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Abstract— Although the implementation of “Adaptive Virtual
Reality” is becoming feasible, understanding the main effects of
its realization on users based on cognitive models is essential.
Here, we first described a model of the flow of information
obtained by actual human perception through avatars in virtual
reality (VR) and the resulting human reactions, and confirm the
validity of the user models proposed thus far. We also considered
the degree of immersion predicted due to the integration of multi-
modal information. The cognitive processes of VR experiences are
largely categorized into ‘“perception and recognition of informa-
tion (attention, memory, and decision making)” and “perception-
based physical actions and interactions with VR objects”. Based
from this, we describe a cognitive model of VR experiences. In
addition, as examples of the discrepancies in sensory perception
experienced in real/VR spaces, we briefly describe the phenomena
that occur in communication. We describe the cognitive models
for these phenomena and qualitatively consider the degree to
which sensory information obtained from the real/VR space
affects the degree of chunks activation. The intensity of human
sense is expressed as a logarithm according to Weber-Fechner’s
Law, suggesting that human senses can distinguish differences
even with weak sensory information. We argue that the “slightly
different from the real world” sense felt in VR content is caused
by such slight differences in sensory information. Overall, we
advance the cognitive understanding of the immersive experience
particularly in the VR space, and qualitatively describe the
possibility of designing highly immersive VR content which are
adapted to each individual.

Keywords— sensory perception; cognitive model; virtual reality;
experience.

I. INTRODUCTION

This paper is based on the previous work originally pre-
sented in AIVR2024 [1]. The following changes were made:
(1) a restructuring of the model diagram, (2) the addition
of preliminary experimental results, and (3) the addition of
corresponding discussions.
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A concept called “Adaptive Virtual Reality (Adaptive VR)”
has been discussed in recent years. Baker and Fairclough [2]
described it as follows: Adaptive VR monitors human behav-
ior, psychophysiology, and neurophysiology to create a real-
time model of the user. This quantification is used to infer
the emotional state of individual users and induce adaptive
changes within the virtual environment during runtime. There-
fore, the authors argued that the efficacy of the emotional expe-
rience can be increased by modeling individual differences in
the way users interact within a particular virtual environment
as a system.

Several methods exist for inferring emotional states.
The most classical approach, following Russell’s circular
model [3][4], involves measuring a person’s valence and
arousal states to predict their emotions. These are often pre-
dicted through measurements such as pupil response or heart
rate. Specifically, regarding visual behavior, Bao et al. [5] pro-
posed a method to recognize learners’ emotional states during
distance learning, suggesting emotion recognition techniques
for relatively simple emotions such as interest, happiness, con-
fusion, and boredom. Furthermore, Sun et al. [6] suggested that
arousal related to cognitive effort interacted informationally
with luminance, and that the strongest pupil response due to
arousal occurred at luminances below 37 cd/m?.

Given this background, the implementation of Adaptive
VR is becoming feasible. However, the main effects of its
implementation on users should be understood based on a
cognitive model. Studies have mainly focused on bottom-up
content design with an awareness of Adaptive VR. However, it
is difficult for empirical developments to provide effects that
create a new phenomena. Hence, not only a bottom-up but
also a top-down approach is necessary.

On the other hand, with the growth in Virtual Reality (VR)

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

67



goggles and the low cost of equipment for shooting omnidi-
rectional video, VR content has attracted substantial attention.
In addition to games, a wide range of VR contents have
been developed, including omnidirectional video playback,
education, sightseeing, property previews, and shopping. VR
systems that enable these contents to be viewed are also
growing rapidly. For example, the following innovations have
emerged in content design. VR systems using Head-Mounted
Displays (HMDs) sold to general consumers cover the user’s
field of vision; thus, the user cannot see their own body.
Therefore, VR systems using HMDs typically display a virtual
body drawn from the user’s first-person perspective. A mech-
anism for realizing the user’s first-person perspective is the
implementation of avatars. The effects of avatars have been
described by researchers. Steed et al. [7] suggested that the
use of avatars that follow the user’s movements can reduce the
cognitive load of certain tasks in the VR space. People around
the world have been using VR social networking services, such
as VRChat, where users enjoy interacting with other users
using avatars that they have selected and edited to their liking.
This shows that avatars are a means of self-expression in VR
communication.

There are many research approaches to VR contents and
systems, including research from the perspective of Human
Computer Interaction (HCI), research on the relation between
VR and working memory (WM), research on the differences
in sensory perception between the real world and VR, and
research on Adaptive VR that incorporates individual adapt-
ability into VR contents.

Among the studies from the perspective of HCI,
Mousavi et al. [8] integrate Emotion Recognition (ER) and
VR to provide an immersive and flexible environment in VR.
This integration can advance HCI by allowing the Virtual
Environment (VE) to adapt to the user’s emotional state.

According to Batra et al. [9], the following requirements for
VR are listed: First, the primary component called “visualiza-
tion” enables human-machine interaction to approximate real
life; Additionally, VR requires removing the barrier between
the real world and the virtual world. Through these means,
a series of simulation technologies must generate artificial
tactile, auditory, olfactory, and sensory experiences grounded
in reality. For this simulation, it is crucial to capture human
cognitive characteristics multi-modally.

As a stepping stone to this goal, we do the following in this
study. We describe a model of the flow of information obtained
by actual human perception through avatars in VR and the
resulting human reactions, and confirm the validity of the user
models proposed so far. The degree of immersion predicted
because of the integration of multi-sensory information is also
discussed. Understanding the role of multi-sensory information
can enable us to design VR contents for individual users and
how we can control sensory perception.

The remainder of this article is organized as follows. We
describe the sense-perception cognitive model on VR in Sec-
tion II. Section III describes experiments conducted to investi-
gate the behavioral characteristics of participants’ information
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acquisition and attention direction within VR spaces, as well
as the relationship between the degree of recall and the variety
of perceptual information quantity and quality within the VR
space. Section IV argues the relationship between the variety
of perceptual information quality combinations and cognitive
load.

II. DESCRIPTION OF THE COGNITIVE MODEL FOR
SENSORY IN VR

In general, physical information in the VR space is rep-
resented as follows. Objects in the VR space (VR objects)
are represented by computer graphics, and their behavior is
based on a program previously written to interact with the
environment and other objects. The sound in the VR space is
provided by artificially preparing audio data that is predicted in
advance to be uttered in the space, and is played continuously
in a background music-like manner, or by using a sound engine
controlled by the user. Specifically, in the latter case, it can be
attached to a VR object and played when certain conditions
are met. Comprised of these elements, all human activities
and virtual experiences in the VR space are performed by
using the avatar as one’s own body. The avatar’s movement is
performed by tracking the user’s real-world body movements.
Tracking methods include three-point tracking, which consists
of an HMD and two hand controllers, and full-body tracking,
which uses motion capture and a tracking suit.

Consequently, the human experience in the VR space differs
slightly from perception and cognition in the real world,
and can be said to be the result of the interaction between
avatar and VR objects, as well as the perception of the
accompanying environment such as sound linked to these
objects. Considering this, the model of human perception,
cognition, and behavior in the VR space should be described
with an awareness of the various interactions in the VR space
with those in the real world.

Based on the above, the integration process of information
perceived in both the real world and VR is shown in Figure 1.
The concept is as follows.

A.  Transformation of Perceptual Information Provided by
Objects

The perceptual information of an object existing in real
space is expressed through the five senses—visual, auditory,
touch (somatosensory), smell, and taste—in a form adapted to
our sensory organs. Perceptual information directly received
by humans from the real world is received without attenuation
beyond the capabilities of the individual’s sensory organs.
However, in VR, analog-to-digital conversion is applied to
the perceptual information possessed by real-world objects.
Consequently, this information exists within the VR space
in a form where some information is missing. This means
that in Figure 1, the chunk c;(transferred) provided by the
object transferred to the virtual world—resulting from the
analog/digital conversion of the analog perceptual information
in chunk c;(real) provided by the real-world object—exists in
a form where information is missing.
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Figure 2. Staying timeline of sensory information stored in working
memory and information invoked from long-term memory.

B. Perception of Information Provided by Objects in Virtual
World

In general VR experiences using current HMDs, visual, au-
ditory, and somatosensory information are used as perceptual
information. The VR experience begins when the user puts
on the HMD and views the images displayed on the lenses;
by moving their head while wearing the HMD, the user can
perceive the virtual space in the same way as they perceive
the real world. Auditory information is output from the HMD’s
built-in or external speakers, and audio is played in response to
the behavior of VR objects. The somatosensory information is
used to make operations in the VR space clearer by vibrating
the controllers in both hands to generate tactile feedback when
operating the User Interface (UI) in the VR space or selecting
VR objects.

C. Cognition of Information in Virtual World

The perception of information in virtual world is fundamen-
tally no different from that in the real world. However, even

when perceiving the same object, the provided information
from the object is incomplete compared to that in the real
world. The process differs in that it involves cross-referencing
with similar memories. Thus, we describe the sequence of
events as below.

1) Attention: Perceptual information moves to the sensory
register, and then only the information to which the user’s
attention is directed passes through the selective filter and into
the WM. Here, each sensory information does not completely
enter the WM at the same time, but one piece of information
passes through per processing.

2) Memory: If the sensory information obtained in the VR
space is similar to that obtained in the real world, the user
perceives the VR space as if it were a real space. In addition,
based on the information in the Long-Term Memory (LTM),
the user anticipates and expects the response of objects in the
VR space to his or her actions, and engagement is generated.

3) Decision: Based on the perceptual information, the next
action is determined. Here, when actions on a VR object are
performed via a controller, the actions in the real world are
converted into the corresponding controller operations.

D. Body Movement Based on Perception

The operator (actual body) moves, and the avatar in the
VR space moves in response to the movement. There are two
methods for incorporating human motion into VR:

o Image sensing by the camera attached to the HMD:
Basic UI operations (clicking and screen scrolling) and
grasping VR objects (realized by holding something
with a hand gesture) are possible. The high degree of
synchronization between the actual hand and the avatar’s
hand motion is an advantage of this method. Conversely,
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TABLE 1. The difference between past or current input information and
situations, and the degree of matching

difference of input information
difference of situation | almost never little  greatly
almost never — + ++
little + ++ ++
greatly ++ ++ +++

precise manipulation, movements large enough to cause
both hands to move out of the camera’s field of view, and
very fast hand movements are weaknesses.

¢ Yaw, pitch, roll + relative position by controller:

The accurate tracking of position, posture, and motion
information by sensors is possible, and the sense of actual
body motion is directly reflected during the operation,
resulting in a high sense of immersion. However, if the
reflection of body motion by the HMD is not synchro-
nized with the actual body motion, it may cause a sense
of discomfort and reduce the immersiveness of the VR
experience.

1) Interaction with VR Objects: VR objects not only
appear to be three-dimensional, but can also be actually
manipulated. Examples include playing a musical instrument
or a push-button switch. Here, the immersiveness of the VR
experience can be enhanced by providing not only a visual
3D effect, but also contextual information that one’s actions
affect the VR object.

E. Integration of Information Obtained in the Virtual World
and Past Experiences

Based on Figures 1 and Table I, we consider the perception
of a phenomenon in the real (R) or virtual (V) space as
follows. The chunk C; stored in the LTM is constructed from
the information group I¢""(¢) obtained from sensory organ
i (1 <4 < 5) in the past. Here, 4 refers to the five sensory
organs possessed by a person. Each IV () passes through the
attention filter F£"V(¢) via the sensory register. And at time ¢,
only the information obtained from a specific sensory organ
passes through. C; contains the information obtained from
each sensory organ as a set I(¢) and is denoted as C;(I(t)).
Here, I(t) is represented as follows:

I(t) = {I |FE™ ()1 (t), 1 < i < 5).

The information that has passed through the attention filter
is stored in the WM for a specific time 7%, and a set of
information I(t) is sent to the LTM at the same time or
with a time lag. In the LTM, C;(I(t)) is matched with
C;(I(t)) based on the information in I(t), and the closest or
matching C;(I(t)) is used as knowledge. The used knowledge
is overwritten in the LTM through the WM in the form that the
information in I(t) is enhanced. Here, we target two sensory
organs — visual and auditory. We consider how the information
flows through these three types of sensory organs in turn.

Suppose that at a certain time, a specific amount of in-
formation I¢"?(t) (1 <4 < 5) is received from the external
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environment. I (t) correspond to Information N in Figure 2.
Information N simultaneously activates several chunks. Al-
though the degree of chunk activation varies, F2""(¢)I¢™"(t)
is integrated into a single piece of information and sent to
the LTM. This difference, the integrated information Y™ (¢),
can be expressed using the integration operator GG as follows.
However, since G depends on the individual, it does not take
a unique form.

P9 (t) = G, g, FF™ (L7 (1), C5(1(1)))

For the sake of simplicity, we simply add the amount of
information and the degree of chunk activation as follows.

m n
GUt) =Y > FIT () C(I()) (1)
i
III. INFORMATION ACQUISITION AND ATTENTION
DIRECTION IN METAVERSE SPACE

If the cognitive framework described in Section Il is correct,
differences in sensory perception should be observed between
the real and virtual worlds. The following are examples of
what these differences in sensory perception might cause:

« Differences in memory quantity/quality:

Information easily memorized in the real world may be
difficult to contextualize in the virtual world, or vice
versa.

« Differences in reaction:

In the real world, even minor changes can trigger signifi-
cant reactions. Conversely, in the virtual world, reactions
may be difficult to elicit without substantial changes. Or
the opposite may occur.

We consider the differences in sensory perception is caused
by depending on the degree of matching within working
memory, described in Figure 1, namely the value of IV"(t).
We also consider 7°¥"(t) as the cognitive load incurred during
the integration of perceived similar information of past and
current, the greater the divergence between the two pieces of
information, the higher the load required to generate I°Y™(t).
To realize this divergence, this research sets the number of
objects in the virtual world as the excess or deficiency of inte-
gration targets for visual information, and the audio quality of
explanatory narration for specific objects as the difficulty level
of integration targets for auditory information. We confirm the
possibility of measuring the load on information integration
through the combination of these two factors. Based on the
above, we propose the following hypotheses regarding the
quality of visual and auditory information:

o Hypothesis 1: Different combinations of quality result in
different cognitive load for information integration, and
an optimal combination exists that provides the least load.

« Hypothesis 2: Consequently, differences are observed in
the memory of information perceived during activities in
a virtual world.

o Hypothesis 3: When the combination provides optimal
load, the perceived cognitive load is closer to that expe-
rienced in the real world, leading to a sense of immersion.
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In this study, we design experiments to gain insights into
Hypotheses 1 and 2 and verify their validity.

