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Abstract— Underwater wireless communications present 

challenges due to the characteristics of water as a propagation 

channel medium. Regardless, wireless communications are 

needed for a range of systems that operate underwater. 

Commonly used technologies for these use cases (radio-

frequency, acoustic and optical communications) are lacking, as 

they generally suffer from strong attenuation, multipath effects 

and propagation delays. In this context, we explore the 

theoretical models for Path Loss of Radio Frequency 

Identification (RFID) systems underwater in regards to the 

salinity of the water. We also discuss RFID systems feasibility in 

such applications as aquaculture and fish stock management. 

This paper aims to discuss the theoretical transmission models 

for RFID systems underwater, separating them into near-field 

systems – which use Magnetic Induction (MI) to communicate – 

and far-field systems – that transfer data via Radio Frequency 

(RF). We determine the path loss for each case, the effect of the 

salinity in the model for the path loss, and present preliminary 

measurements of magnetic field strength underwater for 

different salinity values. 

Keywords- RFID; underwater wireless communications; 

underwater RFID; near-field communication; magnetic 

induction; salinity. 

I.  INTRODUCTION 

 This paper is an extension of a previous conference 

submission [1].  Underwater wireless communications 

present some challenges due to the characteristics of the 

channel medium. The underwater environment has different 

characteristics and phenomena compared to those typical for 

terrestrial radio propagation channel [2]. Despite these 

difficulties, underwater wireless communications are needed 

for a variety of underwater systems. Practical applications 

include seismic activity monitoring, equipment monitoring 

and control, underwater wireless sensor networks, 

underwater robots and Underwater Autonomous Vehicles 

(UAVs), aquaculture, fish stock management and underwater 

environmental monitoring [3][4]. 

There are three commonly used technologies for 

underwater communications [2][5][6]. Radio-frequency (RF) 

communication consists of propagating electromagnetic 

waves, and it has high data rates at short ranges but suffers 

from multipath propagation, strong attenuation and Doppler 

effect [2]. Due to the increasing attenuation for higher 

frequencies, it requires that systems operate at lower 

frequencies to achieve longer ranges of transmission, which 

in turn demands the use of large antennas making it 

unsuitable for some applications. Acoustic communication 

makes use of propagating sound waves, which have low 

attenuation underwater, achieving the longest range [2]. 

However, this type of communication exhibits a large 

propagation delay due to the speed of sound underwater, 

suffers from multipath propagation, and is affected by a large 

delay spread that leads to inter-symbol interference. 

Temperature gradients and ambient noise are also problems 

for acoustic communications. Another technology that can be 

used for underwater use is optical communication, which 

uses electromagnetic waves in the visible spectrum to 

transmit data. Such technologies have large data rates with 

low propagation delay. However, they suffer severe 

absorption in water and strong backscatter due to turbidity 

(e.g., suspended particles in the medium) [2].  

Underwater Radio-Frequency Identification (RFID) is not 

an extensively explored topic due to the problems outlined 

above for RF communications, specifically strong 

attenuation and multipath propagation. However, some RFID 

systems communicate via Magnetic Induction (MI), which 

could provide an alternative for the existing technologies 

[4][7]. In this paper, we want to explore the potential for such 

technology to be used in the marine environment. We 

examine the different methods of communication that 

different RFID systems employ, separating them into two 

categories: near-field communication and far-field 

communication. Theoretical mathematical models exist for 

terrestrial RFID systems, from which the system 

functionality, communication properties and link budget can 

be derived. This paper aims to derive similar models for 

underwater RFID communications, by describing the 

underwater channel physical properties for near-field and far-

field electromagnetic fields by presenting the path loss for 

each. This can then be used to predict communication range, 

link budget and channel capacity. 
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This paper is organised as follows. Section II discusses 

the related work. In Section III, we give a brief overview of 

an RFID system and its components. Section IV then presents 

the model for underwater RFID for near-field and far-field 

communications. In Section V, we present preliminary 

results of measurements done of magnetic field strength in 

various water solutions of different salinity values. Section 

VI discusses underwater RFID in light of the theory presented 

and the measurement results. We conclude the paper in 

Section VII. 

II. RELATED WORK 

Underwater RFID is not a common topic due to the 

challenges that the underwater environment poses to RF 

communications. However, some preliminary work has been 

done. For example, [8] explores the use of Near-Field 

Communication (NFC) underwater. Using smartphones and 

smart cards operating at 13.56 MHz, they tested the read 

range achieved and the influence of dissolved salts in water 

in the read range. Another group used Low-Frequency (LF) 

RFID to track the sediment movements in a beach [9]. 

Transponders were coupled to pebbles, creating "smart" 

pebbles that could be detected at up to 50 cm underwater. 

They were then released into the beach and tracked to map 

the sediment movement. Systems that use LF RFID 

underwater can be found in Passive Integrated Transponder 

(PIT) tags used to uniquely identify fish in fisheries and 

research [10][11]. 

The authors in [12] summarised the current understanding 

of underwater RFID, examining the penetration depth in 

freshwater and seawater. However, the model presented is 

simplified and accounts only for the far-field operation. They 

also showcase other uses of RFID underwater, such as 

underwater pipeline monitoring. Other authors have explored 

MI communications underwater, where the system 

communicates via induction coupling. [13] provides an 

overview of the current research findings and challenges for 

MI. Models for MI can be found in [14]–[18].  

III. RFID SYSTEM 

A typical RFID system is comprised of a tag and a reader 

(initiator). The tag is used to identify or measure ambient 

parameters, typically temperature for instance [19]. 

Furthermore, a reader is used to read and write data from or 

into such tag located within its proximity or vicinity. The tag 

consists of a coupling or backscatter element such as a 

conductor loop or an antenna, and an RFID radio that stores 

the data or ultra-low-power embedded system to measure 

various ambient parameters and store relevant metadata. The 

reader also comprises similar antennas as a coupling element 

along with a control unit and an RFID radio. Generally, near-

field RFID uses inductive coupling between the reader and 

tag loop antennas to communicate with each other when 

located within each other’s proximity or vicinity. RFID 

operates at 120–135 kHz low frequency (LF) unregulated 

band and high frequency (HF) 13.56 MHz Industrial, 

Scientific, and Medical (ISM) band. LF RFID follows the 

ISO/IEC 18000-2 standard and HF RFID follows ISO/IEC 

18000-3 standard along with additional smart cards ISO/IEC 

15693, ISO/IEC 14443A and 14443B standard [20]–[24][25, 

p. 1][26]. Additional NFC standards ensure the 

interoperability of NFC-enabled devices and enable 

communication between them. The NFC standard defines the 

data rate (26.48 to 424 kbit/s), data frame formats such as 

NFC Data Exchange Format (NDEF), modulation, 

initialization, and collision control during initialization [27]. 

In Figure 1 the block diagram of a typical RFID sensing 

system is shown. The conductor loop antenna of the reader 

generates the magnetic alternating field. The magnetic flux 

(Φ) generated by the reader loop antenna is used as a power 

supply for the sensor tag. This is achieved by utilising the 

voltage which is induced in the tag antenna by mutual 

inductance (M) between the transmitter and receiver antenna. 

Due to this induced voltage, a current starts flowing in the tag 

antenna and its value can be theoretically calculated from the 

quotient of the voltage divided by the impedance of the tag 

antenna [28]. Furthermore, the NFC radio Analog Front End 

(AFE) consists of an RF interface and the energy harvesting 

circuitry, which will connect to the loop antenna. The 

harvested voltage will further be regulated using a low 

dropout regulator and will be used to power up an ultra-low-

power Microcontroller Unit (MCU), as well as a sensor [28]. 

The NFC radio consist of an Amplitude Shift Keying (ASK) 

demodulator which will demodulate the messages from the 

reader and responds to the reader with the help of load 

modulation. The load modulation is achieved by varying the 

impedance of the tag antenna [28]. The NFC radio and sensor 

will be interfaced with MCU using the Inter-Integrated 

Circuit (I2C) Protocol. The sensor will start sensing a 

parameter and its raw value will be transmitted to the MCU 

through the I2C. The MCU will then generate an NDEF 

message with the sensed value and forward it to the NFC 

radio [19][29]. 

 

 

Figure 1. Block diagram of a RFID sensing system. 

 The tag receives the signal via the coupling element, and 

utilises the induced voltage to power up the tag’s RFID radio 

and other electronics. RFID radio then sends data back to the 

reader via load modulation or backscatter. In general, such a 

tag is battery-less, and it is powered by the Magnetic flux (Φ) 

generated by the reader. Other battery assisted power (BAP) 

system models exist incorporating an active RFID device that 
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consist of a battery as a power source. The added battery is 

used to power up additional tag electronics or sensors and to 

extend the communication distance range between the 

transmitter and receiver.  

Equation (1) shows the relationship between the quality 

factor of the antenna Q, the bandwidth (BW) and the resonant 

frequency (f) for the system. For example, larger bandwidth 

is required to cover the sidebands of communication for the 

ISO/IEC 14443B standard and is particularly important to 

have if using higher data rates such as 424 or 848 kbps. In 

addition, for other applications based on the ISO/IEC15693 

standard, the Q factor can be significantly higher, as the 

sidebands do not need such a wide bandwidth [30]. 

 

𝑄 =  𝑓 / 𝐵𝑊  (1) 

IV. RFID CHANNEL PHYSICAL CHARACTERISTICS 

The antenna or coil of the RFID reader generates an 

electromagnetic field. These fields can be described as time-

harmonic fields in a lossy medium [31]:  

 

∇2𝑬 = 𝛾𝑬  (2) 

∇2𝑯 = 𝛾𝑯  (3) 

 

where γ is the propagation wave number, with α as the 

attenuation and β as the phase variables. The wavelength λ is 

λ=2π/β.  

 

𝛾 = 𝛼 + 𝑗𝛽 = √𝑗𝜔𝜇(𝜎 + 𝑗𝜔𝜀) (4) 

 

𝛼 = 𝜔√𝜇𝜀 [
1

2
(√1 + (

𝜎

𝜔𝜀
)

2

− 1)]

1/2

  (
𝑁𝑝

𝑚
) (5) 

 

𝛽 = 𝜔√𝜇𝜀 [
1

2
(√1 + (

𝜎

𝜔𝜀
)

2

+ 1)]

1/2

  (
𝑟𝑎𝑑

𝑚
) (6) 

 

The magnetic permeability 𝜇 = 𝜇0 = 4𝜋 ⋅ 10−7H/m  of 

the medium does not change for non-magnetic media. σ is the 

conductivity of the medium, which in this case is dependent 

on the salinity of the water, its temperature and pressure. The 

salinity of the water is proportional to the concentration of 

dissolved salts (chloride, sodium, sulphate, etc.). In marine 

water, the conductivity ranges from 2 S/m to 6 S/m for 

frequencies lower than 10 GHz, being considered constant 4 

S/m in most cases [12]. In freshwater, the considerations are 

the same. However, the salinity is lower, which means that 

the conductivity is lower (typically ranging from 30 to 2000 

μS/cm) [12]. Due to this high conductivity, Eddy currents are 

induced within the water, caused by the propagating magnetic 

field [32]. These Eddy currents are a source of attenuation of 

the magnetic field.  

The conversion between salinity and conductivity for 

seawater has been defined in the practical-salinity-scale PSS-

78 [33]. This scale defines a standard ratio between any 

measured combination of salinity, conductivity, and 

temperature in relation to a standard value of conductivity 

and temperature for seawater of salinity 35 g/Kg. 

  

Figure 2: Conductivity of pure, freshwater and seawater for different values 

of propagating frequencies. 

The dielectric permittivity of the medium ε is defined by 

𝜀 = 𝜀𝑟𝜀0, 𝜀0 = 8.854 × 10−12F/mbeing the permittivity in 

free-space and 𝜀𝑟  the relative permittivity of the medium. 

This relative permittivity is dependent on the composition of 

the medium that is polarised when placed under an electric 

field [34][35]. Equation (7) shows the relationship between 

the relative permittivity and the frequency of the propagating 

electromagnetic wave for pure water as modelled by Debye 

[35]. 

𝜀𝑟(𝜔) = 𝜀∞ +
𝜀𝑠−𝜀∞

1+𝑗𝜔𝜏
  (7) 

 

In this equation, τ is a time constant of the exponentially 

increasing orientation polarisation called relaxation time, and 

ε𝑆 and ε∞  are the static and infinite frequency relative 

permittivities of the medium. All these parameters are 

dependent on the temperature.  

However, for freshwater and seawater, due to the 

interaction between molecules and the presence of ions that 

increase the conductivity of the medium, the simple model is 

not enough to accurately predict the permittivity [34].  

For freshwater, there are extensive experimental studies 

and various models that predict the dielectric permittivity 

[36]–[40].  

Work has been done by [38][41]–[43] to empirically 

determine a model for the relative permittivity of seawater, 

but some results disagree with each other. The International 

Telecommunication Union released a recommendation [44] 

that advises the model to use when calculating the dielectric 

permittivity and conductivity of seawater based on its 
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salinity, which will be used in this paper. Equation (8) shows 

how to calculate the relative dielectric permittivity based on 

this model. 

 

𝜀𝑟 =
𝜀𝑆𝑆−𝜀1𝑆

1+(𝑓𝐺𝐻𝑧/𝑓1𝑆)2 +
𝜀1𝑆−𝜀∞𝑆

1+(𝑓𝐺𝐻𝑧/𝑓2𝑆)2 + 𝜀∞𝑆  (8) 

 

 

The following equations show the calculations for each 

of the parameters from Equation (8). 

 

𝜀𝑆𝑆 = 𝜀𝑆𝑒𝑥𝑝(−3.33330 × 10−3𝑆 + 4.74868 × 10−6𝑆2) (9) 

 

𝑓1𝑆 = 𝑓1(1 + 𝑆(2.3232 × 10−3 − 7.9208 × 10−5𝑇 +

3.6764 × 10−6𝑇2 + 3.5594 × 10−7𝑇3 + 8.9795 ×

10−9𝑇4))  (10) 

 

𝜀1𝑆 = 𝜀1𝑒𝑥𝑝(−6.28908 × 10−3𝑆 + 1.76032 × 10−4𝑆2 −
9.22144 × 10−5𝑇𝑆)  (11) 

 

𝑓2𝑆 = 𝑓2(1 + 𝑆(−1.99723 × 10−2 + 1.81176 × 10−4𝑇)) 

 (12) 

 

𝜀∞𝑆 = 𝜀∞(1 + 𝑆(−2.04265 × 10−3 + 1.57883 × 10−4𝑇)) 

 (13) 

 

𝜀𝑆 = 77.66 + 103.3  (14) 

 

𝜀1 = 0.0671𝜀𝑆   (15) 

 

𝜀∞ = 3.52 − 7.52  (16) 

 

Θ =
300

𝑇+273.15
– 1  (17) 

 

𝑓1 = 20.20 − 146.4Θ + 316Θ2  (18) 

 

𝑓2 = 39.8𝑓1  (19) 

 

in which T is the temperature in degrees Celsius (°C), 𝑓𝐺𝐻𝑧 is 

the frequency of the signal in GHz, S is the salinity in g/kg or 

ppt, and 𝑓1 and 𝑓2 are the Debye relaxation frequencies for 

pure water.  

From the same model, the conductivity is: 

 

𝜎 = 𝜎35𝑅35𝑅𝑇15 (𝑆/𝑚)  (20) 

 

The following equations show the calculations for each 

of the parameters from Equation (20). 

 

𝜎35 = 2.903602 + 8.607 × 10−2𝑇 + 4.738817 ×
10−4𝑇2 − 2.991 × 10−6𝑇3 + 4.3047 × 10−9𝑇4  (21) 

 

𝑅35 = 𝑆
(37.5109+5.45216𝑆+1.4409×10−2𝑆2)

(1004.75+182.283𝑆+𝑆2)
  (22) 

 

𝑅𝑇15 = 1 +
𝑎0(𝑇−15)

𝑎1+𝑇
  (23) 

 

𝑎0 =
(6.9431+3.2841𝑆−9.9486×10−2𝑆2)

(84.850+69.024𝑆+𝑆2)
  (24) 

 

𝑎1 = 49.843 − 0.2276𝑆 − 0.198 × 10−2𝑆2  (25) 

 

 

Figure 2 shows the influence of the frequency of the 

signal in the conductivity of the medium. Figure 3 shows the 

complex permittivity for pure water, freshwater and seawater 

as a function of the frequency according to Equation (26).  

 

𝜀̂ = 𝜀𝑟 − 𝑗𝜀𝑟
′′ =

𝜀

𝜀0
− 𝑗

𝜎

𝜔𝜀0
   (26) 

  

Figure 3: Real (relative permittivity) and imaginary parts of the complex 

dielectric permittivity for pure water, freshwater (Salinity = 0.5 g/kg) and 

seawater (Salinity = 35 g/kg) at temperature T = 20°C. 

The dielectric permittivity and the conductivity are then 

used to determine the attenuation factor α. In [45], the authors 

propose a review of this model to account for the difference 

between the theoretical calculations and the empirical data of 

the attenuation of radio waves underwater. The experiments 

show that the signal attenuation at higher distances (≫10 m) 

is not as strong as predicted. Therefore, they redefine α as a 

corrected absorption factor α' that matches experimental 

results closely: 

 

𝛼′ = 𝛼 (
𝜆

𝜆+𝑧
)   (27) 

 

For the Transverse Electromagnetic Mode to the positive 

z direction in lossy medium (in this case, water), E and H can 

be derived as [31]:  

 

𝑬(𝒛) = �̂�𝒙𝐸0𝑒−𝛾𝑧    (28) 

 

𝑯(𝒛) = �̂�𝒚
𝛾

𝑗𝜔𝜇
𝐸0𝑒−𝛾𝑧   (29) 
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For a given antenna, the space that surrounds it can be 

separated into three regions: (a) a reactive near-field, (b) a 

radiating near-field and (c) the far-field. There are no abrupt 

changes at their boundaries [46]. A representation of these 

regions can be seen in Figure 4. 

  

Figure 4: Field regions for a propagating electromagnetic wave leaving an 

antenna. 

The Reactive Near-Field is the space immediately near 

the antenna where the reactive field predominates (magnetic 

field). For most antennas, the limit of this region is at 

0.62√𝐷3/𝜆 [46], where D is the biggest dimension of the 

antenna. The Radiating Near-Field is located between the 

reactive near-field and the far-field and is the space wherein 

radiation fields are dominant. The angular field distribution 

is determined by the distance from the antenna. This field 

existence depends on the ratio between antenna size D and 

the wavelength λ: if D/λ≪1 then this region does not exist. 

The Far-Field is the region wherein the electrical and 

magnetic components of the field become orthogonal to each 

other as they separate from the antenna and propagate as an 

electromagnetic wave. The lower boundary of this region is 

located at 2𝐷2 ∕ 𝜆 for any antenna [31], also considered to be 

λ/2π for dipole antennas. According to [28], a good 

approximate rule for RFID systems is to place the beginning 

of the far-field at λ/2π.  

The field boundary distance is different for each medium 

due to the difference in wavelength. Tables I and II show the 

values for the attenuation coefficient, wavelength, and far-

field boundary for freshwater and seawater, respectively. 

 Current RFID systems can be separated into two 

categories: near-field systems that work with inductive 

coupling due to the dominance of the magnetic field in the 

near-region, and far-field systems that receive power from the 

propagating electromagnetic waves in the far-field [47]. The 

frequencies used in each region are different. Since the lower 

frequencies – such as Low Frequency (LF) at around 

134.2kHz and High Frequency (HF) at 13.56MHz – have a 

far-field boundary that is further away, they are mainly used 

in inductive coupling systems. Higher frequencies are then 

used mostly in far-field systems. 

  

 

 

TABLE I.  VALUES OF ATTENUATION FACTOR Α, WAVELENGTH Λ AND FAR-
FIELD BOUNDARY 𝑧𝐹 = 𝜆/2 FOR FRESHWATER (S = 0.5 G/KG). 

 Frequency α (Np/m) λ (m) z
F

 (m) 

 134.2 kHz 2.16E-01 2.89E+01 4.60E+00 

 13.56 MHz 1.58E+00 2.10E+00 3.34E-01 

 433.9 MHz 2.83E+00 7.73E-02 1.23E-02 

 915 MHz 6.16E+00 3.67E-02 5.84E-03 

 1.5 GHz 1.34E+01 2.24E-02 3.57E-03 

 2.4 GHz 3.11E+01 1.41E-02 2.24E-03 

 5 GHz 1.24E+02 6.91E-03 1.10E-03 

 

TABLE II.   VALUES OF ATTENUATION FACTOR Α, WAVELENGTH Λ AND 

FAR-FIELD BOUNDARY  𝑧𝐹 = 𝜆/2  FOR SEAWATER (S = 35 G/KG). 

 Frequency α (Np/m) λ (m) z
F

 (m) 

 134.2 kHz 1.59E+00 3.94E+00 6.27E-01 

 13.56 MHz 1.59E+01 3.90E-01 6.20E-02 

 433.9 MHz 7.63E+01 5.80E-02 9.22E-03 

 915 MHz 9.51E+01 3.34E-02 5.32E-03 

 1.5 GHz 1.07E+02 2.19E-02 3.49E-03 

 2.4 GHz 1.25E+02 1.42E-02 2.27E-03 

 5 GHz 2.01E+02 7.08E-03 1.13E-03 

  

A. Near-field 

In the near-field, the magnetic field created by the 

reader’s antenna induces a voltage in the transponder 

immersed in this field. This is called inductive coupling and 

the interaction between reader and transponder can be 

considered as coupled inductors. This method of 

communication can also be called Magnetic Induction (MI).  

Consider the equivalent circuit for the inductively 

coupled system shown in Figure 5. The transmitter antenna is 

fed by a source with internal impedance 𝑍𝑆 and the receiver 

antenna is terminated by a load impedance 𝑍𝐿 . The 

transmitter coil antenna has a impedance of 𝑍𝑇𝑋 = 𝑅𝑇𝑋 +
𝑗𝜔𝐿𝑇𝑋 + 1/(𝑗𝜔𝐶𝑇𝑋) and the receiver coil antenna is 𝑍𝑅𝑋 =
𝑅𝑅𝑋 + 𝑗𝜔𝐿𝑅𝑋 + 1/(𝑗𝜔𝐶𝑅𝑋). 

 

 

Figure 5: Inductive coupling between reader and transponder. 
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Figure 6: Two-port network equivalent of the system. 

Using the two-port network equivalent (Figure 6) and 

considering an ideal source for 𝑉𝑆, 𝑍11 = 𝑍𝑇𝑋 and 𝑍22 = 𝑍𝑅𝑋 

are the self-impedances of the coils and 𝑍12 = 𝑍21 = 𝑗𝜔𝑀 

are the mutual impedances due to the coupling. 

(
𝑉1

−𝑍𝐿𝐼2
) = [

𝑧11 𝑧12

𝑧21 𝑧22
] ⋅ (

𝐼1

𝐼2
)  (30) 

 

The resistance of a coil is 𝑅 = 𝑁 ⋅ 2𝜋𝑎 ⋅ 𝑅0, where N is 

the number of turns of the coil, a is the diameter of the coil 

and R
0

 is the resistance of a unit of length of the wire used to 

fabricate the coil. The self-inductance is  

 

𝐿 =
𝜇𝜋2𝑁2𝑎

𝑙
 (𝐻)  (31) 

 

where l is the length of the coil. In the free space, the 

magnetic field strength generated by a coil antenna in the near 

field is [28]: 

 

𝐻0 =
𝑁𝑎2𝐼

2(𝑎2+𝑧2)3/2  (𝐴/𝑚)  (32) 

 

The magnetic field magnitude for a lossy medium is then 

𝐻 = 𝐻0𝑒𝑥𝑝(−𝛼𝑧)  according to (29). This magnetic field 

induces a voltage in the tag’s coil antenna, given by: 

 

𝑈2 = −𝑁2
𝑑Φ21

𝑑𝑡
= −𝑀

𝑑𝑖1

𝑑𝑡
  (33) 

 

where Φ21 = ∫ b𝐵 ⋅ 𝑑𝑺  is the magnetic flux through each 

turn, 𝑩 = 𝜇𝑯 the magnetic field and S the surface area of the 

coil. Considering that the reader’s and tag’s coils are aligned, 

and using (32): 

 

𝐵𝑧 = (
𝜇𝑁𝑎1

2𝐼

2(𝑎1
2+𝑧2)

2/3) 𝑒−𝛼𝑧  (34) 

 

Therefore, the mutual inductance 𝑀 = 𝑘√𝐿1𝐿2 is: 

 

𝑀 = (
𝜇⋅𝜋⋅𝑁1⋅𝑎1

2⋅𝑁2⋅𝑎2
2

2⋅(𝑎1
2+𝑧2)

3/2 ) ⋅ 𝑒−𝛼𝑧  (35) 

 

where α is the attenuation constant of the medium. 

The transmission power can be defined as the power 

consumed by the radiation resistance in the reader 

(transmitter) antenna:  

 

𝑃𝑇𝑋 =
1

2
𝑅𝑒(𝑍11) ⋅ |𝐼1|2  (36) 

 

The received power is defined as the power consumed in 

the load:  

 

𝑃𝑅𝑋(𝑧) =
1

2
𝑅𝑒(𝑍𝐿) ⋅ |𝐼2|2  (37) 

 

Using (30) and considering 𝑍𝑆 ≈ 0, the received power 

can be written as: 

 

𝑃𝑅𝑋(𝑧) = 𝑃𝑇𝑋
𝑅𝑒(𝑍𝐿)𝜔2𝑀2

𝑅𝑒(𝑍𝑇𝑋)|𝑍𝐿+𝑍𝑅𝑋|2  (38) 

 

 

Path loss in decibels (dB) can be defined as: 

 

𝑃𝐿 = −10 log10 (
𝑃𝑅𝑋

𝑃𝑇𝑋
) (𝑑𝐵)  (39) 

 

The path loss is a function of the number of turns and 

radius of both coils and the impedances of the system, as well 

as the frequency and the distance between reader and tag. The 

highest amount of power is transferred to the load when its 

impedance is matched with the impedance of the antenna. 

The path loss for the MI system increases with the 

increasing distance between reader and tag. Also, the path 

loss is higher for seawater due to the higher conductivity of 

the medium. As the frequency increases, the distance from 

the reader where the border between the near and the far-field 

is located decreases. This implies that the maximum 

theoretical range decreases with frequency. We can then 

conclude that there is an optimal combination of frequency 

and distance for each application. In addition to that, the 

attenuation factor α is higher for higher frequencies. 

The influence of the number of turns of the transmitter or 

the receiver coil in the mutual inductance M is linear. 

Therefore, the power received would increase quadratically 

with the increase in the number of turns. However, it also 

increases the energy losses in the internal resistance of the 

coil as it increases. It is also worth noting that a bigger coil 

diameter allows for more magnetic flux to pass through, but 

it also has the effect of increasing the internal resistance of 

the coil. 

A more in-depth model of underwater magnetic induction 

communication can be found in [15]. The model shown here 

assumes that the reader and tag coils are oriented in the same 

direction, with the field strength reaching zero if the angle 

between coils is 90°. To remove this limitation, the authors 

in [48] present a model of the Underwater MI channel for a 

tri-directional coil. To increase the achievable range of MI 

systems, waveguides can be used [14][49]. The authors in 
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[17] provide a different but similar model that is based on the 

quality factor of the coil inductor. 

 

1) Data transmission from tag 

When a transponder is located in the magnetic alternating 

field generated by the reader, the reader ’sees’ the 

transponder as the secondary wing of the transformer. This 

means that the transponder’s impedance is reflected back to 

the reader as the transformer impedance 𝑍𝑇.  

If the transponder antenna impedance changes, this is 

reflected back to the reader’s coil via the reflected impedance 

𝑍𝑇 . Therefore, a data stream can be transmitted via 

modulation of the voltage 𝑍𝐿 in the reader’s coil (called Load 

Modulation); this can be demodulated by the reader via 

rectification of the voltage [28]. This is only feasible in the 

near-field as if the transponder leaves the appropriate read 

range, the coupling is lost and the transmission link is not 

operational anymore. 

For an amplitude modulating system, due to the weak 

coupling between reader and transponder antennas, the 

voltage fluctuation is orders of magnitude smaller than the 

voltage provided by the reader. As a direct result, the reader 

has to integrate a complex circuitry to separate noise from the 

signal and detect the data stream. On the other hand, if the 

transponder modulates the signal at a frequency 𝑓𝑠, smaller 

than the frequency of the magnetic field (𝑓0), two spectral 

lines ±𝑓𝑠 are created and they can be filtered with a band-pass 

filter and demodulated more easily [47]. 

B. Far-field 

In the far-field, the electromagnetic fields separate 

completely from the reader’s antenna and become 

propagating waves, no longer retroacting upon the reader’s 

antenna. These waves are captured by the antenna on the 

transponder. The energy on the antenna is rectified and used 

to power up the IC. The frequency range commonly used for 

this type of transmission is the Ultra-High Frequency (UHF) 

and Microwave.  

A linearly polarized plane EM wave propagating in lossy 

media in the z-direction can be described by the electric field 

strength 𝐸𝑥:  

 

𝐸𝑥 = 𝐸0𝑒𝑗𝜔𝑡−𝛾𝑧  (40) 

 

with 𝛾 =  𝛼 +  𝑗 𝜔𝛽 as the propagating constant according to 

(5) and (6). 

The radiation power density S is the instantaneous value 

of the Poynting vector S=E×H. From [31] and considering 

(29): 

 

𝑺 =
1

2
𝑅𝑒(𝑬 × 𝑯) = �̂�𝒛

|𝐸0|

2
𝑒−2𝛼𝑧𝑅𝑒 (

1

𝜂𝑐
∗)  (41) 

 

where η
C

 is the intrinsic impedance of the medium, given by 

(42). 

 

𝜂𝐶 = √
𝑗𝜔𝜇

𝜎+𝑗𝜔𝜀
  (42) 

 

For the transmitting antenna in the free-space, 𝑠0 is the 

power supplied to it over the area of the spread surface: 

 

𝑆0 =
𝑃𝐸𝐼𝑅𝑃

4𝜋𝑧2 =
𝑃𝑇𝑋𝐺𝑇𝑋

4𝜋𝑧2   (43) 

 

Whereas the radiation power density in a lossy medium 

is then:  

 

𝑆 = 𝑆0𝑒−2𝛼𝑧  (44) 

 

For the receiving antenna, the average power received is 

the radiation power density times its effective receiving area 

𝐴𝑒 [45]:  

 

𝑃𝑅𝑋 = 𝑆 ⋅ 𝐴𝑒 = 𝑆 ⋅
𝐺𝑅𝑋𝜆2

4𝜋
  (45) 

 

 

The transmission equation then can be written as: 

 

𝑃𝑅𝑋 = 𝑃𝑇𝑋 (
𝐺𝑇𝑋𝐺𝑅𝑋𝜆2

(4𝜋𝑧)2 ) 𝑒−2𝛼𝑧  (46) 

 

where 𝐺𝑇𝑋 and 𝐺𝑅𝑋 are the antenna gains for transmitter and 

receiver respectively, λ=(2π)/β is the wavelength and z is the 

distance between antennas. This equation assumes that the 

antennas are aligned and have the same polarization. The path 

loss 𝑃𝐿𝐸𝑀  in decibels is then defined as 𝑃𝐿𝐸𝑀 =
−10 log10(𝑃𝑅𝑋/𝑃𝑇𝑋). 

