metrics and parameters – impact the
planning and decision making in management of cloud at
runtime. At last, we intent to improve the C2LP adding order
relations between the states, attached to nodes, in order to
enable the model to encompass policies and SLAs.
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APPENDIX I: IMPLEMENTATION DETAILS

TABLE III: THE CLOUD ELEMENTS – NODES OF THE GRAPH.

CS - computing service CP21 - platform 21 WS12 - work server 12
LB - load balancer CP22 - platform 22 WS13 - work server 13
CM1 - cloud manager 1 CP23 - platform 23 WS21 - work server 21
CM2 - cloud manager 2 MS1 - manager server 1 WS22 - work server 22
CP11 - platform 11 MS2 - manager server 2 WS23 - work server 23
CP12 - platform 12 MSTO - manager storage WSTO - work storage
CP13 - platform 13 WS11 - work server 11 PN - physical network

TABLE IV: THE LOAD PROPAGATION RELATIONS – EDGES OF THE GRAPH.

5−→CS CM1 5−→CP11 CP11 → WS11 CP21 → PN

CS 5−→LB CM1 5−→CP12 CP11→PN CP21→WSTO

LB 5−→CM1 CM1 5−→CP13 CP11→WSTO CP22→W22

LB 5−→CM2 CM1 → PN CP12→WS12 CP22 → PN
LB → MS1 CM2 → MS2 CP12 → PN CP22 → WSTO
LB → MS2 CM2 → MSTO CP12 → WSTO CP23 → W23

LB → WSTO CM2 5−→ CP21 CP13→ W13 CP23 → PN

LB → PN CM2 5−→ CP22 CP13→ PN CP23 → WSTO

CM1 → MS1 CM2 5−→ CP23 CP13 → WSTO
CM1 → MSTO CM2 → PN CP21 → W21
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Figure 7: Graphical representation of structural arrangement for the modelling use case.
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TABLE V: PROPAGATION FUNCTIONS.

Types Declarations Definitions

service (w1, · · · , w5)
fCS

7−−−→ (w′1, · · · , w′5) . wn is the weight for n−→ CS).
w′n is the weight for (CS

n−→ LB).
w′n = wn|∀w′n ∈ fCS .

balancer (c1, . . . , c5, w1, · · · , w5)
fLB

7−−−→.
(w′1, . . . , w

′
14)

cn ∈ {CM1, CM2}, are the configurations which
represent the targets of each load wn|1 6 n 6 5.

w′n =

{
wn if cn = CM1
0 otherwise

∣∣∣∣ 1 6 n 6 5

.

w′n+5 =

{
wn if cn = CM2
0 otherwise

∣∣∣∣ 1 6 n 6 5

.
w′1>n>5, are the weights in the edges LB 5−→CM1.

w′6>n>10, are the weights in the edges LB 5−→CM2.
w′11 = 1Gflop, is the a constant computing load in
LB→MS1.
w′12 = 1Gflop, is the a constant computing load in
LB→MS2.
w′13 = 50GB, is the a constant storage load in
LB→MSTO.
w′14 = w1 + 40, is the load over LB→PN, such that
w1 is the VM image size in GB, comes from deploy
VM operation, and 40 is a constant value in GB for the
another operations.

cloud manager (c1, . . . , c5, w1, · · · , w5)
fCMn

7−−−−→
(w′1, . . . , w

′
18)

cn ∈ {CPm1, CPm2, CPm3}, are the configurations
which represent the targets of each load wn|1 6 n 6 5.

w′n =

{
wn if cn = CPm1
0 otherwise

∣∣∣∣ 1 6 n 6 5

.

w′n+5 =

{
wn if cn = CPm2
0 otherwise

∣∣∣∣ 1 6 n 6 5

.

w′n+10 =

{
wn if cn = CPm3
0 otherwise

∣∣∣∣ 1 6 n 6 5

.
w′16 = 1Gflop, is the a constant computing load in
CMn→MSn.
w′17 = 50GB, is the a constant storage load in
CMn→MSTO.
w′18 = w1 + 40, is the load over CMn→PN, such that
w1 is the VM image size in GB, comes from deploy
VM operation, and 40 is a constant value in GB for the
another operations.

cloud platform (w1, · · · , w5)
fCPnn

7−−−−→
(w′1, w

′
2, w

′
3).

w1, · · · , w5, are the main loads come from the service,
associatively, w1 – deploy VM, w2 – undeploy VM, w3

– start VM, w4 – stop VM, and w5 – compute tasks.
w′1, w′2 and w′3 are, respectively, the edge-weight for
the arcs CPnn→WSnn, CPnn→WSTO and CPnn→PN,
where:
w′1 = w1 − w2 + w3 − w4 + w5;
w′2 = w1 − w2 + 1MB;
w′3 = w1 + w3 − w4 + 1MB.
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TABLE VI: EVALUATION FUNCTIONS FOR LEAF NODES.
Types Functions

computing specific functions performance (duration): d(load) = load
capacity , where load is expressed in GFlop, capacity

is a constant of 70GFLOPs and d is the total time to resolve the load.

energy increment (kWh): energyincrement(load) here is considered a linear function which
returns the amount of energy necessary to process the load above the average consumption
of standby state. For computing have been considered 0.001kW per GFLOP.

storage and network specific functions performance (duration): d(load) = load
capacity , where load is expressed in GByte, capacity

is a constant of 1GBps and d is the total time to resolve the load. For the networking
resources this concept is intuitively associated with the network throughput, however,
for storage is necessary to explain that the performance refers to throughput of the data bus.

energy increment (kW): energyincrement(load) for data transmission is assumed as linear,
and was here considered 0.001kW per GB transferred.

common functions availability: av(load) = 1− pfault(d(load)), where pfault is the probability which a fault
occurs during the load processing. Here will be considered a linear naive probability, such
that pfault(d) = d× 0.01.

accounting: ac(load) = priceenergy × energytotal, where priceenergy is a
constant of 0.38US$/kW or 0.58US$/kW , depending on node configuration;
and energytotal = energyincrement(load) + energyaverage(d(load)), such that
energyaverage(d(load)) = d(load) × 0.1kW is the shared energy spent by the cloud
by time slot, and energyincrement(load) is the increment of energy result of resource usage.

security (risk of data exposition): s(load) = 1 − pexposure(load), where pexposure(load)
is the probability that the load processing results in data exposure and s(load) is the
trustability of the operation. The pexposure(load) is calculated as 0.001 for each second
of operation.

CO2 emission: c = energytotal × 400, where energytotal was defined in the accounting
evaluation function and 400 is a constant which represents the grammes of CO2 per kW .

TABLE VII: EVALUATION FUNCTIONS FOR NON-LEAF NODES.
Types Declarations Definitions

performance maximum duration of loads sent
for successor nodes.

pv(w1, . . . , w5, w
′
1, . . . , w

′
n) = max(w′1[p], . . . , w′n[p]),

where pv represents the total time to process the incom-
ing loads, and w′n[p] represents the specific part of in
the node-weight of n successor nodes, regards to the
duration to process the loads sent by the node v.

availability the product of the availability of
successor nodes according to the
sent loads.

avv(w1, . . . , w5, w
′
1, . . . , w

′
n) =

∏
w′n[av], where avv

represents the total availability of a node v according
its dependencies, and w′n[av] represents the availability
part in node-weights of the successors of v, related to
the loads sent.

accounting the sum of costs relative to the sent
loads for successor nodes.

acv(w1, . . . , w5, w
′
1, . . . , w

′
n) =

∑
w′n[ac], where acv

is the total cost related to v and regards to the loads
processed in the successors, and w′n[ac] is the accounting
part of the successors’ node-weight.

security the product of security (regards to
data exposition) of successor nodes
according to the sent loads.

sv(w1, . . . , w5, w
′
1, . . . , w

′
n) =

∏
w′n[s], where sv rep-

resents the total security measure of a node v, and w′n[s]
represents the security measure part in node-weights of
the successors of v, related to the loads sent.

CO2 emission the sum of total emissions relative
to the loads sent to the successor
nodes.

cv(w1, . . . , w5, w
′
1, . . . , w

′
n) =

∑
w′n[ac], where cv is

the total CO2 emission associated with a node v, and
w′n[ac] is the node-weight part associated with the
emissions caused by the loads sent from v.
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Abstract—The development of Wireless Sensor Networking 
technology to deploy in smart home environments for a variety 
of applications such as Home Area Networking has been the 
focus of commercial and academic interest for the last decade. 
Developers of such systems have not adopted a common 
standard for communications in such schemes. Many Wireless 
Sensor Network systems use proprietary systems so 
interoperability between different devices and systems can be 
at best difficult with various protocols (standards based and 
non-standards based) used (ZigBee, EnOcean, MODBUS, 
KNX, DALI, Powerline, etc.). This work describes the 
development of a novel low power consumption multiradio 
system incorporating 32-bit ARM-Cortex microcontroller and 
multiple radio interfaces - ZigBee/6LoWPAN/Bluetooth 
LE/868MHz platform. The multiradio sensing system lends 
itself to interoperability and standardization between the 
different technologies, which typically make up a 
heterogeneous network of sensors for both standards based 
and non-standards based systems. The configurability of the 
system enables energy savings, and increases the range 
between single points enabling the implementation of adaptive 
networking architectures of different configurations. The 
system described provides a future-proof wireless platform for 
Home Automation Networks with regards to the network 
heterogeneity in terms of hardware and protocols defined as 
being critical for use in the built environment. This system is 
the first to provide the capability to communicate in the 
2.4GHz band as well as the 868MHz band as well as the feature 
of multiboot capability. A description of the system operation 
and potential for power savings through the use of such a 
system is provided. Using such a multiradio, multiboot capable, 
system can not only allow interoperability across multiple 
radio platforms in a Home Area Network, but can also increase 
battery lifetime by 20 – 25% in standard sensing applications. 