To verify this, one method involves recreating real-world
objects within a virtual world with appropriate explanations,
then conducting visual behavior analysis and memory depth
analysis using variables such as fixation time on the object
and depth of memory for the explanation. The experimental
method for this is described below.

A. The Configuration of the Target Virtual World and Exper-
imental Conditions

To conduct experiments testing hypotheses, it is necessary
to construct a virtual world and set the quality and quantity
of objects. In this study, to perform trend analysis for the
hypothesis, we designed the space as follows as a preliminary
experiment.

The virtual world is structured with sightseeing in mind.
Consequently, activities within the virtual world are as follows:

o Free exploration (primarily focused on acquiring visual
information)

« Discovery of distinctive objects (discovery through visual
information). We focuse on architectural structures.

« Receiving supplementary knowledge through explanatory
narration on architectural styles and structures (learning
involving auditory information).

The primary object is content featuring the construction of
shrines—people often seen but rarely understood in detail
in real world. A screenshot of the VR space used in the
experiment and the intensity condition waveform of the sound
source are shown in Figure 3.

The virtual world space was constructed using Unity. Within
the VR space, a shrine model and an explanatory audio track
about the shrine’s construction were placed. For the shrine’s
3D model, a commercially available standard architectural
style was used. However, since the focus was specifically
on learning architectural styles, decorative items that should
be placed inside were excluded. The commentary audio is
designed to play when the participant pushes the speaker icon.
The content consists of standard explanatory text combined
and read aloud by a automated voice, with only amplitude
adjustments made. However, for the lower quality setting,
a lowpass filter is applied to achieve telephone-like audio
quality. Three explanatory audio clips were prepared for each
shrine, with their auditory quality set to three varieties. For
the building exteriors, objects related to shrines—such as trees,
torii gates, and chozuya purification fountains—were placed to
enhance visual and contextual information, making it closer to
the real thing.

In this virtual world, each participant freely moves through
the space, exploring both inside and outside the shrine. They
memorize the space sometimes using only visual information,
sometimes only auditory information, and sometimes by in-
tegrating both types of information. Therefore, a recall test
for the memorized content can serve as an indicator of how
information acquired in various ways is expressed.
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For visual and auditory information, their quality was set
according to the conditions shown in Table II. For visual
information variations, three patterns were prepared:

o A simple plane with only a shrine (condition L),

o A simple plane with a shrine and related objects (trees,
torii gate, chozuya) which represents condition NV, and

o A shrine located within a forest, accompanied by a torii
gate and chozuya which represents condition R.

For auditory information variations, we prepared three pat-
terns:

e poor audio quality for the explanatory narration (with
lowpass filter for normal sound) which represents con-
dition L,

« standard commentary audio (default automated voice and
no customize) which represents condition N, and

« consistently high volume (amplifying power) which rep-
resents condition RR.

B. Experimental Procedure

The experiment was conducted as follows. The overall flow
is shown in Figure 4. The HMD used for the experiment was
the Meta Quest 2, and the Tobii Pro Glasses 3 were used for
eye tracking. Data acquired with the Tobii Pro Glasses 3 was
processed in Tobii Pro Labo to identify saccades, fixations,
and obtain gaze point coordinates. Furthermore, to mitigate
VR sickness, teleportation was adopted as the method of
movement within the VR space. Before the experiment began,
subjects were asked to answer questions regarding:

« Previous VR experience,
o Prior knowledge of architecture, and
o Prior knowledge of shrine construction.

Additionally, subjects were asked to answer several ques-
tions before the experiment began, including their knowledge
of shrines, learning experiences, and whether they had recently
visited a shrine. Sessions were conducted for each visual
condition, and at the end of viewing each session,

« Did you feel as if you were actually present there?

« Did you feel the VR world was so realistic that you forgot
the outside world?

« Did you feel like you were watching a video, or did you
feel like you were actually in the space?

They were asked to rate their responses on an eight-point scale.

After the questionnaire, participants were given a tutorial
and then experienced VR content with sensory information ap-
propriately altered. To measure participants’ gaze information,
they wore an HMD over an eye tracker while experiencing VR
content. Participants experienced one session consisting of an
audio playback task with three different auditory conditions
under the same visual condition, completing a total of three
sessions for different visual conditions. At the end of each
session, they answered questions about the content. After
completing the three sessions, a recall test was conducted.

In the recall test, a free-response section was included where
subjects were asked to write about what they remembered
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| |

Figure 3. VR content presented to participants. Visual conditions (V') are: (a) less (weak) stimulus (L), (b) normal stimulus (IN), (c) rich (strong)
stimulus (R). Audio conditions (A) are: (d) low quality (L), (e) normal quality (baseline), (NN)), and (f) rich quality (R).

TABLE II. VR content presentation stimulus change patterns.

conditionl : weak stimuli L

condition? : normal stimuli N

condition3 : strong stimuli R

Arrange a shrine, 47 trees, a torii
gate, and ground texture on a flat

Arrange a shrine, 75 trees, three-
dimensional terrain, grass, forii gates,

visual V' Only the shrine is placed on the flat
surface.
surface.
auditory A | A muffled sound quality like over the

phone, which apply a low-pass filter
to achive the situation.

Unadjusted audio.

a chozuya, and background on a flat
surface.

The volume is excessively loud,
which change amplitude to achive the
situation.

about the content and what they felt during the experience.
The questions were:

o Please freely write down what you remember about the
content.

o Please freely describe what you felt while experiencing
the VR content.

The free-response session had no time limit, and subjects were
permitted to write down as much information as they could
recall. A 3-minute break followed the free-response session,
during which subjects spent time with the HMD removed.

C. Experimental Conditions

The experimental conditions for visual and auditory in-
formation are as shown in Table II, with three variations
prepared for each. For variations in visual information, three
patterns were prepared: a simple plane with only a shrine, a
simple plane with a shrine and shrine-related objects (trees,
torii gate, chozuya), and a shrine located within a forest,
accompanied by a forii gate and chozuya. For variations in
auditory information, three patterns were prepared: a case with
poor audio quality for the explanatory narration, a case with

TABLE III. Average fixation time for each subject across combinations of
visual variety and auditory variety.

visual (V)
R N L
Sa | 2135 183.1 2255
R Sy, | 1591 1247 1723
Sc | 1446 1548
<
= Sa | 2100 7985 1902
S N Sy | 1985 164.6
§ Se | 190.2 1381 1011
e
Sa | 1902 208.8 193.5
L S, | 2088 173.0 171.6
Se | 1935 1156 1449

normal audio quality for the explanatory narration, and a case
with high volume for the explanatory narration. Examples of
scenes presenting each condition are shown in Figure 3.
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Figure 5. The result of free description in recall test.

D. Results (1) : Effect of Fixation Time and Visual/Auditory
Quality

We focused on three participants S,, Sp, S. whose recall
test results were particularly distinctive as a case study to
confirm the validity of this experiment. Among them, S, and
Sy both had almost no interest in architecture, while S. was
a graduate of an architecture department. The characteristics
of their respective descriptions were as follows.

e S, described information obtained within the virtual
world simply but faithfully, as seen in the rich class of
Figure 5,

e Sy described information obtained within the virtual
world solely through deformed drawings (poor class of
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Figure 5), and
e S, described information obtained within the virtual
world using both simple text and detailed drawings.

Table III shows the average fixation time for each participant
across visual and auditory condition combinations. The two
blank entries indicate missing data due to malfunction of
the auditory information presentation program. Although the
values varied considerably across subjects, several trends were
observed. When examining the (visual, auditory) conditions,
fixation times were generally longer for (R, N), (R, L), and
(L, L). Furthermore, for (N, R), fixation times tended to be
shorter overall.

Figure 6 shows a boxplot of fixation time for combinations
of manipulated perceptual information. In the figure, V' de-
notes visual, A denotes auditory, and L, N, R denote the
quality of each perceptual information as low/normal/high.
Figure 6(a) is a boxplot of fixation time for shots grouped
by visual quality on the left and auditory quality on the right.
Figure 6(b) is a boxplot of fixation time for shots segmented
by visual quality-auditory quality combinations.

Figure 6 shows as follows: First, the distribution of fixation
times for visual V' was slightly longer for the R condition, with
a median of approximately 120 ms; The distribution of fixation
times for auditory A was slightly longer for the L condition,
with a median of approximately 120 ms. These results suggest
that fixation times are longer when the perceptual information
condition is RV LA. Indeed, examining Figure 6(b) and con-
firming the median for RV LA in Figure 6(a), it was approxi-
mately 150 ms, a value clearly larger than the medians for the
V or A groups alone. Furthermore, both RV RA and NV LA
were around 120 ms, larger than the median for the V or A
single-stimulus groups. Considering the above, it is reasonable
to conclude that for the perceptual conditions RV LA, RV RA,
and NV LA in the shot, information integration takes longer
compared to a single perceptual condition.

To verify this, we conducted an analysis of vari-
ance (ANOVA) on the distribution of fixation times for the
independent variables visual variety and auditory variety.
First, a two-way ANOVA on the fixation times for three
participants revealed a weak tendency toward an interaction
effect (F(2,1201) = 2.258, p = 0.06). A weak tendency
was also observed for the main effect of auditory variety
(F(2,1201) = 2.414, p = 0.09). Next, focusing specifically
on participant S. who drew with particular precision in the
recall test, a two-way ANOVA was performed using only S.’s
data. No interaction was confirmed (F(2,402) = 1.65, p =
0.177), a significant main effect was observed for auditory
variety (F'(2,402) = 4.081, p = 0.018). Furthermore, mul-
tiple comparisons revealed a significant tendency for (visual
variety, auditory variety) = (N, R) and (L, N) (p = 0.087).

E. Result (3): Distribution of Shot Duration for Vi-
sual/Auditory Variety

Next, we discuss the pupil diameter changes during auditory
information listening for each of S,, Sy, and S.. Table IV
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Figure 6. Boxplot of fixation time for combinations of manipulated perceptual information. In the figure, V' denotes visual, A denotes auditory, and L, N, R
denote the quality of each perceptual information as low/normal/high.

TABLE IV. Auditory Experimental Conditions Results and Measurements in
Two-Second Time Period. The under number of each visual condition
represents lightness for each condition which calculated by Matlab.

\ Visual Condition

| L(166.98) N(129.14) R(122.99)
. L 0.196 0.341 0.172
2.8
£5 N 0.163 0.261 0.125
z8
QO
R 0.172 0.291 0.148

shows the APD during auditory information listening for each
visual variety.

The pupil diameter change was calculated as follows. First,
it is necessary to determine the baseline 7, for the pupil
diameter acquired simultaneously during gaze measurement,
which is obtained for each gaze (~20 [ms]). r, was set as the
average pupil diameter from 500 [ms] before the time ¢, of
entering the actual space after the tutorial in the experiment
until ¢4,. Using the pupil diameter 7,(¢) measured at time ¢,
7p 18 calculated as follows.

where n,,, represents the number of data observed r(t) from
tsq 10 tsq + At. We set At to 2000 [ms], which is considered
sufficient for the response to the presented stimuli to settle.

In Table IV, when visual condition is N, 7, shows a larger
value compared to the others. Particularly in (N, L), 7,
shows a large value. For (N, L), the value is nearly twice of
that of the other 7,’s. Furthermore, comparing 7, in auditory
condition, all variety of visual condition have large 7, when
auditory condition L.

F. Result (2): Distribution of Shot Duration for Vi-
sual/Auditory Variety

Next, we perform a preliminary analysis of fixation behavior
among participants. For participants’ fixation behavior, we
classified visual actions according to the conceptual diagram
shown in Figure 7. Participants’ eye movement behavior is
broadly categorized into saccades and fixations. Regarding
fixations, participants repeatedly make very short fixations to
acquire information from the target object. In this process, the
distribution of fixations that can occur can be categorized into
the following three types:

o Remaining stationary on a specific point of a specific
object for an extended period ((a) in Figure 7)

o Remaining stationary on the same object while shifting
gaze to several parts of it ((b) in Figure 7)

o Repeating very short stationary periods and saccades,
each time stationary on a different object ((c) in Figure 7)

We defined the three visual action classifications shown in
Figure 7 as “1 shot”, and examined the distribution of the
time t4p,,¢ required for each shot to reveal the distribution of
visual actions among participants. Table V shows the statistics
for this. A clear difference in trend is that the visual behavior
of S, differs significantly from that of S, and S;. For S,
the median ts,,; was (R, N, L) = (581, 621, 641) [ms],
approximately half the time compared to S, and Sj. Addi-
tionally, S, exhibited very small values for other metrics such
as Q1,Q2, @3, and IQR compared to the other groups.

IV. THE RELATIONSHIP BETWEEN THE VARIETY OF
PERCEPTUAL INFORMATION QUALITY COMBINATIONS
AND COGNITIVE LOAD

Based on the above results, we consider the relationship
between the combination of variety of perceptual information
quality and the cognitive load experienced by participants.
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Figure 7. Setting fixation variety. (a) represents a state of continuously fixating on the same object, (b) represents a state of continuously fixating on
different locations within the same object with saccades in between, and (c) represents a state of rapidly shifting gaze(short fixation) between different
objects with saccades in between.

TABLE V. Visual variety-individual shot distribution statistics for each participant.

Sa Sy Se
R N L R N L R N L
Q1 426.0 481.0 721.0 530.8 761.0 641.5 290.5 281.0 270.5
Q2 891.5 761.0 1323.0 1282.5 1683.0 1302.0 581.0 621.0 641.0
Q3 2083.3  1884.0 2124.0 2519.0 2424.0  4077.5 1202.0 1503.0  1542.5
average | 1505.3 14434  1810.7 2335.6 2215.8  2336.2 1133.6 1087.9  1264.0
stdev 1578.0 16989 1631.6 | 2929.2 2208.3 2246.6 1863.3 11324 14725
min 60.0 161.0 40.0 100.0 201.0 160.0 80.0 80.0 20.0
max 8556.0  9056.0 8055.0 | 13425.0 10800.0 9598.0 | 15729.0 5631.0 7434.0
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Figure 8. Relationship between the ratio of total fixation-saccadic time per memorized shot and the number of saccades per unit time.

TABLE VI. Summary of experimental results.

visual condition
L(++) N(=) R(-)
Fixation time N/A N/A N/A
- L ANOVA N/A N/A N/A
.S Tp + ++ +
=
g Fixation time ++ N/A ——
I N ANOVA * N/A  N/A
8 Tp + + -
3
2 Fixation time ++ —_ ++
R ANOVA N/A * N/A
Tp + + -

A. Relationship between Average Fixation Time, Information
Integration, and Cognitive Load

Characteristics of fixation time distributions across different
perceptual information qualities revealed a fundamental inter-
action effect dominated by auditory information. Furthermore,
fixation time statistics showed that combining visual and
auditory qualities tend to result in longer fixation durations
compared to single information quality varieties, relative to the
average fixation time for either visual or auditory quality alone.
This phenomenon is explained based on Figure 1 as follows.
In multimodal information processing, as depicted in Figure 1,
integrating Y™ (t) at the degree of matching requires search-

ing for objects within long-term memory that contain multiple
perceptual information types. In the example from Section III,
focusing on the quality of the input information (visual and
auditory), Table VI shows various results for the combination
of variety.