 

1) Data transmission from tag 

For passive RFID, the method of transmitting back to the 

reader is via Backscatter. Electromagnetic waves are 

reflected by objects that are larger than half the wavelength 

(𝜆/ 2) [28]. The efficiency of this reflection depends on the 

radar cross-section of the object: antennas that are resonant 

with the waves have a larger reflection cross-section. The 

reflection characteristics can be altered by changing the load 

that is connected to the antenna. For example, if a load 𝑅𝐿 is 

switched on and off while connected to the antenna, this 

changes the reflection characteristics of the antenna, 

generating a modulated backscatter signal [28]. The range is 

limited by the amount of energy that reaches the tag (path 

loss) and the sensitivity of the reader’s receiver to the 

reflected signal (reflected signal strength ∝ 1/𝑥4) [50]. The 

authors in [51] present a method for measuring the 

backscatter of an RFID tag and for calculating its radar cross-

section. They utilise a network analyser connected to an 

anechoic chamber.  
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V. MEASUREMENTS 

To explore the difference in magnetic field strength 

between free-space and water in the near-field region, a 

preliminary experiment was designed. The Anritsu 

MS2038C VNA Master [52] vector network analyser and the 

probe 100C from Beehive Electronics, USA [53] were used 

to measure the magnetic field strength at the system’s 

resonant frequency. Two Evaluation Kit RFID readers were 

used: MRD2EVM from Texas Instruments, USA that operates 

at 134.2 kHz [54] and Pepper Wireless C1 USB from Eccel 

Technology Ltd, UK that operates at 13.56 MHz [55]. Both 

have square loop antennae embedded on the printed circuit 

board, with sides of length 3.0 cm and 4.5 cm, and number of 

turns 14 and 3, respectively. 

For a square loop antenna with N-turns, the magnetic field 

strength in free-space can be written as [56]: 

 

𝐻0 =
𝑁𝐼

2𝜋(
𝑧2

𝑙2 +
1

4
)√𝑧2+

𝑙2

2

  (47) 

 

where z is the distance from the centre of the antenna and l is 

the length of the side of the antenna. Using (29), for a lossy 

medium (in this case saline water), the magnetic field 

strength is then  

 

𝐻 = 𝐻0𝑒𝑥𝑝(−𝛼𝑧)  (48) 

 

Using α from (5) with the salinity and frequency, we can 

then calculate the theoretical values for the magnetic field 

strength for any distance and compare this with the 

measurements made with the probe.  

For both systems, the setup for the experiments was the 

same, as seen in Figure 7. The readers were placed and 

secured on the side of a plastic transparent container. The 

probe was placed in different distances z from the centre of 

the embedded antenna of the reader. A measurement ruler 

and grid paper were used for the precise placement of the 

probe. The free-space tests were done without water inside 

the container. For the other measurements, the probe was 

submerged in the water solution to get the measured field 

strength.  

For the experimental test, 4 water solutions were used, 

named as: distilled water, freshwater, brackish water, and 

saline water. The water solutions were prepared as follows. 

First the container was placed in a scale, and the mass of NaCl 

was added, according to the target value of salinity for each 

solution. Then, distilled water was added until the whole 

solution mass reached 700g (the volume of the plastic 

container used for the experiments). Table III shows the mass 

of salt for each solution and their salinity and calculated 

conductivity. 

 TABLE III. SOLUTIONS USED FOR THE EXPERIMENT, TEMPERATURE AT 

WHICH THEY WHERE MIXED, THEIR SALINITY AND CALCULATED 

CONDUCTIVITY FOR EACH SOLUTION ACCORDING TO [44]. 

 Solution NaCl 

mass 

Total 

mass 

Salinity Tempe-

rature 

Calculated 

Conductivity (at 1 

MHz) 

 Freshwater 0.35 g 0.7002 kg 0.499 g/kg 19 C 0.093 S/m 

 Brackish 

Water 

10.5 g 0.7003 kg 14.99 g/kg 18 C 2.32 S/m 

 Saline  

Water 

24.5 g 0.7003 kg 34.98 g/kg 19 C 5.04 S/m 

  

For each solution, the probe was placed and held at 

different distances from the centre of the antenna and the 

peak value of the magnetic field was measured using the 

VNA. After this was done, the probe was wiped so there was 

no contamination between solutions. 

The output power values measured by the probe 𝑃𝑜𝑢𝑡  

were then converted from dBm to magnetic field strength in 

A/m using the probe manufacturer’s guidelines [53], using 

Equations (49) and (50), where 𝑓𝑀𝐻𝑧 is the frequency of the 

system in MHz, 𝐵𝑜𝑢𝑡  is the magnetic flux density, and 𝐻𝑜𝑢𝑡 

 

 

Figure 7: Experimental setup for measuring the magnetic field strength consisting of a plastic container, magnetic probe, holder and stand for the 

probe and VNA. Each RFID reader system was placed and secured on the side of the plastic container. 
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is the magnetic field strength. The raw data collected from 

the probe and the VNA in dBm can be found in Tables IV and 

V. 

 
20 × 𝑙𝑜𝑔10(𝐵𝑜𝑢𝑡) = 𝑃𝑜𝑢𝑡 − 42.2 − 20 × 𝑙𝑜𝑔10(𝑓𝑀𝐻𝑧) (49) 

 

𝐻𝑜𝑢𝑡 =
10𝐵

μ
 (𝐴/𝑚)  (50) 

 

Figure 8 shows the measured values of magnetic field 

strength for the 134.2 kHz system, while Figure 9 shows the 

values for the 13.56MHz system. 

Figures 10 and 11 show the comparison between 

measured values of field strength and the theoretical values 

expected using a calculated α from the water salinity. For this, 

the peak current (A) flowing through the antennas was 

measured under the same experimental conditions, and 

Equation (47) was used. 

 

TABLE IV.    MEASURED VALUES OF 𝑃𝑜𝑢𝑡  IN DBM FOR THE 134.4KHZ 

SYSTEM FOR FREE-SPACE (FREE), DISTILLED WATER (DW), FRESHWATER 

(FW), BRACKISH WATER (BW) AND SALINE WATER (SW) SOLUTIONS. 

 z (cm) F (dBm) DW (dBm) FW (dBm) BW (dBm) SW (dBm) 

 0.2 -2.2 -2.18 -2.63 -3.62 -1.96 

 1 -9.66 -7.68 -6.84 -8.34 -7.35 

 2 -13.82 -14.24 -13.36 -15.42 -14.13 

 3 -20.2 -21.13 -19.6 -21.06 -20.22 

 4 -26.1 -25.95 -25.41 -25.81 -25.72 

 5 -30.15 -30.69 -30.27 -30.04 -30.43 

 6 -34.02 -34.44 -33.41 -34.06 -34.16 

 7 -37.7 -37.36 -36.75 -37.24 -37.3 

 8 -40.9 -40.76 -40.42 -40.56 -40.79 

 9 -43.34 -43.66 -42.79 -43.07 -43.26 

 10 -45.65 -45.66 -45.31 -45.84 -45.9 

    

TABLE V.    MEASURED VALUES OF 𝑃𝑜𝑢𝑡  IN DBM FOR THE 13.56MHZ 

SYSTEM FOR FREE-SPACE (F), DISTILLED WATER (DW), FRESHWATER 

(FW), BRACKISH WATER (BW) AND SALINE WATER (SW) SOLUTIONS. 

 z (cm) F (dBm) DW (dBm) FW (dBm) BW (dBm) SW (dBm) 

 0.2 11.64 11.09 11.03 10.7 9.49 

 1 7.72 7.96 7.87 6.65 6 

 2 2.74 2.32 2.58 1.73 1.24 

 3 -2.37 -2.12 -2.06 -3.84 -4.15 

 4 -6.92 -7.06 -7.01 -7.94 -8.53 

 5 -10.92 -11.56 -10.76 -11.95 -12.75 

 6 -14.33 -15.02 -14.92 -15.63 -16.7 

 7 -17.76 -17.94 -17.56 -18.28 -19.74 

 8 -20.56 -20.52 -20.88 -21.65 -22.76 

 9 -23.26 -23.76 -23.66 -24.12 -25.51 

 10 -25.76 -25.66 -25.96 -26.6 -27.76 

   

 

 

 

 

 

 

Figure 8: Measured magnetic field strength values for the Texas 

Instruments MRD2EVM evaluation kit (f=134.2 kHz). 

 

 

Figure 9: Measured magnetic field strength values for the Eccel 

Technology Pepper C1 USB evaluation kit (f=13.56 MHz). 

VI. DISCUSSIONS 

The most common method of wireless transmission 

underwater is acoustic communication. This is due to the long 

range that can be accomplished with this technology. 

However, some applications do not need such long range and 

are deeply affected by acoustic noise and refractions, 

reflections and multipath due to the proximity to the water 

surface, such as coastal environments. In these cases, wireless 

communication can be better served by other methods that do 

not suffer from these problems. We explore the possibility of 

using RFID technology to better serve these environments. 
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Figure 10: Comparison between measured values of magnetic field strength for different salinity values underwater for the 134.2kHz system. 
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Figure 11: Comparison between measured values of magnetic field strength for different salinity values underwater for the 13.56MHz system. 
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In the near-field region, the magnetic component of the 

electromagnetic field dominates. The method of 

communication for RFID in this region is MI. Compared to 

other methods of underwater communications, MI has 

several advantages. It is not affected by multipath 

propagation or fading and the magnetic field can cross the 

water to air boundary with low attenuation [14]. The signal 

propagation delay is negligible if compared to acoustic 

waves. The channel response is predictable, and a sufficiently 

large range can be achieved with modest data rates [13].  

For the far-field, the electromagnetic field propagates as 

a wave, and the communication is realized through 

radiofrequency. Due to the high attenuation, there is a severe 

constraint on data rates and propagation distances for this 

method [2]. Lower frequency signals have lower attenuation 

(due to conductivity of the water) but require larger antennas. 

This also limits the bandwidth of the system due to the lower 

frequency of operation. Higher frequency systems would 

then require more power to reach the same ranges. Shallow 

water environments, in particular, pose a problem to wave 

propagation due to the proximity to the water/air upper 

boundary and to the river/sea bed, which causes multipath 

propagation [5][6].  

Both technologies do not require line-of-sight and are 

unaffected by light and acoustic ambient noise. Moreover, the 

channel response is independent of water quality conditions, 

such as turbidity. The literature generally agrees that the 

achievable range for a given transmission power is not great 

for both MI and RF. The reasoning is due to the high 

attenuation caused by the medium conductivity which 

increases with the salinity of the water. From this, it follows 

that long-range transmissions underwater, particularly in a 

marine environment, are best served by acoustic 

communication based systems [2]. 

However, there are some evidence that this attenuation 

could be lower than expected. The authors in [57] managed 

to transmit a RF signal at 90 m distance in seawater with a 

lower attenuation than expected. To reflect this results, [45] 

propose the change in the attenuation factor α to α' according 

to Equation (27). In addition to that, the dielectric permittivity 

for saline water is not completely understood [34]. There are 

models available extrapolated from measurement data, but 

they do not agree completely. Since the dielectric permittivity 

affects the attenuation, it follows that the attenuation itself 

could have a different value. 

The results from our experiment in Figure 10 for the 

134.2 kHz system show that there is a difference between the 

expected theoretical value and the measured value, especially 

as the distance increases. Yet, the same cannot be said for the 

results in Figure 11 for the 13.56 MHz system. In this latter 

case, the measurements seem to be lower than the expected 

value. It is not clear what is the cause, but this suggests that 

higher frequencies suffer higher attenuation in a manner not 

considered in the model. 

As expected, a higher water salinity implies in a higher 

attenuation for the signal. Although the relative permittivity 

for seawater is slightly smaller than for freshwater, as can be 

observed in Figure 3, the conductivity for seawater is higher 

(see Figure 2) and dominates, increasing the attenuation 

factor. It is also worth noting that the 134.2 kHz system is not 

as affected by the increasing salinity of water as the 13.56 

MHz system, as it can be seen looking at the values in Tables 

IV and V. This means that a MI communication system for a 

marine environment should be designed with a lower 

frequency, keeping in mind the needed bandwidth to transmit 

data and other requirements. This would ensure that the 

system is efficient, as there is lower energy being lost in the 

transmission. 

Some authors argue that MI has a lower attenuation than 

RF for freshwater, and similar results for seawater [14]. This 

fact, combined with its immunity to multipath and fading, 

implies that MI could be a great alternative for wireless 

communications underwater. In addition, the achievable 

range of MI communications can be greatly extended by 

deploying waveguides that do not require power – simple 

passive relay coils that guide the magnetic field – such as 

demonstrated in [14][49]. For example, [14] uses an MI 

waveguide and achieves a range 26 times higher than a 

normal MI system. Another development that improves MI 

communications underwater is to use omnidirectional coils 

that remove the requirement of the transmitting and receiving 

coils being aligned [13][48]. 

However, to design an underwater RFID system it is 

required to balance a trade-off between range, transmission 

power and frequency (and therefore data rate and channel 

capacity). Nonetheless, the RFID system can always be 

engineered to achieve the best range given its power budget.  

For an MI system, the size and number of turns of the 

transmitting and receiving coils also has an impact on the 

path loss. A bigger coil diameter increases the generated and 

captured magnetic flux for the transmitter/reader and 

receiver/tag, which increases the mutual induction and 

decreases the path loss. However, this is also a trade-off, as a 

bigger coil has a bigger internal resistance, requiring more 

power to transmit. It is also worth noting that some 

applications have size restrictions. 

In the far-field category, the antenna can be carefully 

designed to provide the best radar cross-section, and therefore 

antenna gain, for the desired application. Again, the size of 

the antenna is important, as it is related to the wavelength. 

There is also a trade-off to be made for the frequency, 

attenuation, and antenna size: for a lower attenuation, the 

system would need a lower frequency, which requires a 

bigger antenna.  

An example application that would benefit from MI 

communication over acoustic would be sensors deployed in 

coastal areas and fish farms [58]. In these environments, the 

acoustic noise – from waves, animal life and vessels – and 

the proximity with the water surface negatively impact 

acoustic underwater communications. In such scenarios, MI 

underwater communication would better fulfil the 

communication mechanisms for the of the system. 

56

International Journal on Advances in Networks and Services, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/networks_and_services/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



VII. CONCLUSION AND FUTURE WORK 

Given the existing challenges in wireless underwater 

communications, it is worth exploring alternatives, such as 

RFID. However, underwater RFID communication is not a 

well-explored topic in the scientific community. In this paper, 

we expanded on the existing theoretical model for RFID 

channel characteristics to account for the attenuation that the 

electromagnetic field suffers underwater. The water salinity 

is an important factor, which is used to calculate the dielectric 

permittivity and the conductivity of the water, and therefore, 

the attenuation. The RFID operation was separated into two 

categories: near-field and far-field. For both cases, the 

physical characteristics of the transmission were presented 

and from this, the equation for path loss was obtained. 

In both technologies, the water salinity is a problem, as it 

increases the conductivity of the medium and, therefore, its 

attenuation of RFID signals. However, MI communication 

has advantages over RF in terms of immunity to multipath 

propagation and fading. In addition, a magnetic field can 

cross the air/water boundary, which is required for some 

applications. Therefore, near-field RFID communication is a 

promising alternative for underwater wireless 

communications. 

The model presented in this paper considers that both the 

transmitting and receiving antennas are located underwater 

with no transition borders and other losses. This model could 

be expanded to account for transition borders such as the air-

water interface located at the water surface or the interface 

with the waterproofing material of the reader and tag. 

In this paper, we presented measurements for magnetic 

field strength for two near-field systems in different water 

salinity conditions. The results for the 134.2 kHz show that 

the attenuation may not be as strong as expected, especially 

for higher distances. But the results for the 13.56 MHz follow 

more closely the expected values, sometimes being even 

lower. This seems to imply that there may be a relationship 

between the attenuation factor and the frequency that is not 

currently expressed in the model. More experimental data is 

needed to draw any significant conclusions. 

The results also suggest that a higher concentration of salt 

in the water increases the attenuation, which agrees with the 

model. However, the effect is more prominent the higher the 

frequency, which implies that the best communications 

solution for marine environments requires the use of lower 

frequencies to minimise attenuation. 
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Abstract—In this paper, we consider a wireless coexistence
scenario where multi–radio platforms are employed to simulta-
neously support periodic and non–periodic traffic. Considering
a scenario where wireless terminals generating periodic traffic
over one frequency band change their operating band to the
other band after detecting long–term communication failures, we
consider how to suppress mutual interference between periodic
and non–periodic traffic over the shared channel. In this paper,
we propose a transmission control alleviating negative impact of
mutual interference by exploiting interface heterogeneity, traffic
periodicity, and queue management. As a means to suspend
packet transmissions, we propose two types of queue manage-
ment: transmission control in application layer and medium
access control layer. The proposed schemes realize high packet
delivery ratio of periodic traffic by suppressing transmissions of
terminals with non–periodic traffic at the timing when periodic
traffic is expected to be transmitted by their hidden terminals.
We also investigate the feasibility of the proposed schemes with
experiments. With computer simulations and experiments, we
investigate the practicality and effectiveness of the proposed
schemes.

Keywords—Wireless Coexistence; Factory Automation; IEEE
802.11; IEEE 802.15.4; Internet of Things; Experimental Studies

I. INTRODUCTION

This paper is an extended version of [1], which investigates

transmission control to suppress interference between hetero-

geneous traffic generated by wireless devices employing differ-

ent access technologies. The proliferation of diverse wireless

access technologies, such as LTE, WiFi, ZigBee, Bluetooth,

etc., has been accelerated during the last decade to support

heterogenous traffic with different requirements. Today, we

have an option to simultaneously exploit these technologies

with multi–radio platforms [2][3]: for instance, small, low–

price IoT devices, which are equipped with multiple interfaces

operating over different frequency bands, such as 2.4/5GHz

and 920MHz, are commercially available [4].

In this paper, we exploit multi–radio platforms to enhance

robustness of wireless networks in a highly noisy environment.

A typical use–case is factory [5], where there are many metal

objects blocking communication links between transmitters

and receivers [6]. Furthermore, there can be noise emitted

from industrial machines, as well as interference from many

radio equipment around a factory. The resulting instability

of communication channels causes temporal communication

failure, which can last for a long period of time. If we

employ wireless devices with a single interface operating over

a specific frequency band in such an unstable environment,

we cannot offer reliable transmissions of data: once blocking,

noise or interference is generated over an operating frequency

band, each device cannot avoid them. The lack of reliability for

data transmissions in a factory can result in serious incidents

that could even cause human life to be in danger. Therefore,

in our work, we focus on the usage of wireless devices

equipped with multiple radio interfaces operating at different

frequency bands, called Flexible Terminal (FT). With FT, even

if noise or interference is generated over one frequency band,

its operating band can be changed to the other frequency band,

which enables us to avoid communication failures due to noise

and interference. More specifically, we employ radio standards

operating at unlicensed frequency bands: IEEE 802.11 at 2.4

GHz and IEEE 802.15.4g at 920MHz since these standards

are widely employed in many industrial fields [7].

Besides the heterogeneity of radio interface, the heterogene-

ity of communication traffic has become a common trend

in current wireless networks. In addition to non–periodic

(bursty) traffic generated by classical applications, such as

Internet access and video/image transfer, more deterministic

and periodic traffic has become a dominant pattern especially

in a scenario with sensor devices deployed for monitoring

purpose [8][9]. In general, small amount of data is generated

by sensor devices, for which 920MHz radio supporting low

data rate with large coverage is a favorable option. On the

other hand, 2.4GHz commonly used by WiFi offers higher

data rate with smaller coverage than 920MHz, which makes it

suited for supporting Internet access and transfer of large–

size image/video files. In this work, we employ FTs to

simultaneously support periodic and non–periodic traffic. In a

normal operation mode without any noise or interference, FTs

with non–periodic traffic employ an interface operating at 2.4

GHz while FTs with periodic traffic use an interface operating

at 920MHz. Then, we consider a scenario where noise or

interference is generated by surrounding devices/machines

over 920MHz, and each FT with periodic traffic changes its

operating interface to that at 2.4GHz. In this case, there is

mutual interference between FTs with periodic traffic and

FTs with non–periodic traffic. In this work, we propose a

transmission control, which suppresses mutual interference

by exploiting interface heterogeneity, traffic periodicity, and

queue management. In the proposed scheme, FTs with non–

periodic traffic detect possible hidden FTs with periodic traffic

by using difference of propagation characteristics of different

frequency bands. Then, FTs with non–periodic traffic predict

the transmission timing of FTs with periodic traffic, and
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suppress their packet transmissions at the predicted timing

with adaptive queue management. With computer simulations

and experiments, we investigate the practicality and possible

gain of the proposed scheme. The new contributions of this

paper in comparison to [1] are as follows.

• Besides the application–level queue management pro-

posed in [1], in this paper, we propose a medium access

control (MAC)–level queue management for our trans-

mission control. With computer simulations, we show that

the proposed MAC–level queue management achieves the

best performance in terms of packet delivery ratio and

throughput.

• Although the proposed MAC–level queue management

achieves the best performance, it requires the queue

management at physical layer (PHY)/MAC layer. In this

paper, we investigate the feasibility of queue manage-

ment at PHY/MAC layer by using a WiFi/Bluetooth

coexistence function prepared in a off–the–shelf WiFi

module. With the additional experiments, we show that

the queue management at PHY/MAC layer is feasible,

which confirms that the MAC–level queue management

with WiFi/Bluetooth coexistence function is a promising

means of interference management.

• More detailed explanations on the proposed schemes and

experimental setting with additional figures are presented.

The rest of the paper is organized as follows. We review

related work in Section II. After describing the system model

in Section III, we present our proposed transmission control

in Section IV. After showing and discussing some simulation

results in Section V, Section VI presents the feasibility study

of the proposed scheme with experiments. Finally, Section VII

concludes the paper with several future work.

II. STATE OF THE ART

The periodicity of traffic has been exploited to avoid packet

collisions among wireless devices in several existing studies.

Most of them propose to schedule/shift the timing of packet

generations of periodic flow so that they are not overlapped

over time. These approaches can be categorized into the

application–level and MAC–level. The MAC–level approaches

are difficult to implement into the current wireless standards

as it requires the modification of MAC protocols. On the other

hand, the application–level approaches are easy to implement

since it can be implemented over the existing MAC protocols.

For instance, a Time Division Multiple Access (TDMA)–

based MAC protocol with scheduling of periodic flows to

overcome packet contentions has been proposed in [10]. A

self–organizing TDMA protocol supporting periodic message

exchange in vehicular networks is analyzed in [11]. As an

application–level approach, a scheduling method is introduced

in [12], where packet creation timing of periodic flow is

adjusted in order to reduce contentions and packet collisions.

However, these works only consider avoiding collisions among

periodic flow and the coexistence and packet collisions with

non–periodic traffic are not investigated.

Another related work to our study is the investigation

on hidden terminal problem in carrier sense multiple access

(CSMA) networks. The most well–known solution to hidden

terminal problem is RTS/CTS handshake defined in IEEE

802.11 [13]. However, it has been reported that the efficiency

of RTS/CTS handshake is low when short packets, such

as small amount of data generated by sensor nodes in our

scenario, are involved in data transmissions [14]. Furthermore,

RTS/CTS mechanism does not fundamentally solve problems

on collisions among hidden terminals: RTS frames transmitted

by hidden terminals can collide with high probability [15].

Another requirement specific to industrial applications is more

strict and deterministic protection for sensing data in com-

parison to Internet access/file transfer [16], which is difficult

to achieve with RTS/CTS handshake even with quality of

service (QoS) differentiation defined in IEEE 802.11e [17]. In

contrast, our work proposes a mechanism to deterministically

avoid interference between hidden terminals without resorting

to RTS/CTS mechanisms.

III. SYSTEM MODEL

In this section, we describe the system model considered in

this paper.

A. System Model

In this work, we employ FTs with interfaces operating at

2.4GHz and 920MHz. In general, 920MHz signals have larger

propagation distance than 2.4 GHz while the former achieves

lower data rate than the latter. We consider a factory–like

indoor area where FTs and a single Flexible Gateway (FG),

which is in charge of aggregating data generated by FTs, are

deployed as shown in Figure 1. The FG is also equipped with

2.4GHz and 920MHz interfaces to receive data from FTs.

Some FTs are supposed to generate non–periodic, bursty, and

heavy–load traffic, which are called NP–FTs. Since this type

of traffic is in general supported by higher PHY rate at 2.4GHz

that has limited communication range, we assume that NP–FTs

are deployed near FG. On the other hand, FTs except for NP–

FTs are assumed to generate periodic, light–load traffic, which

are called P–FTs. A typical example of P–FT is a sensor device

generating monitoring data of industrial machines and/or a

given environment, which are deployed at various places

within an area. This requires P–FTs to employ an interface

and/or parameters realizing a larger communication range, for

which 920MHz is more favorable option. We assume that

the information on period of P–FT’s traffic is known and

shared by all FTs/FG. This is a reasonable assumption since

these terminals and gateway are considered to be deployed by

a single administrator of a factory. Furthermore, the timing

of packet–generations of P–FTs are controlled to be equally

separated over time so that they are not overlapped. This

enables us to avoid contention among P–FTs. In a normal

operation mode, NP–FTs employ 2.4GHz interface while P–

FTs utilize 920MHz interface. Here, 2.4 GHz interface is

supposed to follow IEEE 802.11 PHY/MAC protocol while

920MHz interface is in accordance with IEEE 802.15.4g/e

PHY/MAC protocol. Note that both of these standards employ

CSMA with collision avoidance (CSMA/CA) protocol. The

FG receives data from both NP–FTs and P–FTs by using its
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Flexible Gateway (FG)

Non-Periodic Flexible Terminal
(NP-FT) using 2.4GHz band

Periodic Flexible Terminal
(P-FT) using 920MHz band

Carrier-sense area of NP-FT1 
in 2.4GHz

Carrier-sense area of NP-FT1
in 920MHz

NP-FT1

P-FT3 P-FT1

P-FT2

Figure 1. The considered, factory–like system model.

two interfaces. It is assumed that the carrier–sense range of

2.4GHz interface is smaller than that of 920MHz as shown

in Figure 1: for example, carrier–sense range of NP–FT1 in

Figure 1 over 920MHz is sufficiently large to detect signals

transmitted by all terminals while it can only sense signals

transmitted by a part of terminals over 2.4GHz.

In this work, we consider a scenario where severe

noise/interference is caused over 920MHz, which can be emit-

ted from industrial machines and/or radio devices deployed

inside/outside a factory area, and 920MHz interface suffers

from continuous communication failures for a long period

of time. As mentioned in Section I, FTs are able to switch

their operating interface. Therefore, P–FTs, which operate

with 920MHz interface in a normal operation mode, can

switch their operating interface to 2.4GHz, e.g., after detecting

continuous packet errors or after receiving some instruction

if there is a central entity to monitor the radio environment.

Here, each P–FT is assumed to employ low PHY rate (e.g.,

1Mbps) at 2.4GHz, which enables each P–FT to achieve

sufficiently large communication range to transmit data to FG.

However, when P–FTs and NP–FTs share the same 2.4GHz

frequency band, another problem can occur, which is a hidden

terminal problem. For example, as shown in Figure 1, NP–

FT1 and P-FT2 cannot sense their signals with each other

at 2.4GHz. Therefore, CSMA/CA mechanisms do not work

properly among these nodes after P–FT2 changes its operating

band to 2.4GHz, which can cause packet losses at FG, thereby

degrading packet delivery ratio and throughput. In this work,

we propose a mechanism to suppress transmissions of NP–

FTs to avoid interference with hidden P–FTs by exploiting

interface heterogeneity, traffic periodicity, and adaptive queue

management.

IV. PROPOSED TRANSMISSION CONTROL

The proposed scheme controls packet transmissions of NP–

FTs in order to suppress interference with their hidden P–FTs.

A. Mechanism to Detect Hidden Terminals

The NP–FTs first need to identify possible hidden terminals

in order to suppress their mutual interference. This is achieved

by exploiting the heterogeneity of interface. Each NP–FT

observes traffic over 920MHz and 2.4GHz while they are not

transmitting their own data. In the normal operation mode,

P–FTs transmit data at 920MHz. In this case, each NP–FT

P-FT1 P-FT2 P-FT3 P-FT1…… …
t

Received packets at 920MHz in a normal operation mode

P-FT1 P-FT3 P-FT1…… …
t

Received packets at 2.4GHz after P-FTs’ frequency switch

Figure 2. An example of hidden terminal detection.

finds packets of all P–FTs over 920MHz since they can easily

reach each NP–FT thanks to a large communication range of

920MHz. An example of packet receptions at NP–FT1 shown

in Figure 1 in a normal operation mode is depicted in the

upper part of Figure 2. Here, P–FT1, P–FT2, and P–FT3

are the terminals whose locations are specified in Figure 1.

As shown in Figure 2, NP–FT1 observes periodic recep-

tions of all P–FTs at 920MHz interface. After P–FTs detect

noise/interference at 920MHz, they switch their interfaces to

2.4GHz, where NP–FT1 receives packets only from P–FTs

located within its communication range at 2.4GHz. The lower

part of Figure 2 shows an example of packet receptions at NP–

FT1 over 2.4GHz. As shown in the figure, NP–FT1 cannot

receive packets transmitted by P–FT2 since P–FT2 is out of

communication range of NP–FT1. Then, NP–FT1 finds that it

has a hidden terminal of P–FT2 over 2.4GHz. At this timing,

NP–FTs can also find that P–FTs have changed their operating

band to 2.4GHz. Thus, by comparing packet receptions at

920MHz and 2.4GHz, each NP–FT can identify its hidden

terminals over 2.4GHz, whose packets can cause collisions

against itself.

B. Basic Idea of Proposed Transmission Control

While receiving packets from P–FTs in the normal operation

mode, each NP–FT records the reception timing of each P–FT.