Keywords - Smart Sensing; Low Power Consumption 
Protocols, Home Area Networks (HAN); Energy Management; 
Multiradio Systems. 

I. INTRODUCTION 
Wireless Sensor Network (WSN) systems have the 

potential to be ubiquitous in today’s Society in a myriad of 
applications such as Smart Homes, Building Energy 
Management (BEM), Home Area Networking (HAN), micro 
grid management, environmental monitoring and smart 
cities. New architectures, such as those described in the 
conference paper [1] and from which this paper evolved, are 
required to offer improved inter-operability, to improve 

reliability of data communications and to address the spread 
spectrum requirements associated with next generation 
sensor systems through the development of smart radio 
systems. Currently available platforms exist that have 
multiple radios but these tend to operate in a single 
Industrial, Scientific and Medical (ISM) band (typically 
2.4GHz) – and not in combination with the 868MHz ISM 
Band, which is ideal for the built environment due to its long 
range, low data rate properties.  

This type of architecture has some interesting commercial 
applications for interoperable networks, Home Area 
Networks, commercial buildings and smart cities. Compared 
to single-end radio devices, it has the potential to provide 
increased connectivity in deployment, and can potentially 
reduce the interference impact on the network because the 
system can hop from ISM band to ISM band in an 
autonomous and opportunistic manner. The development of 
multiradio sensing architectures lends itself to 
interoperability between the different technologies that 
typically make up a heterogeneous network of sensors. 

The value of WSNs as a sensing system is clear when 
you compare them to traditional wired sensing systems. 
Typically wired sensor systems are expensive to install with 
70-90% of the cost of a sensor system installation relating to 
labor and wiring, which ranges from $40 to $2000 per linear 
foot of wiring [2]. As such, the wireless nature of WSN 
technologies makes them easier and cheaper to deploy than  
wired technologies. 

However, a number of challenges still need to be 
addressed to ensure WSN technology achieves its’ full 
potential across all application areas. An abundance of 
communications technologies persist within the HAN 
domain, with no single technology identifying itself as the 
"one size fits all" solution. 

The AUTonomic HomE area NeTwork InfrastruCture 
(AUTHENTIC) project [3][4] funded by the International 
Energy Research Centre (IERC) [5], sought to develop and 
deploy a HAN infrastructure capable of supporting 
opportunistic decision making pertaining to effective energy 
management within the home. This required the integration 
of key enabling heterogeneous technologies including a 
variety of physical sensors within the home (temperature, 
contact sensors, passive infra-red), cyber sensor sources 
(services) outside of the home (e.g., meteorological data, 
energy providers dynamic pricing sites) together with 
effective interfacing with the smart grid beyond the home. As 
part of the AUTHENTIC project (final demonstrators were 
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presented in 2015) the WSN group at Tyndall were 
developing the embedded systems and communications 
platforms to sense and transfer data in the built environment. 
The platform developed enables communications between 
the heterogeneous sensing systems that typically make up a 
HAN scenario in a power efficient implementation. 

Section I of this paper introduces the subject matter and 
application space associated with wireless sensing solutions 
for the built environment. Section II reviews some of the 
state of the art in current wireless sensing system 
technologies, with emphasis on multiradio systems. Section 
III describes the “AUTHENTIC Board” developed within the 
project [1]. Section IV describes the multiradio functionality 
and Section V examines the results of initial range testing 
trials and tests carried out using the system to investigate 
power consumption characteristics of the platform. Section 
VI investigates the power savings enabled by this multiradio, 
multiboot platform, through the implementation of different 
communications protocols based on the system level tests 
carried out in Section V. Section VII concludes the work and 
outlines some directions for future research in this area. 

II. PREVIOUS WORKS 
There are a variety of standards available (proprietary and 

non-proprietary), which are widely used within the many 
deployments of HAN that exist. ZigBee, Bluetooth LE (Low 
Energy), IEEE 802.11x (Wi-Fi) are globally recognized as 
references in wireless communications and go far beyond the 
scope of WSN. Those technologies have been developed 
using the license-free ISM band of 2.4-2.5GHz, although 
ZigBee has an implementation for the 868MHz and the latest 
802.11.n standard used by Wi-Fi offers support for both 2.4 
and 5GHz. Indoor range above the GHz frequency is quite 
limited especially for indoor applications with dense 
obstacles. The Wi-Fi technology surpasses those issues with 
higher transmission power (up to 100 times higher than 
ZigBee/802.15.4), which is of course not suitable for battery 
powered systems in low power WSN deployments. 

Although some manufacturers provide WSN systems 
using 868MHz or even 433MHz, it is more common to see 
them designed around proprietary technologies such as 
ZigBee. An interesting trade off investigated in this paper is 
the development of a system with the ability to adapt its 
communications channel to use the best radio link depending 
on the throughput and range requirements in any 
configuration. 

Multiradio platforms are a subject of research for WSN 
as they offer some attractive characteristics and 
improvements over single radio WSN platforms. Multiradio 
systems with radios covering Wi-Fi, Bluetooth and 
6LoWPAN (IPv6 over Low power Wireless Personal Area 
Networks) operating at the 2.45 GHz ISM band have 
reported to achieve enhanced robustness, latency and energy 
characteristics [ 6 ]. In a variety of implementations, 
multiradio systems operating at the 433MHz and 2.45 GHz 
ISM bands have been reported which use a preamble 
sampling technique in a wakeup radio implementation [7]. 
These multiradio platforms have been used to evaluate the  
performance of communications protocols in terms of power 

consumption and latency over different duty cycle values and 
under various amounts of traffic loads. Kusy [8] reports on 
the development of a new dual radio network architecture to 
improve communication reliability in a wireless sensor 
network, but the approach was limited to a single channel 
implementation, where the 900MHz and 2.4GHz radios were 
used in parallel rather than in conjunction with power saving 
protocols. A multiradio platform for on the body WSN 
applications operating in 433MHz and 868Mz is reported in 
[ 9 ] with focus on the platform architecture. More 
consideration on the issues of antenna design for such 
devices is found in [10] [11]. A comprehensive survey of 
MAC protocols is given by Jurdak et Al in [12 ]. They 
survey, classify, and analyze 34 MAC layer protocols for 
wireless ad hoc networks, ranging from industry standards 
to research activites. 

The BtNode V3 [13] platform features two radios. It 
incorporates a Chipcon CC1000 low power radio (433-915 
MHz) and also has an additional ZV4002 Bluetooth radio 
(2.4 GHz) as shown in Figure 1.a. Similarly the Shimmer 
mote [14] and the Wasp Mote [15] feature a CC2420 IEEE 
802.15.4 radio and can also be configured with an optional 
Bluetooth radio shown in Figure 1.b and Figure 1.c 
respectively. The Wasp Mote also has separate 868MHz and 
900MHz radio modular plug-in boards however, in this 
instance only a single radio module can be operated at a time 
and true multiradio operation is not feasible. Similarly, the 
Tyndall Mote (Figure 1.d), has the capability for adding 
multiple radios. With the Tyndall mote, because of the planar 
implementation, several different radios could be stacked on 
top of each other and operate simultaneously.  

The AUTHENTIC board described in this publication is 
not only a radio sensing platform but it can also be a repeater 
increasing the range of the network. Moreover, at the same 
time, the user can connect to each single platform in the 
network using a tablet or a smartphone via Bluetooth (for 
maintenance or data visualization). 

The AUTHENTIC board has been designed with 
interoperability in mind, it can be used in existing 
deployments that use ZigBee or 868MHz protocols, to 
improving the network range without increasing the 
interference. From a protocol perspective, each board can 
work as an end node or base station/coordinator as well. In 
fact, if there are some changes in the network one node can 
reboot and operate as in base station mode using its 
multiboot functionality. 

Similarly, the OPAL platform is an example of a 
multiradio platform where increased performance in terms of 
the network realization, latency, data throughput and power 
consumption were achieved compared to single radio 
platforms [16]. The OPAL platform is a high throughput 
sensing module that includes two onboard 802.15.4 radios 
operating in the 900MHz and 2.4GHz bands to provide 
communication diversity and an aggregate transfer rate of 3 
Mbps. It embeds a 96 MHz Cortex SAM3U processor with 
dynamic core frequency scaling, a feature that can be used to 
fine-tune processing speed with the higher communication 
rates while minimizing energy consumption. 
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a.  
 

b.  

c.  

d.  
Figure 1. Multiradio systems. a) Dual Radio BTnodeRev3 b) Dual Radio 

Shimmer c) Wasp Mote ZigBee & Bluetooth Modules d) The Tyndall 
25mm modular system 

III. SYSTEM IMPLEMENTATION 
The aim of this system development is to provide a 

future-proof wireless platform for HAN with regards to the 
network heterogeneity in terms of hardware and protocols 
currently in use and under development. 

A specification process was undertaken with industry 
partners and service providers in the area of building 
management – to identify the core requirements associated 
with a wireless system for deployment in homes and offices. 