The main effect was observed for auditory information, so
we will examine each auditory information category.

First, for the auditory information condition L, there was no
significant trend in fixation time, while r, showed a tendency
toward dilation. This suggests complex information processing
is occurring due to the auditory information. Specifically,
(N, L) exhibited significant pupil dilation. If this auditory
condition is appropriate for the listener, it indicates cognitive
load arising from language processing.

Next, for auditory information with condition N, the ten-
dency differs depending on the visual condition. For (L, N),
pupil dilation occurred, while for (R, N), pupil constriction
occurred. Additionally, for (L, N), fixation time was longer,
while for (R, N), fixation time was shorter. From them, it
suggests that pupil response and fixation are linked. Therefore,
depending on the quality of visual information, the following
behavioral differences are expected:

o When quality is low, auditory information is obtained in
a state where nothing else is visible. To confirm which
part the explanation refers to, longer fixation times occur.
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Figure 9. Distribution of fixation activity time per subject. (a) and (b) represent subjects with no interest in architecture (Sq, Sp), () represents subjects
with interest in architecture (S¢.).

e Under the conditions of this study, excessively high
quality is approximately equivalent to having too much
visual information (objects). That is, obtaining auditory
information amidst numerous visual targets leads to un-
stable visual point, resulting in shorter fixation times. This
cognitive overload may explain the smaller 7, values.

Therefore, under the (N, N) condition, where a moderate
cognitive load is applied, the results suggest that the value of
7, may show a slight upward trend.

Next, the condition where auditory information was R also
had a very large effect on fixation time. Condition pair (N, R)
had very short fixation times, while the others had long ones.
Furthermore, the pupil response in condition pairs (L, R) and
(N, R) was somewhat large. This suggests that when visual
information is excessively scarce or abundant, longer fixations
may be maintained to integrate it with auditory information.
In our case, the origin of complexity is considered to stem
from the integration of auditory and visual information. On
the other hand, for condition pair (R, R), where there is
much to integrate, it is suggested that subjects may abandon
memory of what they saw and heard in the VR space, primarily
as a result of receiving excessive stimuli from visual/auditory
information.

B. Individual Differences in Eye-Movement Behavior

Due to individual differences in human behavior, we focus
on eye-movement behavior within the virtual world to perform
individual-level analysis. Figure 8 shows the total fixation time
- total saccadic time ratio and the average saccade frequency
per second for shots recalled in the recall test. Although
individual differences exist, a general trend shows a slight

increase in saccade frequency as visual information moves
from left to right. From the figure, the fixation-to-saccade ratio
per shot was generally around 0.4, and the saccade frequency
averaged approximately 8 to 10 saccades per second. We
consider this trend to show no significant variation.

Figure 9 shows the shot time distribution for each par-
ticipant. The number of shots for S, was (L, N, R) =
(87,50, 44), for S, it was (45, 50, 36), and for S, it was
(153, 106, 111). Looking at the distributions for S, and
Sp, while there are differences in peak locations and visual
conditions, they show distinct distributions for each condition.
Generally, the peak is around 500ms, but the shot distribution
extends relatively far up to about 1500ms. Additionally, there
is a second peak around 4000ms. This trend is particularly
pronounced when the visual condition is L.

In contrast, S, consistently changed shot scenes at similar
time intervals regardless of visual condition, showing no vari-
ation based on visual condition. On the other hand, during the
recall test, S. provided quite detailed descriptions regarding
drawing but used few verbal expressions.

This suggests that the way information is acquired in the
virtual world is significantly influenced by the participant’s
timing for selecting specific scenes—that is, the shots. Partic-
ipants like S., who possess an interest in architecture and are
skilled at information acquisition, extract shots at consistent
intervals regardless of visual appearance. They acquire a large
amount of information in relatively short, fragmented inter-
vals, enabling the extraction of detailed features. In contrast,
participants like S, and Sp, who lack interest in architecture
and are beginners in information acquisition, likely attempt
to gather as much information as possible in a single shot,
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Figure 10. The trends of estimated I°Y"™(¢) which are changed three perceptual information(visual, auditory, somatic) amplified in Virtual Reality space.

resulting in a more variable shot time distribution.

Specifically, focusing on S, and analyzing the details, when
the objects of interest were A, B, C, a tendency was frequently
observed where the fixation point would shift from the object
of interest to another object—such as A — B, A — C, or
B —C—before returning to the original location. This suggests
a connection to the findings of Kurihara et al. [10], who
demonstrated that temporarily shifting the fixation point away
and then returning it to the same location enhances memory
consolidation.

C. Perception in the Real/Virtual World

So far, we discussed that the impact of combining mul-
timodal perceptual information in virtual spaces on cognitive
load. Finally, we will mention what can be expected regarding
the relationship between perception and cognition in real and
virtual spaces. Figure 10 shows the trend of 7°Y™(t) when the
degrees to which visual, auditory, and somatic information are
emphasized in VR are varied. The solid red line in the figure
shows 7°¥"(t) when visual, auditory, and somatic information
are received in the real world. Here, we set j = 1,2. Both
visual and auditory information equal 1 for one, and 2 for the
other. The somatic information is set to 0.5 on one side and
0.3 on the other. The solid blue lines indicate the degree to
which the same information is distorted in VR.

Figure 10 (e) shows the duration of information obtained
from each sense. In contrast, Figures 10 (a)~(d) show the
degree of integrated information activation calculated by Equa-
tion (1). Figure 10 (a) shows the case where auditory is
multiplied by a factor of 2 and somatic by a factor of 0.5. For

t < 50, the VR space is slightly more chunk activated, but the
characteristics are almost same. However, at t > 50, when only
somatic information is perceived, the chunk activation in the
VR space is lower. In Figure 10 (b), the visual information
is markedly increased, while the somatic information is not
reproduced in the VR space. For t < 50, the activation of
chunk in the VR space is markedly increased, but at t > 50, the
somatic information is lost; Hence, there is no chunk activation
in the VR space. In Figure 10 (c), the somatic information
is lowered to 0.1 and the information is emphasized in the
form of visual<auditory. In particular, at ¢ > 50, the somatic
information is still present, but its effect is much smaller.
Figure 10 (d) is the case where the somatic information is
also doubled. Compared with Figures 10 (b) and (c), chunk
activation remains high at ¢ > 50.

The intensity of human sensation is expressed as a logarithm
according to Weber-Fechner’s Law. Therefore, as shown in
Figure 10, even if the difference in sensory information is
very slight, it suggests that the human senses can distinguish
this difference. The sense of “slightly different from the real
world” felt in VR content is thought to be caused by such slight
differences in sensory information. The sensory information
obtained in real space is not necessarily large, as shown in the
example in Section III. However, it is easy to understand that
these small differences lead to a sense of discomfort, which
in turn indicates a decrease in immersive perception.

In the present case, we only dealt with a very simple
integration of information. To advance our understanding of
human sensory perception and use knowledge in VR spaces,
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scholars should develop a new approach that uses operators
in Equation (1), such as Adaptive Control of Thought—
Rational (ACT-R) [11] and Model Human Processor with
Realtime Constraints (MHP/RT) [11] which incorporate Two
Minds, to integrate information in a cognitive architec-
ture [12][13][14].

V. CONCLUSION AND FUTURE WORK

To realize adaptive VR, we need to design deeper immersion
resulting from human interaction with real/VR spaces. As a
first step, this study describes a sensory-cognitive model for
VR spaces. Based on the described model, we analyzed how
information is acquired in a virtual world, focusing on visual
and auditory information, and how behavior changes when
conditions are altered, using results of recall test. The results
suggested that some malfunction occurs under conditions other
than (N, N). Furthermore, it suggested that the degree of
proficiency in acquiring information from space may influ-
ence eye-movement behavior and, consequently, the state of
memory. Connecting the two issues, multimodal information
and chunk activatin, we undertake the research qualitatively
and explain the phenomenon that can occur when one or
more types of information (visual, auditory, or somatic) is
overemphasized or surpressed in a VR space. Expressing
human sensory intensity as a logarithm according to Weber-
Fechner’s Law, we suggest that human senses can distinguish
differences in sensory information, even if the differences are
very slight. Considering these points, we are able to deepen
our understanding of how the VR space realizes the immersive
effect with impressive each other. Moreover, we are able
to design ‘“adaptive” immersive contents. In the future, it is
necessary to investigate in experiments whether the degree of
immersion felt by users changes when they experience VR
content by changing the degree of emphasis of each sensory
information. The metrics used to judge the degree of similarity
between the real and virtual worlds can be defined as the
overlap between the information held in the WM and the
information in the LTM that has been activated up to that
point in time. As the activation of information in the LTM
is considered to be reflected in biological information, future
experiments could be conducted using eye gaze and skin
resistance measurements and subjective evaluation by means
of questionnaires. Hysteresis can be considered based on the
impact of inputs from the environment on the memory of the
time series.
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Abstract—In many operational contexts, particularly those
that are safety-critical, it is imperative that human participants
maintain appropriate emotional conditions. Consequently, the
accurate recognition of these states is a central challenge in
modern research. While mainstream methods have utilized Pre-
trained Language Models (PLMs) for emotional understanding,
the emergence of Large Language Models (LLMs) like ChatGPT
offers new possibilities. This study investigates the underexplored
zero-shot capabilities of ChatGPT-4 for image-based emotion
analysis. We focus on its performance in classifying emotional va-
lence (positive vs. negative) and predicting its temporal evolution.
Our findings demonstrate that ChatGPT-4 can effectively forecast
changes in emotional states, surpassing expectations. Nonetheless,
we note deficiencies in its ability to accurately discern specific
negative emotions, highlighting a need for further refinement.
The study further introduces a hierarchical stochastic model to
formalize these emotional shifts, providing a theoretical bridge
between empirical LLM outputs and psychological stability
parameters.

Keywords-image emotion prediction; large language model;
ChatGPT4; zero-shot; markov chain; emotion stability parameter.

I. INTRODUCTION

Accurately interpreting human emotion is fundamental to
communication, enabling connection while revealing under-
lying mental states and intentions. For this reason, research
has increasingly focused on integrating emotional insight into
Al, from early human-computer dialogue systems [1][2] to
the advanced Large Language Models (LLMs) of today. The
arrival of models like ChatGPT [3] and Instruct-GPT [4] has
sparked immense interest in LLM-based emotion recogni-
tion, particularly for providing emotional support in personal,
clinical, and customer service settings. This study evaluates
how effectively the latest iteration, ChatGPT-4 [5], can infer
emotions from facial expressions alone.

The need for reliable emotion recognition is not merely
academic; it is critical for safety, mental health, and user
experience [6, 7]. Social stressors such as occupational strain,
perceived injustice, and relationship loss can precipitate signif-
icant harm [8, 9]. Tragic incidents, including suicidal ideation
linked to work demands [8], school shootings, road rage, and
even a depressed pilot’s attempt to shut down engines mid-
flight [9], underscore the urgent need for better technological
aids. Advanced emotion recognition and prediction systems
could offer critical support for safety and mental health
interventions [10].

2" Zhifei Xu
School of Science and Engineering
Chinese University of Hong Kong
Shenzhen, China
zhifeixul @link.cuhk.edu.cn

While neural networks have long enabled emotionally re-
sponsive generation [11], the nuanced linguistic competence of
modern LLMs like ChatGPT-4 has transformed conversational
Al Yet, the extent to which these systems can track or express
emotion, especially through non-textual data, remains underex-
plored. This research assesses the strengths and limitations of
ChatGPT-4 in multimodal emotion recognition and prediction
[12, 13, 14]. By leveraging its capabilities, we can also reduce
the human-rater bias often present in psychological studies,
thereby promoting fairness and ethically tailored interventions.

A. Related Work: From Static to Generative Approaches

Historically, emotion recognition has relied on static clas-
sification models, such as Convolutional Neural Networks
(CNNs) trained on fixed datasets like FER-2013 or AffectNet
[15]. These “discriminative” models are excellent at catego-
rizing a single frame but often fail to capture the temporal
fluidity of human emotion. They view emotion as a snapshot
rather than a process.

In contrast, Generative Al and LLMs offer a “generative”
approach. They can synthesize context, history, and multi-
modal cues (text + image) to infer not just the current state, but
the likely future state. However, the stochastic nature of LLMs
introduces variability. This necessitates a robust mathematical
framework to model that variability. Our work bridges this gap
by applying stochastic process theory—specifically Markovian
dynamics—to the output of generative models, providing a
rigorous structure to the fluid predictions of an LLM.

Our work is grounded in established theories of emotion.
These include categorical models, such as Ekman’s six uni-
versal emotions (joy, sadness, fear, anger, surprise, disgust)
[16] and Plutchik’s wheel of eight (joy, trust, fear, surprise,
sadness, disgust, anger, anticipation) [17], which posit a fixed
set of basic emotions. In contrast, dimensional models view
emotions along continuous axes of valence (positive/negative),
arousal (intensity), and dominance [18, 19].

B. Contribution and Relation to Prior Work

This manuscript represents a substantial extension of our
preliminary study presented at the BRAININFO 2025 confer-
ence [1]. While our initial work established the baseline fea-
sibility of using ChatGPT-4 for zero-shot emotion prediction
under hypothetical situations, the current study significantly
expands the theoretical framework, experimental scope, and
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comparative analysis. The specific contributions that distin-
guish this article from the conference version are as follows:

1) Hierarchical Stochastic Modeling: We upgrade the
mathematical framework from a standard Markov chain
to a hierarchical model. This includes the introduction of
a binary valence layer based on a Poisson process (Sec-
tion II-B), which mathematically links global emotional
volatility to categorical transitions.

2) Multimodal Dataset Expansion: Whereas [1] re-
lied exclusively on static facial expression datasets,
this study incorporates the Multimodal EmotionLines
Dataset (MELD). This allows us to evaluate the model’s
performance on complex scenarios involving dialogue
and sentiment-tagged utterances.

3) New Experimental Tasks: We introduce a new pre-
diction task involving emotion-conditioned sentences.
Unlike the situational prompts used in [1], this task tests
the model’s ability to predict emotional evolution based
on specific verbal cues (e.g., an angry utterance vs. a
surprised utterance).