Based on this information and pre–knowledge of the period

of packet transmissions of each P–FT, each NP–FT predicts

the timing of periodic packet transmissions. Then, each NP–

FT suppresses its packet transmissions when the transmissions

of its hidden P–FTs are expected. This is achieved by our

proposed Transmission Control (TC), which executes queue

management to control timing of packet transmissions at

different layers.

The basic idea of the proposed TC is shown in Figure 3.

Here, the blue solid arrow shows the predicted transmission

timing of a hidden P–FT. With the proposed TC, a duration

called Suspending Duration (SD), which consists of Pre–SD

(before the predicted timing) and Post–SD (after the predicted

timing) is prepared. A NP–FT attempts to suspend its packet

transmission over SD with queue management described later.

In Figure 3, the dashed green arrow represents the timing

when packets are generated at upper layer of NP–FT. Once

SD is over, NP–FT starts transmitting packets. Note that

packets generated at non–SD duration can be immediately

transmitted as in the packet P4 in Figure 3. The flowchart

of these operations of the proposed transmission control is
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t
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Suspending Duration (SD)

Pre-SD Post-SD

Suspending Duration (SD)

P1

Packet arrival at upper layer of NP-FT 
Predicted transmission timing of hidden P-FT 

P2 P3 P4 P5

Figure 3. Basic idea of the proposed transmission control.

A packet generated 
at upper layer

SD period?

Suspend packet 
transmission

Attempt to transmit 
packet

Yes

No

Figure 4. A flowchart of basic operations of the proposed

transmission control.

shown in Figure 4. The duration of Pre–SD and Post–SD

are decided considering trade–off between achievable Packet

Delivery Ratio (PDR) of P–FTs and throughput of NP–FTs as

discussed in Section V-B in more detail.

As a means to suspend packet transmissions during SD, we

propose two types of queue management: application–level

TC (ATC) and MAC–level TC (MTC), which are respectively

depicted in Figure 5 (a) and (b). With ATC, even if packets are

generated at upper layer, they are stored into upper layer queue

without passing them into PHY/MAC layer. On the other hand,

with MTC, packets are passed from upper layer to PHY/MAC

layer even during SD. However, each NP–FT suspends packet

transmissions at PHY/MAC level, i.e., it does not transmit any

packet over the air (i.e., wireless channel) during SD. Note

that MTC requires us to modify firmware installed into WiFi

module/chip so that we can arbitrarily control transmission

timing of packets at PHY/MAC level. Thus, MTC has higher

complexity of implementation than ATC.

C. Drawback of ATC

Although ATC has lower complexity than MTC as described

above, it has difficulty to precisely control the timing when

signals are actually transmitted at PHY/MAC level. This

problem is explained in an example shown in Figure 6. Here,

a NP–FT suspends passing packets to PHY/MAC layer during

the first SD, and three packets are stored in the upper–layer

queue. These packets are passed to PHY/MAC layer after the

first SD is over, which are then stored in PHY/MAC queue.

The transmissions of packets in PHY/MAC queue are managed

by PHY/MAC module, therefore, these packets are transmitted

Suspended

Upper
Layer

PHY/MAC
Layer

Upper
Layer

PHY/MAC
Layer

(a) Application-level
Transmission Control

(ATC)

(b) MAC-level
Transmission Control

(MTC)

Wireless Channel Wireless Channel
Suspended

Figure 5. Proposed queue management for transmission con-

trol: (a) application–level transmission control (ATC) and (b)

MAC–level transmission control (MTC).

tSD1 SD2
P1

Packet arrival at upper layer of NP-FT 
Predicted transmission timing of hidden P-FT 

Upper Layer Queue

PHY/MAC Queue

BG BG BG

Background (BG)
Packets

PHY/MAC Queue

P1 P2

Collision between
hidden terminals

Figure 6. An example of problem on controlling packet

transmissions with ATC.

if they win contentions against the other terminals. In the

example of Figure 6, it is supposed that NP–FT succeeds in

transmitting a packet P1 by winning the contention. However,

it fails to transmit packets P2 and P3 due to the lost contentions

with BackGround (BG) traffic. Then, these 2 packets remain

in PHY/MAC queue in the beginning of the next SD. As

mentioned above, packet transmissions of these lower–layer

packets are controlled by PHY/MAC module, therefore, they

can be transmitted even during SD, which can cause a collision

with packets transmitted by hidden P–FTs.

A possible solution to the above–mentioned problem is to

control the number of packets to be passed to PHY/MAC

layer module based on the congestion level over the channel,

i.e., each NP–FT controls the number of packets passed to

PHY/MAC layer module in the end of SD in such a way

that these packets can be transmitted in the following non–

SD period at the PHY/MAC level. This requires each NP–

FT to continuously monitor the congestion level over the

operating channel. Note that background traffic at 2.4GHz are

not necessarily generated by WiFi terminals, whose packets

can be decoded by NP–FT, but generated by the other radio

equipment, e.g., Bluetooth or Microwave oven. In this case,

each NP–FT needs to monitor the congestion level without

decoding each background signal. Therefore, in the following

subsection, we first investigate whether it is practically pos-

sible for a WiFi terminal to conduct real–time monitoring of

busy rate (i.e., fraction of time, during which the channel is

occupied by radio signals) of a channel.
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Figure 7. Experimental setting to investigate the feasibility to

use CCAcount as a measure of busy rate.

D. Feasibility to Monitor Congestion Level

We found a parameter called CCAcount in a device driver of

an off–the–shelf WiFi module (Buffalo WL–U3–866DS [18]).

The parameter seems to be related to busy rate of a channel,

however, there was no evidence that this parameter represents

our desired information on busy rate. Therefore, we conducted

experiments to check the relationship between CCAcount and

busy rate of a channel. The experimental setting is shown in

Figure 7. In the experiments, we prepared 3 laptop PCs with

USB dongles of WL–US–866DS. A laptop PC (Tx PC) was

configured to be a transmitter of packets, which are directed to

Rx laptop PC. A laptop PC to observe CCAcount was located

at a sufficiently close position to Tx PC. The busy rate was

varied by changing the number of packets transmitted per a

unit time, for which the output of CCAcount was monitored

at the observing PC. The PHY rate, packet size, and ACK size

of packet transmissions were respectively set to be 54Mbps,

1496Bytes, and 46Bytes. The busy rate for each traffic load can

be calculated based on these parameters. The measurements

were conducted inside a shield room.

Figure 8 shows the output of CCAcount against traffic

load (packets/s). From this figure, we can see that CCAcount

increases as traffic load increases, which saturates over the

range of high traffic load. There is a maximum traffic load

that can be generated by a single WiFi terminal, which depends

on back–off parameters and Inter–Frame Space (IFS) of IEEE

802.11, where the saturation is observed. From this figure,

we can confirm that there is a direct relationship between

CCAcount and traffic load, i.e., busy rate of the channel, which

enables us to employ CCAcount as a measure of busy rate of

the channel.

E. ATC with traffic adaptation

In this work, we introduce traffic adaptation into ATC,

which controls the number of packets to be passed to

PHY/MAC layer based on the observed CCAcount. In ATC,

each NP–FT observes CCAcount during each non–SD period.

This can be realized only by obtaining the corresponding

information from WiFI device driver. The output of CCAcount

is converted to the traffic load by using a linear equation

approximating the relationship between CCAcount and traffic
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Figure 8. Experimental results on CCAcount against traffic

load.

load over the load range of [0:1500] packets/s in Figure 8,

which is used to calculate the busy rate. Based on the derived

busy rate, the maximum number of packets permitted to be

passed to PHY/MAC layer at the next non–SD period, Nmax,

is decided. Nmax is calculated as follows:

Nmax =
(1−Bave)TNSD

TD · α . (1)

Here, TNSD is the duration of next non–SD period, TD is

the duration required to transmit a single data frame including

SIFS and ACK duration, and α is a parameter to vary effective

number of Nmax, and Bave is average busy rate calculated as

Bave =

∑W
i=1 Bi

W
, (2)

where Bi is busy rate calculated for the i-th last non–SD

period, and W is the window size (number of non–SDs) used

for calculating average busy rate. Nmax calculated with (1)

represents the estimated (effective) number of packets that can

be transmitted by a single NP–FT during free period in the

following non–SD period. Note that α is introduced in order to

take the impact of back–off duration and number of contending

FTs into account. With smaller (larger) α, the estimation of

Nmax becomes more optimistic (pessimistic). The range of α
considered in this paper is set to [0.4, 6.0].

The proposed ATC is executed in the end of every SD

period. For instance, in the end of SD1 in Figure 6, Nmax is

calculated by using busy rate over the last W non–SD periods.

Then, if the number of packets stored in the upper–layer queue

is equal to or more than Nmax, only Nmax packets out of

stored packets are passed to PHY/MAC layer, and no more

packets are passed to PHY/MAC layer during the following

non–SD period. Otherwise if the number of packets stored in

the upper–layer queue is less than Nmax, all stored packets are

passed to PHY/MAC layer. Then, newly arriving packets in the

following non–SD period can be passed to PHY/MAC layer as

long as the total number of packets passed to PHY/MAC layer

does not exceed Nmax. With these operations, we can reduce

the probability that packets remain in PHY/MAC queue in the

end of each non–SD period.
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Figure 9. Simulation Model.

TABLE I: Simulation Parameters

NP–FT P–FT
PHY rate 54Mbps 1Mbps

Communication range 75m 100m
Carrier-Sense Range 100m 100m

Packet generation Poisson (mean λ) period = 1s
Data size 2000Bytes 200Bytes
ACK size 30Bytes

DIFS 28μs
SIFS 10μs

Slot time 20μs
Max. Num. of Retransmissions 3

Min. Contention Window 31
Simulation Duration 20s

V. SIMULATION MODEL AND RESULTS

In this section, we provide numerical results obtained by

our computer simulations, and discuss the benefit brought by

the proposed transmission control in detail.

A. Simulation Model

The simulation model is shown in Figure 9. The layout

given in Figure 9 is selected since it can increase the number

of hidden terminals, which allows us to consider a worst–

case scenario. In the simulations, communication performance

after P–FTs change their operating frequency band to 2.4GHz

is evaluated. The main parameters used in simulations are

shown in Table I. Most of the parameters are taken from the

IEEE 802.11g standard [19]. The P–FTs generate packets with

period of 1s, and their generation timing are scheduled so

that they do not overlap with each other. In the evaluation,

since there are 32 P–FTs, a period of 1s is divided into

32 sections, and the beginning of each section is randomly

assigned to each P–FT as its generation timing. Each NP–FT

applies the proposed ATC/MTC to its hidden P–FTs. We use

the application–level PDR of P–FT and throughput of NP–

FT as performance measures. A packet is decided to be lost

and discarded once the number of retransmissions reaches the

maximum value. For simplicity, packet errors are assumed

to occur only due to collisions. The throughput is defined

as the amount of data successfully delivered by NP–FTs to

FG. The simulation is conducted by a custom–made simulator

developed with Matlab software.

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6
0

20

40

60

80

100

PD
R

 o
f P

-F
Ts

 [%
]

Figure 10. PDR of NP-FTs against α for ATC.
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Figure 11. Throughput of NP-FTs against α for ATC.

B. Simulation Results

Below, we show simulation results averaged over 5 sim-

ulation trials. Figure 10 shows PDR of P–FTs against the

parameter of α in (1) when the proposed ATC is employed

with Pre–SD = 2ms, Post–SD = 6ms, W = 10, and λ = 400
[packets/s]. From Figure 10, we can see that PDR of P–FT is

degraded with smaller α. With smaller α, each NP–FT passes

a larger number of packets to PHY/MAC layer in the end of

SD as calculated by (1), which exceeds the number of packets

that can be transmitted at PHY/MAC layer during the next

non–SD period. In this case, packets remained in PHY/MAC

queue can be transmitted simultaneously with hidden P–FTs,

which causes collisions with high probability. This problem is

alleviated by increasing the value of α where the number of

packets passed to PHY/MAC layer is reduced. Therefore, PDR

of P–FT is improved with larger value of α. However, larger

values of α force each NP–FT to keep more packets in its

upper–layer queue, and degrade its throughput performance.

This is confirmed in Figure 11, where throughput of NP–

FTs against α is shown. The throughput of NP–FTs is largely

degraded with too large α, i.e., the range of α exceeding 3.6.

From these results, we can see that there is an appropriate

value of α to be employed to achieve both high PDR of P–FTs

and high throughput of NP–FTs. In the following evaluations,

we employ α = 3.6 based on the above results.

Next, we investigate the impact of SD length on the achiev-

able performance of the proposed ATC. We have observed

the same tendency for ATC and MTC, therefore, we only
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Figure 12. PDR of P-FTs against Post-SD for ATC.
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Figure 13. Throughput of NP-FTs against Post-SD for ATC.

show results of ATC here. Figures 12 and 13 respectively

show PDR of P–FTs and throughput of NP–FTs against

the length of Post–SD, where Pre–SD is fixed to be 2ms,

W = 10, α = 3.6, and λ = 400 [packets/s]. First, from

Figure 12, we can see that a sufficiently large value of Post–

SD is required to achieve high PDR of P–FTs. Each packet

generated at P–FT is transmitted with CSMA/CA protocol,

where its actual transmission timing at PHY/MAC level can be

delayed due to contentions with the other NP–FTs and P–FTs

within its carrier–sense range. Therefore, if NP–FT employs

too small Post–SD, it can transmit packets with hidden P–FTs

whose transmissions are delayed due to CSMA/CA operations.

The increase of Post–SD also offers the improvement on

throughput as shown in Figure 13 thanks to higher probability

to avoid mutual collisions, however, too large Post–SD leads

to the reduction of throughput of NP–FTs since it can reduce

the duration for NP–FTs to be able to transmit their packets.

From these figures, we can see that Post–SD of 6ms is an

appropriate choice in our considered settings.

Finally, we respectively show PDR of P–FTs and through-

put of NP–FTs against traffic load of NP–FTs for different

schemes in Figures 14 and 15. Here, we set Pre–SD = 2ms,

Post–SD = 6ms, W = 10, and α = 3.6. The results of W/O

TC in these figures represent achievable performance of an

existing scheme, which follows conventional IEEE 802.11

MAC protocol without employing our proposed TC. We also

show results of ATC without traffic adaptation in these figures.
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Figure 14. PDR of P-FTs against traffic load of NP-FTs.

From Figure 14, we can first see that PDR of P–FTs is

largely degraded if we do not employ TC. This is due to

packet collisions between NP–FTs and their hidden P–FTs. By

introducing ATC, PDR of P–FTs can be improved, however,

we can obtain gain only over the range of small traffic

load of NP–FTs if we do not introduce traffic adaptation

into ATC. As the traffic load of NP–FTs increases, more

packets are stored in the upper–layer queue in the end of

each SD, which can exceed the number of packets that can

be handled at PHY/MAC level during the following non–SD

period. Therefore, more collisions occur for larger traffic of

NP–FTs, which degrades PDR of P–FTs. On the other hand,

it can be seen that the proposed ATC with traffic adaptation

achieves high PDR of P–FTs even for larger traffic load of

NP–FTs thanks to the adjustment of number of packets passed

to PHY/MAC queue, which is adapted to the observed traffic

load. The proposed MTC achieves the highest PDR since it

can stop/start the transmissions of packets at PHY/MAC level

according to the schedule of SD and non–SD. However, we

can see that the proposed ATC also achieves PDR close to

MTC. Next, from Figure 15, we can see that the proposed

ATC does not degrade throughput of NP–FTs even with the

introduction of SD. The avoidance of collisions eventually

leads to throughput improvement. With the proposed ATC,

packets are stored in the upper–layer queue according to the

estimated traffic load. If the actual traffic load is smaller than

the estimated value, all packets passed to PHY/MAC queue

can be transmitted at early timing within a non–SD period,

after which no packet is transmitted since there is no packet

in PHY/MAC queue. This problem does not occur with the

proposed MTC, therefore, throughput of the proposed ATC

does not reach close to MTC. From these results, we can

confirm that the proposed ATC, which has lower complexity

than MTC, can significantly improve PDR of P–FTs while

achieving slightly better throughput of NP–FTs in comparison

to the the case without TC. Furthermore, the proposed MTC

has the highest PDR and throughput at the cost of complexity

of implementation.

VI. FEASIBILITY STUDY OF MTC WITH EXPERIMENTS

In the previous section, we have shown that the proposed

MTC achieves the best PDR and throughput. However, the
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Figure 15. Throughput of NP-FTs against traffic load of NP-

FTs.

proposed MTC requires us to control the transmissions of

packets at the lowest level of protocol stack, i.e., to conduct

queue management at PHY/MAC level. In this section, we

investigate the feasibility of queue management at PHY/MAC

layer with experiments.

A. Experimental Setting

In order to realize the queue management at PHY/MAC

layer, we attempt to utilize a function of WiFi/Bluetooth

coexistence implemented in some WiFi/Bluetooth combined

modules. This function is prepared for a module to stop the

transmissions of WiFi packets while transmitting Bluetooth

signals, thereby avoiding interference between them. The basic

operation to realize queue management at PHY/MAC layer

by exploiting WiFi/Bluetooth coexistence function is shown

in Figure 16. In general, WiFi PHY/MAC module has layered

structure of queue management. The lowest queue is called

as CSMA queue, which stores a packet to be transmitted if

the corresponding node wins the contention through CSMA

operations. The other packets are stored in PHY/MAC queue,

waiting for the process of CSMA. The WiFi/Bluetooth co-

existence function is able to suspend passing packets from

PHY/MAC queue to CSMA queue while it transmits Bluetooth

signal. In this work, we configure the WiFi/Bluetooth coexis-

tence function so that it can output the suspending command

to WiFi module at arbitrary timing even if there is no actual

transmission of Bluetooth signal. This way, we can control the

timing for PHY/MAC queue to pass a packet to CSMA queue.

Although we cannot control the transmission of CSMA queue

once a packet is inserted into it, we can minimize the number

of packets out of control by using this function. The function

is implemented by using JWX6051 module with AR9380 chip

onboard [20].

The experimental setting is shown in Figure 17. In the ex-

periment, we use three JWX6051 WiFi modules. WiFi Module

1 is supposed to be a transmitter of periodic traffic (i.e., P–FT)

while WiFi Module 2 is assumed to be a transmitter of non–

periodic traffic (i.e., NP–FT). As described in Section III, we

consider a scenario where these two modules are hidden with

each other. In order to construct a situation where these two

modules are hidden with each other, they are respectively put

Upper
Layer

WiFi
PHY/MAC Queue

CSMA Queue
ON/OFF

WiFi/Bluetooth
Coexistence

Function

WiFi/Bluetooth
Combined Module

Figure 16. The queue management at PHY/MAC layer ex-

ploiting WiFi/Bluetooth coexistence function.

Shield Room

Divider

coaxial cable

Shield Box

Shield Box

WiFi Module 1

WiFi Module 3

Attenuator

Attenuator

Periodic Traffic

Non-Periodic Traffic

WiFi Module 2

Figure 17. The experimental setting of feasibility study of

MTC.

into shield boxes. This way, one module cannot sense radio

signals transmitted by the other module. In order to extract

radio signals transmitted by each module, they are connected

to coaxial cable. These cables are combined by a divider after

attenuation. Finally, the combined signals are received by WiFi

Module 3 through a coaxial cable. With this setting, we can

imitate a situation where P–FT and NP–FT are hidden with

each other. All the experiments are conducted inside a shield

room. The parameters employed in the experiments are shown

in Table II.

B. Experimental Results

In the experiments, the periodic traffic is generated by WiFi

Module 1 with the interval of 1.024s. After 100 packets are

transmitted by WiFi Module 1, its transmission timing is

shifted by 0.1s. This is repeated 10 times. This realizes 10

different gaps between the generation timing of periodic traffic

and SD set by WiFi Module 2 for the transmissions of non–

periodic traffic.

Figure 18 shows PDR of periodic traffic over time when

MTC exploiting WiFi/Bluetooth coexistence function is em-

TABLE II: Parameters for experiments

Frequency band 2.4 GHz
Data Size 1554 Bytes

Data Rate of Non–periodic Traffic 18 Mbps
Data Rate of Periodic Traffic 1 Mbps

ACK Size 46 Bytes
ACK Rate of Non–Periodic Traffic 12 Mbps

ACK Rate of Periodic Traffic 1 Mbps
Generation Rate of Non-Periodic Traffic 200 packets/s

Period of SD 1 s
SD 0.2 s

Non–SD 0.8 s
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Figure 18. PDR of periodic traffic against time shift.

ployed. We also plot experimental results without employing

TC in the same figure. Each value in the horizontal axis corre-

sponds to the gap between the transmission timing of periodic

traffic and SD set for MTC. From this figure, we can first see

that PDR of periodic traffic is largely degraded when TC is not

employed. This is because WiFi Module 1 and Module 2 are

hidden with each other, and their transmitted packets collide at

WiFi Module 3 with high probability if we do not employ any

transmission control. Some periodic packets can be received

successfully when they are transmitted during back–off periods

of non–periodic traffic, therefore, PDR is larger than 0%. On

the other hand, Figure 18 shows that PDR of MTC is 100% for

the time of 300s and 400s. Over this range of time, periodic

traffic is transmitted during SD period of MTC. This means

that queue management exploiting WiFi/Bluetooth coexistence

function properly works for avoiding collisions with periodic

traffic. For 200s and 500s, some periodic packets are lost

due to collisions. This is probably caused by the difficulty to

control the transmission of packet stored into CSMA queue.

For the other region of horizontal axis, PDR of MTC is

degraded because the transmission timing of periodic traffic

is outside of SD of MTC. We also confirmed that throughput

of non–periodic traffic is not degraded even if we employ MTC

using WiFi/Bluetooth coexistence function. From these results,

we can conclude that WiFi/Bluetooth coexistence function is

a promising means to realize MTC.

VII. CONCLUSIONS

In this paper, focusing on a wireless coexistence scenario

where multi–radio platforms are employed to support het-

erogenous traffic, we proposed transmission control, which

suppresses mutual interference between hidden terminals gen-

erating periodic and non–periodic traffic. The proposed trans-

mission control exploits interface heterogeneity, traffic period-

icity, and queue management in order to suppress interference.

As a means to suspend packet transmissions, we proposed two

types of queue management: application–level transmission

control and MAC–level transmission control. Furthermore, we

proposed traffic adaptation for application–level transmission

control, which adapts the amount of packets passed from

the upper layer according to the observed congestion level.

We first confirmed with experiments the practicality for WiFi

device to monitor congestion level in a real–time manner,

which is required for traffic adaptation. Then, we evaluated

the gain of the proposed application–level and MAC–level

transmission control in terms of packet delivery ratio and

throughput by computer simulations. Our numerical results

showed that the proposed application–level and MAC–level

transmission control significantly improve packet delivery ratio

of periodic traffic while slightly improving throughput of non–

periodic traffic in comparison to reference schemes. Finally,

we investigated the feasibility of MAC–level transmission

control with experiments. We realized the queue management

at PHY/MAC level by exploiting WiFi/Bluetooth coexistence

function. Our experimental results showed that WiFi/Bluetooth

coexistence function is a promising means to realize MAC–

level transmission control.

Our future work includes experimental evaluations of the

proposed application–level and MAC–level transmission con-

trol with actual multi–radio platforms in a practical environ-

ment. More extensive verifications of simulation results, e.g.,

with a larger number of simulation trials and comparison

with theoretical results, are also our future work. Furthermore,

in this paper, it is assumed that the transmission timing of

periodic traffic can be ideally estimated by the other terminals.

However, in practice, this estimation can be incomplete, which

can shift suspending duration from the desired duration. This

causes degradation of packet delivery ratio of periodic traffic

and throughput of non–periodic traffic. Therefore, we need

to design a practical mechanism of synchronization, and to

evaluate the impact of estimation error on the achievable

performance of the proposed transmission control.
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Abstract—Due to remarkable advances in computer, communi-
cations and sensing technologies over the past three decades,
large-scale urban systems are now far more heterogeneous
and automated than their predecessors. They may, in fact, be
connected to other types of systems in completely new ways. These
characteristics make the tasks of system design, analysis and
integration of multi-disciplinary concerns much more difficult
than in the past. We believe these challenges can be addressed
by teaching machines to understand urban networks. This paper
explores opportunities for using a recently developed graph
autoencoding approach to encode the structure and associated
network attributes as low-dimensional vectors. We exercise the
proposed approach on a problem involving identification of leaks
in urban water distribution systems.

Keywords-Systems Engineering; Machine Learning; Graph Em-
beddings; Graph Autoencoders; Digital Twins; Water Distribution
Systems.

I. INTRODUCTION

This paper is concerned with the integration of recently
developed graph embedding procedures with machine learning
tasks, which together can enhance digital twin design and
decision making in urban settings. It builds upon our previous
work [1] on teaching machines to understand urban networks
with graph analytics techniques.

A. Problem Statement

The concept of creating digital replicas to serve as
tools to improve decision-making has long been used in engi-
neering. During the past three decades, however, remarkable
advances in technology – including Internet of Things, artificial
intelligence, and augmented and virtual reality (AR/VR) –
have created opportunities to develop “digital twins,” a cyber
representation of an object, process or place that mirrors
its implementation in the physical world through real-time
monitoring, and synchronization of data with events. To this
end, sensor and actuator systems, and algorithms and software
are provided for observation, reasoning and physical systems
control. NASA initially proposed the digital twin concept in
the late 90s as a way to support the design and operation
of air vehicles [2]. More recently, cities around the world
have entertained use of the digital twin concept as a way to

transform processes for day-to-day management and long-term
urban planning and design.

The design of strategies to achieve superior levels of
urban operation, even when available resources are limited,
is complicated by the distributed, concurrent, and multi-
disciplinary nature of large-scale urban systems. It is well
known that when a disruption to urban operations requires
the instantiation of recovery procedures, it is essential that
the participating domains share information at key points in
the system operation to enhance common knowledge, and
their individual ability to make decisions appropriate to their
understanding of the system state, its goals and objectives.

Despite the abundance of available urban data, current
urban systems’ potential for reaching enhanced capabilities
in the decision-making and management of city infrastructure
is hampered by lack of systematic knowledge exchange. The
digital twins concept can overcome this barrier through its
ability to integrate domains into the real-time knowledge
discovery process from heterogeneous urban data. At this
time, however, many challenges remain in digital twin design
and implementation. First, there is a lack of unified models
or a generic digital twin architecture in the literature, with
no consensus on how to build a digital twin system [3].
Second, urban environments create further design difficulties,
mainly related to the complexity of city-wide modeling and the
lack of standards supporting cross-disciplinary data exchange.
Research is needed to understand how to design the digital
twin elements and their interactions so that collectively they
can overcome these challenges.

B. Architecting Urban Digital Twins

Requirements for architecting urban digital twins include
the need for systems that can identify anomalies (faults) in
system performance, and model the behavior of processes and
interactions among the different domains within a city. Since a
generic (or unifying) digital twin architecture does not exist at
this time, we believe that the best pathway forward for digital
twin design is with architectures that combine Machine Learn-
ing (ML) formalisms and Semantic Model representations that
work side-by-side as a team, providing supportive roles for
the collection and processing of data, identification of events,
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Figure 1. High-level representation for an urban water supply network digital
twin (cyber) working alongside a physical urban water supply network.

and real-time management of city operations. Figure 1 shows
the application of this concept to a small urban water supply
system.

Figure 2 shows the proposed architecture, building upon
our recent work in semantic modeling for (multi-domain)
system of systems [4]–[6] and exploration of a combined
semantic and ML framework exercised in energy-efficient
buildings and brain cancer profiles [7], [8]. The proposed
architecture is comprised of three sections: (1) multi-domain
semantic modeling, (2) data mining, and (3) machine learning
of graphs.

Box 1: Multi-domain Semantic Modeling. By their very
nature, urban systems are a composition of many different
types of domains and their interactions. These domains are
geographically dispersed and intertwined, and have behaviors
that are distributed and concurrent. Box 1 of Figure 2 shows
that instead of modeling the dynamic behavior of systems
with a centralized control and one large catch-all network, we
explore opportunities for modeling systems as collections of
domain-specific networks that dynamically evolve in response
to events. Individual urban domains will operate as concurrent
processes, each having their own thread of execution, and
will respond to incoming data from external domains. Each
domain will have a graph that evolves according to a set of
domain-specific rules, and subject to satisfaction of constraints.
Domains will interact when they need to in order to achieve
collective objectives. If goals are in conflict, or resources are
insufficient, then negotiation will need to take place. The model
uses Semantic Web technologies for the implementation of
ontologies, rules checking, and message passing mechanisms.
The distinguishing feature of this framework is the concurrent
development of ontologies, rules and data models, which are
placed on an equal footing. When used in an urban context as
part of the digital twin architecture, this approach to semantic
modeling forces cross-domain data exchange that is more
homogeneous than it would otherwise be, and establishes
common knowledge among domains. Rule-based reasoning
procedures can also be developed to impose fairness in domain
operations and prevent deadlocks.

Box 2: Data Mining. Recent developments in the field of com-
putational intelligence are sometimes termed machine learning
(ML). Machine learning techniques deviate from traditional

models of computation in their ability to perform data analytics
by learning patterns and hidden insights in data. Box 2 of
Figure 2 shows ML for three classes – classification, clustering
and association – of data mining. For the most part, these
three data mining techniques were developed in the 1980s
and 90s, and so the associated algorithms and software [9]
are now quite mature. Data mining techniques also include
use of recurrent neural network architectures to represent
temporal sequences, and algorithms to detect anomalies in
expected temporal behavior. For our purposes, these anomalies
are events that can trigger the activation of urban recovery
procedures modeled in Box 1.

Box 3: Machine Learning of Graphs. Remarkable advances
in ML algorithms (2016-2019) include the ability of a machine
to learn the structure of a graph and its attributes. The so called
graph embedding methods learn a continuous vector space for
the graph, assigning each node (and/or edge) in the graph
to a specific position in the vector space. These embeddings
can be later used to advance various learning tasks, such
as node classification, node clustering, node recommendation,
link prediction, and so forth [10].

C. Scope and Objectives

During 2018, our studies [7], [8], [11] focused on seman-
tic foundations and data mining techniques working together as
a team. Data mining/ML techniques for the classification and
clustering of data provided useful feedback on the structuring
of ontologies. In 2019, our studies started to explore graph
embedding techniques for learning urban networks (i.e., see
Box 3 of Figure 2) [1]. The Dynamic Attributed Network Em-
bedding (DANE) [12] was used to generate low-dimensional
vectors for a water distribution network. The embeddings were
then fed to a Random Forest (RF) algorithm trained to identify
water leaks. Although these initial studies showed successful
results in identifying water leaks, the DANE framework did
not incorporate the capability to verify that the embedding
input to the RF Classifier was an accurate representation of the
physical network topology and node attribute information. This
lack of insight suggests that a better approach would replace
hand generation of features with learning models trained to
identify features encoded within embedding vectors, and then
validate that the trained machine models faithfully replicate the
physical graph topology. Research is also needed to understand
the effects of graph size on learning performance. The latter
is key for scalability of the proposed approach.