The platform described in the following sections of this 
paper is a novel low power consumption multiradio system 
incorporating a 32-bit ARM-Cortex microcontroller and 
multiple radio interfaces - ZigBee/6LoWPAN/Bluetooth 
LE/868MHz platform, which features autonomous behavior 
to enable interoperability between systems utilizing different 

radio front ends. It provides a solution for network 
congestion in environments such as HAN and Commercial 
Buildings in a credit card sized form factor shown in Figure 
2. It also provides better interoperability than the usual 
wireless sensor devices approach, enhancing the 
communicability between different network entities (sensor 
nodes, smart meters, media, smartphones), and driving the 
wireless sensor networks to the smart cities application 
space. 

 
Figure 2. AUTHENTIC Credit Card Form Factor Platform. 

The four main issues that need to be considered prior to 
selecting any unit or design approaches are: over all power 
consumption, cost, complete module size and user 
friendliness. Technical features assessed and considered 
included: functionality requirements as regards actuation and 
control, quality of service, latency, number and types of 
sensors/meters and interfaces, programming methods 
(wireless/non wireless), power supplies/energy harvesting 
compatibility, radio frequency band, standards/non standards 
communications and data transmission range. 

  
Figure 3. Block diagram of AUTHENTIC Platform functionality. 
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In conjunction with these end users, as part of our system 
specification, three communication standards were identified 
as being needed within the HAN environment: ZigBee – 
2.4GHz, 6LoWPan – 2.4GHz, Bluetooth Low Energy – 
2.4GHz, as well as a non-standards based ISM band 868MHz 
transceiver as a response to the 2.4GHz limitations identified 
- bandwidth congestion and data loss associated with non 
line of sight (NLOS) effects of the building structure limited 
RF range. The board has been designed around the standard 
ARM CORTEX-M3 based microcontroller, which offers a 
good trade-off between power consumption and 
performance. See Figure 3 for an overview of features and 
functionalities. 

The final embedded system was designed around a credit 
card form factor (shown in Figure 4) and deployed in offices 
and homes for preliminary tests and characterization 

Microcontroller: The heart of the system is the ATMEL 
SAM3S8C microcontroller, a 32-bit ARM Cortex M3 Core. 
64MHz Maximum, 512KB flash, 64KB RAM, USB 2.0. 

External Flash Memories: Two external flash 
memories: 128MB NAND flash for data logging, 16MB 
NOR-flash for code execution. The two memories are 
connected to the microcontroller External Bus Interface 
(EBI). 

Radio Communication: The platform integrates three 
radio chips: Bluetooth Low Energy radio chip, 
(manufacturer: NORDIC, model: NRF8001), 
ZigBee/6LoWPAN radio chip, (manufacturer: ATMEL, 
model: AT86RF231), Sub-GHz radio chip (868MHz), 
(manufacturer: ST Microelectronics, model: SPIRIT1). 

Sensors: Two sensors were interfaced via an I2C 
interface: temperature sensor, accuracy: ±0.5°C, 
(manufacturer: MAXIM, model: MAX31725MTA+), light 
sensor, range: 0.045 Lux to 188,000 Lux, (manufacturer: 
MAXIM, model: MAX44009EDT+T). These are used for 
detecting in-home activity monitoring occupancy through 
lighting usage. 

Battery: The battery used is a lithium prismatic battery 
with a capacity of 1300mAh, which is recharged through the 
USB port or through the use of energy harvesting systems 
compatible with the built environment [17]. 

 
Figure 4. AUTHENTIC multiradio embedded system. 

IV. MULTIRADIO FUNCTIONALITY 
In this section the functionality of the AUTHENTIC 

platform is presented in terms of its communication 
architectures, the multiradio and multiboot capabilities 
embedded in the system. 

A. Communication Architectures using Multiradio Systems 
In the context of “crowded radio frequency spectrum”, a 

wireless sensor network composed with a number of the 
proposed devices’ architectures can automatically adapt to 
the most reliable frequency communication channel based on 
the local interferences. This type of architecture has some 
interesting commercial applications for interoperable 
networks, HAN’s, commercial buildings and smart cities. 
Compared to single-end radio devices, it has the potential to 
provide increased connectivity in deployment, and can 
potentially reduce the interference impact on the network as 
the system can hop from ISM band to ISM band in an 
autonomous and opportunistic manner.  

 
Figure 5. AUTHENTIC multiradio system in operation 

By developing smart mechanisms for multi-protocol 
routing between the different radios, this architecture can 
potentially reduce the number of repeaters (and thus the 
infrastructure cost) compared to a standard single ended 
radio platform. In addition, multiradio systems provide better 
interoperability with Off-The-Shelf wireless devices, many 
of which operate on a variety of different standards and 
which may constitute a typical smart home deployment. 
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From a research point of view, such a platform can be 
used to develop and evaluate firmware/wireless protocols 
using different frequency bands. 

The multiradio concept is illustrated in Figure 5 which 
shows how, by jumping between the 2.4GHz and 868MHz 
frequency bands, a connection can be made between remote 
clusters of ZigBee nodes, which are in different locations or 
separated by a congested spectrum making communication at 
2.4GHz difficult. 

Thus the network automatically switches to the 868MHz 
frequency in order to maintain communication with the out 
of range node. In that case, one node from the first cluster 
will act as a virtual “dual sensing” node, providing two 
inputs to the ZigBee Network. 

B. Multiradio Aspect 
The Bluetooth and 868MHz multiradio functionality has 

been tested as a proof of concept in a HAN as part of the 
AUTHENTIC deployment in office environments and in 
homes (for open field testing, the system was deployed 
temporarily outside).  

To evaluate the capabilities of the multiradio 
functionality, the remote node sends data (light, temperature 
or other peripheral sensor) to the base station using the 
868MHz radio or the 2.4GHz ZigBee network. The base 
station then sends the received data to a Smart Phone/HAN 
gateway using the Bluetooth interface that displays the data 
stream (in this case, temperature and light level from the 
remote sensor) as shown in Figure 6. 

 

 
Figure 6. AUTHENTIC multiradio system 

C. Multiboot - Autonomous System Implementation 
Multiboot capability enables the system to boot up and 

run according to various boot images [18] [19], which are 
stored in various sectors (region) of memory – see Figure 7.  

 
Figure 7. AUTHENTIC Multiboot reconfigurability 

To facilitate energy savings at an embedded system level, 
the multiboot configuration of the system will allow the 
platform to host two different applications and jump between 
them (via a boot loader). The applications can and will use 
different radios in future deployments, which will be useful 
for overcoming transmission issues in a congested/noisy 
environment. The targeted example is the mote running a 
ZigBee 2.4GHz application and an 868MHz application. 
Failing to transmit data at 2.4GHz due to electromagnetic 
effects or long range requirements, the node would switch to 
the 868MHz application to operate in a less congested ISM 
band. This behavior would be coordinated among the 
network nodes in protocols under development. In this case, 
the idea is to allocate memory regions to specific 
applications. 

The Multi-Application Software Management tool acts 
as a main application that we will call “Leader”. The 
Leader is programmed in a specific area of the memory and 
will act as what is commonly known as a Bootstrap Loader. 
The particular boot state functionality can be associated with 
a range of communications modalities say ZigBee, Bluetooth 
or Wireless Modbus according to application requirements 
associated with energy consumption, latency or Quality of 
Service. 

The Leader can access any location of the memory. The 
applications that will contain the required functionalities of 
the system (e.g., sensing, communication) will be described 
as “Users”. The Leader can then grant the leadership to the 
different Users that will need to return the leadership to the 
Leader (different solutions are possible for the latter).  
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The Leader will provide an API (Application 
Programming Interface) in order to modify intrinsic 
parameters of the system (e.g., system clock frequency, 
timers etc.). Thus, this functionality will considerably reduce 
the complexity of the development from the user developer’s 
point of view. 

From a smart home/building management system 
deployment perspective, it will provide an essential software 
management tool for multiradio platforms. 

V. RESULTS 

A. AUTHENTIC Board Power Characterization 
To carry out the energy consumption tests, the following 

modalities were implemented as shown in Table I. 

TABLE I.  SYSTEM POWER CONSUMPTION IN DIFFERENT MODES 

Symbol Operational Mode Measured Value Unit 

ITX868 

Current consumption in TX 
mode 868MHz module, 
POUT = +12 dBm, all 
components on 

43.98 mA 

Isb868 
Current consumption in 
standby mode 868MHz 
module, all components on 

28.24 mA 

ITXBLE 
0dBm 

Current consumption in TX 
mode BLE module, POUT = 
0 dBm, all components on 

24.80 mA 

IsbBLE 
Current consumption in 
standby mode (between 2 
transmissions) BLE module, 
all components on 

17.29 mA 

ITX, 
ZigBee

1 

Current consumption in TX 
mode ZigBee module, POUT 
= +3 dBm, all components 
on, 1 led on 

64.07 mA 

ITX, 
ZigBee

2 

Current consumption in TX 
mode ZigBee module, POUT 
= +3 dBm, all components 
on, 1 led off 

71.12 mA 

Isleep1 
Current consumption in sleep 
mode (microcontroller) and 
all the other components on 

15.73 mA 

Isleep2 
Current consumption in sleep 
mode (microcontroller) and 
all the other components off 

3.18 mA 

Isleep3 

Current consumption in 
deepest sleep mode 
(microcontroller) and all the 
other components on 

3.1 mA 

Isleep4 
Current consumption in 
deepest sleep mode and 
components off / removed 

3.5 µA 

The MCU is programmed to turn on all the devices, 
setting the output power of the module to (+12 dBm for 868 
MHz module, 0 dBm for BLE, +3 dBm for ZigBee), start the 
transmission of a single packet (1 byte length) and then put it 
in standby mode. Sleep mode tests include the MCU turning 

on all the devices before going into sleep mode, turning off 
all the devices and entering sleep mode, turning on all the 
devices and entering deepest sleep mode and turning off all 
the devices and going into deepest sleep mode. 