4) Comparative Analysis: We provide a comprehensive
comparison between ChatGPT-4 and the Doubao (Tik-
Tok) Large Language Model, highlighting critical diver-
gences in how these models interpret negative emotional
states and zero-shot multimodal prompts.

Section II introduces the hierarchical stochastic model used
to formalise emotion shifts. Section III describes the datasets,
prompting protocol, and quantitative evaluation results. Sec-
tion IV discusses limitations, ethical considerations, and future
directions.

C. Problem Setting and Research Questions

We study zero-shot emotion inference where the model
receives (i) a facial image and (ii) an optional textual con-
tinuation (a scenario description or an emotion-conditioned
utterance), and must output both a current emotion label and
a plausible next emotion label. This differs from standard
facial-expression classification in two ways. First, the output
is inherently femporal (a transition rather than a single label).
Second, the “ground truth” for a hypothetical future emotion
is not directly observable; therefore, our evaluation separates
(a) recognition correctness (agreement with dataset labels
for the current frame) from (b) transition consistency under
controlled polarity cues (positive vs. negative situations) and
under utterances drawn from MELD-style emotion categories.

Accordingly, we structure the study around three research
questions:

« RQ1 (Recognition): When prompted with facial images
only, how reliably can ChatGPT-4 infer the dataset emo-
tion label, and how does performance differ between
positive vs. negative categories?

o RQ2 (Shift prediction): Given an initial facial emotion,
does the model predict transitions that are consistent with
the polarity of the subsequent situation/utterance (e.g.,
reward-like vs. breakup-like contexts), and where does it
fail?
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e RQ3 (Mechanism): Can a compact stochastic process
model (Poisson + Markov + persistence) explain the
empirical pattern that valence is often correct while fine-
grained negative categories are frequently confused?

These questions motivate our hierarchical model in Sec-
tion II and the prompting/evaluation protocol in Section III.

II. MATHEMATICAL MODEL

This section formalizes the stochastic model that we use to
describe the temporal evolution of emotions and to interpret
the empirical behaviour of ChatGPT-4 and Doubao in Sec-
tion III. The construction proceeds in three layers: (i) a binary
valence layer based on a Poisson process, (ii) a categorical
layer using an eight-state Markov chain, and (iii) a stability
layer with emotion-specific persistence parameters.

A. Notation

Table I summarises the main notation used in this section.

B. Binary valence model (Poisson switching)

At the coarsest level, we distinguish positive from negative
valence. Let

S(t) € {+1,-1} ()

denote the valence state at continuous time ¢, with S(0) = +1
indicating an initially positive state.

Valence switches are driven by a homogeneous Poisson
process N(¢) with rate A > 0. Each arrival of the process
flips the sign of S(t). If the number of arrivals in (0,¢] is
even, the valence remains positive; if it is odd, the valence is
negative.

Let p, = Pr{N(¢) = k} be the Poisson probabilities with
parameter At. The probability that valence is still positive at
time ¢, given that it started positive, is

Pr{S(t) =1|S(0) = 1} = po+pa+ps+--- = e~ cosh(\t).

2

Similarly, the probability that the state has flipped to negative
is

Pr{S(t) = —1| S(0) = 1} = e * sinh(\t). (3)

The parameter A therefore acts as a global emotional
volatility parameter: small A implies long-lasting valence (rare
switches), whereas large A\ produces rapid alternation between
positive and negative states.

1) Discrete-step interpretation and an explicit stay/flip
form: In many applications the model is queried at discrete
steps (e.g., turns in a dialogue or time bins of a fixed duration
At). Under Poisson-driven sign flips, the probability of staying
in the same valence over one step is

1 + 6—2)\Af,
Pr{S(t+A1) = (1)} = e cosh(AAY) = ———
4)
and the probability of a flip is
1— 6—2)\At
Pr{S(t+A1) # S(t)} = e simh(AA) = ———.
(5)
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TABLE I
MAIN NOTATION USED IN THE MODEL.

Symbol  Description
S(t) Valence state at continuous time ¢ (+1 = positive, —1 = negative)
N(t) Poisson process counting valence switches up to time ¢
A Global valence switching rate (Poisson intensity)
E Categorical emotion at discrete step ¢
E Emotion set {Joy, Trust, Surprise, Anticipation,

Sadness, Disgust, Anger, Fear}
Ey Positive emotions {Joy, Trust, Surprise, Anticipation}
E_ Negative emotions {Sadness, Disgust, Anger, Fear}
pi(t) Probability Pr{E; = E;} of emotion E; at step ¢
p(t) Column vector [p1(t),...,ps(t)] T
pi(t) Stability-adjusted probability of emotion E; at step ¢
i Stability parameter for emotion E; (smaller = more persistent)
P One-step transition probability from E; to £}

8 X 8 row-stochastic state transition matrix

These closed forms clarify how A controls volatility: for small

AAt, flips are rare; as AAt grows, the process approaches a

near-random alternation with stay probability ~ 1/2.
Moreover, if an empirical estimate Dgtoy, of the valence stay

probability over At is available, one may invert (4) to obtain
LI (2Pstay — 1),

2At
This provides a principled link between observed stability
(from repeated LLM trajectories) and the volatility parameter.

valid when pyiay > % (6)

C. Categorical extension: eight-emotion Markov chain
To represent which emotion is being expressed, we refine
the valence layer into eight categorical states,
E = {Joy, Trust, Surprise, Anticipation, @)
Sadness, Disgust, Anger, Fear}. )

We partition these into positive and negative subsets,
E. = {Joy, Trust, Surprise, Anticipation} 9)

E_ = {Sadness, Disgust, Anger, Fear} (10)

and define a simple valence map g : £ — {+1,—1} with
g(E;) =+1for E; € E{ and g(FE;) = —1for E; € E_.

Time is now indexed in discrete steps t € {0,1,2,...} (e.g.,
conversational turns or fixed-size time bins). Let E; denote the
emotion at step ¢, and define

pi(t) = Pr{E; = E;},

. 8
with Y7 pi(t) = 1.

The categorical dynamics follow an eight-state Markov
chain with transition matrix P:

p(t) = [p1(t),...,ps(t)]", (11)

8
Pj=Pr{Ey1=E;|E,=E}, Y P;j=1 Vi
=1

12)
Using the column-vector convention, the one-step update is

p(t) = Pp(t—1). (13)

1) Theoretical Implications: This hierarchical structure im-
plies that emotional stability is not uniform. The Poisson
layer dictates the “mood” (valence), while the Markov layer
dictates the specific “affect” (emotion). This aligns with psy-
chological appraisal theories where a general valence check
often precedes specific emotional labeling. In our experiments
with ChatGPT-4, we observe that the model often gets the
valence correct (Poisson layer) even when it confuses the
specific category (Markov layer), supporting the validity of
this hierarchical separation.

D. Stability and persistence parameters

To keep the model simple and interpretable, we group
emotions by polarity and assign

\ 0.2, E; € EL (more persistent positive emotions),
' 0.5, E; € E_ (more volatile negative emotions).

14

Given a current distribution p(t) = [pi(t),...,ps(t)]",

the probability that emotion F; stays the same at time ¢ is
modelled analogously to (2):

Piay,i(t) = pi(t) e Nt cosh(\;t). (15)

The complementary probability mass p;(t) —
sponds to transitions out of FE;.

We then redistribute this transition mass according to the
matrix P. Let Pj; be the probability of moving from E; to
E;. The stability-adjusted probability of emotion F; at time ¢
is

Piay,i(t) corre-

Pi(t) = Paayi(t) + > [pi(t) = Paay ()] Pyio  (16)
j#i
E. Constructing P from empirical transitions

The Markov transition matrix P can be interpreted in two
complementary ways. First, it can be treated as a theoretical
prior encoding psychologically plausible shifts (e.g., Surprise
— Joy under positive contexts). Second, it can be estimated
from model-generated trajectories to summarise how a partic-
ular LLM tends to “move” between emotion labels.
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Concretely, suppose we collect C;; counts of predicted one-
step transitions Iy = F; — E, 1 = F; across all prompts and
samples. A maximum-likelihood estimate is obtained by row-
normalising:

~ C;:
Pij==~—
Ek:I Cik
To avoid zero-probability artifacts (common when some transi-
tions are rarely observed), a simple additive smoothing scheme
can be used:

a7

pler__ Cijta

N St (Cin + @)

where a« > 0 acts like a symmetric Dirichlet prior and

guarantees a well-defined stochastic matrix. In Section III,

we primarily use P to (i) generate reference trajectories via

Algorithm 1 and (ii) interpret confusion patterns: large off-

diagonal mass from a negative emotion into Neutral/Joy-like

predictions is consistent with low specificity and reduced AUC
for that category.

(18)

F. Numerical Simulation Algorithm

To visualize the prediction process, we formalize the simu-
lation steps in Algorithm 1. This algorithm iteratively updates
the emotion state vector based on the Markov transition matrix
and stability adjustments defined above.

Algorithm 1: Emotion Evolution Simulation

Input: Initial state vector p(0), Transition Matrix P,
Stability parameters \;, Time horizon T'.

Output: Probability distributions p(¢) fort =1...7T.

fort=1to T do

// Step 1l: Standard Markov Update
p(t) « PTp(t - 1);
// Step 2: Calculate Persistence

for i =1 to 8 do

| Puay,i(t) < pi(t)e it cosh(\it);
end

// Step 3: Redistribute Mass
for i =1 to 8 do

‘ Pi(t) < Paay,i(t) + Zj;ﬁi[pj (t) —
end

// Step 4: Normalize and Store

p(t) « Norm(p(?));

Pray, i (1) Pji

end
return p(1...7)

This algorithmic approach ensures that for any given initial
emotion detected by the LLM, we can project a probabilistic
trajectory of how that emotion might decay or shift, providing
a benchmark to compare against the LLM’s own predictions.

G. Connection to ROC/AUC metrics and LLM experiments

The model above provides a conceptual bridge between
emotional stability and the classification metrics observed in
Section III. At the valence level, a larger global )\ or larger
negative-emotion \; produces more frequent sign flips and

International Journal on Advances in Life Sciences, vol 17 no 3&4, year 2025, http.//www.iariajournals.org/life_sciences/

greater overlap between positive and negative trajectories. In
classical detection theory, increased overlap translates into
lower AUC: the ROC curve moves closer to the diagonal.

Empirically, we observe that positive emotions (e.g., happi-
ness, surprise) achieve high accuracies and AUC values close
to 1, indicating stable, well-separated positive trajectories.
Negative emotions, especially disgust, exhibit lower accuracies
and smaller AUC, suggesting that their score distributions
overlap more with positive classes. This pattern is precisely
what the model predicts when negative emotions have larger
A; (more volatile, shorter dwell times).

III. EXPERIMENTAL DESIGN AND RESULTS

Understanding and predicting emotion is a major frontier
in conversational Al. By analyzing not just the words people
use, but also visual and auditory cues, we can forecast how
their feelings will shift throughout a dialogue.

A. Evaluation Metrics

To rigorously assess the model’s performance, we utilize
standard classification metrics derived from the confusion
matrix. Let TP be True Positives, TN be True Negatives,
F'P be False Positives, and F'IN be False Negatives.

e Accuracy: The proportion of total predictions that are
correct.

Accuracy = TP+ TN 19)
YT TPY{TN+FP+FN

« Sensitivity (Recall): The ability of the model to correctly
identify positive emotional states.

TP
P )
Sensitivity TPLFN (20)
o Specificity: The ability of the model to correctly identify

negative emotional states.

o TN
Specificity = TN+ FP 2D
Additionally, we calculate the Area Under the Receiver
Operating Characteristic Curve (AUC-ROC), which plots Sen-
sitivity against 1 — Specificity. An AUC of 0.5 represents
random guessing, while 1.0 represents perfect classification.
1) Uncertainty reporting: Point estimates can hide vari-
ability across samples and prompts. Where space permits, we
recommend reporting uncertainty via nonparametric bootstrap
confidence intervals. Specifically, we resample the evalua-
tion set with replacement, recompute Accuracy and AUC
for each resample, and report the 2.5/97.5 percentiles as a
95% interval. This is particularly important when comparing
models (ChatGPT-4 vs. Doubao) where differences may be
concentrated in a small subset of hard negative categories.

B. Emotion Recognition with different situations

For the experimental part, we chose three Data sets from
Kaggle which are Emotion Detection, Facial Expressions
Training Data, and Natural Human Face Images for Emotion
Recognition.
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TABLE 11

SAMPLE OF FOUR DIFFERENT SITUATIONS

Dataset

Question 1

Question 2

Question 3

Question 4

What is the emotion of
this person? If they are
about to be praised by
their boss or their
parents respectively,
what do you think their
emotions become?

If they were to be
criticized, what do you
think their emotions
would be?

If they were to receive
a $1,000 reward, what
do you think their
emotions would be?

If they were to break

up, what do you think

their emotions would
be?

What is the emotion of
this person? If they are
about to be praised by
their boss or their
parents respectively,
what do you think their
emotions become?

If they were to be
criticized, what do you
think their emotions
would be?

If they were to receive
a $1,000 reward, what
do you think their
emotions would be?

If they were to break

up, what do you think

their emotions would
be?

2

> -

What is the emotion of

this person? If they are

about to be praised by
their boss or their

If they were to be
criticized, what do you
think their emotions
would be?

If they were to receive
a $1,000 reward, what
do you think their
emotions would be?

If they were to break

up, what do you think

their emotions would
be?

parents respectively,
what do you think their
emotions become?

1) Label harmonisation across datasets and the eight-
state model: Different datasets use partially overlapping tax-
onomies. For consistent reporting, we focus on the shared
labels {anger, disgust, happiness, neutral, sadness, surprise}
for the six-way experiments. Our stochastic model uses an
eight-state affect set inspired by Plutchik; the mapping is
summarised in Table III. Neutral is treated as a separate
category in evaluation (not one of the eight affect states),
which is a common practical compromise when combining
categorical theories with “no strong affect” dataset labels.

2) Datasets: Emotion Dection This dataset is the same
as the FER-2013 [20] dataset. The collection features 35,685
grayscale images, each 48x48 pixels. The images have been
categorized by the creators into several emotions, namely
anger, disgust, fear, happiness, neutrality, sadness, and sur-
prise.

Facial Expression Training Data The AffectNet [21]
database, a substantial compilation of facial images annotated
with expressions, serves as the foundation for this dataset. To
adapt to typical memory constraints, image resolution is scaled
down to 96x96 pixels.

Natural Human Face Images for Emotion Recognition

This unique dataset is curated from the Internet, encompassing
more than 5,500 images manually labeled for eight emotional
expressions. Each image captures real human expressions in
grayscale format of 224x224 pixels.