In a step toward resolving these problems, and extending
our previous work, the objectives of this work are three
fold: (1) identify an embedding framework that better fits
our need for minimizing the loss of information during the
network embedding process; (2) exercise the new embedding
framework on the problem of leaks identification in an urban
water distribution system; (3) explore the effects of network
size on the learning performance. The remainder of this
paper proceeds as follows: Related work in traditional and
ML approaches for graph modeling is covered in Section
II. An overview of different graph embedding techniques is
provided in Section III. We exercise graph embedding and
ML classification procedures in a water distribution system
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Figure 2. Digital twin architecture.

application involving identification of leaks in Section IV. We
discuss ideas for scaling up the simulations in Section V.
The conclusions and directions for future work are located
in Section VI.

II. RELATED WORK

This section covers related work in traditional and ML
approaches to graph modeling.

A. Graph Theory

In mathematical terms, a graph G = (V, E), where V
is a set of vertices (also called nodes or points), E = set of

edges (also called links or lines), and each edge is formed from
pair of distinct vertices in V. V and E are usually taken to be
finite. Graph theory is the study mathematical structures used
to model pairwise relations between node and edge objects. It
plays a central role in understanding how solutions to problems
on graphs (e.g., traversal of nodes; reachability) are affected
by the fundamental characteristics of the graph.

The study of urban systems as networks, and networks
of interacting networks, draws upon many aspects of graph
theory. Urban networks may be homogeneous, heterogeneous,
and carry auxiliary information modeled as attributes. The
information to be preserved in the network is strongly affected
by the underlying characteristics of the system and, unfortu-
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Figure 3. Structure of simple graphs, multigraphs and pseudographs.
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nately, in urban settings this is complicated by a wide range
of possibilities. Figures 3 and 4 show, for example, that graph
structures include simple, multigraphs and pseudographs. Their
edges may be undirected, directed and/or weighted.

Kong and Simonovic [13] describe a few examples of how
urban systems can be modeled as graphs. A street network can
be represented as a graph composed of street junctions, end
points and street segments. Generally, the edges are undirected,
homogeneous, and the street network is fully connected. A
water distribution network can be represented as graph where
water works, storage facilities and pump stations are nodes
with different attributes, and the water distribution pipes are
directed edges, where the direction indicates the flow of water.
A power grid can be represented by a graph where power
plants, distribution and transmission substations are nodes with
different attributes, and power lines are directed edges for the
flow of electricity transmission. Information infrastructure can
be represented as a graph where the Internet Service providers
are nodes and cable connections are undirected edges, since
these networks provide a bidirectional flow of information.

Regardless of the type of graph and its purpose in an
urban setting, we observe that data mining techniques can be
employed to access the information stored in graphs. This
information can then be used to improve the design and
operation of urban systems. Techniques for graph data mining
can be divided into graph analysis and graph analytics.

B. Graph Analysis

Graph analysis tasks are mainly focused on exploring
the graph data to gain insights about its topological proper-
ties. Network topology (see Figure 3) nearly always affects
function; therefore, it is important to characterize it. For
instance, the topology of social networks affects the spread of
information and disease, and the topology of the power grid

affects the robustness and stability of power transmission [14].
Traditional approaches to network/graph modeling employ
adjacency matrices (or a simplified representation of network
adjacency) to model the topology of graphs. The topological
properties can then be explored through typical graph analysis
tasks including connectivity analysis, traceability analysis,
cycle detection, and shortest path identification.

C. Graph Analytics

For high-dimensional problems that are data sparse,
traditional approaches to graph representation and analysis can
quickly become computationally prohibitive. A second prob-
lem is these traditional approaches do not capture the semantics
of the network (i.e., node attributes). In recent years, there
has been a surge in ML approaches that automatically learn
to encode graph topology and attributes into low-dimensional
embeddings.

Figure 5 shows simplified representations for traditional
and machine learning approaches to graph representation. In
a significant departure from traditional approaches to repre-
senting and studying the the properties of a graph, graph
embedding methods learn a continuous vector space for the
graph, assigning each node (and/or edge) in the graph to
a specific position in the vector space, with the goal of
preserving local linkage structure (not global structure) and/or
network semantics. First the encoder maps the node to a low-
dimensional vector embedding, based on the node’s position
in the graph and/or its attributes. Next, the decoder extracts
information from the embedding vector (i.e., node’s local graph
neighborhood, or a classification label associated with the
node). By jointly optimizing the encoder and decoder, graph
embedding methods learn to compress information about graph
structure and semantics into the low-dimensional embedding
space. Because information can be lost in the embedding
transformation process – it can be viewed as dimensionality
reduction – the output embeddings are statistical in nature and,
as such, should be interpreted as graph analytics (not graph
analysis). Graph analytics can extract unseen or difficult to
obtain properties of the graph, either directly or by feeding
the learned representations to a downstream inference pipeline,
such as node classification, node clustering, and link predic-
tion.

III. TEACHING MACHINES TO UNDERSTAND GRAPHS

In recent years, many graph embedding approaches
have been developed. This section introduces these different
approaches, their advantages and limitations.

A. Graph Embedding Methods

Goyal and Ferrara [15] have organized embedding meth-
ods into three broad categories: factorization based, random
walk based, and deep learning based. Both the factorization
and random walk based approaches train unique embedding
vectors for each node independently, which results in several
limitations. First, there is an absence of parameter sharing
between the nodes, which leads to computational inefficiency
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Figure 5. Graph analysis vs graph analytics.

since the number of trainable parameters grows linearly with
the number of nodes in the graph. Second, these approaches
are not extensible and are only able to generate embedding
vectors for the nodes that were present during the training
phase and not for any unseen nodes. A third problem is that
these approaches lack an ability to incorporate node attributes
during embedding generation, when node attributes can be
highly informative about the node’s position and role in the
network.

In a concerted effort to mitigate these concerns, recent
research efforts have led to the emergence of deep learning
based methods. Deep learning based approaches use a deep
neural network architecture, generally referred to as Graph
Neural Networks (GNNs), to generate embeddings which
depend both on the structure and the attributes of the graph.
Wu et al. identified many types of GNNs among which are
graph autoencoders (GAEs) [16].

B. Graph Autoencoders

GAEs are deep neural network architectures that are
trained with the objective of reconstructing their original graph
input. Figure 6 shows a high-level GAE architecture. First,
an encoder takes a graph as its input and systematically
compresses it into a low-dimensional vector. The decoder then
takes the vector representation and attempts to generate a

reconstruction of some user-defined graph analysis tool (e.g.,
the adjacency matrix) of the original graph input. Encoder-
decoder pairs are designed to minimize the loss of information
between the input graph and the output (i.e., reconstructed)
graph. These frameworks may be deterministic or probabilistic
[17].

C. Network Embedding in an Urban Context

Figure 7 is a schematic for how the embedding process
might be integrated in an urban network digital twin. We start
by extracting a graph representation of the urban infrastructure
and determining the initial parameters of the system. As
time progresses, the digital twin will monitor changes in the
system. Embeddings will be generated, and machines will be
trained to understand a number of salient features of acceptable
and unacceptable behavior. When an unacceptable behavior is
identified, urban recovery procedures will be triggered. Since
embeddings are a central and essential part of the learning
process, there is a need to ensure the embedding input to
the machine is an accurate representation of the information
contained in the graph.

IV. CASE STUDY PROBLEMS

In this section, we exercise a graph autoencoding pro-
cedure that can encode the structure and network attributes
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Figure 6. Traditional encoder-decoder approach.

on problems involving the identification of leaks in an urban
water distribution system.

Topic 1. Case Study Applications

The two case study applications presented in this work
aim to explore the use of graph autoencoding (GAE) proce-
dures and ML classification techniques for the detection and
localization of leakages in water distribution systems (WDSs).
We start by extracting a graph representation of the system at
hand and determining the initial node attributes of the system.
Topics 2 through 5 follow the analysis procedure and describe:
(2) the encoding of the network topology and node attribute
information as node embeddings by a GAE framework; (3)
synthetic generation of hydraulic (node pressure) data by the
hydraulic simulation software EPANET [18]; (4) training and
testing of a Random Forest (RF) algorithm [19] with the node
embeddings to infer leak location; and (5) performance of the
proposed framework.

Topic 2. Node Embedding

The selection of an appropriate GAE is not a trivial
task. Water distribution networks are associated with a rich
set of node attributes that are in constant flux due to day-
to-day temporal variations in demand and, longer term, net-
work expansion and urban growth. These variations cause
the emergence of new content patterns and the fading of
old content patterns. Despite these complications, it has been
widely studied and reported that there exists a strong cor-
relation among the attributes of linked nodes [20]. These
node correlations and changing characteristics motivate us to
seek an effective embedding representation to capture network

structure and attribute evolving patterns, which is of fundamen-
tal importance to learning in a dynamic environment. Early
GAE algorithms such as Deep Neural Network for Graph
Representations (DNGR) [21] and Structural Deep Network
Embedding (SDNE) [22] only consider node structural infor-
mation (i.e., connectivity between pairs of nodes), and ignore
node attribute information. In 2016 Kipf et al. introduced
Graph Autoencoder (GAE*) [23], an algorithm that leverages
a ConvGNN [24] to encode node structural information and
node feature information at the same time. We employ this
algorithm in the two case studies of this work.

Although GAE* is the graph embedding approach most
suitable for our purposes, a key research question remains:
Are the procedures for reconstruction of the graph topology
guaranteed to give the correct answer only most of the time or
all of the time? An essential prerequisite for understanding the
robustness of GAE* reconstruction procedures is to first un-
derstand the procedure itself (i.e., graph encoding, embedding
optimization and reconstruction). Hence, the objective of our
first case study is to walk step by step through the application
of the GAE* framework to urban graphs from input to output.
We deliberately keep the network layout and node attributes
very simple, and begin with encoding for a 4 node graph and
its node attributes.

Figure 8 shows the architecture of the GAE* framework
applied to this use case. The encoder consists of two graph
convolutional layers and a simple inner product decoder, which
aims to decode node relational information from generated
embeddings by reconstructing the graph adjacency matrix. The
first convolutional layer takes as input the graph’s node feature
matrix X and the symmetrically normalized adjacency matrix
Ã = D−1/2AD−1/2, where A is the adjacency matrix with
added self connections and D is the diagonal node matrix of
A. For the purposes of keeping the case study as simple as
possible, all of the node features are simply assigned a value of
1. Note, however, in the later case study, different system nodes
will have different feature values that are naturally changing.

The first convolutional layer generates a lower-
dimensional feature matrix defined as:

X̄ = ReLu(ÃXW 0)

where W 0 is a trainable parameter matrix. The second convo-
lutional layer takes as input the output of the previous layer
and generates the node embeddings:

Z = ÃReLu(ÃXW 0)W 1

where W 1 is also a trainable parameter matrix. The purpose
of the decoder is to reconstruct the adjacency matrix A (with
added self-connections) from Z. By applying the inner product
on the latent variable Z and ZT , the algorithm learns the simi-
larity of each node inside Z. By applying the sigmoid function
σ(·) the algorithm computes the probability of edges existing
between the range of 0 and 1. Therefore, the reconstructed
adjacency matrix is defined as:

A′ = σ(ZZT )

In order to arrive at the optimal embedding matrix Z, the
W 0 and W 1 parameters are systematically updated through
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Figure 7. Process flowchart for training and executing machine.

an Adam optimization [25] of the weighted cross-entropy loss
between the adjacency matrix A and the soft reconstruction
A′. Adam optimization uses a combination of extensions (i.e.,
adaptive gradient estimation and root mean square propaga-
tion) to stochastic gradient descent to estimate gradients and
their moments as a moving average. These gradient estimates
allow us to find the direction in which the weights should be
adjusted in order to reduce the weighted cross-entropy loss.

By applying the GAE* architecture to the layout of
Case Study 1, we obtain successful reconstruction of the test
network topology. However, GAE* does not have the ability
to reconstruct graph attribute information. Thus, an important
research question that remains open is whether the embedding
obtained using GAE* is an accurate representation of node
attribute information needed for leak detection in WDS. In
the following case study, we aim to answer this question by
applying GAE* architecture to a leaking WDS, and use the
generated embedding as input for a RF classifier trained to
identify leaks.

Topic 3. Data Generation

Automatic water leakage detection can be performed with
ML classification algorithms. These algorithms require training
data involving normal operation conditions and abnormal op-
eration conditions. In the case of a WDS, training data should
involve hydraulic parameters at different locations, and pertain
to normal operations and leaks from the past. Ideally, one
would like to train a network using data measurements from
a real-world network. For security reasons, however, WDS
data (i.e., geographical layout of pipes, tanks, and demands)
are kept confidential by the water utility companies and are
not readily available to the public. A second option is to use
simulators to synthetically generate data for machine learning.
This study employs the simulation tool EPANET [18] to
generate the training data for the WDS under consideration
[26]. EPANET is a computerized model produced by the
Environmental Protection Agency of the USA that simulates
the dynamic hydraulic and water quality behavior within a
WDS operating over an extended period of time. WDSs are
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Figure 8. Flowchart of GAE* computations applied to Case Study 1.

composed by pipes (edges), nodes (junctions), pumps, valves,
and storage tanks or reservoirs. During a simulation period,
EPANET can track the flow of water in each pipe, the pressure
at each node, the height of the water in each tank, the type of
chemical concentration throughout the network, the age of the
water, and source tracing. Various characteristics of a network
element can be edited and a simulation can be performed to
observe its effect on the overall system. For simplicity, we will
limit the hydraulic parameter of interest in this study to node
pressure. We obtain the pressure data by making two additional
assumptions: (1) The data obtained through simulation does
not involve any noise in it (i.e., the sensors are ideal), and (2)
Water leakage is assumed to occur only at the junction nodes.

While EPANET does not explicitly support the modeling
of leakages, its computational engine is demand-driven and,
thus, leaks can be modeled as additional demand, and in a way
that is independent of the pressure in a consumption node. The
water output data at each node is defined as the base demand,
and the demand can be increased at different times during the
simulation. The network layout used to perform the hydraulic
simulations in this work is shown in Figure 9, which from

here on forth we will refer to as Case Study 2. The network
contains 4 junctions, 4 links, a pump station, a water source,
and a tank. The same network configuration was also used in
our previous work [1].

ML training sets require data for a large number of
positive (i.e., leaking) and negative (i.e., non leaking) cases,
meaning that EPANET simulations also need to be performed
for a large number of cases. A practical way of automating
this process is with the EPANET-Python Toolkit, an open-
source scripting software that interfaces with the latest version
of EPANET.

With data from the hydraulic network simulations in hand,
the next step is to perform the graph embedding. For this
case study we are interested in obtaining a low-dimensional
node vector representation for each node in the network. The
hope is that the learned embeddings will advance various
learning tasks, particularly leak detection by node classifi-
cation. Applying GAE* to the pressure data outputted from
EPANET simulation, yields 2-dimensional node embedding
vectors for each node of Case Study 2. The next challenge to
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Figure 9. Elevation view of urban water distribution networks and junction
(node) numbers used by EPANET simulation.

address is how to determine the optimal number of embedding
dimensions? Since answers to this question are still an open
research problem, we chose a set up for which the best
topology reconstruction results were observed.

Topic 4. Node Classification

With the node embeddings obtained from GAE*, leakage
detection can be performed. To be specific, we wish to identify
the node or nodes where leakage has occurred during hydraulic
simulation. To this end, the target function assigns a value
of 1 to leaking nodes and a value of 0 to the non-leaking
nodes. The embedding and target data are passed to a Random
Forest classification algorithm. There are a number of good
reasons to choose this pathway of analysis. First, the random
forest classifier is composed of a number of decision trees.
This problem solving strategy is well known to be accurate
and robust. In addition, it does not suffer from the overfitting
problem often encountered in other ML algorithms, since it
takes the average of all the predictions of decision trees,
and cancel out the biases. Random forests can also handle
missing values, by using median values to replace continuous
variables, or computing the proximity-weighted average of
missing values. Finally, random forest provides a measurement
of relative feature importance, which helps in the selection of
contributing features for the classifier [19].

In this case study, we select a training data set that max-
imizes the expected variation in the target and environment,
by building a hydraulic simulations where all of the nodes are
leaking for half of the simulation duration, and for the other
half of the duration none of the nodes are leaking. Since the
simulation was set to last 24 hours, with pressure readings at
every hour, the training set contains 24 cases for each node.
The top portion of Figure 10 shows the plots for each node in
Case Study 2, where the first of the embedding dimensions is
plotted against time. Note that when a leak occurs at a specific
time step, the embedding value for that dimension will also

change; thus, this problem can be framed as anomaly detection.

In order to test the trained RF classifier, we generate a test
set from a hydraulic simulation where none of the nodes are
leaking for half of the simulation duration, and for the other
half of the simulation duration only one of the nodes is leaking.
In this use case we chose the leaking node in the testing set to
be Node 3. Similar to the training set, the test set also contains
24 cases for each node. The bottom of Figure 10 shows the
first of the embedding dimensions plotted against time. Notice
that the embedding values change slightly compared to the
previous scenario where all the nodes where leaking; therefore,
the goal of the ML process is not only to detect the anomalies,
but also identify which anomalies are actual leaks and which
ones are just a propagation of the leak effects. Moreover,
since the initial objective of this work is identification of leak
location (and not timing of incipient leakage), leak durations
are kept constant through all simulations. We do acknowledge,
however, that the hour at which a leak occurs is relevant and
future work will need to address variations in leakages in both
space and time.

Topic 5. Results

As noted in the previous topic, the Random Forest
classifier was trained on both leak and non leak data for
each node. We were then able to test whether the classifier
is able to detect a leak in the system. The test procedure
involved feeding the node embeddings for a scenario where
initially none of the nodes were leaking, and later only one
node was leaking (node 3). As classification problems are
perhaps the most common type of ML problem, there are
a myriad of metrics that can be used to evaluate outputted
classifications, the most common being classification accuracy
(i.e., the ratio of number of correct predictions to the total
number of input samples). After training and testing an RF
classifier, we obtained a classification accuracy of 100 percent
(i.e., the classifier correctly predicted the location of test leaks
in the network). We recognize such a high performance may
be due to several simplifications made in this experiment.
First the network maintained a constant base demand for each
node through the hydraulic simulation, when in reality WDSs
experience changes in water demand depending on time of
day. Second, the decoder component of GAE* framework
successfully reconstructed network topologies in case study
1 and 2, and consequently generated accurate embeddings
representations of the networks, in part because the topologies
were relatively simple and static. An unresolved question from
these initial experiments is if the same success can be obtained
for larger or dynamic topologies. Section V discusses the
effects of size on GAE* performance. Third, we assumed
sensor nodes were deployed in each junction of the network;
however, in our resource limited world, placing as many
sensors as there are junction nodes to monitor all of the nodes
in real time is extremely infeasible. In Section VI we discuss
ideas for addressing these simplification issues in future work.

V. DISCUSSION

The automated identification of leaks in WDSs depends
critically on accurate representations of network topology and
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Figure 10. Case study 2 node embeddings (1st dimension) obtained for train
and test sets plotted against time.

node attribute information. The embedding obtained by using
GAE* framework is fed to downstream classifiers that will
determine presence of leaks in the system. If the embedding
is not accurate enough, errors could cascade across the fault
detection mechanism and lead to false positive or false negative
leakage identifications. Therefore, it is important to understand
the limitations of GAE* in generating a representation of the
network at hand. This section discusses these limitations and
potential solutions.

A. GAE* Limitations

Our results have indicated that when network topologies
are simple, GAE* is capable of providing network embeddings
that can be decoded to perfectly reconstruct the input network.
One important research question that remains open is the effect
of network size on GAE* learning performance. In order to
address this concern, we have attempted to reconstruct three
attributed WDSs of varying sizes using GAE*. The goal of this
experimental study was to learn for what ranges of embedding
dimensions the algorithm was able to reconstruct the input
network accurately. In order to measure the accuracy of the
reconstruction, the graph edit distance (GED) between the
input graph and the reconstructed graph was used. GED is
a graph similarity measure defined as the minimum cost of
a sequence of node and edge edit operations transforming the
reconstructed graph into the input graph. A GED value of zero
shows that the reconstructed graph is isomorphic to the input
graph. The higher the GED value, the higher the dissimilarity

between the reconstructed graph and the input graph. In order
to maintain a sense of GED importance for different graph
sizes, the GED values obtained in our experiments were then
normalized by the size of the input graph.

Figure 11 summarizes the results of the numerical
experiments, and shows that if the neural network used to
train the GAE* has an insufficient number of neurons, then
the reconstruction performance is poor. This makes perfect
sense. But when the same network is modeled with too many
neurons, the reconstruction performance is also poor. The
results suggest that there is a window of convergence where
good reconstruction can be achieved. For the networks with
6 and 11 nodes the algorithm is able to perfectly reconstruct
(i.e., GED is zero) certain network configurations, but for the
network with 36 nodes the algorithm is not able to reach
perfect reconstruction. From Case Study 1, we now understand
the inner architecture of GAE* and what limitations it may
encounter, as well as the ways in which it might be changed
to adapt to specific problems. To obtain a good reconstruction
of the input graph, the underlying algorithm needs to work.
In turn, the latter depends on: (1) convergence of the Adam
optimization, (2) the encoder architecture design, and (3) the
decoder architecture design. We suspect that the phenomena
observed in Figure 11 may be related to limitations in these
three GAE* components.

A. Convergence of the Adam Optimizer

One of the key hyper-parameters to set in order to
construct an Adam optimizer is the learning rate. This pa-
rameter scales the magnitude of our weight updates in order
to minimize the network’s loss function. If the learning rate is
set too low, then training will progress very slowly as we are
making very small updates to the weights values. However, if
your learning rate is set too high, then it can cause undesirable
divergent behavior in the loss function (i.e., the gradient of the
weight oscillates back and forth, and it is difficult to make the
loss reach the global minimum).

B. Encoder Architecture Design

Although Kipf et al. used 2 hidden layers, 32 neurons
in the first hidden layer, and 16 neurons in the second hidden
layer when presenting the GAE* architecture [24], it is possi-
ble to modify these characteristics of the framework in order
to adapt to specific needs. When considering the structure of
GAE*, there are really two decisions that must be made: how
many hidden layers to actually have in the neural network, and
how many neurons will be in each of these layers? Prior to
deep learning, problems that required more than two hidden
layers were rare. Two or fewer layers will often suffice with
simple data sets. However, with complex datasets additional
layers can be helpful. According to Heaton a neural network
with no hidden layers is only capable of representing linear
separable functions or decisions, a network with one hidden
layer can approximate any function that contains a continuous
mapping from one finite space to another, and a network with
two hidden layers can represent an arbitrary decision boundary
to arbitrary accuracy with rational activation functions and
can approximate any smooth mapping to any accuracy. And
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Figure 11. GAE* reconstruction accuracy for networks of varying sizes.

a network with more than two layers can learn complex rep-
resentations (i.e., feature engineering) for layered layers [27].
For our purposes, we are interested in investigating whether
adding more layers to GAE* algorithm can bring benefits (i.e.,
faster convergence, lower loss, fewer nodes, etc.). Deciding the
number of hidden layers is only a small part of the problem,
we must also determine how many neurons will be in each
of these hidden layers. Using too few neurons in the hidden
layers can result in underfitting. Underfitting occurs when there
are too few neurons in the hidden layers to adequately process
information in a complicated data set. Too many neurons on the
other hand can result in overfitting. Overfitting occurs when the
neural network has so much information processing capacity
that the limited amount of information contained in the training
set is not enough to train all of the neurons in the hidden layers
[27]. Computational requirements also need to be taken into
account. Generally speaking, a large number of neurons in the
hidden layers will increase the time it takes to train the net-
work, possibly to a point where it is computationally infeasible
to adequately train the neural network [27]. Obviously, some
compromise must be reached between too many and too few
neurons in the hidden layers. Ultimately, the selection of an

architecture for our neural network will come down to avoiding
underfit, overfit and convergence issues. Learning curves are
widely used in machine learning for algorithms that learn (i.e.,
optimize their internal parameters) incrementally over time.
The shape and dynamics of a learning curve can be used to
diagnose the behavior of a machine learning model and, in
turn, suggest changes that may be made to improve learning
and/or performance. For our purposes, we are interested in
investigating how learning curves can help us adapt the GAE*
architecture to avoid the abovementioned issues.

C. Decoder Architecture Design

Much of the node embedding research work performed
in recent years has focused on refining and improving the
encoder architecture. Most methods still rely on basic pair-
wise decoders (e.g., inner-product decoders), which predict
pairwise relations between nodes and ignore higher-order
graph structures involving more than two nodes [17]. Higher-
order structural sub-graphs are essential to the structure and
function of complex networks. Hence, testing the performance
of decoding algorithms other than inner-product decoders will
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be an important step in unveiling GAE* limitations.

VI. CONCLUSIONS AND FUTURE WORK

The long term objective of this research is to understand
how ML and semantic-modeling can work hand-in-hand to
build digital twins architectures that enhance the collection
of data, identify events, and manage operations of systems in
an urban context. In this paper, we started by exploring the
recently developed GAE* framework in Case Study 1, where
a simple graph was encoded to a low-dimensional vector while
minimizing the loss information in the encoding process. Then,
we investigated the possibility of using a GAE* generated
embedding as input for a RF classier trained to identify
leaks in WDSs in Case Study 2. Finally, we examined the
effects of network size on learning performance by generating
embeddings for larger size networks. Although procedures for
encoding network information (i.e., structure and attributes)
with the GAE* framework, and using RF classifier to identify
water leaks have shown to be successful, the work reported
in this paper takes an initial step toward exploring potential
applications of ML to the identification of leaks in urban
networks. Many questions and issues remain either unanswered
or unresolved. Opportunities for future work include varying
base node demands according to time of day, experimenting
with more complex topologies and topologies that are dynamic
(i.e., edges are removed or created), investigating how many
sensor nodes are needed and where to place them in the
network, exploring the use of learning curves in finding the
optimal number of neurons, layers, and learning rate values
for optimizing learning performance, and exploring different
decoder architectures with the aim of improving reconstruction
results for more complex graphs.
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Abstract—Properly managing merging at junction is important
in improving highway traffic safety and traffic flow. Accurate
vehicle positions and velocities are necessary in realizing proper
management, but existing sensors have both advantages and
disadvantages. Roadside vehicle detectors are very accurate, but
only available at fixed points. By contrast, in-vehicle Global
Navigation Satellite System (GNSS) sensors can be used anywhere
except in tunnels, but are less accurate. However, these sensors
can compensate for each other’s week points. In this paper, we
propose a vehicle position estimation method that combines road-
side vehicle detector and in-vehicle sensors. This method is used
to gather data from the roadside vehicle detector and in-vehicle
sensors via different wireless networks. It then applies Kalman
filters to calculate the accurate position and velocity. When
exchanging information over wireless networks, communication
delays occur and the data arrival sequence is not guaranteed.
Our method can retroactively calculate the vehicle position in
the presence of delays below a maximum acceptable threshold.
This study evaluates in several simulations using the data created
from the GNSS position error and communication delay models.
We also perform the evaluation using a dataset created based on
the actual vehicle information and communication delays in the
simulations. The simulation results show that our method can
more accurately estimate the vehicle positions compared to that
using data from either sensor alone. Moreover, our method is
more suitable for managing traffic and controlling merging at
junctions.

Index Terms— Sensor fusion; Position estimation; Communica-
tion delays; Intelligent transportation system.

I. INTRODUCTION

This paper is an enhanced version of [1]. Vehicles merging
into the main lane at highway junctions are increasingly
causing the traffic congestion in that lane [2]. Moreover, 20–
30% of highway truck accidents occur at or near junctions
[3]. Thus, appropriately managing traffic and controlling the
merging at junctions are important in improving both highway
safety and traffic flow.

Fig. 1. Roadside vehicle detector.

Fig. 2. General-purpose GNSS sensor.

Several previous studies have investigated proper traffic
management and merging control at junctions. Cui et al. [4]
proposed a system for detecting collisions by estimating the
vehicle arrival time at junctions. Their system obtained the
vehicle positions and velocities from a monocular camera
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Fig. 3. Existing approach1: using GNSS sensors.

Fig. 4. Existing approach2: using roadside vehicle detector.

Fig. 5. Proposed approach: combining both sensors.

Fig. 6. Merging support system overview.

installed at the junction and used these to estimate the arrival
times. Milanes et al. [5] installed a local control system
near the junction, which receives the position and velocity
information from approaching vehicles and sends them low-
risk merging strategies. Chou et al. [6] proposed a merging
method based on vehicle-to-vehicle (V2V) communication.
The vehicles approaching the junction use this to exchange

their positions and velocities. The vehicles in the main lane
then create gaps for entering vehicles before they have even
reached the merging point. Hirai et al. [7] proposed a system
that uses roadside vehicle detector installed before merging
points. Roadside vehicle detector are often used to detect the
presence of vehicles and the vehicle velocities on the lane
to estimate traffic (Figure 1). Hirai’s approach was estimated
vehicles’ arrival times at the merging points. When a vehicle
on the on–ramp arrives at almost the same time as a vehicle
in the main lane, the system alerts the latter, enabling it
to prepare for merging, even if its driver has not seen the
vehicle on the on–ramp. Giving drivers longer time to prepare
makes the process safe. Japan’s government has started field
tests of autonomous driving in the Tokyo waterfront area
[8]. Accordingly, information on roadside vehicle detector are
available in these filed tests. Proper traffic management and
merging control at junctions are considered by companies that
participated in the field tests.