For the 868 MHz tests, GFSK (Gaussian frequency-shift 
keying) modulation with the Gaussian filter “BT Product” set 
to 1 was used. For the Bluetooth LE modules the default 
Gaussian filter used is 0.5. For the ZigBee module 
quadrature phase-shift keying (QPSK) modulation was used. 
Table I shows the results of all tests in different modes. 
These provide the building blocks for developing low-power 
networking algorithims for optimising the lifetime of the 
WSN systems and QoS parameters.  

B. Multiradio Range Test Comparison 
1) Indoor Non Line of Sight (NLOS) range testing 

This section focuses on the NLOS testing of the 868 
MHz, Bluetooth and ZigBee radio modules on the 
AUTHENTIC Board. Two boards are used: one acts as a 
sensing node and one as a Base Station.  

The node reads data from the temperature sensor as well 
as received signal strength indication (RSSI) values. This is 
then sent to the Base Station where it is converted into a 
value expressed in °C (minimizing energy consumption 
associated with processing on the node), which is in turn sent 
to our visual interface (a smartphone connected via 
Bluetooth).  

The test took place in an office environment consisting of 
open plan cubicles, closed offices, coffee dock facilities and 
meeting rooms in a simulated “home environment”. The 
node (represented by the star) was kept stationary while the 
base station and the smartphone moved around the entire 
area for data gathering at the different frequencies under test. 
In Figures 8, 9, 10, the areas where the data is received 
perfectly are reported in green, in orange the areas where the 
signal is poor and the data is received intermittently, in red 
the areas where there is no signal and data is not received. 

Theory would suggest that the range associated with 
lower frequency (868MHz) ISM bands would significantly 
outperform higher frequency ISM bands (2.4GHz). In this 
experiment, the difference is little more than a 10% 
improvement (see Table II).  

TABLE II.  COMPARISON OF RANGE FOR INDOOR NLOS TESTS  

Radio Appoximate Area 
Covered 

Max. distance 
(Line of sight) 

868 MHz 130.4 m2 11.4 m 
Bluetooth LE 60.04 m2 7 m 
ZigBee 108.6 m2 10.6 m 

 
We expected 868MHz to be much better than ZigBee, a 

possible reason (under investigation) is that the 868MHz data 
rate (500 kbps) is higher than the ZigBee one (250 kbps) and 
there is a tradeoff between the range and the data rate. 
Moreover, the modulation used by the modules are different: 
the value of Eb/N0 (noise power per unit bandwidth) of the 
offset-QPSK is less than that of the GFSK; this means that 
the bit error rate is better for the ZigBee module operating at 
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2.4GHz. To improve the 868MHz range, it is possible to 
increase the power of the module (it can reach +16 dB) and 
reduce the data rate. Further experiments were carried out to 
validate this (as shown in Table III). 

 
Figure 8. 868MHz range test  

 
Figure 9. Bluetooth LE range test  

 
Figure 10. ZigBee 2.4GHz range test  

2) Sub-GHz range improvement. 
To improve the 868MHz range, 3 solutions have been 

adopted: the output power of the sensing node was increased 
up to +12 dBm (initially +11dBm). In addition, the data rate 
was reduced to 100 kbps (from 250 kbps). Finally, the GFSK 
modulation with BT product was set to 0.5 (from 1). BT is 
the Bandwidth Time. It is the product of adjacent signal 
frequency separation and symbol duration. A BT product of 
0.5 corresponds to the minimum carrier separation to ensure 
orthogonality between signals in adjacent channels. The 
beneficial result of this is the signal on one frequency 
channel does not interfere with the signal on the adjacent 
frequency channel. 

The sub-GHz radio chip uses an external crystal oscillator 
that provides a clock signal for the frequency synthesizer. 
The channel center frequency has been programmed to be 
868MHz. So as to ensure that this is the actual frequency 
used, it was measured using a Spectrum Analyser.  

We measured that the two boards in the deployment 
(remote multi radio node and multi radio base station) send 
and receive data at 868.027 MHz (+10.70 dBm) and 
868.0181 MHz (+11.02 dBm) respectively. This is found to 
be due to the crystal inaccuracy. To compensate the 
inaccuracy, a correction term (foffset) has been implemented in 
the firmware to ensure that the frequency for send and 
receive is exactly set to 868MHz. 
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Where fXO is the frequency of the crystal oscillator 
(52MHz) and FC_OFFSET is a 12-bit integer set by the 
FC_OFFSET registers of the radio chip.  

 

 
Figure 11. Output power.  

After this compensation, the 2 boards had the center 
frequency at 868.00MHz (Figure 11) and another range test 
has been made in the same environment of the previous tests 
with 2 AUTHENTIC boards (one as node remote and one as 
base station) and the result has been reported in Figure 12 
and Table III below showing the maximum range obtained 
using the 868MHz radio. 

 
Figure 12. 868MHz range test after compensation  

As can be seen from a comparison with the initial set of 
results reported in [1] and shown here in Table II, we 
achieved an improvement of 60% in performance (area 
covered) with the new configuration settings for the 
AUTHENTIC boards operating in the 868 MHz band. 

TABLE III.  RANGE TESTING 868 MHZ BAND USING OPTIMISED 
CONFIGURATION SETTINGS  

Radio Approximate Area Covered 
868MHz (Test 1) 130,4 m2 
868MHz (Test 2) 211,5 m2 

 
3) Outdoor Line of Sight (LOS) range testing 

An open field is one of the simplest and most commonly 
used environments for RF range tests. In this section, tests 
for the three modules on the AUTHENTIC Board (868MHz, 
Bluetooth, and ZigBee) are reported. The tests took place in a 
sports field in University College Cork, which offered a long 
range LOS measurement. 

868MHz: To test the Sub-GHz module, two 
AUTHENTIC boards were used, one as Node Remote and 
one as Base Station. The first reads data every four seconds 
from the temperature sensor and sends it to the Base Station. 
The maximum range measured was 193m. 

Bluetooth: For this test, two devices were used: one 
AUTHENTIC Board and a smartphone. The board was left 
stationary and the smartphone was moved around the area 
checking if the connection was still available or not. The 
maximum LOS distance measured was 18.4m. 

ZigBee: To test the ZigBee module, two AUTHENTIC 
boards (one as Trust Center and one as Occupancy Sensor) 
were used along with a RF231USB-RD USB Stick (as 
Remote Control). The Trust Center creates the network and 
the other two devices join it. After this, the Occupancy 
Sensor reads the value of the LED (on/off) and sends it every 
four seconds to the Remote Control that moves around the 
area. The maximum range measured was 193m. 

The maximum distance measured in Line of Sight for 
both the ZigBee and 868MHz system was 193m, but this 
value could be greater and additional tests need to be carried 
out to establish the maximum range for each. The maximum 
range achieved was due to the presence of physical obstacles 
(walls/buildings, which would have interfered with the LOS 
measurements at the maximum extremity of the test location. 
The results are tabulated in Table IV. 

TABLE IV.  COMPARISON OF RANGE FOR OUTDOOR LOS TESTS  

Radio Max. distance  
(Line of Sight) 

868MHz 193m * 
Bluetooth LE 18.4m 
ZigBee 193m * 

* Limit of the field measurement, not the technology 
 

VI. AUTHENTIC MULTI HOP PROTOCOL 
IMPLEMENTATION 

The AUTHENTIC network has been designed to be an 
auto configurable network, this means that the network is 
autonomous in operation and has the capability to 
reconfigure itself. It is composed of one base station (that 
acts as both a router and gateway) and sensor nodes (sensing 
nodes that read data from the sensors on board and send the 
sensor data values to the base station/gateway) as shown in 
Figure 13. 
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Figure 13. The AUTHENTIC network topology 

At system start up, the base station creates a sub-1GHz 
network with the sensor nodes by transmitting a broadcast 
message to the nodes and waiting for their reply. 

When the node receives the broadcast packet, it saves the 
base station’s address in its memory and replies with an ACK 
to confirm that it has received the message. 

When the base station receives the ACK, it checks the 
Received Signal Strength Indication (RSSI) to be sure that 
the link with the node is a robust one. If the RSSI value is 
higher than the threshold (it is taken to be -75 dBm), then the 
base station saves the node’s address in its list of the sub-
1GHz addresses, so as to be able to build an appropriate 
routing table. If the RSSI value is lower than the threshold, 
the base station sends another message to the node in order to 
change the radio communication to ZigBee. The default start 
up mode is in the 868MHz band operation mode. Two 
possible factors can affect the RSSI value: interference and 
the distance between the node and the base station. In these 
cases it is better to switch to another frequency.  

 
Figure 14. Node's state machine 

The node goes into RX mode every time it sends a packet 
to the base station in order to receive the command to switch 
to ZigBee. The protocol state machine for the node is shown 
in Figure 14. The node, after sending the ACK message 
regarding the broadcast packet, goes into RX mode for a 
certain period (it is taken for the purposes of these 
experiments to be 1 second). During this period the only 
message that it can receive is the command to change its 
communication to ZigBee due to the RSSI level 
measurements taken. If so, it will reboot (using the multi 
boot functionality described in [1]) with the ZigBee 
application and waits for the creation of the ZigBee network.  