3) Task Definition of Emotion Prediction with Four Situ-
ations: To assess ChatGPT-4’s capacity for predicting emo-
tional evolution, we performed a zero-shot prompting experi-
ment. We curated a dataset of images spanning six emotions
and provided the model with four unique situational prompts.

a) Prompt Engineering Strategy: Crucial to the repro-
ducibility of Large Language Model research is the structure of
the prompt. We utilized a zero-shot Chain-of-Thought (CoT)
style prompt to encourage the model to reason about the facial
features before predicting the emotional shift. The standard
prompt template used is shown below:

This structured approach minimizes parsing errors and stan-
dardizes the output for automated scoring.

4) LLM querying, output parsing, and scoring pipeline: A
practical challenge in LLM evaluation is that outputs are free-
form by default. To enable automated scoring, we enforce a
structured JSON output (Figure 1) and apply a strict parsing-
and-normalisation pipeline:
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TABLE III
LABEL HARMONISATION USED IN EXPERIMENTS AND MODELLING.

Source label Model state F; Valence g(+)

happiness / happy  Joy +1

surprise Surprise +1 (often valence-ambiguous in practice)
neutral (Neutral; evaluation-only) 0 (excluded from binary valence)

anger Anger -1

sadness / sad Sadness -1

disgust Disgust -1

System Prompt: You are an expert psychologist spe-

cializing in facial micro-expressions and emotional dy- Algorithm 2: Reproducible LLM evaluation pipeline.
namics. Input: Dataset D = {(2,,,yn)})_;, prompt set Q,
Input: [Image File] label map ¢(-), valence map g(-).

User Query: 1. Identify the current emotion shown in Output: Confusion matrices;

the image. 2. Consider the following scenario: [Insert Accuracy/Sensitivity/Specificity; AUC where
Scenario, e.g., “They receive a $1,000 reward”]. 3. applicable.

Based on the initial emotion and the scenario, predict foreach (z,,v,) € D do

the most likely subsequent emotional state. 4. Provide a foreach ¢ € Q do

confidence score (1-3) for your prediction. Query LLM with (image x,, prompt q) — raw
Output Format: JSON {current_emotion, text 7;

predicted_emotion, confidence} Parse 7 as JSON — (gCur, Xt ¢);

Normalise labels: § < ¢(9);

Update task-specific counters (six-way or
valence-only);

Store score ¢ for ROC/AUC when defined;

Figure 1. Zero-shot prompt template used for emotion prediction.

e Output normalisation: Map synonyms (e.g.,
“happy”—“happiness”) and enforce the label set in
Table III. If an output label is out-of-set, we map it to
the nearest valence-consistent category when possible;

end

end
Compute metrics from confusion matrices; compute
ROC/AUC from stored scores.

otherwise it is marked as invalid.

o Confidence as a score: The confidence field (1-3) is
treated as an ordinal score used for ROC/AUC where
applicable. If confidence is missing, a default mid-score
is assigned to avoid discarding samples.

« Binary valence evaluation: For valence-only tasks, Neu-

TABLE IV
RESULT OF FOUR DIFFERENT SITUATIONS

tral is excluded and we map labels to {_|_7 _} via Ta- Emotion Parameter | Positive Situation | Negative Situation
accuracy 68.30% 73.30%
ble IIL. Anger sensitivity NaN NaN
Algorithm 2 summarises the end-to-end evaluation proce- specificity 68.30% 73.30%
dure used to produce confusion matrices and ROC/AUC. Disgust Szflcs'f;icli’y 7?\';%% 8?\'12%%
Remark on undefined metrics (NaN). In some one-vs- specificity 7830% 35.00%
rest settings, the denominator of Sensitivity (I'P 4+ F'N) or accuracy 91.70% 83.30%
Specificity (I'N + FP) can be zero (e.g., if no samples of | Happiness Ze’e‘z‘gﬁy 9}\'127101\]% BiiiON%

. . . 1

a target class remain after filtering, or if the model never fccuracyy 36.70% $3.30%
predicts a class under a specific condition). In these cases Neutral sensitivity 86.70% 83.30%
the metric is mathematically undefined and we report NaN specificity 7?1301\{7 8(1)\188]0/
to avoid misleading values. Sad ;ﬁf;;iclfy NaNo NaND
5) Preliminary Results: Table IV reports ChatGPT-4’s pre- specificity 71.70% 80.00%
dictions of emotion evolution. For images initially labeled . accuracy 85.00% 90.00%
. . . . .. Surprise sensitivity 85.00% 90.00%
negative, accuracy in negative contexts was 79.4%; in positive specificity NaN NaN
contexts it was 72.8%. For images initially labeled positive, accuracy 72.80% 79.40%
accuracy was higher in positive than in negative contexts. Negative Sensig"?ty 75;(1;{7 73123{7
. . e . . specificity .80% 40%
Tbls ahgn.s.wnh intuition: .n.egatlve states are less .hkely to accuracy 37 30% 3560%
flip to positive under a positive context than to persist under Positive sensitivity 87.80% 85.60%
a negative one; similarly, positive states are more stable in specificity NaN NaN

positive contexts.
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Given safety considerations, we focus on anger, disgust, and
sadness. For negative starting emotions followed by positive
events (zero shot), the predictive precision ranks disgust,
sadness, anger, with FPR of 78.3%, 71.7% and 68.3%, respec-
tively. Anger appears most resistant to immediate improvement
under positive events, whereas disgust—being semantically
heterogeneous (e.g., dislike, contempt, displeasure)—shows
the highest apparent accuracy.

6) Analysis and Discussion: Two issues emerged during
evaluation. First, some dataset images diverge from common
real-world interpretations. Second, there is a policy mis-
match between ChatGPT-4’s open-ended descriptions and the
dataset’s labeling guidelines: for example, an image tagged as
“anger” in the dataset may be read as “sadness” or “confu-
sion” by the model. These observations imply two practical
paths. If strict adherence to the dataset taxonomy is not
required, performance can be improved via prompt refinement
(e.g., enumerating candidate emotions and contextual cues)
and human-in-the-loop review. If strict adherence is required,
prompt engineering alone is unlikely to suffice; supervised
fine-tuning is the more appropriate strategy.

C. Emotion Prediction with Different Categories of Emotional
Sentences

1) Dataset: In the second task, we added a dataset called
MELD [22]. MELD The Multimodal EmotionLines Dataset
(MELD) builds upon and enriches the original EmotionLines
dataset by incorporating additional modalities such as audio
and visual elements alongside text. MELD features over 1,400
dialogue sequences and 13,000 spoken exchanges drawn from
the “Friends” TV series.

2) Task Definition: Part Two mirrors Part One by using the
same image set, but augments each image with six emotion-
conditioned utterances. To assess cross-model diversity, we run
the identical protocol with the Doubao large language model
[23] and compare outputs.

3) Preliminary Results: Overall accuracy (highest—lowest)
is: happiness, surprise, neutral, anger, sadness, disgust. Within
the “positive” set, happiness is generally most accurate; the
main failure mode is a direct flip from happiness to anger,
which yields the lowest accuracy for that class. Surprise and
neutral track closely—consistent with ChatGPT-4’s descrip-
tions that treat both as valence-ambiguous. Among negative
emotions, disgust is hardest to judge, reflected in the highest
FPR (per the definition above) and the lowest accuracy. As in
earlier tasks, zero-shot prompts are often insufficient for fine-
grained negative labels: ChatGPT-4 reliably detects “negative”
vs. “positive,” but needs richer cues to distinguish specific
negative categories.

The comparison model shows similar trends. Table VII
contrasts accuracies for ChatGPT-4 and the Doubao LLM
[23]. Doubao is notably less accurate on negative emotions,
frequently defaulting to neutral or even (in zero-shot) mis-
classifying negatives as positive—patterns not observed with
ChatGPT-4. While ChatGPT-4 may still confuse specific neg-
ative types (e.g., disgust vs. anger), it typically identifies that
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the affect is negative, explaining its stronger performance on
emotion-evolution prediction.

Building on the earlier definitions, this section focuses on
the Empirical ROC Area. The empirical Area Under the Curve
(AUC) measures a model’s ability to distinguish positives
from negatives. From our data, sensitivities across the three
datasets are broadly similar except for prompts expressing
disgust. When the initial state varies, ChatGPT-4 finds disgust
hardest to identify—e.g., in positive contexts it may reinterpret
disgust as banter or a prank, reducing sensitivity. Specificity,
however, is consistently strong, especially when the initial
sentiment is positive, where predictions are nearly always
correct. Taken together with the ROC curves, these results
indicate that ChatGPT-4’s emotion-conditioned sentence pre-
dictions perform better than anticipated.

IV. DISCUSSION AND CONCLUSION
A. Ethical Considerations and Limitations

While the ability of LLMs to predict emotional states offers
significant benefits for empathetic human-computer interac-
tion, it raises substantial ethical concerns. First, reliance on
facial analysis for emotion detection has been criticized for po-
tential bias; systems often perform poorly on underrepresented
demographic groups if the training data is not diverse. In
our study, although we used diverse datasets (Natural Human
Faces), the underlying LLM’s training distribution remains
opaque.

Second, the “black box” nature of models like ChatGPT-
4 presents a challenge for clinical deployment. If a model
predicts a high risk of negative emotional spiraling (e.g.,
depressive states), the lack of explainability makes it difficult
for human practitioners to trust the output without verifica-
tion. Our Markov-based model attempts to mitigate this by
imposing a mathematical structure on the output, but the core
inference remains opaque.

Lastly, privacy is paramount. Real-time emotion tracking
implies constant surveillance of user expressions. Any imple-
mentation of such systems must adhere to strict data privacy
standards, ensuring that emotional data is processed locally
where possible and not stored without explicit consent.

B. Failure Mode Taxonomy and Practical Implications

Across both tasks, errors are not uniformly distributed; they
follow recurring patterns that are useful for both modelling
and deployment.

(1) Valence-correct but category-wrong. A common out-
come is that the model correctly predicts negative vs. positive
affect while confusing specific negative labels (e.g., Disgust
vs. Anger, or Disgust vs. Sadness). This directly supports the
hierarchical assumption in Section II: a coarse valence layer
can be stable even when fine-grained categorical boundaries
are blurred.

(2) Ambiguity between Neutral and Surprise. Surprise
is frequently treated as valence-ambiguous by the model,
especially when facial cues are subtle. In practice, these
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Dataset

TABLE V
EXAMPLE OF S1X DIFFERENT CATEGORIES EMOTIONAL SENTENCES.

Question 1 Question 2 Question 3 Question 4 Question 5 Question 6
What is the If the next If the next If the next If the next If the next
emotion of this sentence they sentence they sentence they sentence they sentence they
person? If the say is, “Say it say is, “Guess say is, “Great. say is, “Yeah but say is, “Look

next thing they
say is, “Well,
why don’t you
tell her to stop
being silly!”
What do you

louder, I don’t
think the guy in
the back heard
you!” What do
you think their
emotions will

what, I got an

audition!” What
do you think
their emotions
will become?

He’s doing great.

Don’t you worry
about him?”
What do you

think their
emotions will

we won’t be able
to like to get up
in the middle of
the night and
have those long
talks about our

what I got! Look
what I got! Can

you believe they
make these for
little people?”
What do you

next thing they
say is, “Well,
why don’t you
tell her to stop
being silly!”
What do you

louder, I don’t
think the guy in
the back heard
you!” What do
you think their
emotions will

what, I got an
audition!” What

do you think
their emotions
will become?

He’s doing great.
Don’t you worry
about him?”
What do you
think their
emotions will

we won’t be able
to like to get up
in the middle of
the night and
have those long
talks about our

think their become? become? feelings and the think their
emotions will future.” What do emotions will

become? you think their become?

emotions will
become?
o
-

:} What is the If the next If the next If the next If the next If the next
emotion of this sentence they sentence they sentence they sentence they sentence they
person? If the say is, “Say it say is, “Guess say is, “Great. say is, “Yeah but say is, “Look

what I got! Look
what I got! Can

you believe they
make these for
little people?”
What do you

think their become? become? feelings and the think their
emotions will future.” What do emotions will

become? you think their become?

emotions will
become?

What is the If the next If the next If the next If the next If the next
emotion of this sentence they sentence they sentence they sentence they sentence they
person? If the say is, “Say it say is, “Guess say is, “Great. say is, “Yeah but say is, “Look

next thing they
say is, “Well,
why don’t you
tell her to stop
being silly!”
What do you
think their
emotions will
become?

louder, I don’t
think the guy in
the back heard
you!” What do
you think their
emotions will
become?

what, I got an
audition!” What

do you think
their emotions
will become?

He’s doing great.
Don’t you worry
about him?”
What do you
think their
emotions will
become?

we won’t be able
to like to get up
in the middle of
the night and
have those long
talks about our
feelings and the
future.” What do
you think their
emotions will
become?

what I got! Look
what I got! Can
you believe they
make these for
little people?”
What do you
think their
emotions will
become?
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TABLE VI
RESULT OF SIX DIFFERENT CATEGORIES EMOTIONAL SENTENCES.
Emotion Anger disgust | Happiness | Neutral Sad Surprise
sentence | Sentence | sentence | Sentence | sentence | sentence
Anger 70.00% 86.70% 86.70% 86.70% 86.70% | 83.30%
Disgust 60.00% 70.00% 60.00% 56.70% 83.30% | 56.70%
Happiness | 70.00% 96.70% 100.00% 96.70% 96.70% 96.70%
Neutral 76.70% 86.70% 96.70% 96.70% 90.00% 90.00%
Sad 63.30% 76.70% 76.70% 76.70% 86.70% | 86.70%
Surprise 73.30% 86.70% 96.70% 96.70% 93.30% | 96.70%
TABLE VII
ACCURACY OF DIFFERENT LARGE LANGUAGE MODELS.
LLM Negative Emotion Accuracy | Positive Emotion Accuracy
ChatGPT 68.89% 80.56%
Doubao 26.11% 40%
TABLE VIII
RESULT OF DATASET FOR SIX DIFFERENT CATEGORIES EMOTIONAL SENTENCES
Dataset Parameter Anger Sentence Disgust Happiness Neutral Sad Sentence Surprise
Sentence Sentence Sentence Sentence
Accuracy 88.30% 53.30% 93.30% 90.00% 71.70% 91.70%
Emotion Sensitivity 83.30% 30.00% 96.70% 96.70% 70.00% 93.30%
Detection Specificity 93.30% 76.70% 90.00% 83.30% 73.30% 90.00%
Empiric ROC Area 0.989 0.837 0.997 0.994 0.92 0.993
Accuracy 81.70% 58.30% 93.30% 91.70% 78.30% 95.00%
Facial Sensitivity 83.30% 46.70% 100% 100% 83.30% 96.70%
Expression Specificity 80.00% 70.00% 86.70% 83.30% 73.30% 93.30%
Empiric ROC Area 0.967 0.84 1 1 0.956 0.998
Accuracy 73.30% 58.30% 93.30% 93.30% 79.70% 85.00%
Neutral Sensitivity 76.70% 50.00% 100% 100% 79.30% 100%
Human Specificity 70.00% 66.70% 66.70% 86.70% 80.00% 70.00%
Empiric ROC Area 0.93 0.833 1 1 0.959 1

confusions can inflate six-way errors while leaving valence-
level performance relatively strong, depending on the mapping
used.