All the above-mentioned merging methods depend on the
vehicle position and velocity information to properly manage
traffic and control merging at junctions. The location esti-
mation method using a camera must be applied such that
occlusion does not occur, and the place where it can be used is
limited. Although accurate vehicle velocities can be obtained
from speed sensors, vehicle positions can be incorrect. These
are often acquired from position estimation methods using
light detection and ranging (LiDAR) or in-vehicle global
navigation satellite system (GNSS) sensors. The position esti-
mation method using LiDAR can more accurately estimate the
position when compared to GNSS sensors; hence, autonomous
vehicles often use it for position estimation. However, the cost
of LiDAR usage is much higher than that of using general-
purpose GNSS sensors and LiDAR cannot be immediately
installed in conventional vehicles. GNSS sensors are obtained
position by receiving the signals emitted from satellites and
can function anywhere, except in tunnels. The signals received
from the satellites contain noise. High-precision GNSS sensors
can correct noise [10] and obtain accurate positions, albeit
being expensive. The GNSS sensors mounted on vehicles
are almost general-purpose products (Figure 2). They are
inexpensive, and the positions measured using these sensors
can differ from the true position by more than 10 m depending
on the location. Properly managing traffic and controlling the
merging at junctions cannot be performed with large vehicle
position errors [6]. The system using roadside vehicle detector
accurately estimates the vehicle arrival times when the sensor
is close to the merging point. However, the error increases with
the distance between the sensor and the merging point. The
establishment cost is also high, and multiple installations are
not reasonable because roadside vehicle detector are usually
attached to poles installed at roadsides and gates across the
road (Figure 1).

Exchanging information via such wireless networks leads to
communication delays. Dedicated short-range communications
(DSRC) or long-term evolution (LTE) is used for V2V and
vehicle-to-infrastructure (V2I) communications. According to
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Fig. 7. Illustration of the position estimation model and variable definitions.

Dey et al. [11], these delays are approximately 100 ms for the
DSRC (for the communication between a vehicle traveling at
80 km/h and a roadside unit). These delays also mean the data
arrival times are not guaranteed. We believe that we can obtain
more accurate vehicle positions by combining data from the
GNSS and roadside vehicle detectors and compensating for
the communication delays.

In this paper, we propose a vehicle position estimation
method that combines data from roadside vehicle detector
and in-vehicle sensors. This can retroactively calculate prior
vehicle positions in the presence of delays below the maximum
acceptable threshold. This study makes the following three
main contributions.

The first contribution of this study is a vehicle position
estimation method that combines data from roadside vehicle
detector and in-vehicle sensors. In our system, a roadside
vehicle detector is installed before the merging point and a
roadside unit is installed near the junction. In-vehicle sensor
information is used to estimate its position and velocity. A
roadside vehicle detector is also used to estimate the vehicle
position based on the sensor position and vehicle velocity.
The two estimates are combined using a statistical approach
proposed by Duffin [12]. Previous studies used only one of the
position information obtained from the GNSS and roadside
vehicle detector (Figures 3 and 4). Our method estimates
positions using both position information (Figure 5).

The second contribution of this study is a communication
delays compensation method. The vehicle positions at earlier
times are retroactively calculated when older data arrive up to
the predetermined maximum communication delay. When the
roadside unit does not receive information from a vehicle, it
estimates the vehicle’s position based on the most recent infor-
mation received from it. Modified Kalman filters that consider
communication delays are proposed [14]. The contribution is
applying the modified Kalman filters to the scene of merging
support.

The third contribution of this study is the evaluation of our

system. We evaluated our proposed system by using only the
data created from the GNSS position error and communication
delay models in several simulations [1]. In this paper, our
system was also evaluated by using a dataset created based on
actual vehicle information and communication delays in sim-
ulations. The actual vehicle information were obtained when
driving through a main lane of the airport west interchange
in Tokyo, Japan. The dataset including communication delays
was created by actually transmitting from a certain terminal
to other terminal via LTE communication.

The remainder of this paper is organized as follows. Section
II describes the assumptions made herein. Section III introduces
our proposed system. Section IV evaluates the method using
several simulations. Section V presents the results. Section VI
discusses our proposed system, and Section VII concludes the
paper.

II. ASSUMPTION

In this study, roadside vehicle detector were installed before
the merging point. A roadside unit was located near the
junction (Figure 6). All vehicles are assumed to have GNSS
devices, speed sensors, and V2I communication devices. Vehi-
cles approaching the junction send their current position and
velocity, as well as the time the data were acquired, to the
roadside unit. This information is repeatedly sent at regular
intervals in vehicle position estimation section and starts to
send before the vehicle passes through the roadside vehicle
detector. The system clocks in the vehicles, roadside vehicle
detector, and roadside units are assumed to be synchronized.
Some delay exists in the communications between the vehicles
and the roadside units. Meanwhile, the communication delays
between the roadside vehicle detector and the roadside unit are
assumed to be negligible because the communication between
them is via wire and dedicated connection.

Figure 7 shows the environmental model, where the vehicle
drives from the starting point toward the merging point. A
roadside vehicle detector is installed at x = xrvd

0 m. The
vehicle sends information about its position (namely the aver-
age xgps

t m and the standard deviation σgps
t m) and velocity

(average vt km/h and standard deviation σvt km/h) to the
roadside unit. The roadside vehicle detector sends the position
of the vehicle’s center (average xrvd

0 m and standard deviation
σrvd
0 m) and the detection time t0 s to the roadside unit when

the vehicle passes through it.
The roadside unit estimates the vehicle’s position using both

the information received from the vehicle (the average x̂odo
t|t m

and standard deviation σ̂odo
t|t m) and that from the roadside

vehicular detector (average x̂rvd
t|t−1 ms and standard deviation

σ̂rvd
t|t−1 m). It then combines these two estimates to obtain the

final vehicle position (average x̂fsn
t m and standard deviation

σ̂fsn
t m).
The assumptions in this study are according to the actual

field test of Japan [8]. Support for autonomous driving by
providing information for automatically adjusting the speed
and timing of entering the main line at highway junctions has
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been considered in the field tests [13]. The experiment has
been conducted at an airport west interchange in Tokyo, Japan.
Figure 8 shows the top view of the airport west interchange
and the sensor location. Figures 9 and 10 illustrate the devices
for merging control. Figure 11 depicts the merging point of the
airport west interchange. The roadside vehicle detector detects
the speed of the vehicles driving on the main lane and sends
them to the roadside unit located near the merging point via
wire and dedicated connection. The roadside unit estimates
the speed and timing to safely join the main lane. These
information are provided to the vehicles driving on the ramp
via wireless at the place where the communication device is
installed. Furthermore, previous studies have already discussed
time synchronization [9]. Therefore, these assumptions are
realistic.

III. PROPOSED SYSTEM

In this section, we describe our proposed position estimation
approach, followed by our method of compensating for the
communication delays.

A. Position Estimation

Figure 12 presents a flow diagram showing the steps
performed to estimate the vehicle position when it passes
through the gate at time t0 s. Here, the vehicle position
is estimated by applying Kalman filters to the position and
velocity information received from it until it passes through
the roadside vehicle detector. Kalman filters are often used
to estimate the exact state based on inaccurate and noisy
information; hence, we used them here to estimate the vehicle
position from the noisy position and velocity information.

The Kalman filters usage is divided into the prediction
and correction steps. During the prediction step, the vehicle
position is estimated based on the estimate from the previous
time step and the current vehicle velocity information. The
correction step adjusts this estimated position using the cur-
rent vehicle position information. The specific equations are
presented below.

Prediction step:

x̂odo
t|t−1 = x̂odo

t−1|t−1 +
5

18
vtdt, (1)(

σ̂odo
t|t−1

)2

=
(
σ̂odo
t−1|t−1

)2

+

(
5

18
σvtdt

)2

. (2)

Correction step:

x̂odo
t|t = x̂odo

t|t−1 + kt

(
xgps
t − x̂odo

t|t−1

)
, (3)(

σ̂odo
t|t

)2

= (1− kt)
(
σ̂odo
t|t−1

)2

, (4)

kt =

(
σ̂odo
t|t−1

)2

{(
σ̂odo
t|t−1

)2

+ (σgps
t )

2

} . (5)

where x̂odo
t|t−1 m and σ̂odo

t|t−1 m are the average and standard
deviation of the vehicle position, respectively, generated by

Fig. 8. Status of devices for merging support system at the airport west
interchange in Tokyo.

Fig. 9. Roadside vehicle detector.

Fig. 10. Communication device.

Fig. 11. Merging point.

the prediction step for timestep t s; x̂odo
t|t m and σ̂odo

t|t m are
the average and standard deviation of the vehicle position,
respectively, generated by the correction step for timestep t s;
vt km/h and σvt km/h are the average and standard deviation of
the vehicle velocity, respectively, generated by the correction
step for timestep t s; kt is the Kalman gain at timestep t s;
and 5

18 is a term used for converting the vehicle velocity from
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Fig. 12. Flow diagram showing the steps performed to estimate the vehicle
position.

km/h to m/s.
The roadside unit receives the position of the vehicle’s center

from the roadside vehicle detector at time t0 s, then combines
this with the velocity information received from the vehicle
and the Kalman filters’ prediction step to estimate the vehicle
position. The specific equations are presented below.

Position estimation:

x̂rvd
t = x̂rvd

t−1 +
5

18
vtdt, (6)(

σ̂rvd
t

)2
=

(
σ̂rvd
t−1

)2
+

(
5

18
σvtdt

)2

. (7)

where, x̂rvd
t m and σ̂rvd

t m are the average and standard
deviation of the vehicle position predicted by the Kalman
filters at timestep t s, respectively; vt km/h and σvt km/h are
the average and standard deviation of the vehicle velocity at
timestep t s; and 5

18 is a term used for converting a vehicle
velocity from km/h to m/s.

The vehicle position (average x̂rvd
t0 m and standard deviation

σ̂rvd
t0 m) at timestep t0 s is defined as the position received

Fig. 13. Overview of our communication delays compensation method.

from the roadside vehicle detector; hence, it is given as
follows:

x̂rvd
t0 = xrvd

0 , (8)

σ̂rvd
t0 = σrvd

0 . (9)

where xrvd
0 m and σrvd

0 m are the average and standard
deviation, respectively, of the vehicle position received from
the roadside vehicle detector.

Finally, the two vehicle position estimates are combined
using the statistical approach proposed by Duffin [12], which
is based on Bayes’ rule and Kalman filters. This approach
simply combines the two Gaussian distribution.

Estimate combination:

x̂fsn
t = x̂odo

t|t +

(
σ̂odo
t|t

)2

(
σ̂odo
t|t

)2

+
(
σ̂rvd
t

)2 (
x̂rvd
t −x̂odo

t|t

)
,

(10)

(
σ̂fsn
t

)2

=

1−

(
σ̂odo
t|t

)2

(
σ̂odo
t|t

)2

+
(
σ̂rvd
t

)2


(
σ̂odo
t|t

)2

. (11)

where, x̂fsn
t m and σ̂fsn

t m are the average and standard
deviation of the vehicle position obtained by combining the
two estimates.

B. Communication delay compensation
Communication delays inevitably occur when exchanging

information over wireless networks; thus, they must be con-
sidered when estimating the vehicle positions. Here, we used
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Kagami et al.’s approach, which involves modified Kalman
filters that account for the communication delays [14]. This
method retroactively calculates prior positions and velocities
when older data are received up to a predetermined maximum
communication delay. However, the modified Kalman filters
model proposed by Kagami et al. is a multidimensional state–
space model. Hence, in this study, the communication delay
compensation is only used a concept, and the Kalman filters
model is changed to a one-dimensional (1D) constant velocity
(CV) model.

Figure 13 illustrates our method of communication delay
compensation. Here, L s is the maximum communication
delay. t − L s denotes the L timesteps after the vehicle
passed through the roadside vehicle detector. The roadside
units did not receive any position and velocity information
from the vehicle at timesteps t − 1 and t s. The data is
received at timestep t− 2 s, and the roadside unit uses this to
retroactively calculate the vehicle positions and velocities at
timesteps t − 1 and t s, working back from the present time
to the predetermined maximum communication delay.

The vehicle position is estimated using Eqs. (1)–(11) at each
time. The vehicle position is estimated based on the estimate
from the previous time step and each time vehicle position
and velocity information. Finally, the two vehicle position
estimates are combined.

IV. EVALUATION EXPERIMENTS

Our vehicle position estimation method is evaluated in
several simulations in this section. First, our vehicle position
estimation method is evaluated using the data created from
the GNSS position error models and the communication delay
model and conducted with and without communication delays.
Next, our system is evaluated using a dataset created based
on the actual vehicle information and communication delays
in the simulations. We used Matlab R2019a herein. Table I
shows the personal computer (PC) specifications used for the
simulation.

A. Evaluation using models

1) Environment without communication delays: In this ex-
periment, the position estimation accuracy was evaluated in an
environment where the communication delays were assumed
to be negligible. Our proposed method labeled as “Fusion”
was compared with one that simply applies Kalman filters to
the in-vehicle sensor data (i.e., “GNSS only”).

In this simulation, a vehicle drove from the starting point
at x = −100 m toward the merging point at a speed of 80
km/h. The roadside vehicle detector was installed at x = 0
m. The standard deviations of the vehicle’s center position
and velocity were set to s σrvd

0 = 0.5 m and σvt = 5 km/h,
respectively. The vehicle sent its position and velocity to the
roadside unit every 100 ms. The roadside unit also estimated
the vehicle position every 100 ms. The vehicle acquired its
position from a GNSS device. We considered two models
of the GNSS position error, namely a Gaussian white noise
model and a Gauss-Markov random process model, used in

TABLE I
SPECIFICATIONS OF THE PC USED FOR THE SIMULATIONS.

CPU Intel Core i9-9900X at 3.50GHz
Memory 64 GB
Storage Samsung MZVLB1T0HALR-00000

TABLE II
PARAMETERS OF THE GAUSSIAN WHITE NOISE MODEL.

GNSS error σw

Low 3
Medium 6

High 9

TABLE III
PARAMETERS OF THE GAUSS–MARKOV RANDOM PROCESS

MODEL.

σg σr β
Case 1 0.2020 0.0027 1/600
Case 2 0.1030 0.3160 1/600

a previous study [6]. These models will be described below.
The simulation was repeated six times for each GNSS position
error model.

Gaussian white noise model:
This is given by the following equations:

xgps
t = xt + wt. (12)

where, xt is the actual vehicle position, and wt is the Gaussian
white noise, i.e., wt ∼ N(0, σw). Here σw is set as in
Table II. σw in Table II is set from a trial experiment using
a general-purpose GNSS sensor. UBX-M8030-KT was used
for a general-purpose GNSS sensor. The specifications of it
denotes in Table IV. When position data were acquired using
the sensor at multiple points in Nagoya University, the most
low value was σw ≈ 3, the most high value was σw ≈ 9. Thus
the σw is set as 3 in the low GNSS error and the σw is set as
9 in the high GNSS error. As an intermediate value between
the high and low GNSS error, σw is set as 6 in the medium
GNSS error.

Gauss–Markov random process model:
This is given by the following equations [15]:

mt = e−βdtmt−1 + gt, (13)
nt = mt + rt, (14)

xgps
t = xt + 0.9nt. (15)

Here, represents time–correlated noise with time constant β
and Gaussian white noise gt, i.e., gt ∼ N(0, σg). In addition,
nt is the total noise composed of mt and uncorrelated noise
rt, i.e., rt ∼ N(0, σr). As in the previous study [6], σg , σr,
and β were set as in Table III. The GNSS error in Case 2 was
worse than that of Case 1.

2) Environment with communication delays: In this exper-
iment, our communication delay compensation method was
evaluated by comparing the performance our method, called
“Fusion with DC” with those of the other two methods.

The first method (i.e., “GNSS only without DC”) estimated
the vehicle position by applying Kalman filters to the in-
vehicle sensor data without compensating for the communi-
cation delays. This method only used the most recent position
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TABLE IV
SPECIFICATIONS OF THE GNSS SENSORS USED IN THE

EXPERIMENT.

AQLOC-VCX (Mitsubishi Electric)
Receiver type GPS, QZSS, Galileo
Horizontal position accuracy 12.0 cm
Internal antenna Dielectric antenna (59x59x33 mm)

UBX-M8030-KT (u-blox)
Receiver type GPS, QZSS, GLONASS
Horizontal position accuracy 2.0 m
Internal antenna Dielectric antenna (25x25x4 mm)

and velocity information received, thereby ignoring older
delayed data. The second method (i.e., “GNSS only with DC”)
was similar, but with communication delay compensation.

In this method, the communication delays were represented
by a Gaussian white noise (i.e., N(d̄, σ2

d̄
) d̄ was set to 96.130

ms following that in a previous study [11], and σd̄ was set to 2
ms). We considered three possible maximum communication
delays, namely 0.10, 0.12, and 0.14 s, and repeated each
simulation six times.

B. Evaluation using actual data

In this experiment, the proposed system was also evaluated
using a dataset created based on actual vehicle information
and communication delays. The actual vehicle information
were obtained when driving through a main lane of the
airport west interchange in Tokyo, Japan. The dataset, in-
cluding the communication delays, was created by actual
transmission from a certain terminal to the other terminal
via LTE communication. Accordingly, the performance of
our proposed method (“Fusion”) was compared with those
of the other three methods. The first method (“RVDS only”)
estimated the vehicle position by applying a linear uniform
motion to the time and speed, at which the vehicle passed the
roadside vehicle detector. The second method (“GNSS only
with CD”) estimated the vehicle position by applying Kalman
filters to the in-vehicle sensor data with communication delay
compensation. The third method (“GNSS only without CD”)
estimated the vehicle position by applying Kalman filters
to the in-vehicle sensor data without communication delay
compensation. In this simulation, the standard deviation of the
vehicle’s center position, vehicle position, and velocity were
set to s σrvd

0 = 0.5 m, σgps
0 = 2 m, and σvt = 5 km/h,

respectively. The vehicle sent its position and velocity to the
roadside unit every 100 ms, and the roadside unit estimated
the vehicle position every 100 ms.

1) Acquisition of vehicle information: The vehicle position
and velocity were acquired using two sensors. Table IV lists
the sensor specifications. AQLOC-VCX is a high-precision
GNSS sensor that can acquire quasi-zenith satellites informa-
tion. This sensor includes an IMU and can obtain the vehicle
position and velocity by inputting the vehicle speed pulse and
the back pulse. Therefore, the position information obtained
from it were used as the correct vehicle position data,while
the velocity information were used for the position estimation.
UBX-M8030-KT is a general-purpose GNSS sensor. The
position information obtained from it were used herein for

Fig. 14. Experimental vehicle and sensor installation.

Fig. 15. Vehicle position acquired by GNSS sensors.

the position estimation. These sensors were mounted on the
vehicle celling (Figure 14).

Figure 15 shows the vehicle position acquired by the GNSS
sensors. The vehicle position was expressed in the UTM
coordinate system. The lane center line was extracted from a
high-precision map created using the mobile mapping system.
The correct vehicle position was along the lane center line.
Meanwhile, the position used for the estimation was far from
the lane center line because of noise.

Our proposed position estimation method used a 1D CV
model and considered lateral movement, but not vertical move-
ment. The position information of the GNSS outputs were 2D.
In this simulation, the position information were projected
to the lane center line, and we only considered the lateral
movement. Figure 16 shows how the position error changed
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Fig. 16. Position error versus true position.

Fig. 17. Vehicle velocity versus true position.

Fig. 18. Communication delay times versus true position.

with the vehicle position. The roadside vehicle detector was
installed at x = 0 m. The merging point was at x = 148
m. The vehicle estimation section started from x = −20 m
to x = 150 m. The horizontal axis represents the position,
whereas the vertical axis represents the position error, namely
the difference between the correct vehicle position and the
vehicle position used for estimation. When the position error

was positive (negative), the vehicle’s estimated position was
ahead (behind) its true position. The vehicle position used for
the estimation had a large position error near the roadside
vehicle detector and a small position error near the merging
point.

Figure 17 exhibits how the vehicle velocity changed. The
horizontal axis represents the true vehicle position, whereas the
vertical axis represents the vehicle velocity at that position.
The vehicle accelerated from the roadside vehicle detector
toward the merging point.

2) Addition of communication delays: The information
obtained from the GNSS sensors did not include communi-
cation delays. To contain the actual communication delays,
the vehicle information were transmitted between the terminals
that were time synchronized using the ntp server via LTE com-
munication. The communication delays were then recorded.
The communication carrier used in the experiments was b-
mobile, mobile virtual network operator of Docomo. Docomo
is the main communication carrier in Japan.

Figure 18 represents the state of the communication delays.
The horizontal axis represents the actual vehicle position,
whereas the vertical axis represents the communication delay
times. The average value of the communication delays were
approximately 0.05 s. The maximum value is 0.111 s, whereas
the minimum value was 0.042 s. Therefore, the maximum
communication delay time was set to 0.12 s in this experiment.

V. RESULTS

A. Evaluation using models

1) Environment without communication delays: Table V
presents the simulation results. Figures 19-23 show how
the position error changed with the vehicle position. The
horizontal axis represents the true vehicle position, while
the vertical axis represents the position error, namely the
difference between the true and estimated vehicle positions.
When the position error was positive (negative), the vehicle’s
estimated position was ahead (behind) its true position.

Table V shows that the average and standard deviation of the
position error were both lower for “Fusion” than for “GNSS
only.” When the vehicle passed through the roadside vehicle
detector, the position error of the “Fusion” method sharply
dropped, becoming much lower than that of the “GNSS only”
(Figures 19-23). This result demonstrates that the proposed
position estimation method can be significantly more accurate
than “GNSS only.”

2) Environment with communication delays: Table VI
shows the simulation results. Figures 24-26 depict how the
position error changed with the vehicle position. The hori-
zontal axis represents the true vehicle positions, whereas the
vertical axis represents the position error defined as before.

Table VI shows that both the average and standard deviation
of the position error were lower for our “Fusion with DC”
method compared to the other approaches. The errors were
lower for the “GNSS only with DC” than for the “GNSS only
without DC” and significantly lower for “Fusion with DC”
than for the other methods when the maximum communication
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TABLE V
COMPARISON OF POSITION ESTIMATION METHODS.

Gaussian white noise model
(Low GNSS position error) Average Standard

deviation
GNSS only 0.298 m 0.182 m
Fusion 0.238 m 0.030 m

Gaussian white noise model
(Medium GNSS position error) Average Standard

deviation
GNSS only 0.360 m 0.290 m
Fusion 0.260 m 0.052 m

Gaussian white noise model
(High GNSS position error) Average Standard

deviation
GNSS only 0.467 m 0.461 m
Fusion 0.274 m 0.085 m

Gauss–Markov random process
model (Case 1) Average Standard

deviation
GNSS only 1.681 m 0.907 m
Fusion 1.280 m 0.591 m

Gauss–Markov random process
model (Case 2) Average Standard

deviation
GNSS only 0.691 m 0.467 m
Fusion 0.477 m 0.315 m

Fig. 19. Position error versus true position (Gaussian white noise model with
a low GNSS position error).

Fig. 20. Position error versus true position (Gaussian white noise model with
a medium GNSS position error).
delay time was 0.14 s. We believe this was because the amount
of data that had to be discarded due to not being received
within the maximum communication delay time decreased as
the maximum communication delay time increased.

Figures 24-26 depict that the position error was always
negative for the “GNSS only without DC” method because
the latest information received from the vehicle was out-of-
data due to communication delays. The fact that the errors

Fig. 21. Position error versus true position (Gaussian white noise model with
a high GNSS position error).

Fig. 22. Position error versus true position (Gauss-Markov random process
model, Case 1).

Fig. 23. Position error versus true position (Gauss-Markov random process
model, Case 2).

were smaller for both “GNSS only with DC” and “Fusion with
DC” confirmed that our communication delay compensation
method performed well. In addition, the fact that the position
errors were lower for our “Fusion with DC” method than for
“GNSS only with DC” confirmed that our proposed method
can more accurately estimate the vehicle position than “GNSS
only” in an environment with communication delays.

B. Evaluation using actual data

Table VII lists the simulation results. Figure 27 shows how
the position error changed with the vehicle position. Table VII
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TABLE VI
EVALUATION OF OUR COMMUNICATION DELAYS

COMPENSATION METHODS.

Average Standard
deviation

GNSS only without DC -2.420 m 0.612 m
Maximum communication
delay of 0.10 s Average Standard

deviation
GNSS only with DC -0.471 m 0.527 m
Fusion with DC -0.248 m 0.065 m

Maximum communication
delay of 0.12 s Average Standard

deviation
GNSS only with DC -0.410 m 0.411 m
Fusion with DC -0.246 m 0.059 m

Maximum communication
delay of 0.14 s Average Standard

deviation
GNSS only with DC -0.380 m 0.362 m
Fusion with DC -0.234 m 0.063 m

Fig. 24. Evaluation of our communication delay compensation method
(maximum communication delay of 0.10s).

TABLE VII
COMPARISON OF POSITION ESTIMATION METHODS.

Position error at Average Standard
the merging point deviation

Fusion -1.037 m 0.576 m 1.707 m
RVDS only -14.420 m -8.035 m 6.722 m
GNSS only with DC -0.862 m 2.181 m 2.840 m
GNSS only without DC -2.513 m 0.468 m 2.889 m

summarizes the position error at the merging point, and the
average values and standard deviation of the position errors
after passing the roadside vehicle detector until reaching the
merging points. The horizontal axis represents the true vehicle
position, whereas the vertical axis represents the position
error, namely the difference between the true and estimated
vehicle positions. The vehicle’s estimated position was ahead
(behind) its true position when the position error was positive
(negative).

Table VII shows that “GNSS only with DC” method had
the smallest position error at the merging point. The position
estimation method with the smallest average value was “GNSS
only without DC,” and the method with the smallest standard
value was “Fusion.” The value of “RVDS only” was large in
all items.

Figure 27 also depicts that the position errors of “Fusion”
and “RVDS only” were very small when the vehicle passed
through the roadside vehicle detector and the position can
accurately be obtained. The positon error of “RVDS only”
gradually left behind its true position because the vehicle

Fig. 25. Evaluation of our communication delay compensation method
(maximum communication delay of 0.12s).

Fig. 26. Evaluation of our communication delay compensation method
(maximum communication delay of 0.14s).

Fig. 27. Position error versus true position.

accelerated after passing through the roadside vehicle detector
(Figure 17). Finally, the fact that the estimated position were
always behind for the “GNSS only with DC” method than
for the “GNSS only without DC” method confirmed that our
communication delay compensation method performed well.

VI. DISCUSSION

This section discusses the advantage of the proposed method
based on the evaluation results.

A. Advantages of the proposed method

The position estimation using only the roadside vehicle
detector information can accurately estimate the vehicle posi-
tion near the roadside vehicle detector. However, an accurate
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position estimation cannot be performed when the vehicle
velocity changes after passing the roadside vehicle detector.
Vehicle velocity changes often occur to deal with vehicles
merging into the main lane; thus, vehicle speed information are
necessary for an accurate position estimation. In this respect,
the proposed method and the position estimation method using
only the in-vehicle sensors have an advantage.

Merging support systems create merging support information
based on the position information of the vehicles approaching
the merging point. Therefore, the position information near
the merging point are more important for the merging support
system than at the merging point. Furthermore, the merging
support system may provide strange merging support informa-
tion if the standard deviation is large, even if the average of
the position error is small after passing the roadside vehicle
detector until reaching the merging points. Thus, the average
and standard deviation of the position error must be small
after passing the roadside vehicle detector until reaching the
merging points. The evaluation experiment confirmed that the
proposed method can accurately estimate the vehicle position
near the roadside vehicle detector because of the information
from the roadside vehicle detector. Consequently, we con-
firmed that the average and standard deviation of the position
error after passing the roadside vehicle detector until reaching
the merging points become relatively small. Therefore, the
proposed method has an advantage over the position estimation
method using only in-vehicle sensor information in terms of
support system reliability.

The method without the communication delay compensation
estimates the position based on the past information of the
GNSS due to the communication delays. The evaluation exper-
iment showed that the estimated position was always behind
the position estimated using the method with the communi-
cation delay compensation. Thus, communication delay com-
pensation is useful in the environment with communication
delays.

B. Maximum communication delay time

In the evaluation using the actual data, we set the maximum
communication delay time based on the record of the commu-
nication delay times. Communication delays are influenced by
various factors, such as the number of vehicles and building.
The time required for the position estimation increases as the
maximum communication delay time increases. The maximum
communication delay time must be set considering the time
constrain of the merging support system and the communica-
tion delay time in various situations.

VII. CONCLUSION

In this study, our system was evaluated in several simu-
lations using the various models and actual data. We demon-
strated that the proposed method can estimate vehicle positions
more accurately than that using only the in-vehicle sensors
and roadside vehicle detector. We also confirmed that our
communication delay compensation method can perform well.
Our method can estimate the vehicle positions accurately in

environments with communication delays; hence, it is more
suitable for managing traffic and controlling merging at junc-
tions.

We will explore several topics in the future work. The
proposed method can be applied while the delay occurs
according to a specific distribution. The communication delay
distribution tendency drastically changes with the number of
increasing vehicles. Thus, a method that can handle it, even
if the communication delay distribution tendency is changed,
must be considered. We would like to evaluate whether or not
the proposed method works correctly by incorporating it into
the merging support system proposed in the previous research.
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Abstract—Due to the broad range of options that wireless 

systems offer; Wi-Fi products are increasingly being used in 

agriculture environments to improve farming practices and 

better control the output of the production. However, the foliage 

has proven to harm radio-frequency propagation as well as 

decreasing the coverage area of Wireless Sensor Networks 

(WSNs). Therefore, near-ground channel characterization can 

help in avoiding high antennas and vegetation. Nevertheless, 

theoretical models tend to fail forecasting near-ground path 

losses. A comprehensive analysis of the influence of rural 

environments can help obtain better near-ground WSN 

performance and coverage in precision agriculture. Hence, this 

paper aims at determining how field components such as, soil, 

grass, and trunks affect radio-links in near-ground scenarios. To 

do this, we measure the Received Signal Strength (RSSI), the 

Signal to Interference Ratio (SIR) and the Round-Trip Time 

(RTT) of a Wireless Local Area Network (WLAN) at different 

distances and compare the results with 6 prediction models: the 

Free-Space Propagation Model, the Two-Ray Ground Reflection 

Model, the One-Slope Log-Normal Model, the Two-Slope Log-

Normal Model, the Okumura-Hata Model, and the Walfisch-

Ikegami Model. The experiment was carried out by collecting 

experimental data at four different locations, i.e., an orange tree 

plantation with mature trees, an orange tree plantation with 

young trees, a persimmon field, and a field without vegetation, to 

compare and contrast the influence of field components on signal 

losses.  

Keywords—Wireless Coverage; IEEE 802.11; Precision 

agriculture; Propagation Losses; Propagation Model. 

I. INTRODUCTION 

This paper is an extended version of the paper presented 

by M. Botella-Campos et al. in [1]. 

Smart Farming (SF) emphasizes the use of Information 

and Communication Technologies (ICTs) to leverage the farm 

management cycle. Improving the production capacity does 

not only enhance business efficiency. It also allows to increase 

production and reduce the environmental impact. Since the 

world population is expected to reach 9.8 billion by 2050, 

human societies are facing the challenge of providing 

nourishment and livelihoods, while addressing the effects of 

climate change [2]. Smart farming applies measures that are 

ecologically meaningful and site-specific, focusing on 

implementing auto-piloted harvesters and other farm 

machinery [3]. 