If the node doesn’t receive any command from the base 
station it assumes that it is part of the sub-1GHz (868MHz) 
network, and goes into sleep mode (to reduce power 
consumption) for a random period between 4 and 5 minutes 
(Tsleep). The node then wakes up, reads the data from the 
sensors on board (temperature and light level) and sends 
them to the base station. Once the data packet is sent, the 
node again enters in RX mode for 2 seconds so as to receive 
an appropriate command from the base station, after that it 
goes into sleep mode for Tsleep, then it wakes up, sends the 
sensors readings and so on. 

Tsleep is a randomly assigned value to avoid the case that 
all the nodes send their sensor readings at the same time. 
This will reduce the probability of packet collision between 
the transmissions with the resultant requirement for 
retransmissions and increase in associated energy 
consumption. 

The base station, after the broadcast message, 
communicates with each node that has replied to the 
broadcast, and saves all their addresses in 2 lists, one for the 
sub GHz network (that contains the nodes’ addresses with 
RSSI higher than the threshold) and one for the ZigBee 
network (that contains the nodes’ addresses with RSSI lower 
than the threshold). Based on these tables, the coordinator is 
in a position to develop an appropriate network structure. 
The sub GHz network is created first, after which the base 
station starts the creation of the ZigBee network. Once the 
two networks have been defined, the basestation enters sleep 
mode to save power. The system can be woken up by 
receiving sensor data messages from the nodes associated 
with the 2 networks created. This wake up is instigated by an 
interrupt based on a received data packet used to wake the 
microcontroller up out of standby mode. 

For each message received, the base station sends the 
sensor data to a GUI enabled device connected via the 
Bluetooth interface on the AUTHENTIC Board (to any 
standard smartphone, tablet, PC etc.). The GUI displays data 
in real time from the different nodes and stores these in an 
associated database for analysis. The base station checks if 
the RSSI value of that node is higher or lower than the 
threshold (in this case -75 dBm). Only if it is lower than -75 
dBm will the base station send a message to the node in order 
to switch to ZigBee network. When the node receives this 
command it sends an ACK to the base station to confirm that 
the message has been received and it reboots with the ZigBee 
application mode operational. 



105

International Journal on Advances in Networks and Services, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/networks_and_services/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

When the base station receives the ACK, it removes the 
node’s address from the sub GHz addresses list and adds it to 
the ZigBee addresses list. The packet structure is shown in 
Figure 15. 

 
Prea 
mble Sync Length Dest. 

Address 
Source 
Address 

Con 
trol 

Seq. 
No. ACK Pay 

load CRC 

Figure 15. The AUTHENTIC Board Zigbee packet structure 

Where:  
 Preamble is a signal to synchronize transmission timing 

and it is a programmable field from 1 to 32 bytes; 
 Sync is the synchronization word; 
 Length is the packet length; 
 Dest. Address is the destination address and can be set 

to a single, broadcast or multicast address; 
 Source Address is the address of the transmitting board; 
 Control is the control field of the packet; 
 Seq. No. contains the sequence number of the 

transmitted packet. It is incremented automatically 
every time a new packet is transmitted; 

 ACK is the acknowledgement field. If set to 1 means 
that it is the acknowledgement packet; 

 Payload is information data;  
 CRC is the error detecting code to detect errors in the 

data. 
 
The base station sends periodically (every 15 minutes) 

the general broadcast message in order to contact new nodes 
that did not reply at the first message or to contact any of the 
nodes that need to reboot so they can join the network. Nodes 
that are already in the network will ignore the message.  

The use of this protocol shows the interoperability 
between the different wireless technologies (Bluetooth, 
ZigBee, and 868MHz). It is proposed that this system is a 
solution for network congestion because it reduces 
interference in one particular frequency band. If interference 
is encountered in one band then the system simply changes 
the operational ISM band to avoid it. 

It is also a good solution to reduce power consumption 
associated with an individual nodes’ operation. In the first 
instance, power savings are enabled due to the fact that the 
nodes and the base station are in low-power sleep mode if 
they don’t need to transmit data. Moreover, since the base 
station is monitoring the RSSI signal levels, redundant and 
energy wasteful transmissions are eliminated (in the case that 
the node continues to transmit data but the base station can’t 
receive them - because it is out of range or there is too much 
interference in the network). 

An evaluation of potential power savings associated with 
the new protocol has been carried out regarding a network 
composed of one Base Station and three nodes and based on 
the power consumption reported in Table I, assuming to 
power the boards with a 3V battery, to transmit data every 5 
minutes and then go in sleep mode. 

In a scenario where three nodes join the sub-1GHz 
network and when the RSSI level referring to one node is 
lower than the threshold it joins the ZigBee network, the 

estimated power consumption of the Base Station is 
52.13mW and 14.43mW for a single node.  

As previously outlined, the Base Station is in standby 
mode when it is not transmitting or receiving and the nodes 
go into sleep mode after sending the data read from the 
temperature and light sensors. 

In a single radio scenario, where only the ZigBee network 
is available, it can happen that the nodes send the sensors 
data to the Base Station but it cannot receive them because of 
the interferences or long range issues, so the nodes transmit 
uselessly wasting power. In this case the estimated power 
consumption of the Base Station is 55.87mW and 16.83mW 
for a single node. 

System energy consumption for the multiradio platform 
was calculated based on a model which was developed using 
empirically derived power measurements. These 
measurements are reported in Table I, and are based on the 
board being powered by a 3V battery. The operational duty 
cycle for the sensor nodes was selected to be 5%. The system 
is considered to be in sleep mode for the rest of the cycle.  

From this energy model, we can see that the power 
consumption of the node that uses an appropriate 
communication protocol associated with a multiradio system 
(14.43mW) is reduced by approximately 15% compared to a 
node that works in a single radio system (16.83mW). This 
will translate to an increase in battery lifetime of 10-15% in a 
typical application (based on a standard AA battery). 

VII. CONCLUSIONS & FUTURE WORK 
Interoperability between communications protocols 

operating using different radio technologies is a major issue 
within the realm of wireless sensor technology where 
numerous wireless sensor technologies could be operating in 
the same vicinity. Middleware is one software solution that 
aims to overcome this problem. Middleware runs at either the 
gateway or cloud level and incorporates drivers for numerous 
protocols (ZigBee, Z-Wave and EnOcean for example). 

This paper has shown how multi radio architectures and 
networks offer the possibility of increased interoperability 
and energy savings at a network and node level and thus are 
ideal for use in such HAN architectures. In addition, the 
multiradio architectures described address some of the issues 
associated with the fact that in the resource-constrained 
systems typically used in sensing systems for the built 
environment, energy is often the primary constraint and 
impacts on all aspects of the sensor system. 

This work describes the development and preliminary 
characterization of a novel low power consumption 
multiradio system incorporating multiple radio interfaces - 
ZigBee/6LoWPAN/Bluetooth LE/868MHz platform. It 
provides a solution for network congestion in environment 
such as Home Area Network and Commercial Buildings in a 
credit card sized form factor. The multiradio sensing system 
shows the potential for such systems to improve 
interoperability between the different wireless technologies 
enhancing the communications between heterogeneous 
network entities (Sensor Nodes, Smart Meters, Media, Smart 
Phones), and driving the Wireless Sensor Networks use case 
in the built environment. The configurability of the system 
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can increase the range between single sensor points and can 
enable the implementation of adaptive networking 
architectures of different configurations. 

Additional characterization and optimization of the 
system in a variety of environments is underway and 
development of frequency hopping protocols to maximize 
the potential of the multiradio system and its possibilities to 
maximize system lifetime of a WSN in a Smart Home or 
office environment through the development of networking 
protocols leveraging off the platforms capabilities. 
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Abstract—Emulators and simulators provide an easy way to 
reduce hardware needs in experiments. Because of that, 
network researchers use applications that allow them to 
emulate or simulate networks, like Mininet in Software 
Defined Networks. It is desired to obtain very close results 
between the ones given in a virtual network and the ones 
obtained when the real network hardware is implemented in 
order to avoid using too much hardware in complex 
experiments without gathering unreal results. In this paper, we 
compare the experimental results obtained when a virtual 
network is generated by using Mininet versus a real 
implemented network. We have compared them varying the 
Maximum Transmission Unit (MTU) on Internet Protocol 
version 4 (IPv4) packets. Ethernet, Fiber Distributed Data 
Interface (FDDI), and Wireless Local Area Network 802.11 
(WLAN 802.11) MTUs have been used in our experimental 
tests. We have worked with different link capabilities and 
generated traffic with different bandwidth.  

Keywords- SDN; OpenFlow; Mininet; MTU; virtualization; 
bandwidth; jitter. 

I. INTRODUCTION 
In the field of computer networks, the researches usually 

use programs that allow us to emulate or simulate networks. 
This is because, in most cases, we do not have the necessary 
devices needed to create complex networks, but we need to 
know if these programs are reliable [1]. There are emulators 
and simulators as Omnet++ [2], OPNET [3], NS-2 [4], NS-3 
[5] Netsim [6], GNS3 [7], etc. that are frequently used to 
create computer networks. 

Deployment of network is very quick in virtual 
environment, even if it is needed a large number of 
resources, which is always practically almost impossible to 
implement with real hardware. Problem solving or 
troubleshooting capability is still easier than real 
implementations. Note that a network researcher has to keep 
in mind that the results obtained from a virtual network 
should be similar from those obtained by the real hardware 
network. If there is a significant difference between results 
of virtual network and real network, then the research work 
should not be taken into consideration. As a network test 
bed gives almost the same results as the real implemented 
network, then it saves a large amount of time, complexity 
and a lot of resources. 