(3) Dataset-label vs. commonsense mismatch. Several
images in crowd-sourced datasets encode expression intensity,
pose, or occlusion patterns that do not align cleanly with
everyday interpretations. This produces “apparent errors” that
may actually reflect label noise. In safety-sensitive settings,
a conservative design choice is to prioritise reliable detection
of negative valence over precise negative subtyping, and then
escalate ambiguous cases to human review.

(4) Prompt sensitivity. The same image can yield differ-
ent predicted transitions under small variations in wording,
especially for negative emotions. This motivates the use of
structured prompts (Figure 1), explicit candidate label sets,
and (when feasible) repeated trials with aggregation to reduce
variance.

C. Future Work

Our evaluation relies on static inputs (single images or
texts), whereas real emotions evolve during interaction. With-

out real-time feedback to update predictions, immediate ap-
plicability to adaptive systems (e.g., conversational agents or
monitoring tools) is limited. Although we center on ChatGPT-
4 for image-based emotion recognition, future comparisons
with other LLMs (e.g., Claude 3) and real-world trials are
needed to assess robustness and generalizability. Improving
transparency and accuracy may involve prompt refinement
or supervised fine-tuning. Because responses are stochastic,
single-trial outputs can vary; repeated runs with fixed seeds
and averaged results would provide more reliable estimates
and reduce variance-driven bias. Finally, judgments based
solely on perceived emotional shifts can introduce labeling
bias; careful protocol design and human review remain im-
portant.

We examined ChatGPT-4’s zero-shot performance on
image—text emotion interpretation and compared it with the
Doubao model. ChatGPT-4 generally achieves higher accu-
racy, though it can confuse specific negative categories (e.g.,
classifying disgust as sadness/depressive affect). Targeted
prompts and mental-health-aware guidance improve inference
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quality. Doubao underperforms ChatGPT-4 overall and, in
zero-shot settings, more often maps negative affect to neu-
tral or positive. For subjective tasks, we recommend prompt
templates with explicit emotion taxonomies and illustrative
exemplars; where strict adherence to dataset labels is required,
supervised fine-tuning is likely necessary to align outputs with
annotation guidelines. Finally, divergences between dataset
tags and real-world perceptions can introduce bias; comparing
human assessments with model outputs helps surface and
correct such mismatches.
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Abstract—Wearable technologies powered by artificial
intelligence (AI) can offer a non-invasive method to enhance
health monitoring. However, the implementation of such
wearable kinematic technologies among older adults with
cognitive impairment remains underexplored. This study aims
to evaluate the feasibility, usability, and acceptability of a
wearable ring sensor powered by Al in long-term care (LTC)
residents with and without dementia. A mixed-methods study

was conducted with ten LTC residents (five with dementia and
five without). Participants engaged in structured shoulder
mobility exercises while continuously wearing an Al-integrated
ring sensor for one day. Feasibility, usability, and acceptability
were assessed through various questionnaires. A post-study
focus group was conducted with 6 of the participants, followed
by reflexive thematic analysis to identify qualitative themes. No
significant differences in feasibility were found between groups
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for device usage adherence, exercise frequency and intensity.
Similarly, quantitative data revealed usability, and acceptability
did not significantly differ between dementia and non-dementia
participants. However, participants without dementia reported
a significantly more positive attitude toward the technology.
Thematic analysis identified three key themes: high ring
comfortability, low ring significance, and ease of use. The Al-
integrated wearable ring sensor was well accepted across
varying degrees of cognitive impairment, highlighting the non-
intrusive nature. Our findings suggest feasibility, usability, and
acceptability of the wearable ring device in a LTC setting.
Future research should explore its usability in a larger
population of individuals with varying cognitive impairment
and assess its clinical utility for movement monitoring in older
adults.

Keywords—Wearable Devices;  Artificial Intelligence;
Dementia; Feasibility; Aging; cognitive impairment, Remote
Movement Monitoring, Long Term care.

I. INTRODUCTION

This is an extended version of the paper published at AIVR
2025 [1]. The current manuscript presents data from the full
sample, allowing comparisons between individuals living
with and without dementia.

Dementia affects memory, thinking, behavior, and the
ability to perform daily activities. The World Health
Organization identifies dementia as a critical public health
and social care issue of the 21st century [2]. Currently, 35.6
million people worldwide live with dementia, and this
number is projected to double by 2030 and triple by 2050 [2],
[3]. Historically, people with dementia and cognitive
disabilities have been systematically excluded from geriatric
research, reflecting a broader pattern of ableism that has
marginalized individuals living with dementia [4]. However,
this paradigm has started to shift over the past decade, with
growing awareness of the importance of addressing these
biases and including diverse populations in health technology
research to promote equitable opportunities for access,
utilization, and benefits from technological advancements
[S1[6][7][8].

This shift toward inclusivity is especially significant in the
context of advancing technologies like wearable devices,
which have the potential to improve care for dementia
populations [9]. Advancements in kinematic technology,
such as accelerometers, GPS trackers, gyroscopes, and
motion detection tools integrated into mobile platforms,
present a cost-effective means to assess disease burden and
deliver personalized care [5]. Likewise, these innovative
kinematic technologies enable minimally invasive and real-
time monitoring for tailored delivery [9]. Wearable devices
(WDs), capable of continuously monitoring physiological
metrics in real-world settings such as a patient’s home (i.e.,
smartwatches), provide insights that surpass those of
traditional in-clinic assessments [10].

Wearable devices, including smart bracelets, rings, belts,
necklaces, glasses, watches, earphones, headbands, and
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clothing with built-in sensors, are generally used to measure
physiological parameters (e.g., heart rate, breathing rate, etc.)
or to monitor physical movement [9][11]. Wearable devices
for tracking physical movement such as range of motion, are
increasingly being used, especially for individuals with
neurological or musculoskeletal impairments [12]. These
wearable technologies support rehabilitation and address the
needs of aging populations, by providing real-time data
which informs strategies to help preserve mobility and daily
functioning in older adults [12]. Tracking upper body
movements can contribute to maintaining mobility and
activities of daily living (ADL) in older adults [13].

Various research on the use of wearable technologies for
monitoring movement, including upper body functioning, has
evolved alongside advancements in the field of kinematic
technology. Early studies focused on inertial measurement
unit (IMU)-based devices, accurately tracking shoulder joint
angles during ADLs [14][15]. With the introduction of
smartwatches in subsequent years, research expanded to
include wearable IMU-based devices, leveraging their ability
to monitor movements and assess rehabilitation progress in
real-life situations and over a longer period of time. Wearable
IMU-based devices are widely used to assist in tracking
movements, making them integral tools in health monitoring
[16]. Studies exploring the use of smartwatches using upper
extremity rehabilitation exercises measure shoulder function
indirectly [17]. Wearable technologies such as wearable rings
have emerged as a potential alternative. However, research
on the use of wearable rings has largely focused on other
health monitoring applications, such as measuring blood
pressure or tracking action-planning impairments [18][19].

Artificial intelligence (AI) is significantly changing
healthcare, offering innovative solutions for managing
dementia [20][21]. Al-driven tools, such as wearables,
assistive robots and telepresence systems, provide cognitive
support, medication reminders, and opportunities for social
interaction, improving both the well-being of patients and the
lives of their caregivers. These technologies have
demonstrated benefits, including reduced caregiver burden,
enhanced patient engagement, and improved mental health
[20].

Healthcare services for disease diagnosis and monitoring
are often expensive and limited in accuracy, driving interest
in wearable health technologies based on flexible electronics.
These devices offer benefits such as reduced costs, non-
invasive implementation, and real-time access to health data,
enabling personalized health monitoring through the accurate
measurement of physical and biochemical signals [22]. Al
algorithms enhance the functionality of these wearables,
analyzing movement patterns and enabling precise tracking
of motor activity, early intervention, and tailored care [20].
Al may improve data accuracy, with the potential to facilitate
real-time decision-making and promote inclusivity in
research through seamless and accessible monitoring [22].
Expanding on these advancements, Al-powered wearable
devices, such as a ring sensor designed to monitor shoulder
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movements, present a novel approach to supporting
individuals with dementia. However, the feasibility,
usability, and acceptability of such Al-powered wearable
devices have not been extensively studied in older adults,
especially when considering individuals living with
dementia.

This study aims to assess the feasibility, usability, and
acceptability of a wearable ring powered with Al designed to
track upper body movements, comparing individuals with
and without dementia in a long-term care (LTC) facility. It
focuses on evaluating how well the device meets the specific
needs of both groups and identifying factors that influence its
usability and overall acceptance.

II. METHODS

A. Study Design

This pilot study employed an explanatory sequential
mixed methods to assess the feasibility, usability, and
acceptability of wearable sensor technology for older adults
in LTC facilities [23]. The initial phase involved using
quantitative methods to document feasibility, usability, and
acceptability. This provided information into the practicality
and potential success of the intervention. Following the
quantitative phase, qualitative methods, including a focus
group, were used to explore participants' experiences and the
factors influencing the adoption of the technology.

B. Participants

Participants were recruited from a LTC facility in a rural
area of Nova Scotia, Canada. Convenience sampling was
used to select 10 participants, ensuring variability in
functional abilities, cognitive function, and health status.
Older adults (aged 65 and above) residing in the LTC facility
were included if informed consent was obtained, either
directly from the resident or from their substitute decision-
maker when appropriate. Exclusion criteria included: 1)
significant mobility restrictions, or 2) medical conditions that
could interfere with sensor use. These conditions included
severe hand arthritis, hand tremors, Raynaud's disease, skin
conditions (such as dermatitis or eczema), and hand injuries
(previous hand injuries or surgeries). Participants with motor
impairments were excluded as it would limit their ability to
perform the upper body movements required for tracking,
preventing meaningful data collection. The potential for
discomfort or confusion from using the device could also lead
to distress, affecting participant well-being. For these
reasons, these individuals were excluded to ensure accurate
data collection and to prioritize participant comfort and
safety.

C. Intervention

Participants were asked to wear the Al-driven ring sensor
to monitor upper-body movements during the one-week
intervention period. The LTC facility site coordinator
provided instructions to participants to ensure proper use and
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maintenance of the device, supporting its functionality
throughout the study. Participants with dementia were
instructed to wear the sensor continuously for one day from
8:30 am until 3:30 pm. This approach was used to assess the
feasibility of continuous wearing of the ring device to
determine if participants could maintain wearing the device,
without removal. Participants without dementia were
instructed to wear the device only during exercise or
recreational activities and to remove the ring afterwards. This
contrasting protocol was implemented as part of a later phase
of the study aimed to explore capabilities of the ring device.
The site coordinator monitored the residents’ use of the
device and reviewed collected data daily to assess progress
and address any concerns. The intervention prioritized
accurate data collection while ensuring participant safety and
comfort.

D. Intervention

Each participant was provided with a ring device by XO
TECHNOLOGY®©, along with information regarding its use
[24]. However, the primary focus was on assessing the
feasibility, usability, and acceptability of wearing the ring, so
participants did not interact with the app themselves during
the study period. The XO HEALTH®O app, which displayed
details such as Participant ID, Start and End Period, Last Data
Sync, Average Wear Time, Device ID, and Device Status,
was installed on Android tablets running the Android
operating system or Apple iPads on iOS. A personal account
was created on the XO HEALTH platform for each
participant, enabling the device to collect and store data. The
software platform utilized Al algorithms and data collection
to monitor and analyze everyday shoulder movements. Data
collected includes the angle of shoulder flexion, extension,
abduction, adduction, internal rotation and external rotation,
along with the number of repetitions for each. The collected
data are processed by a neural network in order to classify
various types of daily activities and quantify the frequency
and intensity of these shoulder activities. Employing machine
learning techniques, the platform could identify anomalous
data points and deliver actionable insights, possibly enabling
early detection of potential issues and facilitating proactive
health risk mitigation. Further exploration into the ring device
capabilities will be addressed in a later phase of the study.

E. Quantitative Data Collection and Measures

Data collection was conducted from October 21st to 25th,
2024, by a research assistant, with support from the site
coordinator. Demographic information and cognitive status
were obtained from the participant’s medical record at the
start of the study visit. The demographic questionnaire
captured the age, gender, medical history, and functional
status of all participants. The Mini-Mental State Examination
(MMSE) was used to assess cognitive impairment [25].
Through a data-sharing agreement, the most recent MMSE
scores (i.e., within the last 6 months) were obtained for each
participant via their records at the LTC facility. For this
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study, “dementia” classification refers to participants with
MMSE scores consistent with up to moderate Alzheimer’s
disease, using a cutoff of <20, whereas “non-dementia”
refers to those scoring 221. These thresholds align with the
following ranges: normal cognition (=25), mild Alzheimer’s
disease (21-26), moderate Alzheimer's disease (10-20), and
moderately severe Alzheimer's disease (10-14) [25].
Feasibility was assessed by tracking adherence to device
usage and monitoring shoulder exercises between participant
groups via the observational checklist. These measures
allowed for an evaluation of the technical and operational
feasibility of the device by recording the time and exercises
performed. Usability and acceptability were documented
after completing the intervention using the Technology
Acceptance Questionnaire (TAQ), and the User Acceptance
Questionnaire (UAQ) [26], [27]. The TAQ consists of 12
items on a 7-point Likert Scale and focuses on both perceived
usefulness and perceived ease of use of the sensor. The UAQ
involves 26 items on a 6-point Likert scale, that
comprehensively assess acceptance based on a range of
questions about comfort, enjoyment, effort expectancy,
attitude toward technology, etc.

F. Qualitative Data Collection and Measures

Approximately one week after the intervention period
(November 5, 2024), participants who had completed the
intervention were invited to participate in a semi-structured
focus group conducted at the LTC facility with a trained staff
member. A focus group was used to foster interaction among
participants and encourage their expression of their
perceptions of the sensor. A research assistant joined the
focus group online using Zoom (Zoom Video
Communications Inc.) to facilitate participation, while the
site coordinator asked predetermined questions to prompt
discussion. Focus group questions were developed to explore
further comfort, benefits, concerns, and the impact on daily
activities (see Supplementary Material for the interview
guide). The research assistant transcribed and anonymized
the audio recordings of the focus group discussions on Zoom
using the qualitative software QSR NVivo 14.