The Internet of Things (IoT) and Cloud Computing are 

expected to move forward in farming management 

development by introducing these technologies into machinery 

and production systems [4]. The gathered information will 

then be sent via different technologies such as, IEEE 802.11 

standards, Bluetooth, Zigbee, LoRa, 6LoWPAN, 3G, 4G, etc., 

depending on the amount of data to be transmitted [5]. 

Although IoT systems usually deal with small amounts of data 

to be transmitted through short distances, in some cases it 

could be required to send higher amounts of data and include 

images to monitor the status of the plants. The two main 

storage systems used to save the gathered information from 

the sensors are traditional databases or clouds. The most used 

databases are MySQL and SQL, while the ThingSpeak 

platform is the most used in cloud systems [5].  

Wireless Sensor Networks (WSNs) are needed to monitor 

environmental conditions and provide decision-making 

information and are composed of a group of spatially 

dispersed sensors to monitor and record environmental 

conditions such as, humidity, temperature, soil moisture, etc. 

WSNs are made up of four parts: a wireless sensor node, a 

gateway node, a wireless communication network, and a 

server [6]. Nowadays, sensor nodes have evolved to be small 

devices with sensing, communication, and computing devices. 

However, each node can only monitor a specific part of the 

field. Thus, the coverage area is a key problem since all nodes 

among a WSN must be autonomous to cooperatively pass data 

through the network to a main location. Moreover, its 

topology can vary enormously depending on the field. 

Many WSN applications generally use IEEE 802.11 g/n 

standard because it allows distances up to approximately 300 

meters in outdoor environments (when there is free space 

between devices) [7]. This allows a maximum raw data 

throughput of 54 Mbps or 600 Mbps, depending on the 

standard used. Likewise, the radio-frequency band can vary 

from 2.4 GHz to 5 GHz using Modulation Code Keying 

(CCK), Direct-sequence Spread Spectrum (DSSS) or 

Orthogonal Frequency-Division Multiplexing (OFDM) 

modulation schemes. Moreover, the use of this standard will 

reduce the cost of the deployment of the nodes as well as other 

time-consuming actions when processing the data. 

In 2019, Bacco et al. [8] conducted a survey on SF 

research activities to state the achieved results and current 

investigations within EU territory. In this study, challenges 

impeding the adoption of recent technologies and techniques 
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were highlighted. Although the current use of sensor nodes 

and analytic techniques is boosting Decision Support Systems 

(DSSs) in farms, the lack of diffusion programs is preventing 

areas affected by the digital divide from incorporating ICTs. 

Nevertheless, technology is expected to have an increasing 

role in agriculture so that operations, such as, planting and 

harvesting, may be automatized. Moreover, the availability of 

real-time data will allow finer control of pesticides and other 

chemicals. However, none of this will be possible without 

supporting policies to address poor telecommunication 

infrastructures and reduced digital skills. 

As for Precision Agriculture (PA), Lindblom et al. [9] 

conducted a review on agricultural DSSs within the frame of 

the ongoing Swedish project. This project intends to identify 

the scientific disciplines and other competences that need to 

work together in developing technology for agricultural DSS. 

Therefore, the discussion is focused on the importance of 

considering in-land processes to design suitable WSNs. 

However, the lack of active participation in agricultural 

research and development processes is preventing the 

development of new practices and behaviours for more 

sustainable farming. 

The effect of vegetation on radio-wave signals can be of 

great deal when designing such networks. Many studies have 

strived to evaluate and characterise land components that may 

affect signal strength. Still, the lack of experimental data has 

prevented scientists from developing generalized procedures 

to assess the foliage effect on attenuation. The International 

Telecommunication Union (ITU) recommends a series of 

propagation models depending not only on frequency ranges 

but also different link geometries and vegetation types [10]. 

Nonetheless, relying on prediction models in near-ground 

scenarios may lead on over or underestimating the networking 

capacities of terrestrial systems. 

This paper aims to study near-ground wireless coverage in 

rural environments to ease multi-hop routing design. To this 

end, the Received Signal Strength Indicator (RSSI), the Signal 

to Interference Ratio (SIR), and the Round-Trip Time (RTT) 

of a wireless signal were measured at two orange fields, a 

persimmon field, and a land with no vegetation. This study 

attempts to determine how near-ground radio-links are 

affected by field components such as, grass, soil, and trunks, 

and examine how accurate path loss estimation models are in 

this type of scenarios. In all cases, we used an access point and 

a laptop to take measurements at different distances, 30 cm 

above the ground at 2.437 GHz. 

The rest of this paper is structured as follows. Section II 

presents some related work. In Section III, several well-known 

propagation models are explained. The methodology and 

materials used in the experiment are presented in Section IV. 

In Section V, the experimental results are analysed. A 

comparison with previous works discussed in Section VI. 

Finally, the main conclusions and future work are exposed in 

Section VII.  

II. RELATED WORK 

Few technical works characterize near-ground radio-

frequency propagation. In this section, some of the related 

works are discussed. 

In [11], Torabi et al. proposed a near-ground prediction 

model to facilitate accurate WSN simulations using the 

principles of the Fresnel zones. In this study, the effects of 

antenna height, frequency, polarization, and electrical and 

geometrical properties of the terrain were studied. The 

accuracy of the proposed model was verified by comparing 

the theoretical results with near-ground measurements carried 

out in outdoor open areas at 300 MHz and 868 MHz. The 

results of this study showed that antenna height was by far the 

most influential parameter on network connectivity. 

Moreover, the wireless connection was proven to be sensitive 

to the reflection coefficient in near-ground situations. 

In 2014, Yildiz et al. [12] investigated the impact of path 

loss models on near-ground WSN lifetime. In this study, 

researchers performed a comparative analysis on the effects of 

path loss models and proposed a novel Mixed Integer Program 

(MIP) to maximize WSN lifetime. By designing an effective 

energy dissipation system, and using empirically validated 

characteristics of Mica2 motes, this investigation managed to 

characterize the parameter space through numerical 

evaluations of the MIP model at four different frequencies: 

315 MHz, 433MHz, and 868/916 MHz. The analysis of the 

results demonstrated that theoretical models, such as, the Free-

Space Model and the Two-Ray Model, can lead to 

overestimations on WSN lifetime and should be avoided in 

such scenarios. 

Tang et al. [13] studied a near-ground WSN at 470 MHz in 

four different scenarios to obtain the corresponding path loss 

models. To do this, measurements were taken on a flat 

concrete road, flat grass and two derived scenarios placing the 

transmitter directly on the ground. Three different antenna 

heights were used: 5 cm, 50 cm and, 1 m, and the RSSI was 

measured every meter at a distance up to 10 m, every 2 m at a 

distance of up to 20 m and every 5 meters at a distance of up 

to 50 m. The results showed that when antenna height is lower 

than 50 cm, prediction models tend to inaccurately forecast 

path loss and thus, network connectivity. 

Klaina et al. [14] performed a narrowband characterization 

of near-ground channels for WSNs at 5G-IoT bands. In this 

study, RSSI signal was measured at two different heights: 0.2 

and 0.4 m, to test the effects of ground coverings in path loss 

for three frequency ranges: 868 MHz, 2.4 GHz, and 5.8 GHz. 

To fit the signal strength decay caused by agriculture fields, an 

experimental measurement campaign was carried in 

agriculture fields with three types of ground: soil, short and 

tall grass. The path loss was estimated with a proposed 

narrowband radio channel model: the three-slope log-distance 

model. The analysis of the results demonstrated that the 

difference between the Free-Space model and the measured 

path loss is reduced with the increase in frequency. Moreover, 

lowering antenna heights increased attenuation. 

In 2017, Klaina et al. [15] presented a narrowband radio 

channel model operating under near-ground conditions. To do 
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this, a WSN based on ZigBee was designed to analyse the 

effects caused by soil and grass fields. In this case, radio 

communications were made at 868 MHz, 2.5 GHz, and 5.8 

GHz. In order to estimate signal quality, RSSI was measured 

and compared to path loss. Finally, they concluded that the 

ground has no effects on RF propagation except in the cases 

where antenna heights were 40 cm or less. However, signal 

levels decreased in the presence of grass fields and soil. 

Masadan et al. [16] studied the foliage effect in terms of 

attenuation and its contribution to the pathloss and link budget 

estimations. In this study, researchers quantified the path loss 

through 5 tree types in Malaysia for different path crossings 

(trunk, tree-top and branches) at 915 MHz. The analysis of the 

results showed that the RSSI values obtained in Line of Sight 

(LOS) scenarios were lower than expected due to tropical 

climate environment, as well as the size of the trees and 

density of the crowns. As for Non-Line of Sight (NLOS) 

scenarios, the obstructions caused diffractions, scattering of 

energy, and reflections that lead to larger attenuations. 

In [17], Wang et al. depicted a statistical model for near-

ground channels based on experimental data collected through 

three different scenarios at 2.4 GHz. The main objective of 

this study was to develop a WSN to collect data in military 

explosive research. To do this, sensor nodes with a 3 cm 

antenna height were fixed to the ground to resist damages 

from detonations. Different propagation models were applied 

to predict path loss and compare the results with the 

performance of the obtained model. The main conclusion of 

this research was that antenna height determines the 

breakpoint distance of the nodes. 

In 2011, Lloret et al. [18] presented a WSN that uses 

image processing to detect bad leaves in vineyards and sends 

an alarm to the farmer. In this case, wireless communications 

are made through IEEE 802.11 a/b/g/n standard to allow long-

distance connections. Although the proposed system does not 

identify the cause of the deficiency, it detects bad leaves and 

notifies it to the farmer who can then decide what actions need 

to be taken. This solution provides a cost-effective sensor 

based on IP routers that have been adapted to fulfil this 

purpose. The designed WSN takes into account both sensing 

and radio coverage areas to allow low bandwidth consumption 

and higher scalability. The system to detect bad leaves goes 

through a 5-stage process before the node decides whether an 

alarm needs to be sent. 

In 2015, Szajna et al. [19] characterized path loss and near-

ground channels at 2.45 GHz on forested areas covered by 

snow. This study aimed to investigate the impact of antenna 

height and distance between nodes on path loss and special 

correlation. To do this, measurements were carried out in two 

different scenarios: a multi-purpose sports facility and a 

forested area covered by 15 cm of snow. In this case, antenna 

heights varied from 0 to 130.8 cm and the distance between 

the nodes varied in steps of 15.24 m and up to 79.2 m. The 

analysis of the results showed that reducing antenna heights 

increased path loss and reduced spatial correlation. 

Luciani et al. [20] described a study done on near-ground 

node range at different heights in Wi-Fi crowded 

environments. The designed WSN used IEEE 802.15.4 

standard to avoid direct Wi-Fi interference. Signal quality and 

range were determined by collecting RSSI data of three nodes 

at increasing node separation distance until signal loss. To 

perform the tests, measures were taken at three different 

heights: 15 cm, 30 cm, and 100 cm, at three different 

scenarios. The results of this experiment showed that 

prediction models failed to accurately forecast path loss. 

Moreover, ground-loss proved to be a major issue that 

determines node range and thus, must be taken into account 

when designing WSNs. 

Sangodoyin et al. [21] presented a near-ground channel 

model to achieve precision ranging and localization of 

ultrawideband (UWB) propagation channels. This experiment 

was performed using a self-built channel sounder with an 

arbitrary waveform generator and a high-bandwidth sampling 

oscilloscope. In this case, antenna heights ranged from 10 cm 

up to 2 m above ground to determine its effects on signal 

strength. The results showed that the distance-dependent path 

loss was highly dependent on antenna heights. Moreover, 

under near-ground situations, frequency-dependent path loss 

exponent and shadowing variance increased. 

Though many of these studies have attempted to 

characterize near-ground wireless systems in rural 

environments, the wide range of parameters to take into 

account, together with the randomness introduced by foliage 

and its different geometries in fields, have prevented 

researchers from stablishing a generalized procedure to assess 

the design and planning of WSN. 

For these reasons, in this work we present a site-specific 

study to guarantee the performance of near-ground radio-links 

in fruit plantations. To do this, measurements of RSSI, SIR, 

and RTT were collected at two orange tree plantations with 

different tree sizes, as well as a persimmon plantation and a 

land with no vegetation, to stablish the accuracy of six 

prediction models and test how distinct vegetation 

environments affect radio-links. 

III. PROPAGATION MODELS 

In this section, several propagation models are presented to 

predict the average signal strength drop and assess the level of 

accuracy that can be achieved in near-ground WSN scenarios. 

Thus, this section is divided into six different subsections. 

A. Free-Space Model  

The Free-space propagation model is the simplest way to 

calculate radio-signals propagation. From [12], we can extract 

the Free-Space propagation model based on Friis 

Transmission Formula. This equation is usually used when 

there are no obstacles in the LOS, and it is given by equation 

(1). 

   
       

 

       

 

(1) 

where: 

Pt: transmitter power, in watts. 
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Gt: transmitter antenna gain. 

Gr: receiver antenna gain. 

λ: wavelength. 

d: distance, in meters, between transmitter and receiver. 

However, it is possible to calculate the losses between a 

transmitter and a receiver in terms of the frequency with 

equation (2). 

             
      

 
      

 
(2) 

where: 

d: distance, in meters, between transmitter and receiver. 

f: frequency in Hz. 

c: speed of light in the vacuum (meters per second). 

GT: transmitter antenna gain, in dBi. 

GR: receiver antenna gain, in dBi. 

B. Two-Ray Ground Reflection Model  

The Two-Ray Ground Reflection Model predicts path 

losses between a Tx and a Rx when they are both in line-of-

sight but have different antenna heights. This way, the 

received signal has two components: the line-of-sight 

component and the multipath component which is given by 

ground reflected waves. From [12], the given equation for the 

Two-Ray Model can be expressed by equation (3).  

 

         

  
   

 

  
 

(3) 

where: 

Pt: transmitter power, in watts. 

Gt: transmitter antenna gain. 

Gr: receiver antenna gain. 

ht: transmitter antenna height, in meters. 

hr: receiver antenna height, in meters. 

d: distance, in meters, between transmitter and receiver. 

Nevertheless, from the work in [13], we can tell that when 

radio-waves propagate near-ground in line-of-sight conditions, 

the path loss can be described by the plane-earth path loss 

formula, given by equation (4). 

                             (4) 

where: 

d: distance, in meters, between transmitter and receiver. 

ht: transmitter antenna height, in meters. 

hr: receiver antenna height, in meters. 

C. One-Slope Log-Normal Model  

The log-distance path loss model is a statistical model that 

takes into consideration object blockage, environmental 

clutter, and other changes to predict path loss. From [12], the 

log-normal model can be described by equation (5). 

                
 

  
   

 

(5) 

where: 

PL (d): path loss at distance d, in dB. 

PL (d0): path loss, in dB, at reference distance of 1 meter 

(FSPL at 1 meter). 

n: path loss factor (n = 2). 

Xσ: zero mean Gaussian distributed variable with standard 

deviation σ. 

σ: linear regression of measured data. 

However, from reference [22] we can express One-Slope 

Log-Normal Model by equation (6). 

                     
 

    
(6) 

where: 

PL (d): path loss at distance d, in dB. 

FSPL (f, 1 m): free space path loss, in dB, at a reference 

distance of 1 meter. 

n: path loss factor (n = 2). 

d: distance, in meters, between transmitter and receiver. 

D. Two-Slope Log-Normal Model 

Although the Two-Slope Model is not often utilized in 

near-ground propagation scenarios, experimental studies on 

WSNs have shown that its use may result on better 

representations of the collected data [12]. From [20], this path 

loss estimation model can be expressed by equation (7). 

 

(7) 

where: 

PL (di): path loss at di distance (in meters), in dB. 

db: breakpoint distance, in meters. 

L0, Lb+1: path losses before and after the breakpoint, 

respectively. 

n1, n2: path loss factor (n = 2). 
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The breakpoint distance indicates a change rate of the path 

loss and can be calculated by equation (8) in LOS conditions 

[17]. 

 
(8) 

In this case, the estimated breakpoint distance for the given 

dataset was 8.64 meters. 

E. Okumura-Hata Model 

The Okumura-Hata path loss estimation model is an 

empirical formulation typically used for the frequency range 

of 150 MHz to 1500 MHz. However, this radio propagation 

model identifies the signal attenuation caused by reflections, 

diffractions, and the scattering of energy [16]. From [23], the 

Okumura-Hata path loss can be calculated by equation (9). 

 

 

(9) 

where: 

f: frequency, in MHz. 

hb, hm: Tx and Rx antenna heights in meters, respectively. 

d: distance between transceiver and receiver, in kilometres. 

The function a(hm) is dependent on the environment. In 

the case of rural areas, this correction factor corresponds to the 

same as in urban areas [23] and is described by equation (10). 

 (10) 

As for the factor C, equation (11) formulates its value for 

rural areas [23]. 

 (11) 

F. Walfisch-Ikegami Model 

This empirical model is considered to have a high accuracy 

in urban environments when the distance between the Tx and 

the Rx is relatively small [23-24]. In LOS scenarios, the 

Walfisch-Ikegami estimation model can be described by 

equation (12).  

 (12) 

where: 

d: distance between Tx and Rx in the range of 20 m to 

5000 m, in kilometres. 

f: frequency in MHz (800-2000 MHz). 

Other studies have determined that, when antenna heights 

are lower than 50 cm, the One-Slope Model tends to estimate 

path losses better than other models [13]. However, other 

researchers state that the use of these theoretical models can 

lead to overestimations of the networking capacities and 

should be avoided [12]. In the following sections, we will 

compare these six models with collected data to evaluate their 

performance and verify their accuracy in near-ground 

scenarios. 

IV. SCENARIO DESCRIPTION AND TOOLS USED 

This section describes the devices used to perform the 
experiments, as well as the setup. Therefore, this section is 
segmented in four different subdivisions. 

A. Place of measurement 

In order to evaluate the path loss caused by vegetation in 

near-ground radio-wave signals, we sought out different 

plantations with no walls: an orange tree plantation of mature 

trees, an orange tree plantation of young trees, and a 

persimmon plantation of mature trees. Furthermore, we 

collected data at a land with no vegetation in order to compare 

and contrast the attenuation introduced by field components. 

B. Hardware used 

To perform this experiment, we used Linksys WRT320N-

EZ router as a Tx configured to work at 2.437 GHz (channel 

6) with IEEE 802.11 b/g/n standard [25]. This router has three 

internal antennas with 1.5 dBi of antenna gain and an RF 

power of 17 dBm. The Rx was ASUS Gaming Notebook 

GL753V, which has a 2.8 GHz Intel Core i7-7700 HQ 

processor, 16 GB of memory. Wireless connections are made 

with Intel Dual Band Wireless Wifi Bluetooth Card 

7265NGW that uses the IEEE 802.11 ac standard and has two 

antennas of 5 dBi of gain. 

C. Software used 

The measurements were made using the software 

Vistumbler [26] to scan the wireless network and measure 

both the SIR and the RSSI. As for the latency of the 

connection, it was measured by sending a ping signal through 

MS-DOS commands to the gateway. 

D. Set-up of the experiment 

Both Tx and Rx were positioned along the same line, 30 

cm above the floor to measure the SIR and the RSSI. The 

evaluation of the path loss of RF signals was made by taking 

measurements in four different scenarios. 

• Scenario 1: Measurements were made on a field with no 
vegetation, collecting data every meter 30 cm above the 
ground. 

• Scenario 2: Measurements were made at an orange tree 
plantation with mature trees, with data being collected 
every meter 30 cm above the ground. 

• Scenario 3: Measurements were made at an orange tree 
plantation of young trees (3-year-old), with data being 
collected every 2 meters, 30 cm above the ground. 

• Scenario 4: Measurements were made at a persimmon 
plantation, with data being collected every 2.5 meters, 
30 cm above the ground. 
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Fig. 1 illustrates the set-up of the experiment and the 

vegetation geometry of Scenario 2. In order to be able to 

perform comparisons of the signal strength, measurements 

were made at the same distances in Scenario 1. Fig. 2 shows 

the set-up in Scenario 2. Fig. 3 exemplifies the geometry of 

Scenario 3 and the established set up. In Fig. 4 Scenario 3 is 

displayed. As it can be seen, the size of the trees is relatively 

small. As for Scenario 4, its geometry and set up are 

illustrated in Fig. 5. Fig. 6 shows the persimmon trees of 

Scenario 4. The noise floor in all cases was -80 dBm. 

Additionally, measurements were taken three times at each 

point. 

V. EXPERIMENTAL RESULTS 

In this section, the accuracy of the chosen prediction 

models will be verified by comparing them to near-ground 

measurements. First, the measured data will be examined and 

then prediction models will be discussed and compared with 

collated data. 

Fig. 7 shows the RSSI levels measured in the chosen 

scenarios at 2.437 GHz. As the figure shows, the RSSI from 

Scenario 2 fluctuates much more than the one from Scenario 

1. This can be due to the random distribution of vegetation, as 

well as the presence of trunks. Moreover, the absorption of 

energy in Scenario 2 may be caused by the presence of grass. 

In the case of Scenario 3, the RSSI signal is quite stable up 

until 31 meters and does not reach levels lower than -80 dBm 

for the first 37 meters. This can be due to the cleanliness of 

this land as well as the low height of these trees. As this figure 

shows, the coverage area of Scenario 3 is larger than in 

Scenario 2. Finally, the signal levels of Scenario 4 are lower 

than in Scenario 2, which means that persimmon trees have a 

greater effect on the strength of the signal than mature orange 

trees. However, the RSSI signal does not exceed the 

established noise floor up until 23.5 meters, which is the same 

that happened in Scenario 2. 

Fig. 8 shows the SIR measured in all four scenarios. In this 

case, we can observe that mature orange trees from Scenario 2 

do not introduce interferences up until 15 meters. However, 

the collected SIR data shows that mature orange trees have 

little effect on the quality of the signal. In Scenario 3, the 

interferences appear after 11 meters and its SIR levels 

fluctuate much more than in Scenario 2 after 19 meters and 

surpass the 60% after 23.5 meters. This can be caused by the 

reflections on the ground, as well as the short height of the 

trees. As for Scenario 4, interferences appear after 6 meters. 

This may be due to the geometry of the land shown in Figure 

5. As the figure shows, the SIR levels rapidly drop. Though 

the signal levels do not fluctuate as much as in the rest of 

scenarios, its levels exceed 60% after 23.5 meters, which is 

the same that happened in Scenario 3, and errors may appear 

depending on the modulation used. 

Fig. 9 shows the RTT measured during the experiment. In 

this case, the time delays vary far more in Scenario 2 than in 

Scenario 1. In the case of Scenario 3, time delays are generally 

lower than in Scenario 2, although the measured RSSI in 

Scenario 3 is higher than in Scenario 2. As for Scenario 4, 

persimmon trees seem to have a greater effect on time delays 

even though RSSI levels are higher than in Scenario 3. 

 

 

Figure 1. Vegetation geometry and measurement points of Scenario 2. 

 

Figure 2. Vegetation geometry and measurement points of Scenario 3. 

 

Figure 3. Scenario 2. 

 

Figure 4. Scenario 3. 
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Figure 5. Vegetation geometry and measurement points of Scenario 4. 

 

Figure 6. Scenario 4. 
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Figure 7. Measured Received Signal Strength Indicator.  
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Figure 8. Measured Signal to Interference Ratio. 
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Figure 9. Measured Round Trip Time. 
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Figure 10a. Comparison of path loss models. 
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Figure 10b. Comparison of path loss models with collated data from Scenario 1 and Scenario 2. 
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Figure 10c. Comparison of path loss models with collated data from Scenario 1 and Scenario 3. 
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Figure 10d. Comparison of path loss models with collated data from Scenario 1 and Scenario 4. 

 

 

 

 

y = -11,39ln(x) - 32,931
R² = 0,8689

y = -13,01ln(x) - 30,098
R² = 0,9655

-90

-80

-70

-60

-50

-40

-30

-20

-10

0 2 4 6 8 10 12 14 16 18 20 22

P
a
th

 L
o

s
s
 (

d
B

)

Distance to AP (meters)

Free-Space Two-Ray One-Slope

Two-Slope Walfisch-Ikegami Scenario 2

Scenario 3 Logarithmic (Scenario 2) Logarithmic (Scenario 3)

 

Figure 10e. Comparison of path loss models with collated data from Scenario 2 and Scenario 3. 
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Figure 10f. Comparison of path loss models with collated data from Scenario 2 and Scenario 4.

Finally, we compared the selected prediction models by 

plotting them in Fig. 10a. In this figure, Two-Slope Model 

overlaps both Free-Space Model and One-Slope Model. 

Attending to the collected data curves from Fig. 7, the path 

loss is higher in all three scenarios with vegetation than in 

Scenario 1, which proves that vegetation does in fact introduce 

attenuations on wireless signal. As Fig. 10a shows, the 

Okumura-Hata Model failed to predict the attenuation 

correctly and will be taken out from the graphs for a more 

fluent reading.  

Fig. 10b shows the collected data from Scenario 1 and 

Scenario 2, together with the selected prediction models. In 

this case, the Walfisch-Ikegami prediction model is the only 

path loss model that accurately predicts attenuation for 

Scenario 1. Furthermore, the collected data from Scenario 1 

shows a greater path loss than one the predicted by the Free-

Space Model and the Log-Normal Shadowing Models. 

In Fig. 10c, the collected data from Scenario 1 and 

Scenario 3 were plotted, as well as the beforementioned 

prediction models. However, none of the selected models 

succeeded foreseeing attenuation for Scenario 3. In this case, 

the plotted data of this scenario shows a higher attenuation 

than Walfisch-Ikegami Model, but lower than the path loss 

predicted by the Two-Ray Model. 

In Fig. 10d, the collected data from Scenario 1 and 

Scenario 4 was plotted together with prediction models. As for 

the previous case, none of the selected path loss models 

managed to predict attenuation correctly. Persimmon trees 

seem to introduce much more losses than what prediction 

models estimated. 

Fig. 10e illustrates the collected data from Scenario 2 and 

Scenario 3 along with the propagation models. When 

comparing the trendline of the path losses from both scenarios, 

one can clearly see that young orange trees introduce higher 

attenuations on the radio-wave signal than mature orange 

trees. The reason for this is that, although young orange trees 

have lighter foliage, the treetop is in line with both the Tx and 

the Rx. As for the previous cases, none of the selected 

propagation models managed to forecast path losses, which 

highlights the need of finding ways to predict attenuation. 

Finally, Fig. 10f shows the collected data from Scenario 2 

and Scenario 4 together with the selected prediction models. 

Although none of the selected prediction models managed to 

predict attenuation, it can be highlighted that the attenuation 

introduced by persimmon trees is much higher than the one 

introduced by mature orange trees. 

VI. COMPARISON WITH PREVIOUS WORKS 

In this section, we will discuss previous studies that have 

attempted to characterize near-ground wireless 

communications in rural environments in order to establish 

how frequency ranges and different testbeds may influence the 

results. 

A comparative of similar studies is presented in TABLE I. 

The research in [11] demonstrated that wireless connections 

were fairly sensitive to the reflection coefficient in near-

ground situations, achieving 101 dB of attenuation in over 14 

meters. Moreover, the study performed in [12] verified that 

theoretical propagation models fail to characterize near-

ground wireless communications. In this case, path loss 

reached 102 dB of attenuation in a radio network of 175 m. In 

[13], a near-ground WSN with a transmitter placed directly on 

the ground was presented, showing that prediction models fail 

to accurately forecast path loss when antenna heights are 

lower than 50 cm, although in this case, path loss surpassed 

100 dB after almost 200 meters. Furthermore, the studies 

carried in [14-15] to design a WSN based on ZigBee under 

near-ground conditions showed that grass fields and soil affect 

signal strength, but still reached 120 meters of distance to the 

access point with good coverage. In [16], Okumura-Hata, 
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Log-Normal Shadowing and foliage models were used as a 

reference to test their performance when comparing the 

predicted attenuation in tropical environments. However, none 

of these models managed to accurately predict path loss in 

tropical environments, which demonstrates the importance of 

characterizing foliage attenuation in different environments. In 

this case, path loss exceeded 100 dB after 13 meters. The 

statistical model described in [17] demonstrated that antenna 

height determines coverage area and that propagation models 

fail to accurately forecast path loss. However, path loss only 

surpassed 100 dB after 100 m. In [18], the presented solution 

did manage to detect bad leaves. However, in this case, 

vegetation loss was not introduced into the power balance 

formula and no information was given about the amount of 

attenuation. The study performed in [19] concluded that 

reducing antenna heights increased path loss, though this 

investigation was carried out in forested areas covered by 

snow where attenuation reached 96 dB after almost 40 m. 

Moreover, the study depicted in [20] demonstrated that 

ground-loss is a major issue when determining node range. 

Nevertheless, this experiment was performed in Wi-Fi 

crowded environments and after 30 m attenuation reached 100 

dBm. The experiment performed in [21] to characterize near-

ground UWB propagation channels showed that the node 

range is highly dependent on antenna heights and only reached 

75 dB after 200 meters. 

As it can be seen on TABLE I, our work expands the 

knowledge on this area by including the most common 

prediction models used in near-ground scenarios, and other 

propagation models that identify reflections, diffractions, and 

scattering. Furthermore, we attempted at testing these 

prediction models by measuring at different heights than the 

ones employed in other existing works. 

TABLE I.  COMPARATIVE OF TESTBEDS OF STUDIES ON THE EFFECTS OF VEGETATION ON NEAR-GROUND WIRELESS SIGNALS 

Authors Year Frequency Tx height Rx height 
Models 

Path Loss Free-

Space 

Two-

Ray 

One-

Slope 

Two-

Slope 
Others 

Torabi et al. 

[11] 
2015 

300 MHz, 

868 MHz 

13 cm, 

0.87 m, 

1.15 m, 

1.55 m, 

2 m 

0.4 – 1.8 m - YES - - - 32 - 101 dB 

Yildiz et al. 

[12] 
2014 

315 MHz, 

433 MHz, 

868/916 

MHz 

< λ < λ YES YES YES YES - 31 – 102 dB 

Tang et al. 

[13] 
2019 470 MHz 

5 cm, 

50 cm, 

1 m 

5 cm, 

50 cm, 

1 m 

YES YES YES YES 
Walfisch-

Ikegami 
57 – 115 dB 

Klaina et al. 

[14] 
2018 

868 MHz, 

2.4 GHz, 

5.8 GHz 

0.2 m, 

0.4 m 

0.2m, 

0.4 m 
YES - - - 

Three-Slope 

Log-Normal 
0 – 37 dB 

Klaina et al. 