 

In general, network devices perform the transport and 
the control function. But, configuring a great amount of 
devices and changing the configuration efficiently to work 
properly, it means a big challenge for networking 
professionals. 

Today's, computer network world is able to offer a large 
amount of functionalities suited to the requirements of users. 
A new technology, named Software Defined Networking 
(SDN) [8] appears to increase the efficiency and reduce the 
cost of network configuration. 

Figure 1 shows the components of SDN in a layered 
structure. The first layer consists of some frequently used 
tools of monitoring and depuration. The tool “Oftrace” is 
used for analyzing and parsing Openflow message from 
network dump. “Oftrace” provides a library which analyzes 
and parses the message from TCP dump or Wireshark [9]. 
Loops or cyclic path can cause critical problems in SDN. 
“Oflops” is a tool to catch the loop mechanism in the 
software defined networks. It mentions the data packets in 
the loop which are not able to leave the network [10]. 
“Openseer” is a CGI script which helps to plot that data 
effectively in SDN [11]. In Controllers Layer there are few 
controllers which are used in SDN. More often, controllers 
are called the Brain of Network which controls and manages 
the software defined network. Floodlight, Open Daylight, 
Beacon, Nox are among the frequently used controllers in 
SDN [12]. Flow Visor ensures that multiple isolated logical 
networks can share the same topology and hardware 
resources of a network. It places as a transparent proxy 
between OpenFlow switches and OpenFlow controllers. The 
isolated logical network is named slice of the network and 
flow visor is named slicing software in SDN [13]. In SDN 
environment, OpenFlow switches are used to forward the 
packets. OpenFlow switches are either a software program 
or a hardware device which is compatible with  OpenFlow 
protocols. Some of the commercial switches are available in 
market like HP, Nec, Juniper, etc. [14]. Mininet is used to 
create realistic virtual network within seconds on a single 
machine that could be able to run real kernel, switch and 
application code [15]. 

There are few emulators and simulators which are 
frequently used to run and control the technology SDN from 
a single screen. Some of them are NS-3, Estinet 9.0 [16], 
OmNet ++, Mininet, etc. 
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Figure 1.Key component of SDN in layered structure. 

In this paper, we show the comparison among the 
obtained results from the virtual networks and from the real 
implemented networks. With the assessment of these results 
we are able to find the significant differences, which may be 
very useful for the researchers who all are performing their 
research work in Networking Industry. We have performed 
different experiments over Mininet and real implementation 
to have a good understanding of the network behavior in 
both scenarios. To do a detailed study, we must send data 
packets of different properties and compare the results. We 
used the data packets with different Maximum Transmission 
Unit (MTU) on IPv4. These sizes of packets are usual for 
Ethernet version 2, Ethernet with Logical Link Control 
(LLC), Point-to-Point Protocol over Ethernet (PPPoE), 
WLAN, Token Ring and FDDI. 

This paper is an extended version of a conference paper 
published in [1]. 

The rest of the paper is structured as follows. In Section 
II, we discuss existing related works. In Section III, we 
introduced all resources that we used in our test bench. 
Measurement results and our discussion and analysis are 
shown in Section IV. Section V shows the conclusion and 
future works. 

II. RELATED WORKS 
In the past, a few researchers have accomplished their 

work in the area of SDN and investigated the performance of 
multimedia delivery over SDN. Furthermore, in the last 
years, emulators have been developed in order to provide an 
easy way to manage virtual networks and perform the 
research experiments. These emulators reduce the costs 
associated to the hardware needed to build the network. 
Inside the SDN research, the emulators have a great 
importance because of the great number of tests and the 
specific hardware that are necessary. 

In the following section, we are going to discuss about 
some previous research work that helps us to get a deep   
understanding of SDN. Then, we will describe the previous 
researches in which emulators provide a useful way to test 
the experiments. 

Recently, in our previous research article [17], we tried to 
evaluate the performance of multimedia streaming delivery 
over Mininet compared to real network implementation.  We 
considered different properties of multimedia delivery, i.e., 
bandwidth, delay, jitter, and we found some significant 
differences over mininet and real test network. Kreutzet et al.  
[18] discussed the SDN, and analyzed the significance of 
SDN over traditional networking. Authors explained about 
the key components of SDN by using a bottom-up layered 
approach and focused on challenges, troubleshooting and 
debugging in SDN. Noghaniet et al. [19] introduced a 
framework based on SDN that could enable the network 
controller to deploy IP multicast between source and 
subscribers. The network controller was also able to control 
the distributed set of sources where multiple description 
coded (MDC) video content is available by using a simple 
northbound interface. Due to this SDN-based streaming 
multicast framework for medium and heavy workload, the 
Peak Signal-to-Noise Ratio (PSNR) of the received video is 
increasing considerably. Authors noticed that the received 
video, which had a very poor quality before, was having a 
significant increase in the quality of video now. Nam et al.  
[20] proposed a mechanism to solve the congestion problem 
and improve the video quality of experience (QoE). Authors 
tried to develop an SDN based application to improve the 
quality of video that can monitor conditions of network in 
real time streaming, and change routing paths dynamically 
by multi-protocol label switching (MPLS). 

Egilmezet et al. [21] give a unique design of an 
Openflow controller for multimedia delivery over SDN with 
end to end Quality of Service (QoS) support. The authors 
tried to optimize routes of multimedia flows dynamically. 
After experiments over real test network, the authors found 
better results than HTTP based multi-bitrate adaptive 
streaming. They ensured that OpenQoS can guarantee the 
video delivery with little or no video artifacts experienced 
by the end-users. In another publication, Egilmezet et al. 
[22] gave new distributed control plane architectures for 
multimedia delivery over large-scale, multi-operator SDN. 
The extensions included in the design of architecture were: 
(a) to acquire network topology and the state information by 
topology aggregation and link summarization, (b) to 
propose an optimized framework for flowing based end to 
end over multi-domain networks, and (c) two distributed 
control plane designs by addressing the messaging between 
controllers for scalable and secure routing between two 
domains. By applying these extensions on layered video 
streaming, authors obtained a better quality of received 
video, reduced cost and memory overhead. This architecture 
was effectively scalable for large networks. Kassleret et al. 
[23] tried to negotiate the service and parameter for network 
communication between end users, and assign multimedia 
delivery paths in network according to prefixed service 
configuration. The idea behind this system was to centralize 
multi-user optimization of path assignments, which provides 
the better quality of experience by considering network 
topology, link capacities, delay and account service utility. 
Due to optimization, the system was able to use Openflow 
to set up forwarding paths in network. 
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In [24] Yang et al. have proposed a novel time-aware 
software defined networking (TaSDN) architecture for 
OpenFlow-based datacenter optical networks, by 
introducing a time-aware service scheduling (TaSS) 
strategy. The strategy can arrange and accommodate the 
applications with required QoS considering the time factor, 
and enhance the responsiveness to quickly provide for 
datacenter demand. 

Dramitinoset et a1. [25] have discussed about different 
aspects of video delivery over next generation cellular 
networks, which includes the software defined networks and 
cloud computing. The authors have been focused on next 
generation cellular networks which employ SDN in core due 
to increased demands of video streaming commercially. In 
our paper we are trying to explore the performance of 
multimedia delivery over Software Defined Networks as 
compared to real test networks in terms of some important 
parameters. 

Some of these researches test their experiments with 
emulators. As told before, in [17] we evaluated the 
performance of Mininet. Mininet is the most used emulator 
in SDN researches. In the paper "Using Mininet for 
Emulation and Prototyping Software-Defined Networks" 
[26], Oliveira et al. concluded that despite some limitations 
related with the fidelity of performance between the real 
network and the emulated one, Mininet has several positive 
aspects like the capacity of fast and simplified prototyping, 
the possibility of showing and sharing results, its 
applicability and low cost. 

In addition, Wette et al. tried in [27] to create a large 
network emulation using Mininet. Their goal was to do an 
emulated network almost as large as e.g. data center 
networks, which are composed by thousands of nodes. They 
presented a framework called Maxinet, based on Mininet, 
able to emulate 3200 hosts in a cluster of only 12 physical 
machines, although they concluded that, even a larger 
network could be emulated with Maxinet using better 
hardware available than they used in the research. 

This last research proves the power of emulators like 
Mininet, and the performance that can be obtained from 
Mininet shows why it has become the most used emulator, 
especially in the SDN field. 

However, there are other emulators that are used in the 
literature in order to obtain the results of the research. In this 
section we are going to enumerate some cases where 
emulators are used to set up a virtual SDN. There are some 
other emulators, for instance, OpenvSwitch. It is an 
emulator widely used to test experiments about networking, 
emulating an OpenFlow software-based switch. In [28] 
Akella and Xiong made a study about QoS in SDN 
networks. They presented a bandwidth allocation approach 
by using Open vSwitch. Their study is useful for most of 
cloud applications like gaming, voice IP and teleconference. 
They achieved the guarantee bandwidth allocation to all 
cloud users by introducing queuing techniques and 
considering the performance metrics of response time and 
the number of hops. 