G. Statistical Analysis: Quantitative Analysis

All questionnaire data were presented as mean and
standard deviation and initially assessed for normality using
the Kolmogorov-Smirnov test. Since the data did not follow
a normal distribution, comparisons between groups were
made using the Mann-Whitney U test. Categorical variables
were reported as absolute and relative frequencies, with
group differences analyzed using Fisher's exact test. All
statistical analyses were conducted with a 95% confidence
interval using SPSS (version 28.0); IBM Corp, Armonk, NY)
for Mac. Qualtrics data management system (Qualtrics
International Inc.) was used for data capture. These methods
were selected to ensure a robust analysis of differences
between dementia and non-dementia  participants,
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considering the small sample size and the distribution
characteristics of the data.

H. Statistical Analysis: Qualitative Analysis

The qualitative data was analyzed following the Braun
and Clarke (2019) reflexive thematic analysis methodology
[28]. Our approach followed a constructivist epistemology
and an experiential orientation, whereby the three authors
(HS, LY, MR) first read all transcripts to become familiar
with the full dataset. The authors engaged in reflexive
journaling and independently generated initial codes through
an approach driven mainly by a latent-coding perspective and
inductive analysis. Finally, themes were then generated and
refined through discussion among these authors. Our
reporting adheres to the Standards for Reporting Qualitative
Research (SRQR) guideline, previously done by O’Brien et
al. [29].

III.  RESULTS

There were no significant differences between participants
with dementia and those without dementia across several
characteristics, as illustrated in Table 1. In terms of cognitive
status, scores on the Mini-Mental State Examination ranged
from 5 to 30, with a mean score of 20.90 (SD £8.84). Both
groups had a similar biological sex distribution, with 80%
females and 20% males in each group.

TABLE 1: SOCIODEMOGRAPHIC CHARACTERISTICS OF PARTICIPANTS

Category Dementia Non- P-value
(n=5) Dementia
(n=5)
Gender
Women 4(80.0%) 4(80.0%) 1.000
Man 1(20.0%) 1(20.0%)
Ethnicity
White 5(100.0%) 5(100.0%) 1.000
Other 0(0.0%)  0(0.0%)

Highest Level of Education

High School or Equivalent 4 (80.0%) 4(80.0%) 1.000

Other 1(20.0%) 1(20.0%)

Age (Mean + SD) 78.60 81.60 0.917
+ 81.60 +80.10

Note. P<0.05 indicated statistical significance based on the Mann-Whitney test (mean+SD) or Fisher’s
exact text (n,%).

Regarding participation in recreational activities involving
shoulder exercises, 100% of non-dementia participants and
80% of dementia participants were involved. The majority of
participants in both groups reported no shoulder pain or
discomfort with the device (see Table 2). Overall, the lack of
significant differences in these variables suggests that they
did not influence the comparison between dementia and non-
dementia participants in this study. The participants did not
report adverse events.
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TABLE 2: RING WEARING CHARACTERISTICS FOR PARTICIPANTS

Category Dementia Non-Dementia P-
(n=5) (n=5) value

Duration (in seconds) 1703.00 1025.00 0.251
+ 348.00 + 348.00

Engaged in Recreational Activities

Involving Shoulder Exercises?

No 0 (0.0%) 1 (20.0%) 1.000

Yes 5(100.0%) 4 (80.0%)

Expressed Shoulder Pain Today?

No 4 (80.0%) 5(100.0%) 1.000

Yes 1 (20.0%) 0(0.0%)

Expressed Discomfort with the

Device?

No 4 (80.0%) 5(100.0%) 1.000

Yes 1 (20.0%) 0(0.0%)

Note. P<0.05 indicated statistical significance based on the Mann-Whitney test (mean+SD) or Fisher’s
exact text (n,%).

A. Feasibility: Shoulder Exercises

The feasibility of the device was demonstrated, as no
residents removed or requested to remove the ring during the
intervention period. However, an issue arose when the ring
sensor size was too large for one participant, causing it to fall
off. For most shoulder exercises, no significant differences
were observed between the two groups (see Table 3).

TABLE 3: COMPARISON OF SHOULDER RANGE OF MOTION EXERCISES
BETWEEN PARTICIPANTS

Type of Shoulder Range of Dementia Non-Dementia P-
Motion (n=5) (n=5) value
Shoulder Flexion — Number of Sets  1.33 + 1.67 1.67+1.50 0.796
Shoulder Flexion — Number of 10.00£9.00 9.00+£9.56 0.699
Repetitions per Set

Shoulder Extension — Number of 1.00 + 1.33 1.33+1.17 1.000
Sets

Shoulder Extension — Number of 5.00+750 7.50+6.11 0.519
Repetitions per Set

Shoulder Abduction — Number of 1.67+1.33 1.33£1.50 0.796
Sets

Shoulder Abduction — Number of  8.00+£6.50  6.50+7.33  0.502
Repetitions per Set

Shoulder Internal Rotation — 1.33+1.00 1.00£1.17 0317
Number of Sets

Shoulder Internal Rotation — 8.60£5.00 5.00+725 0.055
Number of Repetitions per Set

Shoulder External Rotation — 1.33+1.00 1.00£1.17 0317
Number of Sets

Shoulder External Rotation — 6.60 £ 5.00 5.00£6.00 0.121

Number of Repetitions per Set

Note. P<0.05 indicated statistical significance based on the Mann-Whitney test (mean+SD) or Fisher’s
exact text (n,%).

Specifically, the number of sets and repetitions for
shoulder flexion, extension, abduction, and external rotation
showed no significant variation, with p-values ranging from
0.317 to 0.796. However, the number of repetitions for
shoulder internal rotation approached significance, with a p-
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value of 0.055, suggesting a potential trend where
participants with dementia performed slightly more
repetitions than those without dementia. Despite this, none of
the differences reached the standard threshold for statistical
significance (p<0.05), indicating that overall, the frequency
and intensity of shoulder exercises were similar between the
two groups

B. Usability and Acceptability

Overall, for usability, the results of the UAQ (see Table 4)
indicate that there were no significant differences between
the two groups for the total score and most of the questions
(p > 0.05). However, one notable exception was found in
UAQ 6 (attitude towards technology), where participants
with dementia reported a significantly more positive attitude
(p = 0.018). These findings suggest that while there may be
minor variations in specific areas, the overall technology
acceptance and user experience were similar between
participants with and without dementia.

TABLE 4: COMPARISON OF THE USER ACCEPTANCE QUESTIONNAIRE
BETWEEN PARTICIPANTS

Type of Shoulder Range of Motion Dementia Non- P-
(n=5) Dementia  value
(n=5)

UAQ _I: Ease of use

UAQ_2: Usefulness
UAQ _3: Perceived usefulness

4.60+4.75 4.75+4.67 0.524

5.40+£4.25 4.25+4.89 0.602
3.80+£2.75 2.75+3.33 0.197
UAQ_4: Likelihood of usage 2.80+2.50 2.50+2.67 0.897
UAQ_5: Interction satisfaction 4.40+4.00 4.00+4.22 0.107
UAQ_6: Attitude toward technology 4.80 +=3.50 3.50 +4.22 0.018*
UAQ_7: Interest in future use 240+1.75 1.75+2.11 0.618
UAQ_8: Overall satisfaction 2.00+1.75 1.75+1.89 0.694
UAQ _9: Perceived value 1.60+£2.50 2.50+2.00 0.530
UAQ_10: Intention to continue use 2.60+2.75 2.75+2.67 0.700
UAQ_11: Likelihood of recommending 3.00+1.00 1.00+2.11 0.121
UAQ_12: Use in future 3.00+£3.25 3.25+3.11 0.694
UAQ_13: Usefulness in daily life 2.60+1.75 1.75+2.22 0.521
UAQ_14: Impact on quality of life 240+3.75 3.75+3.00 0.258
UAQ_15: Technology frustration 1.20+£2.25 225+ 1.67 0.302
UAQ _16: Engagement with technology 2.60+2.00 2.00+2.33 0.706
UAQ_17: Comfort using the technology 4.80 +£4.25 4.25+4.56 1.000
440+4.75 475+4.56 0.893
520+£525 5.25+5.22 1.000
1.60+2.25 2.25+1.89 0.434
4.00+4.75 4.75+4.33 1.000

UAQ_18: Willingness to recommend
UAQ 19: Ease of learning technology
UAQ _20: Ability of troubleshoot

UAQ_21: Overall technology
confidence

UAQ_22: Understanding of technology 3.00+3.00 3.00+3.00 1.000
features

UAQ_23: Motivation to use technology 3.00+£2.25 2.25+2.67 0.455
UAQ_24: Technology fits with needs ~ 4.80 £5.00 5.00+4.89 0.418
UAQ_25: Satisfaction with technology 4.00 +£4.25 4.25+4.11 0.500
design

UAQ _26: Frequency of use
Total UAQ Score

3.80+2.50 2.50+3.22 0.266
87.80 + 66.20 £ 0.465
66.20 77.00

Note. P<0.05 indicated statistical significance based on the Mann-Whitney test (mean+SD) or Fisher’s
exact text (n,%).
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For acceptability, there were no significant differences
between dementia and non-dementia participants for most of
the TAQ items. For example, the ratings on the ease of use
(TAQ 1), wusefulness (TAQ 2), perceived usefulness
(TAQ _3), and other items like interest in future use (TAQ _7)
and overall satisfaction (TAQ_8) showed no significant
differences between the two groups. Some items had slightly
higher or lower scores in one group compared to the other,
however, these differences did not reach statistical
significance. For instance, participants with dementia rated
"ease of use" and "likelihood of usage" slightly higher than
those without dementia, but the p-values (0.197 and 0.193,
respectively) indicated that these differences were not
statistically significant. The overall total TAQ score was also
not significantly different between the two groups, with a p-
value of 0.251. This suggests that, despite minor variations in
individual responses, the overall technology acceptance
between participants with and without dementia was similar.

C. Participant Experiences

The focus group comprised six participants, with a mean
age of 78.5 years (SD %£10.97). In terms of gender identity,
66.7% identified as women (n=4), and 33.3% identified as
men (n=2). All participants (100%) identified as Caucasian.
The qualitative analysis yielded 3 themes (see Figure 1). No
privacy or security concerns were raised during the focus
group. Only one participant identified having prior
experience with using a wearable device for health or fitness
monitoring.

Theme 1: { Theme 3: \
High Rln? ( Low Ring ]

\ Impact

'\ Comfortability |

Figure 1. Schematic summary of themes derived from the qualitative analysis.

Theme 1: High Ring Comfortability

A crucial part of using wearable devices is how
comfortable they are for the individual wearing them. A
major factor contributing to the comfort of the ring device is
its familiarity with the participants. “I mean, I've had a ring
on my finger for years, I just put it on top of this one (P1).”
Many participants said that the device's design closely
resembled that of a conventional ring they were used to
wearing in everyday life. This resemblance made the device
non-intrusive while also allowing participants to adjust to
wearing it quickly. While some participants expressed
worries about swelling, it did not appear to influence general
comfort. Many participants expressed “It didn’t bother me, 1
was comfortable with it (P2).” However, size difficulties did
arise. One individual stated that the ring felt uncomfortable
since it was too large for their finger, pointing out the need to
make size adjustments for the best fit.
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Theme 2: Low Ring Significance

A theme that participants consistently demonstrated
was a perceived low ring significance. One participant noted,
“I couldn’t see any difference when I had it on (P3)”,
underscoring the lack of discerned impact and benefit from
the ring. Additionally, participant 2 stated, “Think I need
more information on it,” when asked how important having
a ring to track their shoulder movements and exercises was to
them. This statement demonstrates a recurring trend among
respondents, as many did not feel they had sufficient
information to decide if the ring made a personal difference.
Furthermore, several individuals involved in the focus group
expressed that they felt the ring had low significance in their
lives, as they did not notice a tangible difference after using
it. Participant 1 reported, “I didn’t even really know what the
ring was going to do and what we were supposed to do”,
illustrating that multiple participants were under the
impression it would provide observable results after
completion of the study.

Theme 3: Ease of use

The final emerging theme centered on the ease of use of
the ring sensor in participants' daily lives. Several individuals
reported that they often forgot they were wearing the ring,
which enhanced their confidence and comfort in moving
through daily routines without feeling as though they were
part of a study. “It was very easy. You can wash with it on
and shower. Go outside. And it's perfect for me”. Participants
were able to complete daily activities like exercising,
showering, and recreational activities without any
interruption from the ring. Participant 8 explained; “/ don't
feel it had any real impact. [ used it for most things.” Overall,
the ring did not have any negative outcome on participants.

IV. DISCUSSION

This mixed-methods study assessed the usability and
acceptance of an Al-powered wearable ring sensor designed
to track upper body movements. This study introduces the
novelty of assessing a wearable ring device among
individuals with dementia compared to those without, whilst
evaluating feasibility, usability, and acceptability. We
evaluated how well the device met the specific needs of
individuals with and without dementia in a LTC facility. We
identified factors that influence its overall usability and
acceptance. No significant differences were observed in
shoulder exercises between the two groups based on the
frequency or intensity of the exercises. Similarly, there were
no significant differences in the total scores from the
technology acceptance or user acceptance questionnaires.
However, when examining the specific questions, attitudes
towards technology significantly differed, whereas
participants with dementia reported a more positive attitude.
Prior literature has identified motivation and positive
attitudes as key factors when implementing new technologies
for older adults [30]. Furthermore, positive attitudes toward
active aging have been found to influence learning and
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technical skills associated with the implementation of new
devices in older adults [31][32]. Recognizing positive
attitudes and motivation among participants can be a strength
to build on, enhancing feasibility and engagement with
wearable technologies.

Prioritizing the assessment of feasibility, usability, and
acceptability provides a necessary foundation for the
successful integration of new technologies into healthcare
and rehabilitation for the aging population. Even if a device
demonstrates strong technical performance in later stages, it
will not be adopted if it is not considered acceptable to users,
practical to implement, or easy to use across diverse
populations. Focusing first on these dimensions allows
researchers to identify barriers to adoption, cultural or
contextual concerns, and potential design improvements that
enhance user experience. These outcomes ensure that future
research builds on a device that is not only technically
promising but also aligned with the lived experiences and
needs of its intended users. Understanding differences in
adoption and usability between these groups is crucial, as
cognitive and functional impairments may influence the
device's practicality.

Feasibility, usability, and acceptability were also
demonstrated in participant experiences, with three emerging
main themes, 1) high ring comfortability, 2) low ring
significance, and 3) low ring impact. By integrating both
quantitative and qualitative results, this approach enhances
the potential for real-world application and informs future
advancements in wearable health technologies tailored to
individuals with varying cognitive abilities.