[15] 
2017 

868 MHz, 

2.5 GHz, 

5.8 GHz 

20 cm, 

40 cm 

20 cm, 

40 cm 
YES - - - - 31 – 90 dBm 

Masadan et 

al. [16] 
2019 915 MHz  

0.65 - 4.5 

m 
0.19-1.4 m YES - YES YES Okumura-Hata 83 – 104 dB 

Wang et al. 

[17] 
2012 2.4 GHz 

3 cm, 

1 m 

1 m, 

2 m 
YES YES YES YES - 40 – 109 dB 

Lloret et al. 

[18] 
2011 2.44 GHz 6 m 6 m YES - - - - - 

Szajna et al. 

[19] 
2015 2.45 GHz 

0 cm, 

86.4 cm, 

130.8 cm 

0 cm, 

86.4 cm, 

130.8 cm 

- - - YES - 60 – 96 dB 

Luciani et al. 

[20] 
2013 2.48 GHz 

15 cm, 

30 cm,  

100 cm 

15 cm, 

30 cm,  

100 cm 

- YES - - - 60 – 100 dBm 

Sangodoyin 

et al. [21] 
2016 3–10 GHz 

10 cm, 

20 cm, 

50 cm, 

200 cm 

10 cm, 

20 cm, 

50 cm, 

200 cm 

- - - - 

Distance 

& 

Frequency 

Dependent 

Pathloss Models 

20 – 75 dB 

Our proposal 2020 2.4 GHz 30 cm 30 cm YES YES YES YES 

Okumura-Hata 

Walfisch-

Ikegami 

31 - 82 dB 
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VII. CONCLUSION AND FUTURE WORK 

In this paper, we attempted to determine how near-ground 

radio-waves are affected by field components such as, grass, 

soil, and trunks. To this end, we performed an experiment at 

four different scenarios: a land with no vegetation, an orange 

tree plantation with mature trees, an orange tree plantation 

with young trees, and a persimmon field, where measurements 

were taken 30 cm above the ground. 

In this case study, we analysed the signal quality by 

measuring the RSSI, the SIR and the RTT of a wireless signal 

and compared the collated data with six different path loss 

prediction models. The results showed that, in near-ground 

scenarios, the RSSI tends to fluctuate much more in the 

presence of vegetation. In other terms, the geometry of the 

trees and the presence of grass produce a scattering of energy 

and a higher number of reflections and refractions. However, 

the interference was only noticeable at the persimmon field, 

where noise was introduced from 6 meters. As for the selected 

prediction models, Walfisch-Ikegami Model managed to 

accurately predict attenuation for Scenario 1. However, none 

of the presented path loss models managed to accurately 

forecast path loss for Scenario 3 and Scenario 4, and 

Okamura-Hata Model failed capturing the effect of vegetation. 

As future work, we would like to include in the 

experimental test different types of plantations and agriculture 

environments, such as, vineyards [18]. Moreover, it would be 

interesting to test other propagation models to verify their 

accuracy in near-ground scenarios. Another important point 

for future researches would be introducing simulation models 

to effectively design and plan wireless networks in near-

ground scenarios with vegetation. Additionally, it could be 

interesting to perform these practical experiments with other 

technologies such as, LoRa [27], Zigbee and Sigfox which are 

currently being used in farming activities and compare them 

with the results of IEEE 802.11 standard. 
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Abstract— The paper presents a compact pH sensor system and 
its extension to health monitoring, particularly for monitoring 
the urine of infants. Three types of sensing electrodes, namely, 
plate, comb, and pillar, are fabricated and evaluated to 
determine the suitable approach for different application 
requirements. Moreover, to realize a highly compact pH sensor 
system with a biofriendly interface that offers good user 
experience, a highly compact transmission module and new 
sensing materials are introduced to optimize the sensor 
structure and measurement system. Sensing electrodes 
fabricated with different materials are characterized 
comprehensively; two types of wireless transmission boards are 
proposed and compared. Temperature calibration is adaptably 
performed for the wider application of the proposed pH sensor 
system. The results indicate that the performance of the 
proposed compact pH system with a wireless transmission 
function is adequate and it can monitor the urine condition of 
infants in real time. In addition, the proposed pH sensor system 
can be used for healthcare, well-being, and medical applications.  

Keywords-pH; field effect transistor; health condition; 
calibration; radio frequency; Bluetooth. 

I.  INTRODUCTION 
Infant diseases, also known as childhood illnesses, can 

infect children several months after birth. Serious infant 
diseases include pertussis, Candida albicans infection, and 
measles, which may lead to death, if not detected in time [1] 
[2]. Parents are becoming increasingly concerned about their 
children’s health. The detection and prevention of infant 
diseases is a critical task for doctors as well as researchers. 
Hence, the related products for infant health monitoring, 
which are in great demand worldwide, need to be developed 
as soon as possible [3].  

The detection of physicochemical and biological 
parameters is generally based on three main types of media: 
blood, saliva, and urine [4]. A typical process for biological 
detection involves professional staff, such as nurses, who 
obtain samples from the target person, after which these 
samples are collected and sent to the designated laboratory 
for analysis. In general, such tests require several hours to 
days, according to the procedural difficulty. The real-time 

monitoring of pathological parameters can efficiently 
indicate the health condition of infants and provide a 
reference to doctors for early treatment. However, blood 
specimen collection is an invasive sampling procedure, and 
after the sampling process, the target needs to hold a small 
gauze pad over the puncture site for a few minutes to stop the 
bleeding. Although saliva sampling is a noninvasive method, 
it is still challenging because the suitability of the collection 
method for the analyte of interest has not been sufficiently 
investigated. Among these physicochemical media, real-time 
monitoring of urine is the easiest approach. This is because a 
urine sensor can be placed in the diaper and can monitor the 
urine condition continuously without affecting the normal 
life of the infant [5][6].   

Of late, there have been several developments in silicon-
based microelectromechanical system (MEMS) technology, 
such as the realization of highly compact sizes and high 
performances [7][8][9][10]. Using the MEMS process, we 
have fabricated a highly compact pH sensor that has already 
been applied not only in chemical engineering but also in 
other fields such as agriculture and industry [11][12]. In this 
study, previous as well as latest work on the fabrication and 
evaluation of the improved pH sensor electrodes and wireless 
transmission approaches has been summarized. Moreover, 
extension of the application of the proposed sensor for health 
monitoring has been discussed. We modify the pH sensor 
system and casing method and optimize the sensing material 
of the electrode with a biofriendly surface such that it can be 
suitable for monitoring the urine of infants in the diaper. The 
settings of the sensors placed in the diapers of newborns are 
not well-developed for neonatal health monitoring. For 
monitoring neonatal conditions, nurses usually need to use 
traditional sensors (temperature or pH sensors) to measure 
the urine in the diapers every few hours. The efficiency of this 
method is very low, and precision is hard to guarantee. The 
sensor system developed in this paper, using MEMS 
technology and a wireless transmission method, can greatly 
improve work efficiency, save time, and enhance 
measurement precision.  

Fig. 1 depicts the wireless pH sensor system and its 
potential applications as well as the proposed pH sensor 
electrodes. The sensor system mainly includes the sensing 
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electrodes and measurement and transmission PCBs (inset 
images). The electrodes are connected to the gate terminal of 
a metal-oxide-semiconductor field-effect transistor 
(MOSFET) on the measurement board for measuring the pH 
value of the target solution [11]. The electrodes were 
fabricated using the MEMS technique for realizing high-
dimension and performance homogeneity. To determine the 
appropriate approach for health monitoring, we fabricated 
and evaluated three types of sensing electrodes, the plate, 
comb, and pillar type, to detect the urine in the diaper. 
Different sensing materials such as indium tin oxide (ITO), 
stannic oxide (SnO2), tantalum pentoxide (Ta2O5), and 
antimony (Sb) were evaluated and compared. Two types of 
wireless transmission boards based on the radio frequency and 
Bluetooth techniques were proposed and evaluated (Fig. 1, 
left). Moreover, temperature calibration was adaptably 
performed for practical application of the proposed pH sensor 
system. Based on a smart phone Android operating system 
with an easy-to-use user interface, a barrier-free operating 
system was developed. The measured data can be obtained 
through a wireless transmission function. After stability 
testing through field measurements, several potential 
applications can be considered (Fig. 1, right). The compact 
sensing system unit can be placed in a diaper for real-time 
monitoring of the health of children or elders. Moreover, the 
compact sensor can be packaged with a biofriendly surface. 
The ultrasmall low-power wireless sensor node can also be 
implanted into the body of a pet animal to measure its body 
fluid condition. The rest of the paper is organized as follows. 
Section II presents experimental setup and procedure; Section 
III presents measurement results and Section IV introduces 
the user interface of the proposed pH sensor based on an 
android smartphone. Finally, Section V summarizes the paper.  

 
Figure 1. Wireless pH sensor system and its potential applications.  

 

 
Figure 2. (a) Comb and (b) pillar pH electrode fabrication sequence.  

 

II. EXPERIMENTAL SETUP AND PROCEDURE  

A. Design and fabrication of the pH-sensing electrodes 
We designed, fabricated, and evaluated plate, comb, and 

pillar type sensing electrodes. The fabrication process of a 
plate-type sensing electrode has been presented in our 
previous work [11]. Similar processes can be used to 
fabricate the comb and pillar structures. The comb electrode 
was fabricated through a micromachining process using three 
photomasks. Fig. 2a illustrates the comb electrode fabrication 
sequence. The device substrate was fabricated by polishing a 
glass wafer with a thickness and diameter of 200 µm and 
100 mm, respectively. A 100-nm sensing material layer was 
initially deposited on the surface of the glass substrate 
through a sputtering process. The sensing electrodes were 
then patterned through photolithography and an etching 
process. Finally, using the sputtering and liftoff processes, 
the reference electrode was generated and patterned (see Fig. 
2a). Fig. 2b shows the fabrication sequence of the pillar-type 
electrode. By sputtering with uniform rotation, a 150-nm-
thick sensing material layer was deposited on the cylindrical 
surface of a 5-mm diameter glass pillar. Then, using 
photolithography, sputtering, and liftoff, the lead and 
connecting electrodes were generated on the pillar electrode 
(see Fig. 2b). A highly compact reference electrode (R2K712, 
Toyorika Co.) was selected for the pH sensor system.  
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B. Fabrication of the measurement system 
An 18 mm × 12 mm measurement board was fabricated, 

which included a sensing unit, the related power supply units, 
and a standard inter-integrated circuit (I2C) interface. In our 
previous work, the measurement board of the pH sensing 
system and the test philosophy have been described [11]. The 
n-type channel of the MOSFET is the sensing unit of the 
measurement system, which is connected to the sensing 
electrode for measuring the H+ density of the measured 
solution.  

In the power supply units, DC/DC converters and 
regulators are used for the voltage drain and provide the 
reference voltage between the reference electrode and ground. 
I2C (INA 231, Texas Instruments Inc.) has 16-bit analog-to-
digital converters for recording the measured analog data.  

C. Design and fabrication of the wireless transmission 
system  
Two types of control and transmission modules, a radio 

frequency integrated circuit (RFIC) and Bluetooth board, are 
introduced here. The specification and performance of the 
RFIC for animal testing are mentioned in our previous work 
[13]. An RFIC with a low-power type Si4010, which is a fully 
integrated crystal-less RF transmitter with an embedded 
microcontroller unit (CIP-51 8051), was selected. The 
transmission approach included a transmitter but not a 
transceiver because power consumption is crucial in health 
monitoring devices. The transmitter method can efficiently 
reduce the standby current by a factor of 100 [13], and the 
power consumption of the system can be reduced by several 
orders correspondingly.  

Fig. 3 displays the front and back images of the Bluetooth 
transmission board as well as its circuit diagram. A four-layer 
PCB with a thickness of 1.6 mm was employed, and the 
fabricated Bluetooth transmission board was compact at 19 
mm × 12 mm. The supply voltage was designed to be 3 V 
such that it can be provided by a standard cell battery with a 
nominal voltage of 3 V. A standard I2C interface was set in 
connector CN3 to control the measurement board of the 
sensor system. The largest component on the transmission 
board was the Bluetooth chip (MDBT42V-512KV2, Raytac 
Co.), with high-performance and excellent connectivity (Fig. 
3a). To realize a compact transmission module, we used the 
least number of components possible. Typically, a crystal 
oscillator, three capacitors, and three capacitor networks 
(CNs) were assembled on the transmission board.  

D. Experimental apparatus  
Sputter equipment SME-200E (Ulvac Co.) was used to 

deposit the material films on the wafer substrate. Mask 
aligner SUSS MA6/BA6 (SUSS MicroTec Co.) was used to 
implant the lithograph for generating the designed pattern on 
the photoresist. Four-point resistance processor Sigma-5 
(NPS Inc.) was used to measure the sheet resistance of the 
fabricated sensing electrode. The topographies of the sensing 
material layers were measured using an atomic force 

microscope (AFM) SPA-500 (SII Nanotechnology Inc.). A 
mixed signal oscilloscope DLM2024 (Yokogawa Electric 
Co.) was employed to record the flow current on the shunt 
resistor. A cabinet chamber LHL-114 (ESPEC Corp.) was 
utilized to provide a varying ambient temperature 
environment. Digital anatomy 3D printer J750 (Stratasys. 
Co.) was employed to fabricate the casing of the pH sensor 
module for field measurement.  

III. MEASUREMENT RESULTS  

A. Configuration comparison of the proposed sensor 
electrodes 
Using the AFM, four-point resistance probe, and optical 

microscope, the mechanical properties of the fabricated 
sensing electrodes were investigated and characterized 
comprehensively. Table 1 shows the property comparisons of 
the proposed sensing electrodes. The comb- and pillar-
sensing electrodes were fabricated using ITO; Ta2O5 and 
SnO2 were examined as sensing materials for the plate-type 
electrode. The sizes of the proposed comb, plate, and pillar 
sensing electrodes were 15 mm × 4 mm, 12 mm × 9 mm, and 
Φ5 mm × 30 mm, respectively. Correspondingly, the contact 
area of these sensing electrodes were 39.0 mm2, 28.3 mm2, 
and 471 mm2, respectively. As the pillar-type sensing 
electrode has the largest contact area under a similar electrode 
size, it exhibits high sensitivity, but function failure can occur 
due to surface contamination. Moreover, compared to the 
traditional two-dimensional MEMS technique, in the 
fabrication process of a pillar electrode, a uniform speed 
rotating device is required in the sputter equipment to coat 
the sensing film on the surface with homogeneous thickness.  

 

 
Figure 3. (a) and (b): fabricated Bluetooth transmission board; (c): circuit 

diagram of the Bluetooth transmission module.  
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TABLE I. COMPARISON OF THE SENSING ELECTRODES 
 

Sensor type Comb Plate Pillar 
Electrode 

size 
15 mm × 4 mm 12 mm × 9 mm Φ5 mm × 30 

mm 
Fabrication 

method 
Photolithography 

Sputtering 
Lift-off/Etching 

Photolithography 
Sputtering 

Lift-off/Etching 

Sputtering 
(uniform 

speed rolling 
device) 

Contact area 39.0 mm2 28.3 mm2 471 mm2 

Sheet 
resistance 

10Ω/sq 
(Film on the 

SiO2 substrate) 

SnO2:0.85Ω/sq 
Ta2O5:0.91Ω/sq 

(Films on the 
metallic under-

electrode) 

10-30Ω/sq 
(Films on the 

glass 
substrate) 

Surface 
homogeneity 

[14] 

1.1 nm (Ra) SnO2:1.2 nm 
(Ra) 

Ta2O5:2.5 nm 
(Ra) 

Unmeasured 

 
The surface roughness of the different sensing materials 

was measured as an arithmetical average value (Ra). For the 
surface topographies of the fabricated Ta2O5, SnO2, and ITO, 
it was 2.5 nm, 1.2 nm, and 1.1 nm, respectively. The sensing 
films on the electrodes retained their smoothness with fewer 
morphological defects after the MEMS etching process. The 
fabricated sensing electrode had a uniform surface and was 
suitable for application in electronic devices. In some cases, 
sensing films have rough grain surfaces, which can 
completely obscure the material intrinsic charge transport 
properties [15].  

 

B. Comparison of the electrical properties of the pH 
sensing materials  
To characterize the electrical properties of the sensing 

materials and determine the performances of the fabricated 
sensor electrodes, we evaluated the output sensitivity of the 
ITO, SnO2, and Ta2O5-based pH sensor electrodes. Their 
outputs were linear, proportional to the pH value changes, 
with sensitivities ranging from 0.29–0.53 mV/pH [16]. Some 
researchers have proposed Sb-based pH sensors for 
application in biosensing for better biocompatibility [17]. 
Therefore, in this study, we also compared the sensitivity of 
a typical ITO-pH sensing electrode and Sb electrode. The 
range of the measured pH solution was set to 4.5–7.5 because 
urine is weakly acidic with a pH range of 4.6–8.0 and an 
average of 6.0 under normal dietary conditions [18]. Fig. 4 
compares the output of a typical ITO-based pH sensor 
electrode and an Sb-based one. The Sb sensing electrode 
maintains a linear output proportional to the changes in the 
pH value. Moreover, its output slope is similar to that of the 
ITO-based pH sensor; the relative error between the two 
sensors does not exceed 5 % on average. The minuscule 
difference between the slopes of the fitting curves shows that 

the Sb–pH sensor electrode has a relatively high sensitivity 
(Fig. 4, fitting curves). Long-term stability (months of testing 
of deviation and drift) evaluation is in progress and will be 
reported in future works. After evaluating the electrical 
properties, we can reasonably determine the advantages and 
disadvantages of the sensing materials. In addition, the 
measured sensitivity data can be used to calibrate the 
proposed sensors, after which the sensor module can be used 
to perform field measurements to establish its stability and 
reliability.  

 

C. Temperature calibration of the sensor system  
The developed MEMS sensor will be used in different 

working conditions, and several environmental factors such as 
the environmental noise, humidity, and temperature may 
affect the sensor function. Environmental noise and humidity 
can be easily removed using packaging with good sealing; the 
temperature is critical and is generally eliminated through 
calibration. Therefore, temperature calibration of the 
proposed compact pH sensor needs to be completed before 
field measurements. Fig. 5 shows the voltage output of the 
proposed pH sensor with respect to the temperature variation. 
A typical ITO sensing electrode was used for demonstration. 
The measurement and transmission boards were placed in the 
cabinet chamber, and the temperature range was set from 20–
60 °C. We found that the proposed pH sensor system was 
temperature dependent, i.e., in the measured solution with a 
stable pH value, the sensor voltage output increased when the 
environmental temperature decreased. The reason for this is 
that there are many electrical components, and the working 
resistances, in particular, are easily influenced by the 
environmental temperature changes. However, the output 
voltage deviation has a linear relationship with the 
temperature change; therefore, we can conclude that the 
calibration, i.e., output voltage, can be resolved using a first-
degree polynomial equation with the temperature variation.  
 

 
Figure 4. Comparison of output values of typical ITO- and Sb-based pH 

sensor electrodes.  
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Figure 5. Temperature calibration of the proposed sensor module. Inset is 
the continuous record of the sensor voltage output with respect to the 

temperature change.  
 

D. Power consumption of the measurement systems  
The lifetime of the power supply is one of the critical 

issues for health monitoring sensors. Hence, we measured the 
power consumption of the proposed transmission approaches. 
To record the input current flow into the sensor’s 
measurement and transmission circuits, a 1-ohm shunt 
resistor was connected between the power supply and sensor 
system. An oscilloscope was used to continuously measure 
and record the corresponding voltage on the shunt resistor. 
Fig. 6 compares the input current flow of pH sensors with the 
RFIC transmitter and Bluetooth transmission system. 

The results show that the RFIC transmitter sensor system 
can implement each data acquisition under a measurement 
average of 128 times and transmit in 250 ms. The power 
consumption was calculated to be 7.0×10−4 mAh for a one-
time test. Correspondingly, the Bluetooth device had a 
capacity charge, stable process before the measurement 
operation under a 32-times data average, and the power 
consumption was calculated to be 2.8×10−4 mAh. To 
minimize the package size of the sensor system for user 
comfort, a CR1220 battery has been developed for providing 
the power supply in future, considering the balance between 
the sensor system size and battery capacity. The lifetimes of 
the coin cell battery for the RFIC wireless and Bluetooth 
sensors can be calculated and are estimated to be more than 
three months under a 10-min-interval measurement condition, 
which is a sufficient sampling rate for the real-time 
monitoring of the target pH value.  

E. Long-term measurement of the sensor output with 
ambient temperature variation  
The proposed compact pH sensor system has several 

potential applications. Typically, the sensor prototype is 

placed in a diaper for monitoring the urine conditions of 
infants. Generally, a diaper will be used and changed within 
a few hours; thus, a relatively long-term measurement should 
be verified. Fig. 7 shows the long-term measurement results 
of the proposed pH sensor output and the environmental 
ambient temperature. The tested data were collected and 
recorded by a PC-based receiver for more than two days. The 
proposed pH sensor could continuously measure a stable 
solution for 48 h with a reasonable output and maintain a 
stable baseline. Simultaneously, a digital thermal infrared 
temperature sensor was loaded on the transmission board; 
after temperature calibration of the output voltage, the 
proposed sensor exhibited a highly linear output performance. 

 

 
 

Figure 6. Input current flow comparison between pH sensors with the RFIC 
wireless and Bluetooth transmission systems.  

 

 
Figure 7. Long-term measurement of the proposed pH sensor voltage 

output at ambient environmental temperature.  
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IV. DEVELOPMENT OF A USER INTERFACE FOR THE PH 
SENSOR BASED ON AN ANDROID SMARTPHONE 

A. Sensor module casing using a 3D printer for field 
measurement  
A digital anatomy 3D printer (J750) was used for 

fabricating the sensor module casing using a biofriendly 
material. Fig. 8 depicts the casing of the pH sensor module 
for field measurements. The size of the sensor module case 
was 26 mm × 17 mm × 13 mm (inset in Fig. 8). A CR1220 
(Panasonic. Co.) cell battery was placed in the battery case to 
provide power to the sensor system. Two signal-line wires are 
connected to the sensing board with the sensor electrodes. 
During field measurement, the sensor electrodes were placed 
in a layer of superabsorbent polymers, where the sensor can 
contact the target solution adaptably (Fig. 8). The plate and 
comb sensing electrodes are thin and are therefore suitable 
for this application. A smartphone was used to monitor the 
pH value via Bluetooth transmission. 
 

B. Development of the pH sensor user interface based on 
an Android smartphone 
Using the integrated development environment of 

SEGGER Embedded Studio 4.30c, a customized Android 
application with a friendly user interface was coded in C- 
language. The application program, mainly comprising the 
pH sensing function control and Bluetooth transmission, was 
successfully developed. Fig. 9 shows the user interface of the 
pH sensor system; a Pixel 4 smart phone (Google Co.) was 
used as the terminal device.  
 

 
 

Figure 8. Casing of the pH sensor module and field measurement.  
 
 
 

 
 

Figure 9. User interface of the wireless pH sensor system.  
 
 

Fig. 9a displays the calibration page of the pH sensor 
system, where the primitive raw data is the voltage value of 
the shunt resistance. Because the calculation formula is 
embedded in the program, the user can calibrate the pH 
sensor using two different pH values with a standard 
reference solution or two liquids with known pH values. The 
conversion formula between the voltage and pH values is 
written in the program. Therefore, the pH sensor system can 
be used to measure the target solution, similar to a 
commercial pH sensor (Fig. 9b). In addition, the interval 
time can be adjusted from 1–100 s. The latest 15 data points 
can be directly observed on the screen, and all the data are 
saved in the memory with a time stamp.  
 

V. CONCLUSION AND FUTURE WORK 
In this study, a highly compact pH sensor system was 

developed and the extension of its application for health 
monitoring was discussed. Three types of sensing electrodes, 
plate, comb, and pillar, were fabricated and evaluated to 
determine the appropriate approach for different application 
requirements. The results indicated that the pillar type, 
which had the largest contact area, was suitable for 
complicated testing environments, whereas the comb type, 
which was the most compact, was suitable for use in limited 
space. Different sensing materials such as ITO, SnO2, Ta2O5, 
and Sb were characterized and evaluated comprehensively. 
The advantages and disadvantages of these sensing 
materials were determined to establish their suitability for 
different application requirements. The SnO2 sensing 
electrode exhibited the highest sensitivity for pH detection 
and the least output voltage, reducing the power 
consumption. Moreover, two types of wireless transmission 
boards were proposed and compared. Both had low power 
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consumption, suitable for long-term measurement. The 
proposed compact pH sensor system with adequate 
performance can be used in healthcare, well-being, and 
medical applications. Future study in this area will include 
further optimization of the sensor system to make it smaller 
and more comfortable to wear. Empirical and field 
experiments are also expected to be implemented as soon as 
possible. 
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Abstract—In the field of tactile displays, many researchers are
developing systems that employ recorded tactile information as
an input signal for tactile display. Various tactile information
has been recorded from real textures and presents high-quality
tactile sensations via the displays. However, collecting, classifying,
and generating large amounts of tactile information data under
many different conditions with complicated sensors are difficult to
realize. Thus, we developed a method of collecting accelerations in
haptic behaviors using wireless microcomputers and implemented
a Convolutional Neural Network-based classification method of
tactile information. We had succeeded in classifying 30 types of
data with an accuracy of 88.9%. Furthermore, we proposed to
generate unrecorded data under various conditions from recorded
data. We construct a data generation model using a Generative
Adversarial Network. The model generates unrecorded three-axis,
time-series acceleration data from recorded acceleration data
obtained by stroking real objects. To evaluate the quality of the
data generated, we presented generated vibrotactile information
to users via a tactile display. We revealed that the generated
data were indistinguishable from real data. Besides mixing and
generating data of two or more classes, we generated new,
unrecorded data with mixed features of the original classes.

Keywords–Tactile Information; Machine Learning; Convolu-
tional Neural Network; Generative Adversarial Network.

I. INTRODUCTION

Today, many researchers are developing tactile display sys-
tems that employ recorded tactile information as an input sig-
nal, and these systems present high-quality tactile sensations.
To enhance this kind of displaying method, it is necessary
to collect and classify various recorded vibration types. Our
research proposed a solution to collecting and generating
haptic information without complicated devices [1]. In this
approach, we collect, classify, and generate only accelera-
tion as tactile information. By using only acceleration data,
we collect the information easier than conventional research.
Furthermore, employing machine learning-based classification
and generation methods, we propose a consistent handling
approach of the information for tactile displays.

Many kinds of researches on the collection and classifica-
tion of recorded tactile information have been performed. To
ensure high-quality tactile display, it is necessary to collect
and analyze data under various conditions. However, multiple
conditions were not addressed in the following works [2],
[3]. For example, Strese et al. [3] collected six types of
physical data (accelerations, pressures, temperatures, images,
sounds, and magnetic field powers) for 108 textures, using

a pen-type device. However, there are many more than 108
textures in the real world, and not all conditions, such as
stroking directions, contact angles, or pressure force, were
explored. However, most of these researches collect tactile
information under limited experimental environments using a
device that has many sensors. Therefore, it is difficult to collect
haptic information outside of the experiment environment, for
example, in daily behavior.

On the other hand, we collect, classify, and generate only
acceleration as tactile information. Using a wireless microcom-
puter with an accelerometer, we collect the information easier
than conventional research. To classify haptic information, we
implemented a classifier using machine learning. The classifier
classifies the collected tactile information. It is also used as
a search engine for surface material retrieval of the newly
collected information to expand the database. We attached a
ZigBee-based wireless microcomputer with an accelerometer
to the experimenter’s finger or pen and performed stroking
of various objects. We collected 30 types of accelerations in
stroking haptic behaviors. As a machine learning method, we
used the Convolutional Neural Network (CNN) to classify the
haptic information with high precision and we succeeded in
classifying 30 types of data with an accuracy of 88.9%.

Furthermore, realistic surface reproduction is challenging
because touching is bidirectional. If the object surface, physical
characteristics, or stroking speed differ between the contactor
and the contacted object, the induced phenomena will vary. By
recording real texture data in many conditions, such as stroking
directions, contact angles, or pressure force, you may prepare
several real object data. However, an ideal complete dataset
would be unimaginably large. Several researches have used
GANs (Generative Adversarial Networks) [4] to generate data
for tactile displays to solve this problem. Ujitoko et al. [5]
employed a GAN for generating time-series data equivalent
to real texture. The model consists of an encoder and a
generator, and the encoder transformed texture images into
labeled vectors. Then the generator generated spectrograms
by using the recoded accelerations and the labels. The spec-
trograms were transformed into tactile signals for pen-type
vibrotactile displays. The model generated nine types of high-
quality, one-axis time-series data for simple (i.e., pen-type)
vibrotactile displays. However, their proposed system requires
high computational cost because the size of the model is large.

Our model is more straightforward than the above model.
We generate three-axis acceleration data available for more
types of situations (e.g., displaying, analyzing, and recogniz-
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ing the vibrotactile signals) than one-axis data. Our method
eliminates the need to collect vast vibrotactile signal data from
various real objects. Instead of the data collection, unrecorded
vibrotactile stimulations are created by employing existing
recorded data of real textures. This method reduces the collec-
tion cost of real data and greatly expands the utility of limited
recorded data for vibrotactile displays. We generated new data
with the aid of a GAN. GANs generate images that find many
applications in super-resolution [6] and audio synthesis; some
sounds are very similar to the human voice [7]. GANs can
generate high-quality time-series data. Our data generation
model is based on WaveGAN [7], which was developed for
audio synthesis. We generated nine types of time-series data
based on real textures. By using the tablet-mounted vibrotactile
display developed by Saga et al. [8], we performed a user
study to evaluate whether the generated stimuli were realistic.
Besides, we explored whether it was possible to mix the
characteristics of two textures by combining two label data
types in the input.

Our principal contribution is that we proposed a solution to
collecting and classifying haptic information without compli-
cated devices. In this approach, we collected only acceleration
as haptic information. Using a wireless microcomputer that
has an accelerometer, we collected haptic information easier
than conventional research. Besides, by employing a CNN-
based machine learning approach, we realized an accurate
classifier for 30 types of textures. Furthermore, we generated
unrecorded time-series data using a GAN. Our model has a
simpler architecture than an earlier model [5] and requires
fewer computational resources. We generate three-axis time-
series data to display, analyze, and recognize the vibrotactile
signals.

The structure of this paper is as follows. This section
describes the purpose of our research and our approach. In
Section II, we propose a solution to collecting and classifying
haptic information without complicated devices. We propose a
generation method of unrecorded time-series data using a GAN
and describe our proposed GAN model’s system architecture
and generated data in Section III. Section IV deals with the
user study. Section V describes the user study. Section VI
presents a preliminary experiment on multi-label (merged) data
generation. Section VII draws conclusions and describes our
future work.