On the other hand, other tools like GNS3 are used to 
emulate the SDN designed in the experiments. For example, 

in [29] Jingjing et al. researched the deployment of routing 
protocols over SDN emulated by GNS3. They used and 
optimized an architecture called Kandoo, a distributed 
control plane architecture, to enhance routing in SDN.  They 
also analyze BGP and OSPF routing protocols and 
concluded their routing strategies are superior to the 
traditional ones based on BGP and OSPF. They used for the 
simulation GNS3 emulator, which is essential to evaluate 
their results and finalizing the research. 

Other test bed used in several researches is the OFELIA 
project, based in OpenFlow. It is an experimental SDN 
designed to research about networking in SDN. In [30] 
Salsano et al. discussed and proposed a general and long 
term solution to support ICN (Information Center 
Networking) over a large scale SDN based on Openflow 
using OFELIA to experimenting their proposal. 

Furthermore, networks designed in order to simulate the 
experiments, like OFELIA, provide new opportunities to 
develop other tools like VeRTIGO, expanding the SDN 
possibilities over any topology. 

Gerola et al. tested VeRTIGO [31] to demonstrate this 
new tool has the power of allowing investigators work with 
OpenFlow-based SDN in a large scale in terms of topology. 
VeRTIGO has been developed within the framework 
OFELIA project.  

Beside the emulators, which can virtualize networks in 
order to test the proposals, there are simulators, which try to 
simulate components and network behavior. Usually, 
emulators achieve a better performance than simulators. In 
[32] Wang et al. introduced EstiNet, a new tool to make 
experiments which consists on a mix of emulator and 
simulator. They presented it for testing performance of SDN 
OpenFlow controller’s application programs. Without any 
modification, they could run OpenFlow controllers into an 
EstiNet virtual network. They concluded that EstiNet,  by 
combining simulation and emulation, take the advantages of 
both approaches and it is able to avoid their disadvantages. 
Finally, they made a comparison between EstiNet, Mininet 
and ns-3 simulator, concluding EstiNet is even better than 
Mininet because it is more scalable, although it takes more 
time simulating more OpenFlow switches, and generates 
correct performance, while Mininet performance and results 
are untrustworthy. This comparison is detailed in [33], 
written by Wang. 

III. TEST BENCH 
In this section, we are going to introduce the SDN 

emulator and the real network topology used in our test 
bench. 

A. Devices and equipement 
In this subsection, we explain the devices and equipment 

used to perform our study.  
The real topology is composed by the following 

equipment: 
• 1 Layer 3 Switch, Cisco Catalyst WS-C3560-24PS-

E [34] that runs an IOS C3560-IPSERVICESK9-
M,Versión 12.2 (53) SE2, release software (fc3). It 
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has 24 Fast Ethernet and 2 Gigabit Ethernet 
interfaces and 16 Mbytes of flash memory;  

• 1 Desktop PC that has an Intel Core Quad Q9400 
CPU @2.66 Ghz processor, 6 Gb of RAM memory, 
1 Network Interface Card (NIC) Intel 82579V 
Gigabit Ethernet and Windows 7 Professional - 64 
bits operative system;  

• • 1 Desktop PC that has an Intel Core i5-2400 CPU 
@3.10 Ghz, 4 Gb RAM memory, 1 NIC Intel 
82579V Gigabit Ethernet and Windows 7 Enterprise 
- 64 bits as operating system.  

To design and develop the virtualized topology we have 
used a laptop composed by an Intel i7-4500UCPU @ 2.70 
Ghz processor, 16 Gb RAM memory, 1 10/100/1000 Mbit/s 
NIC, and Ubuntu 14.04 - 64 bits as operating system. 

B. Software used 
With Mininet, we can create a realistic virtual network, 

running real kernel, switch and application code, on a single 
machine. The machine can be a virtual machine running on a 
local PC, or a machine virtualized through the cloud, or a 
native machine. For our study, we have used Mininet version 
2.2.1, with a native installation on Ubuntu 14 as shown in 
Figure 2. 

We used a software application named gt, programmed 
with a C Linux compiler and developed by us, which allow 
us to send traffic with different MTU and bandwidths set by 
the user. Varying the frame interdelay and frame size, it is 
easy to get any desired speed, as far as it not higher than the 
physical interface speed. The components of the transport 
line are not significant four these tests 

In both, real and virtualized topologies, to capture and 
analyze the received traffic, we have used Wireshark [35], 
version 1.10.  

C. Characteristics of traffic transmited 
In our work, we send traffic with different MTUs that 

represents the packet sizes in different standards. Table I 
shows different sizes of MTU that was sent in our network 
topologies.  

As can be observed in Table I, sizes of MTU that was 
sent in our topology do not have standard values. This is 
because of the need to establish a GRE tunnel in the real 
topology, to connect the two hosts that have been created in 
Mininet, thus changing the frame size. Traffic was 
transmitted through UDP protocol. To calculate the jitter (J), 
we use the expression presented in RFC 4689 (Terminology 
for Benchmarking Network-layer Traffic Control 
Mechanisms) [36]. Therefore, we use the formula (1), where 
Si is the transmission timestamp from packet i, and Ri is the 
reception timestamp of arrival packet i. For two consecutive 
packets i and j. 

 𝐽 = |�𝑅𝑗 − 𝑆𝑗� −  (𝑅𝑖 − 𝑆𝑖)|  (1) 

D. Physical topology 
The real topology consists of two computers connected 

by straight-through cable, using one real switch (Cisco 

Catalyst WS-C3560-24PS-E), as shown in Figure 3. The data 
transfer rates used is 10 Mbps. 

 

 
Figure 2. Host running in Mininet. 

TABLE I.  MTU PACKETS IN TOPOLOGIES 

Frame Differentiation 

Media MTU (bytes) 

Ethernet wit LLC and SNP, PPPoE  1518 

FDDI 4370 

WLAN 802.11, Ethernet Jumbo Frame 7999 

 

 
Figure 3. Real topology. 

In the software defined network, we used a computer 
with Mininet, where we set up the same topology as the real 
one. 

IV. MEASURAMENT AND DISCUSSION 

This section shows the results obtained in both cases, 
when traffic is being delivered over the real network and in 
the virtual topology using Mininet. Here we present 
measures of traffic, when link bandwidth was configured at 
10 and 100 Mbps, and the traffic generator was transmitting 
at 10 and 100 Mbps. Our intention is to test the ability of the 
devices to process packets of several sizes. For that, MTU of 
every interface is configured to allow those different packet 
sizes. The parameters observed are bandwidth and jitter of 
packets with three different MTUs: 1518, 4370 and 7999, 
corresponding at size of packets for traffic Ethernet, FDDI 
and WLAN 802.11. 

The two Mininet networks running at different PCs 
were interconnected through a GRE tunnel established 
between both PCs. The GRE encapsulation is showed in 
Figure 4. 
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The experiments are described as follows. First, we group 
the experiments according to the maximum bandwidth 
available in the links of our topology. Then, we present the 
results obtained in words of bandwidth and jitter from both 
topologies, the real and the virtual one, for every MTU value 
we test. 

 
Figure 4. GRE tunnel. 

1) Traffic links bandwidth 10 Mbps - Traffic generated 
10 Mbps. 

a) MTU - 1518 
In Figure 5, we can see the bandwidth consumption 

values of the real topology and the values obtained in the 
virtual topology. The data have similar values for both 
topologies when the transmission is stabilized. Although, in 
real topology is less than in virtual topology. The mean value 
of bandwidth in real topology is 9.5 Mbps while for virtual 
topology is 10 Mbps. The maximum and minimum values 
for real and virtual topologies are different, 9.9 Mbps and 
20.8 Mbps for maximum and 6.7 Mbps and 9.9 Mbps for 
minimum. Observe that in the virtual topology, at the 
beginning of the transmission we obtain bandwidth values 
higher than 10 Mbps, meaning that in this situation the 
emulator is not accurate since the maximum bandwidth for a 
emulated 10 Mbps physical link should be 10 Mbps. After a 
few transmitted packets, the measured bandwidth is already 
providing more accurate values. 

In Figure 6, we can see the jitter values of the real 
topology and the values obtained in the virtual topology. The 
values of the real topology are higher than those from the 
virtual topology. The mean value of jitter in real topology is 
0.690 ms while for virtual topology is 0.001 ms. The 
maximum values real and virtual topologies are different, 
3.169 ms and 0.607 ms. The minimum values for both 
topologies are the same, 0 ms. 

b) MTU - 4370 
In Figure 7, we can see the bandwidth consumption 

values of the real topology and the values obtained in the 
virtual topology. The data have similar values for both 
topologies, when the transmission is stabilized, although in 
real topology is less than in virtual topology. The mean value 
of bandwidth in real topology is 9.5 Mbps while for virtual 
topology is 10 Mbps. The maximum and minimum values 
for real and virtual topologies are different, 9.8 Mbps and 
31.5 Mbps for maximum, and 4.2 Mbps and 9.9 Mbps for 
minimum. As in the previous case, MTU 1518 bytes, in the 
virtual topology, we can observe that the bandwidth values 

are not realistic at the beginning of the transmission. After 
several transmitted packets, the values obtained are already 
close to the real network values. 