II. COLLECTION AND CLASSIFICATION OF VIBROTACTILE
INFORMATION

In recent years, several methods for classifying tactile in-
formation with several sensor inputs are realized by using
machine learning technology. We also considered that it is
possible to achieve similar classification with fewer sensors
while incorporating such human tactile movements. Then we
have proposed a tactile information classification system using
only acceleration sensors [9]. Usually, texture is evoked by
active human tactile movement and friction between texture
and finger. In other words, the acceleration sensor attached
near the texture captures information, including both his active
motion and the vibration generated from the texture. There-
fore, we focused on this acceleration and proposed gathering

and classifying the acceleration information collected by the
wireless sensors attached near the texture.

A. Collection of acceleration by a wireless sensor network
We focus on the acceleration between the user and the tex-

ture during the stroking operation, construct a wireless sensor
network attached to the texture, and collect and classify the
induced acceleration information between them. The system
consists of the sensor based on a power-saving compact mi-
crocomputer with an accelerometer (Figure 1), and a computer
enabling signal identification by machine learning.

Figure 1. Overview of ZigBee microcomputer. Left: TWE-Lite-2525A [10].
ZigBee microcomputer: it includes a 3-axes accelerometer, a battery cell,

and a communication module. Right: Overview of data collection.

Figure 2. Packet structure: ∆t shows a time，and xi, yi, zi shows
consecutive measured values.

The collected tactile information is transmitted to the com-
puter by ZigBee wireless communication and then classified.
ZigBee available in Japan uses the 2.4 GHz band, and at this
frequency, a maximum of 250 Kbps, the stable transmission
is possible. For this reason, the transfer rate is 144 Kbps, so
it is difficult to transmit at a high cycle due to the restrictions
of ZigBee communication. Therefore, although the maximum
measurement cycle in the initial firmware is 33 Hz, we adopted
a method in which ten consecutive measurement values are
stored in one packet and transmitted (Figure 2). As a result, we
achieved the transmission of the 3-axis acceleration sensor’s
measured values at 330 Hz on ZigBee communication. By
attaching these sensors to a finger or a pen, we record the
human’s active movement and the vibration caused by friction
between the texture and the finger.

B. Design of classifier by machine learning
In this section, we introduce a method of classifying the ac-

celeration information collected by machine learning. We used
a CNN (Convolutional Neural Network), which is widely used
in machine learning for images, and constructed a 13-layered
network (Figure 3). As an input to this network, we used a 200-
point continuous time series with information on three axes of
x, y, and z. These sequences were randomly extracted from the
collected acceleration information. This division extraction can
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increase the learning pattern and improve the generalization
performance of the model. The output of this model represents
the probability that the input data belongs to each class. We
used Tensorflow [11] to build this CNN model. Tensorflow is
a machine learning library developed by Google. Besides, the
model is based on VGG [12], which is a typical configuration
of CNN, and the number of convolutions in the convolution
layer is reduced to match our input information. To improve
accuracy, we increased the number of convolutional layers. A
convolution filter with a size of 1×5 was used. The number
of filters was 64 for the first and second convolution layers,
128 for the third and fourth layers, and 256 for the fifth and
sixth layers. Also, the ReLU function [13] was used as the
activation function.

Moreover, generalization performance was improved by
doubling the number of filters in the pooling layer. In the pool-
ing layer, max-pooling of 1×2 was used to absorb small data
errors. The cross-entropy error was used for the loss function.
Adam [14] was used as the weight optimization algorithm. To
suppress over-learning, Batch Normalization [15] was applied
after calculating each layer’s activation function. Also, we used
Dropout [16] between the fully connected second layer and the
output layer to suppress over-fitting.

1	

5	

Input 3 x 200 x 64	
3 x 100 x 128	

3 x 50 x 256	

Output 


1x1x4608	

Convolution1 + pooling	
Convolution2 + pooling	

Convolution3 + pooling	

Fully connected	

Figure 3. Composition of our CNN model.

C. The evaluation result of tactile information classification
accuracy

Here, we show the results of verifying the classification
accuracy with the collected tactile information. The ZigBee
microcomputer was attached to a finger or pen, and the exper-
imenter collected tactile information by stroking the surface of
objects made of various materials. The experiment conditions
are shown in Figure 1. The object used in this experiment is
shown in Figure 4.

Each texture to be examined is a planar object about 100 mm
in length and width. “Carpet1”, “Carpet2”, and “Carpet3” are
part of carpets made from different materials. “Sponge-g” and
“Sponge-y” are the front and the back of a household sponge.
“Sponge-b” is made of styrofoam. “Stonetile1”, “Stonetile2”,
and “Stonetile3” are stone tiles made from different mate-
rials. “Whitetile1”, “Whitetile2”, and “Whitetile3” are white
tiles with different textures. “Woodtile1”, “Woodtile2”, and
“Woodtile3” are wood plates of different textures. Haptic
information is collected by stroking these objects with the
finger/pen at an almost constant speed. At the surface of

100 mm

carpet1 carpet2 carpet3 sponge-y sponge-g

stonetile1 stonetile2 stonetile3 sponge-b whitetile1

whitetile2 whitetile3 woodtile1 woodtile2 woodtile3

Figure 4. 15 textures. These are plate-shaped objects with 70–100 mm
length and 100–130 mm width.

each object, acceleration was collected during the stroking
movement of going back and forth for three minutes. By
performing this operation three times per object, acceleration
data for nine minutes per object was collected. Thus, there are
30 types of combinations between the objects and contactors
in the experiment. Moreover, the stroking speed also matters.
For each combination, the experimenter stroked at velocities
of 100 mm/s，200 mm/s，and 400 mm/s.

The collected data is classified and evaluated by machine
learning using the CNN described above. The input of CNN
is 3×200 acceleration data, and the output is 1×30, which
is a probability vector representing the class to which the
input data belongs. At the time of classification, to confirm
the generalization performance of the model created by this
CNN, all data was divided into ten parts and 10-fold cross-
validation was performed. Table I shows the confusion matrix
at 400 mm/s, and Table II shows the classification accuracy
for each stroking speed. As can be seen from the tables, each
class diagonal component shows a value close to 1, indicating
that 30 types of texture information can be classified with
high accuracy. The average of all classes was 93.2%. Besides
evaluating the effect of different stroke conditions (stroking
speed: 100, 200, and 400 mm/s) on the same texture, we
combined them in one class and classified the 30 types of
textures. The result shows 88.9% of classification accuracy.
From these results, we concluded that there is a possibility
that the textures can be classified regardless of the stroking
speed.

III. GENERATION OF UNRECORDED TACTILE
INFORMATION

As we have introduced so far, some researchers have used
machine learning based on collected data to classify the
textures [2], [3], [9]. However, there are enormous amounts of
conditions of the combination between textures and stroking
motions, and these studies cannot cover all of these com-
binations. For example, Strese et al. [3] collected data on
various conditions with a pen-type device, although the acute
angle against the object is fixed. Thus the data that can be
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TABLE I. Confusion matrix of 30 kinds of data classification under 400 mm/s movement.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA AB AC AD
A: carpet1-pen 0.94 0 0 0 0.02 0 0.03 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B: carpet1 0 0.92 0 0 0 0.03 0 0 0 0 0 0.01 0 0 0 0.01 0 0 0 0 0.01 0 0 0.01 0 0 0 0 0 0
C: carpet2-pen 0 0 0.92 0 0.05 0 0 0 0.02 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0
D: carpet2 0 0 0 0.97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0 0 0 0 0 0 0 0.01
E: carpet3-pen 0.02 0 0.02 0 0.95 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
F: carpet3 0 0.04 0 0.03 0 0.9 0 0.01 0 0.01 0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G: sponge-b-pen 0 0 0 0 0 0 0.96 0 0.01 0 0.01 0 0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
H: sponge-b 0 0 0 0 0 0 0 0.92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0 0 0 0 0.02 0 0.01
I: sponge-g-pen 0 0 0 0 0 0 0 0 0.98 0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J: sponge-g 0 0 0 0 0 0 0 0 0 0.94 0 0.03 0 0 0 0.01 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0
K: sponge-y-pen 0 0 0.01 0 0 0 0 0 0.03 0 0.95 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L: sponge-y 0 0.04 0 0.03 0 0 0 0 0 0 0 0.91 0 0.01 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0
M: stonetile1-pen 0 0 0 0 0 0 0 0 0 0 0 0 0.98 0.01 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0
N: stonetile1 0 0 0 0 0 0.01 0 0 0 0.01 0 0.01 0 0.95 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0.01
O: stontile2-pen 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0.86 0.01 0.02 0 0 0.02 0 0.01 0 0 0 0 0 0 0.08 0
P: stonetile2 0 0 0 0.01 0 0.01 0 0 0 0 0 0 0 0 0 0.92 0 0.03 0 0 0 0 0 0.01 0 0 0.02 0 0 0
Q: stonetile3-pen 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0.9 0 0.01 0.01 0 0 0 0 0 0 0 0 0.07 0
R: stonetile3 0 0 0 0 0 0 0 0 0 0.02 0 0.01 0 0 0 0.01 0 0.94 0 0 0 0 0 0 0.01 0 0.02 0 0 0
S: whitetile1-pen 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0.02 0 0.87 0.01 0 0.02 0 0 0.03 0.04 0 0 0.01 0
T: whitetile1 0 0 0 0 0 0 0.01 0 0 0 0 0 0.01 0 0.03 0 0.01 0 0 0.85 0 0.01 0 0 0 0.03 0 0 0.06 0
U: whitetile2-pen 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0.01 0 0 0.97 0 0 0 0 0 0 0 0 0
V: whitetile2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0 0.95 0 0 0 0.01 0 0 0.01 0
W: whitetile3-pen 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.99 0 0 0 0 0 0 0.01
X: whitetile3 0 0 0 0 0 0 0 0.01 0 0.02 0 0 0 0.04 0 0 0 0 0 0 0 0 0 0.89 0.01 0.02 0.01 0 0 0.01
Y: woodtile1-pen 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0.01 0 0 0 0 0 0.97 0 0 0 0.01 0
Z: woodtile1 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0.01 0.01 0 0 0.01 0 0 0 0 0 0.94 0 0 0.01 0
AA: woodtile2-pen 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.04 0 0.01 0 0 0 0 0 0 0 0 0.94 0 0 0
AB: woodtile2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0.99 0 0
AC: woodtile3-pen 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.08 0.01 0.02 0 0 0.03 0 0.01 0 0 0 0 0 0 0.86 0
AD: woodtile3 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0.03 0 0 0 0 0 0.94

TABLE II. Result summary. “Mixed” is the result of classifying 30 kinds of
texture, each of which include data under three different speed.

Stroking speed (mm/s) 100 200 400 Mixed
Classification accuracy (%) 89.0 88.0 93.2 88.9

obtained may change if the angle is changed. In this way, it
is unrealistic to comprehensively collect data from an actual
object because of the significant number of conditions to
consider. The existence of data of conditions that cannot
be collected also means that tactile information of objects
under those conditions cannot be classified. Therefore, we
consider this problem and propose a new method to replace the
method of collecting data directly from an object. Instead of an
exhaustive direct data collection method, machine learning is
used to generate alternative data from the minimum amount of
collected data [1]. As a result, the data collection cost can be
minimized. Besides, by adjusting the machine learning model,
it is possible to generate data that will replace the data that
has not been collected. As a first step in realizing the proposed
method, we implemented data generation based on machine
learning that focuses on the stroking movement’s acceleration
data.

A. Tactile data generation by GAN

We used the GAN [4] as a data generation method. GAN
is a machine learning method mainly for generating unknown
images, but it is being applied to various fields such as image
resolution enhancement, image property synthesis, and voice
synthesis. In the field of speech synthesis, previous research
has succeeded in synthesizing speech that is almost the same
as that produced by a human. On the other hand, the number
of studies on processing tactile data using GAN is still small.
Ujitoko et al. [5] proposed a GAN model that generates
vibration data corresponding to a texture image This model
consists of an “Encoder” network and a “Generator” network.
The Encoder network converts the texture image into label
data. In the Generator network, data is generated using GAN,

which is trained with label data and acceleration data collected
in advance. Using this method, Ujitoko et al. generated data
for nine classes of textures.

In order to generate more effective data, we constructed a
machine learning model for vibration data generation based
on WaveGAN [7], which is a GAN for speech synthesis.
However, WaveGAN does not support multi-class generation
and is not suitable for generating various types of data. To deal
with this problem, we combined the method of Conditional
GAN [17]. In Conditional GAN, by adding label data to the
training data and making it learn, the data corresponding to
the label data can be specified and generated at the time
of data generation. We introduced multi-class generation by
introducing Conditional GAN into our GAN. As the label data,
we used one-hot vectors, a type of vector having the same
length as the number of classes to be trained and having only
0 or 1 as elements. Besides, we processed acceleration data
on three axes in consideration of expandability. To prevent the
axes’ features from being convolved during learning, each axis
was set to be convolved independently in the time direction
during learning.

The structure of the data generation model is shown in
Table III. “Generator” and “Discriminator” in the table indicate
the neural network layer structure that constitutes the model.
“Input” indicates the input layer, and “Output” indicates the
output layer. Each layer between the input layer and the
output layer is a hidden layer. In the hidden layer shown here,
values propagate from the input layer side to the output layer
side. “Kernel Size” shows the shape of the kernel for each
convolutional layer, and “Output Shape” shows the shape of
the output data for each layer.

B. Evaluation of tactile information generation model
Using the constructed model, data generation, and repro-

ducibility verification experiment of the generated data was
performed. The wired accelerometer collected the accelera-
tion data to record higher frequency data (1 kHz) during
the stroking movement on each texture instead of using the
wireless microcontroller. For training data, we used triaxial

118

International Journal on Advances in Networks and Services, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/networks_and_services/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE III. Proposed GAN structure. The left shows the configuration of
“Generator” and the right shows the configuration of “Discriminator”.

Generator Kernel Size Output Shape

Input : Uniform(-1,1)+C (n， 100+C)
Dense (100+C， 49152) (n， 49152)
Reshape (n， 3, 16, 1024)
LeakyReLU (α = 0.2) (n， 3, 16, 1024)
Trans Conv2D (Stride = (1, 4)) (1, 25, 512, 1024) (n， 3, 64, 512)
LeakyReLU (α = 0.2) (n， 3, 64, 512)
Trans Conv2D (Stride = (1, 4)) (1, 25, 256, 512) (n， 3, 256, 256)
LeakyReLU (α = 0.2) (n， 3, 256, 256)
Trans Conv2D (Stride = (1, 4)) (1, 25, 128, 256) (n， 3, 1024, 128)
LeakyReLU (α = 0.2) (n， 3, 1024, 128)
Trans Conv2D (Stride = (1, 4)) (1, 25, 64, 128) (n， 3, 4096, 64)
LeakyReLU (α = 0.2) (n， 3, 4096, 64)
Trans Conv2D (Stride = (1, 4)) (1, 25, 1, 64) (n， 3, 16384, 1)
Output : Tanh (n， 3, 16384, 1)

Discriminator Kernel Size Output Shape

Input : Training data or Generated data (n， 3, 16384, 1+C)
Conv2D (Stride = (1, 4)) (1, 25, 1+C， 64) (n， 64, 4096, 64)
LeakyReLU (α = 0.2) (n， 64, 4096, 64)
Phase Shuffle (n， 64, 4096, 64)
Conv2D (Stride = (1, 4)) (1, 25, 64, 128) (n， 64, 1024, 128)
LeakyReLU (α = 0.2) (n， 64, 1024, 128)
Phase Shuffle (n， 64, 1024, 128)
Conv2D (Stride = (1, 4)) (1, 25, 128, 256) (n， 64, 256, 256)
Phase Shuffle (n， 64, 256, 256)
LeakyReLU (α = 0.2) (n， 64, 256, 256)
Conv2D (Stride = (1, 4)) (1, 25, 256, 512) (n， 64, 64, 512)
LeakyReLU (α = 0.2) (n， 64, 64, 512)
Phase Shuffle (n， 64, 64, 512)
Conv2D (Stride = (1, 4)) (1, 25, 512, 1024) (n， 3, 16, 1024)
LeakyReLU (α = 0.2) (n， 3, 16, 1024)
Reshape (n， 49152)
Output : Dense (49152, 1) (n， 1)

acceleration data. An experimenter attached the acceleration
sensor to his finger and rubbed the texture in one direction. For
recording texture information, we used nine types of textures to
collect the data. The texture used for the collection is shown in
Figure 5. “Artificial Grass” is the texture of artificial grass with
many protrusions, and “Cloth” is the texture of smooth cloth.
“Carpet” is the texture of a hard carpet, and “Cork Sheet”
is a plate-shaped cork. “Punched Plastic Sheet” is a texture
with a lot of punch holes on a smooth board, and “Tile”
is a texture of tiles arranged regularly. “Luncheon Mat 01”,
“Luncheon Mat 02”, and “Luncheon Mat 03” are luncheon
mats with different surface materials. The overview of the data
acquisition is shown in Figure 6.

The hyperparameters used for learning are shown in Ta-
ble IV. In case the length of the collected data was less than
16,384 points during learning, data was created by repeating
each collected data 10 times, and 16,384 points were randomly
extracted from the data around 40,000 points and learned. The
learning amount was 40 epochs. The generated data is 16,384
points of 3-axis time series data.

TABLE IV. The hyperparameters in our model.

Name Value

Batch size 64
Phase Shuffle 2

Loss WGAN-GP
WGAN-GP λ 10

Generator updates per discriminator 2
Optimizer Adam

(α = 1 × 10−4, β1 = 0.5, β2 = 0.9)

Artificial
Grass

Cloth Carpet Cork
Sheet

Punched
Plastic
Sheet

Tile Place
Mat 01

Place
Mat 02

Place
Mat 03

Figure 5. Textures used in the experiment.

Figure 6. Overview of data acquisition.

The created model can generate nine classes of texture
data. To evaluate the reproducibility of the generated data,
we took the spectrogram of the generated data and visualized
the data. Short-time Fourier transform (STFT) was performed
on the generated data and the training data for spectrogram
conversion. At this time, a Hamming window (N=256) was
used, and the hop size was set to 128. The spectrogram values
are normalized from 0 to 1.

An example of the spectrogram of the data generation
result is shown in Figure 7. The settings for the spectrogram
generation are shown in Table IV. By comparing the spec-
trograms, you can see the similarity between them. It was
difficult to distinguish between training data and generated
data for the three textures given in the example. Thus, the
data generation that captures the characteristics of the training
data was successful. Figures 8 and 9 show the spectrograms
of generated data, including the other 6 classes.

IV. TACTILE DISPLAY EXPERIMENT USING GENERATED
DATA

In this section, we describe a tactile presentation experiment
using generated data. To evaluate the data generated by our
model in more detail, we conducted an experiment to present
a tactile sensation to the user using the generated data. In this
experiment, data were generated using the WaveGAN-based
model described in the previous section. The nine classes of
collected data described in the previous section were used as
training data for generating the data.

In this experiment, two items are investigated. One is to
distinguish between tactile presentation using training data and
generated ones. If the participant cannot distinguish the two
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Ground Truth Generated
X-axis Y-axis Z-axis X-axis Y-axis Z-axis

Carpet

Tile

Place
Mat 03

Figure 7. Spectrograms for each labeled class of collected data: Left shows
learning data and right shows generated data.

Figure 8. Spectrogram of generated data based on collected data (1). The
texture here is the same as the textures shown in Figure 5

Figure 9. Spectrogram of generated data based on collected data (2). The
texture here is the same as the textures shown in Figure 5

data, it indicated that valid data has been generated. The other
is a comparison of reality between them. After stroking the
actual texture and virtual texture of the two data, we ask the
participants to evaluate the reality of the tactile presentation
of each data. If the effective data is generated, the evaluation
values between the training data and the generated one will
show similar values. Based on the results of the experiment,
we evaluate whether the model can generate effective data
generation or not. For the specific procedure of the evaluation
experiment, we decided to use the method of Ujitoko et al. [5].
The tablet-mounted vibrotactile display developed by Saga et
al. [8] was used for this tactile presentation.

The participants were ten university students (8 males, 2
females, all in their 20s) in the experiment. The Ethics Review
Committee has approved this experiment of the University
of Tsukuba (Review approval number, 2019R299). At the
beginning of the experiment, the participants filled out a
consent form.

A. Experiment procedure
Tactile stimulation is presented in the two rectangle areas,

A and B, on the tactile display, and the participant is asked
to stroke the tactile display along the area. A moving target
was displayed on the touchscreen and showed a 500 mm/s
of stroking movement during the experiment. The participants
were asked to adjust their stroking movement to follow the
target. Either tactile sensation derived from training data or the
generated data is presented in A or B. We ask the participants
to answer which stimulation is the tactile presentation derived
from the generated data. Figure 10 shows an overview of the
experiment. Figure 11 shows the displaying interface in this
experiment.

Figure 10. Overview of tactile presentation experiment.

The area the generated data is displayed in was randomly
determined for each trial. After the experiment is completed, an
evaluation is performed based on the value of a 100 mm long
Visual Analog Scale (VAS) [18]. Using the VAS, we collect
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Figure 11. Tactile display during the experiment.

the evaluated answer of each stimulus from the participants.
Ten trials were performed for each texture, using these two
surveys as one trial. A questionnaire survey was conducted
to obtain the participants’ opinions about the experiment after
completing all trials. It took about one hour to complete the
experiment.

B. Results and discussion
In the following, we describe the experimental results.

Figure 12 shows the correct answer rate of the experiment that
distinguishes the tactile presentation of the generated data from
the training one. These values are the average of the results
of all participants. If the result of the correct answer rate is
close to 50%, it shows that the participants cannot distinguish
between the generated data and the training data. That is, it
shows the realization of effective data generation that reflects
the characteristics of the training data.

As you can see in Figure 12, the value of any texture is
almost 50%. Therefore, the participants could not distinguish
between the presentations in the training and the generated
data. In the post-experimental questionnaire, almost all par-
ticpants answered that they could not distinguish between the
presentation by the training data and the generated data. From
these results, we confirmed the possibility that our proposed
model can generate data close to the actual acceleration data.
From the detailed result of each texture, most participants
showed a correct answer rate of 40% to 60%. Especially for
the results of the “Carpet” texture, 7 out of 10 people showed
a correct answer rate of 50%. This result indicates that our
model may be especially useful for data generation based on
rough texture data such as “Carpet” .

Next, Figure 13 shows the results for the presentation’s
reality values by the generated data and the training data. These
values are the average of the results of all participants. The
closeness of the evaluation results between reality values of
the generated data and the training data shows effective data

0

10

20

30

40

50

60

70

80

90

100

Artificiai
Grass

Cloth Carpet CorkSheet Punched
Plastic
Sheet

Tile Place Mat
01

Place Mat
02

Place Mat
03

Co
rre

ct
 a

ns
w

er
 ra

te
 (%

)

Figure 12. Correct answer rate of distinguishing task between generated data
and training data for each texture.

generation achievement. Figure 13 shows that the presenta-
tion’s reality values by the generated data and the training data
are almost the same for all textures. To verify whether there
is a significant difference between the results of the generated
data and the training data, Student’s t-test was performed on
the pair of data for each texture, and no significant difference
was found for all textures (p > 0.05). From this result, by
generated data, we succeeded in presenting tactile sensation
with the same degree of realism as that by training data. In
the previous study of Ujitoko et al. [5], they found a significant
difference in some textures. Thus, our method had generated
higher quality data than the previous study.

Looking at Figure 13, we obtained values between 50% and
60% for textures other than “Cloth” and “Tile”. According to
an experiment conducted by Saga et al. [8], the reality values
were between 50% and 70% by using the recorded vibration.

Our results agreed with the results of Saga et al. [8],
and we found that the generated data could reproduce the
performance of the recorded data sufficiently. Here we consider
two textures with low reality values. The display we used this
time effectively reproduces a rough tactile sensation because
it presents vibration to the fingertips but is not suitable for
reproducing a smooth tactile sensation like “Cloth”. Since
“Cloth” has the texture of cloth, the tactile display used this
time had difficulty in presenting it. In the future, it is necessary
to investigate using a tactile display that excels in smooth
tactile sensation.

Regarding the “Tile” results, because the change in accel-
eration was small, the participants felt little vibration. The
reason for the slight difference in acceleration is the shallow
unevenness of the Tile. Although the reality value was low in
the result of “Tile” this time, we considered improving this
value by using more precise tactile displays. Since there was
almost no difference in reality between the generated data and
the training data, and data close to the training data can be
generated for “Tile” (Figure 7), we confirmed that the data
generation was successful.
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Figure 13. Reality evaluation value for each texture in tactile presentation
experiment. The blue graph results from the tactile presentation using the

training data, and the orange graph results from the tactile presentation using
the generated data.

V. DATA GENERATION BY MERGING TWO CLASSES

This section confirm the data generation ability of an
unknown class by the created 9-class generation model. The
unrecorded data was generated by merging two classes and
specifying two input labels instead of specifying one class for
the created model. Figure 14 shows the schematic diagram of
the label synthesis of tactile information. We will look at the
result of merging the classes of “TIle” and “Place Mat 03” and
specifying them. When “Tile” is specified in the generation
model, the elements of “Tile” are specified as 1 in the input
vector. For an unrecorded class generation, we set the element
of “Tile” between 0.0 and 1.0, and“ Place Mat 03” to 1.
Figure 15 shows the spectrogram of each generated data. The
spectrograms of “Tile” and “Place Mat 03” are shown on the
left side of Figure 15, and the spectrogram of generated data
with a merged element is shown on the right. It can be seen
that as the element is increased from 0.0 to 1.0, the features
are highly mixed, especially on the X-axis. In other words, it
can be seen that unknown data can be generated by changing
the input elements.
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Figure 14. The schematic diagram of the label synthesis of tactile
information

In addition, to investigate whether the difference of the
texture used for data generation affects the result, we generated

0.25

Value of 
Tile label

(Place Mat 03
label was one)

Place
Mat 03

Tile 0.5

0.75

1.0

X-axis Y-axis Z-axis

X-axis Y-axis Z-axis

Result of data generation with a merged label

Result of data generation with a single label

Figure 15. Spectrogram of each generated data. Left shows single class,
right shows mixed class spectrograms.

the 3-axis acceleration data obtained from the nine classes of
texture shown in Figure 5. This time the scale of the input
vector is fixed to 1.0. Thus the element of “Tile” was set in
the range between 0.0 to 1.0, and the other element was set in
the range between 1.0 to 0.0. The following Figures 16, 17, 18
show the results. Figure 16 shows the results for combinations
of “Tile” and “ArtGrass”, “Tile” and “Cloth”, and “Tile” and
“Carpet”. Figure 17 shows the results for “Tile” and “Cork”,
“Tile” and “Punched Plastic Sheet”, and “Tile” and “Place Mat
01”. Figure 18 shows the results for “Tile” and “Place Mat
02”, and “Tile” and “Place Mat 03”.

Figure 16. The generated data’s spectrograms combined the “Tile” label and
the label of another texture (1). This figure shows the results for

combinations of “Tile” and “ArtGrass”, “Tile” and “Cloth”, “Tile” and
“Carpet”.

In Figures 16, 17, and 18, the upper number shows the
element value of Tile, and the number below is the element
value of the other texture. From the results, it can be seen
that the data that strongly reflects the feature of the texture
with the higher label value is generated in any combination.
Similar to the result in Figure 15, this tendency is remarkable,
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Figure 17. The generated data’s spectrograms combined the “Tile” label and
the label of another texture (2). This figure shows the results for

combinations of “Tile” and “Cork”, “Tile” and “Punched Plastic Sheet”,
“Tile” and “Place Mat 01”.

Figure 18. The generated data’s spectrograms combined the “Tile” label and
the label of another texture (3). This figure shows the results for

combinations of “Tile” and “Place Mat 02”, “Tile” and “Place Mat 03”.

especially on the X-axis. From the result, we found that data
synthesis is possible even when the texture is other than Place
Mat 03. When the two textures’ label values are the same,
the “Tile” texture characteristics are often strongly represented
in the generated data. The “Tile” texture feature is that the
strong and weak regions of the spectrum are finely repeated,
but this feature appears in the generated data even when the
“Tile” label’s value is small. The “Tile” feature appears in the
generated data from the case where the “Tile” label element
is over 0.4 in all the results except the “Cloth” and “Carpet”
results in Figure 16. From this, we found a feature that easily
influences the generated data when the labels are combined.

From the result of the generation experiment described in
this section, we found that new data was generated with mixed
features of two textures by manipulating the label input to
the GAN model. We also found that changing the rate of
each element can control the interpolated characteristics of
each texture. By applying the method, it will be possible to
design and generate unrecorded information. For example, by
inputting the numerical value of the speed or the pressure, the
model can generate the data accordingly. In the future, we plan
to conduct a detailed investigation of how the product will be
affected when data is generated with variable numerical labels.
Based on the results, we will consider constructing a new GAN
model that assumes variable numerical labels.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a solution for collecting and generating
haptic information without complicated devices [1]. In this
approach, we collect, classify, and generate only acceleration
as tactile information. By using only acceleration data, we
collect the information easier than in conventional research.
Furthermore, employing machine learning-based classification
and generation methods, we propose a consistent handling
approach of the information for tactile displays. By using
the ZigBee-based microcomputers and implementing a CNN-
based classification method of haptic information, we suc-
ceeded in classifying 30 types of data with an accuracy of
about 88.9%.

Furthermore, we developed a method to generate unrecorded
data under conditions differing from those at the initial record-
ing time. We constructed a data generation model using a
GAN. The model makes simple calculations and generates
unknown data from recorded acceleration data obtained by
stroking real objects. The model can generate three-axis, time-
series data. To evaluate the quality of the data generated, we
devised a string-based tactile display and presented generated
vibrotactile information to users. Users reported that the gen-
erated data were indistinguishable from real data.

Moreover, using GAN, which is based on the method of
voice generation, as the method of generating tactile informa-
tion, we realized effective data generation with a simpler ma-
chine learning configuration than previous studies. By creating
a vibration data generation model using GAN and generating
3-axis data, we succeeded in generating information close
to the actual acceleration sensor’s information. To evaluate
the quality of the generated data, we devised a string-based
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tactile display and presented generated vibrotactile information
to participants. The participants reported that the generated
data were indistinguishable from real data. Besides mixing
and generating data of two or more classes, we generated
unrecorded data with mixed features of the original classes.

In the future, we aim to construct a system that enables a lot
of tactile information processing by making these collection,
classification, and generative models more versatile.
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