In Figure 8, we can see the jitter values of the real 
topology and the values obtained in the virtual topology. The 
values of the real topology are higher than those from the 
virtual topology. The mean value of jitter in real topology is 
0.228ms while for virtual topology is 0.002 ms. The 
maximum values for real topology are different, 9.189 ms 
and 1.277 ms. The minimum values for real topology and 
virtual topology are the same, 0 ms. 

c) MTU - 7999 
In Figure 9, we can see the bandwidth consumption 

values of the real topology and the values obtained in the 
virtual topology. The data have similar values for both 
topologies, when the transmission is stabilized, although in 
real topology is less than in virtual topology. The mean value 
of bandwidth in real topology is 9.5 Mbps while for virtual 
topology is 10 Mbps. The maximum and minimum values 
for real topology and virtual topology are different, 9.9 Mbps 
and 23 Mbps for maximum and 3.9 Mbps and 10 Mbps for 
minimum. Once again, the virtual topology is not providing 
realistic bandwidth values at the beginning of the 
transmission and, after transmitting a few packets, the 
bandwidth values are quite similar to those from the real 
network. 

In Figure 10, we can see the jitter values of the real 
topology and the values obtained in the virtual topology. The 
values of the real topology are higher than those from the 
virtual topology. The mean value of jitter in real topology is 
0.345 ms while for virtual topology is 0.001 ms. The 
maximum and minimum values for real topology and virtual 
topology are different, 25.091 ms and 0.844 ms for 
maximum and 0.037 ms and 0 ms for minimum. 

As a conclusion, the packet size does not seem to have 
much impact on the observed bandwidth, but more on the 
jitter. 

2) Traffic links bandwidth 100 Mbps - Traffic generated 
10 Mbps. 

a) MTU - 1518 
In Figure 11, we can see the bandwidth consumption 

values of the real topology and the values obtained in the 
virtual topology. The data have similar values for both 
topologies, when the transmission was stabilized, although in 
real topology is less than in virtual topology. The mean value 
of bandwidth in real topology is 9,9 Mbps while for virtual 
topology is 10 Mbps. The maximum and minimum values 
for real topology and virtual topology are different, 10,0 
Mbps and 10,3 Mbps for maximum and 9,9 Mbps and 9,8 
Mbps for minimum. 

In Figure 12, we can see the jitter values of the real 
topology and the values obtained in the virtual topology. The 
values of the real topology are higher than the ones of the 
virtual topology. The mean value of jitter in real topology is 
0,015 ms while for virtual topology is 0,001 ms. The 
maximum values for real and virtual topology are different, 
1,26 ms and 2,691 ms. The minimum values for real 
topology and virtual topology are the same, 0 ms. 

(1500 bytes)(14 bytes)

FRAME ETHERNET (LLC and SNP, PPPoE) 

(4 bytes)

CRCDATAMAC HEADER

(1462 bytes)(38 bytes)(14 bytes)

FRAME ETHERNET (LLC and SNP, PPPoE) whit tunnel GRE

(4 bytes)

CRCMAC HEADER DATAGRE TUNNEL
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Figure 5. BW at 1518. 

 
Figure 6. Jitter at 1518. 

 
Figure 7. BW at 4370.  

 
Figure 8. Jitter at 4370. 

 
Figure 9. BW at 7999. 

 
Figure 10. Jitter at 7999. 

 
Figure 11. BW at 1518. 

 
Figure 12. Jitter at 1518. 
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b) MTU - 4370 
In Figure 13, we can see the bandwidth consumption 

values of the real topology and the values obtained in the 
virtual topology. The data have similar values for both 
topologies, when the transmission was stabilized. Although 
in real topology is less than in virtual topology. The mean 
value of bandwidth in real topology is 9.9 Mbps while for 
virtual topology is 10 Mbps. The maximum values for real 
and virtual topology are the same 10 Mbps. The minimum 
values for real topology and virtual topology are different 9.8 
Mbps and 9.9 Mbps. 

In Figure 14, we can see the jitter values of the real 
topology and the values obtained in the virtual topology. The 
values of the real topology are higher than the ones of the 
virtual topology. The mean value of jitter in real topology is 
0.019 ms while for virtual topology is 0.004 ms. The 
maximum values for real topology and virtual topology are 
different, 3.433 ms and 0.898 ms. The minimum values for 
real topology and virtual topology are the same, 0 ms. 
This section shows the results obtained in both cases, when 
traffic is being delivered over the network and in the virtual 
topology using Mininet. 

c) MTU - 7999 
In Figure 15, we can see the bandwidth consumption 

values of the real topology and the values obtained in the 
virtual topology. The data have similar values for both 
topologies, when the transmission was stabilized.. The mean 
value of bandwidth in real and virtual topology is 10 Mbps. 
The maximum and minimum values for real topology and 
virtual topology are the same, 10 Mbps for maximum and 
9,9 Mbps for minimum. 

In Figure 16, we can see the jitter values of the real 
topology and the values obtained in the virtual topology. The 
values of the real topology are higher than the ones of the 
virtual topology. The mean value of jitter in real topology is 
0.021 ms while for virtual topology is 0.005 ms. The 
maximum values for real topology and virtual topology are 
different, 1.177 ms and 1.756 ms. These values occurred at 
the very beginning and the virtual peak hide the one related 
with the real topology. The minimum values for real 
topology and virtual topology are the same, 0 ms. 

Sending less traffic than the maximum bandwidth 
available seems that introduces less discrepancy between the 
virtual topology and the real one. 

 

3) Traffic links bandwidth 100 Mbps - Traffic generated 
100 Mbps. 

a) MTU - 1518 
In Figure 17, we can see the bandwidth consumption 

values of the real topology and the values obtained in the 
virtual topology. The data have similar values for both 
topologies, when the transmission was stabilized, although in 
real topology is less than in virtual topology. The mean value 
of bandwidth in real topology is 96 Mbps while for virtual 
topology is 100 Mbps. The maximum and minimum values 
for real topology and virtual topology are different, 100 
Mbps and 101 Mbps for maximum and 94.3 Mbps and 7.3 
Mbps for minimum. 

In Figure 18, we can see the jitter values of the real 
topology and the values obtained in the virtual topology. The 
values of the real topology are higher than then ones of the 
virtual topology. The mean value of jitter in real topology is 
0.011 ms while for virtual topology is 0.001 ms. The 
maximum values for real topology and virtual topology are 
different, 0.25 ms and 3.26 ms. The minimum values for real 
topology and virtual topology are the same, 0 ms. 

b) MTU - 4370 
In Figure 19, we can see the bandwidth consumption 

values of the real topology and the values obtained in the 
virtual topology. The data have similar values for both 
topologies, when the transmission was stabilized, although in 
real topology is less than in virtual topology. The mean value 
of bandwidth in real topology is 98.559 Mbps while for 
virtual topology is 100 Mbps. The maximum and minimum 
values for real topology and virtual topology are different, 
100 Mbps and 120.344 Mbps for maximum and 95.474 
Mbps and 99.931 Mbps for minimum. Once again, the 
virtual topology is not providing realistic bandwidth values 
at the beginning of the transmission. But also, after 
transmitting a few packets the bandwidth values are similar 
to those from the real network. 

In Figure 20, we can see the jitter values of the real 
topology and the values obtained in the virtual topology. The 
values of the real topology are higher than the ones of the 
virtual topology. The mean value of jitter in real topology is 
0.017 ms while for virtual topology is 0 ms. The maximum 
values for real topology and virtual topology are different, 
0,908 ms and 0.028 ms. The minimum values for real 
topology and virtual topology are the same, 0 ms. 
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Figure 13. BW at 4370. 

 
Figure 14. Jitter at 4370. 

 
Figure 15. BW at 7999. 

 
Figure 16. Jitter at 7999. 

 
Figure 17. BW at 1518. 

 
Figure 18. Jitter at 1518. 

 
Figure 19. BW at 4370. 

 
Figure 20. Jitter at 4370. 
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Figure 21. BW at 7999. 

 
Figure 22. Jitter at 7999.MTU - 7999 

This section shows the results obtained in both cases, 
when traffic is being delivered over the network and in the 
virtual topology using Mininet. 

In Figure 21, we can see the bandwidth consumption 
values of the real topology and the values obtained in the 
virtual topology. The data have similar values for both 
topologies, when the transmission was stabilized. The mean 
value of bandwidth in real topology is 98.911 Mbps while 
for virtual topology is 100 Mbps. The maximum and 
minimum values for real topology and virtual topology are 
different, 99.502 Mbps and 113.581 Mbps for maximum and 
67.687 Mbps and 100 Kbps for minimum (due to the initial 
interval that some devices need to start sending messages). 
As previously, virtual topology is not providing realistic 
bandwidth values at the beginning of the transmission. 

In Figure 22, we can see the jitter values of the real 
topology and the values obtained in the virtual topology. The 
values of the real topology are higher than the ones of the 
virtual topology. The mean value of jitter in real topology is 
0.016 ms while for virtual topology is 0 ms. The maximum 
values for real topology and virtual topology are different, 
0.749 ms and 0.123 ms. The minimum values for real 
topology and virtual topology are the same, 0 ms. 

These lasts measurements indicate that the virtual 
topology can consume more bandwidth than the available in 
the real network. 

V. CONCLUSION 
In this paper, we have studied the performance of virtual 

networks and compared with real networks. For this study, 
we have transmitted packets with different MTU sizes, 
which correspond to Ethernet, FDDI, and WLAN 802.11 
(also Jumbo Ethernet frames) packets and we have used 
different link capabilities and traffic through the network. It 
can be seen that the variation of the bandwidth between the 
real and virtual topologies are very low. However, in virtual 
networks, the first packets are usually sent with an unreal 
bandwidth. The results obtained for the jitter show that there 
are major deviations, although, we are working with a very 
low time scale, as we are dealing with milliseconds. In our 
future work, we will compare real and virtual networks using 
more complex topologies, and with Openflow compatible 
equipment. 
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