Regarding feasibility, both dementia and non-dementia
participants wore the ring sensor without removing the
device. While the outcomes of this study indicate the high
feasibility of implementing such a device among LTC
residents, there is still room for improvement regarding the
communication of study expectations and end goals between
researchers and participants. Based on focus group feedback,
it is evident that participant understanding would have been
greatly improved had they received more information on the
ring’s function, as confusion on this front was the primary
reported concern. Although the authors note moderate
cognitive impairment in this population could contribute to a
misunderstanding of the details of the ring sensor, future
research should better target digital literacy in older adults
[33][34](35]. Nonetheless, the findings indicate that the
wearable ring device is a feasible technology for individuals
with cognitive impairment, including dementia [1]. Even in
the absence of full understanding, passive compliance was
maintained, whereby participants still displayed a high
willingness to wear the device. These results align with
findings reported by Rocha et al., affirming the use of
wearable ring devices in older adult populations [9].

Individuals with dementia frequently have cognitive
impairment, which might restrict their ability to utilize and
accept wearable technology. As a result, while developing
such devices, it is critical to prioritize aspects such as ease of
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use, adaptability, and intuitiveness [5]. In this study, these
core aspects were integrated into the ring’s design, which
significantly enhanced the acceptability of the technology. In
this population, individuals often remove or avoid using
devices that feel out of place or obtrusive [5][9]. The
participants were so comfortable with the ring that after
putting it on, they were unaware of wearing it throughout the
day. The ability to put the ring on the finger and monitor
movements without needing constant adjustments makes the
technology highly beneficial in this population. Such
simplicity reduces the cognitive load, ensuring that the user
does not feel overwhelmed or frustrated [5]. These aspects
enhance user acceptability and support sustained use of the
device among individuals with dementia.

These findings have important implications for
telerehabilitation, particularly for older adults in rural, remote
and underserved settings where in-person monitoring is
limited. Evidence from recent rapid reviews supports the
feasibility and effectiveness of wearable and sensor-based
monitoring in delivering remote rehabilitation to populations
with limited access to in-person care [36]. The high comfort
and acceptability of the Al-powered ring among residents
with varying cognitive abilities suggest that similar wearable
technologies could be integrated into remote rehabilitation
programs to support continuous, unobtrusive movement
monitoring. Such integration would enable clinicians to
receive real-time data on upper limb mobility without
requiring complex user interaction, addressing barriers
related to geography, mobility limitations, and cognitive
impairment, and thereby promoting equity in access to
rehabilitation services. From an ethical perspective, the
deployment of Al-powered wearables in these contexts must
ensure that data collection, storage, and use respect privacy,
autonomy, and informed consent, particularly for individuals
with cognitive impairment, while also avoiding the risk of
exacerbating digital health inequities [37].

A. Limitations and Future Directions

This study had some limitations that should be
acknowledged when interpreting the results. First,
individuals with significant mobility restrictions or medical
conditions that could interfere with sensor use, such as severe
hand arthritis, hand tremors, Raynaud's disease, skin
conditions, or previous hand injuries, were excluded. These
exclusions were made to ensure the accuracy and reliability
of data collection, as these conditions could compromise
participants' ability to use the wearable ring effectively or
lead to discomfort and distress. As a result, the study's
findings may not fully represent the experiences of
individuals with more advanced physical impairments,
limiting the generalizability of the results to a broader
population of people with dementia. Additionally, a key
limitation of the study was the lack of data from the wearable
ring's app and sensor outputs. Although this data would have
enhanced the study by offering insights into the device's
effectiveness, this study focused on evaluating user
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experience, comfort, and acceptance of wearing the ring
device. Validation of the Al-driven functionalities of the ring
device, including Al accuracy, kinematic data reliability and
user interactions with the app interface, will be examined in
future work. The ring wearing protocol was intentionally
designed to explore device capabilities in terms of continuous
versus fragmented use of the ring. The dementia group
partook in sustained ring use, to assess feasibility, given the
potential challenges with adherence. However, we
acknowledge that this difference in the ring wearing protocol
limits direct group comparisons and therefore should be
interpreted cautiously. Finally, as a pilot feasibility study, the
small sample size limits statistical power and
generalizability; therefore, the findings should be interpreted
as preliminary. Future studies should consider a larger sample
size of individuals with varying cognitive disabilities to
assess how wearable technology can be adapted for their
needs, including the use of wearable technology interfaces
(i.e., applications). This would expand the generalizability of
findings and better address the diverse experiences of people
living with dementia. The limitations related to the missing
data and exclusion criteria are important to consider but do
not detract from the study's contribution to understanding the
practical application of wearable technology in dementia
care. Furthermore, while this pilot study focused primarily on
the feasibility of ring wearability, future work should explore
the integration of Al to enhance dementia monitoring
capabilities more in depth. Although AI was not directly
applied to this study, its potential in wearable data could
significantly improve personalized intervention strategies.

V. CONCLUSIONS

This study evaluated the feasibility, usability, and
acceptability of an Al-enhanced wearable ring for tracking
upper-body movements in participants with and without
dementia. No significant differences were observed between
the two groups in demographics, device-related adverse
events, or technology acceptance. Both groups reported
similar satisfaction with the device, highlighting its non-
intrusive nature and minimal impact on daily routines.
Integrating Al capabilities enhances the device's ability to
accurately track movement patterns and provide reliable data,
making it a valuable tool for real-time monitoring. Given the
small sample size, these findings should be interpreted as
exploratory, as this pilot study was designed to assess
feasibility rather than draw definitive conclusions about
group differences. In conclusion, the wearable device was
found to be acceptable for both groups. The study
underscores its potential for improving care delivery,
particularly in dementia care, by leveraging Al-driven data to
guide clinical decisions, monitor disease progression, and
personalize interventions in LTC facilities.
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Abstract—Falls among older adults are a major public health
concern due to their frequency, consequences and impact on
autonomy and mortality. The Risk Of Falling (ROF) is linked to
three dimensions: physical/organic, socio-environmental and
thymic/cognitive. Identifying individuals at high risk is essential
to implementing personalized prevention strategies. While fall
history is a well-known predictor, the integration of multi-
dimensional health data and interpretable machine learning

models may enhance prediction accuracy. We conducted a
retrospective analysis of 1,648 older adults who underwent a
Comprehensive Geriatric Assessment (CGA) at two time points.
Based on clinical, functional, cognitive and psychosocial
variables, we developed and compared four supervised
classification models: logistic regression, Support Vector
Machine (SVM), random forest and eXtreme Gradient Boosting
(XGBoost). Predictive performance was evaluated using Area
Under the receiver operating characteristic Curve (AUC), F1-
score and Brier score. SHapley Additive exPlanations (SHAP)
values were used to interpret variable contributions at the
individual level. XGBoost and random forest models
demonstrated the best performance (AUC = 0.76 and 0.77, F1-
score = 0.72 and 0.73, Brier score = 0.19 for both). SHAP
analysis confirmed that fall history was a strong predictor but
not the sole contributor to the model's decisions. Functional
limitations, low Activities of Daily Living (ADL) and low
Instrumental Activities of Daily Living (IADL), impaired
physical performance (low Short Physical Performance Battery
(SPPB)), pathological Single Leg Balance (SLB) and cognitive
scores (Mini-Mental State Examination (MMSE)) also played
substantial roles. Misclassified cases illustrated the importance
of multidimensional balance in the model's outputs. Our
findings support the use of interpretable machine learning
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models, particularly XGBoost, for personalized fall risk
prediction in older adults. Beyond fall history, a combination of
physical, cognitive and psychosocial variables contributes
meaningfully to risk estimation. Such models may help guide
targeted preventive interventions in geriatric practice, provided
operational complexity is managed to allow real-world clinical
integration.

Keywords-fall; older population; prevention; personalized
medicine; Al

L INTRODUCTION

This article is an extended version of the international
conference paper entitled “Enhancing Fall Prediction in
Older Adults: A Data-Driven Approach to Key Parameter
Selection” [1]. In this extended version, some models have
been upgraded by including dyslipidemia, a cardiovascular
factor, among the predictive variables for falls. However, we
retain XGBoost as our final model, since it remains one of the
most effective approaches for ensuring both high predictive
performance and interpretability in personalized prediction.

According to the World Health Organization (WHO),
older individuals are those aged > 60 years. The proportion of
older individuals worldwide is expected to nearly double
between 2015 and 2050, increasing from 12% to 22% [2]. The
National Institute of Statistics and Economic Studies (INSEE)
estimates that one in three individuals in France will be
aged > 60 years by 2060, compared to one in four individuals
in 2021 [3]. Aging leads to a gradual decline in functional
capacity, increasing the ROF [4]. Falls in older adults
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represent a major public health concern due to their high
frequency, their functional, psychological and economic
consequences, as well as their impact on mortality. In the
study by Tan etal. [5], falling was identified as one of the main
predictive factors integrated into a model designed to identify
long-term care patients at highest risk of death. Similarly,
Shaik et al. [6] highlighted that, in both older and younger
individuals, falls, along with bone pathologies, are among the
primary causes of hip fractures.

Fall prevention has always been a central focus in medical
practice, notably through clinical test batteries or by adjusting
specific functions according to identified predictive factors,
generally using linear regression models (LRMs), after
grouping patients based on shared health characteristics.
While traditional regression models have long been the
standard tool for analyzing risk factors, machine learning
methods now offer improved predictive performance by
accounting for complex interactions between variables.

We developed predictive models using as input data the
factors identified in various fall trajectories. The objective is
to evaluate whether these variables are sufficiently
discriminative to power an effective predictive model, among
all those tested and thereby contribute to a targeted and
personalized fall risk prevention strategy. Early identification
of ROF facilitates the administration of personalized
interventions for individuals [7].

Most recent studies predict falls using sensors or
Electronic Health Records (EHRs). With data collected
directly from elderly individuals’ homes, our objective is to
develop an effective predictive model using the fewest
possible features.

In this study, we evaluated and compared several
classification algorithms to predict fall risk based on clinical,
functional and psychosocial data collected from a CGA.
Model interpretability was ensured using SHAP values, in
order to facilitate clinical understanding of the results and to
precisely identify the factors that most contributed to the
prediction of fall risk.

II.  MATERIALS AND METHODS

A. Study Design

Our study is based on a dataset collected between
September 2011 and September 2023 through multiple home
visits conducted by the Unit for Prevention, Monitoring and
Analysis of Ageing (UPSAV — Unité de Prévention, de Suivi
et d'Analyse du Vieillissement) at Limoges University
Hospital, Limoges, France. The UPSAV team comprises
nurses, geriatricians and other healthcare professionals. Each
patient underwent an initial visit, followed by a second visit
six months later and a third visit one year after the second. If
the patient remains in the study after the third wisit,
subsequent visits occur annually. The study includes men and
women aged 60 and older. To be eligible, participants had to
meet the following criteria:

e Provide written informed consent, either personally

or through a legal representative.

International Journal on Advances in Life Sciences, vol 17 no 3&4, year 2025, http.//www.iariajournals.org/life_sciences/

e Not be enrolled in a clinical trial that modifies their
standard medical management.

e Not have progressive pathologies
significantly affect short-term prognosis.

e Notreside in a long-term care unit or a nursing home.

e Be covered by social security at 100%.

that could

B. Falls and Comprehensive Geriatric Assessment

During the Follow-up, a fall was defined as
unintentionally coming to rest on the ground or other lower
level not as a result of a major intrinsic event (e.g.,
myocardial infarction, stroke, or seizure) or an overwhelming
external hazard (e.g., hit by a vehicle) [8], [9]. Each patient
underwent a CGA and received a personalized care plan. The
CGA is a multidimensional and standardized approach
designed to enhance clinical practices in the care of older
adults through a comprehensive health assessment. CGA are
widely used to evaluate the physical, cognitive, social and
medical factors associated with fall risk in older adults [10].
Although they provide valuable clinical information, CGAs
often involve numerous variables and can be time-consuming
to administer and interpret, particularly in home care settings.
This highlights the growing need for efficient and scalable
tools that can help prevent falls without increasing the burden
on caregivers or patients.

Falls may occur repeatedly within a year. In geriatric
practice, individuals who experience at least two falls within
a 12-month period are classified as “fallers” [11].

A holistic fall prediction approach considers three key
dimensions:

e  The physical/organic dimension gathers data related
to an individual’s medical history and current
symptoms, diagnosis of underlying health issues and
treatment effectiveness.

e The thymic/cognitive dimension refers to an
individual’s mental, emotional and cognitive states.

e The socio-environmental dimension refers to age,
gender, family and social support, housing
conditions, home configuration, the presence of
slippery rugs, stairs without railings, uneven surfaces
and inadequate lighting.

Evaluating the ROF involves at least a gait and balance
assessment of the physical/organic dimension and the age and
gender of the socio-environmental dimension. Data involving
the thymic/cognitive dimension allow for a comprehensive
review of the potential causes of a fall. The term “dimension”
refers to the types of factors that contribute to the ROF and
their evaluation.

Hospitalized patients often receive incomplete health
assessments across all dimensions. Our home-collected data
encompass features from all three dimensions.

C. Data Collection and Variable Processing

Covariates included fall occurrences, cardiovascular risk
factors, socio-environmental characteristics and the CGA
summary. Fall occurrences refer to falls that occurred
between visits.
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Socio-environmental characteristics assessed in the home
included gender, age, lifestyle, housing conditions, presence
of an elevator, long-term illness status, leisure activities,
social activity, human assistance and pet ownership.

Cardiovascular  risk  factors  considered  were
hypertension, diabetes, dyslipidemia, obesity and tobacco
use.

The CGA summary encompassed multiple functional and
cognitive assessments, including:

e Verbal fluency test [12],

e Single Leg Balance (SLB) test, scored 0-60
seconds [13],

e  Clock-drawing test (CDT), scored 0-5 [14],

e Instrumental Activities of Daily Living
(IADL), scored 0-8 [15],

e Mini-Mental State Examination (MMSE),
scored 0-30 [16],

e  Mini Nutritional Assessment (MNA), scored 0-
30 [17],

e Short Physical Performance Battery (SPPB),
scored 0-12 [18],

e  Geriatric Depression Scale (GDS), scored 0-30
[19].

For consistency, in the rest of the document, we added
'Pathological' to the feature names SLB test, CDT, Verbal
Fluency and GDS to indicate whether the test result is
positive or not.

D. Data analysis

In our study, the sample size decreased from 1,648
patients at the first visit to 954 patients followed up at the
second visit. A descriptive analysis was conducted to provide
an overview of the study variables and their distribution
between individuals who had fallen and those who had not.
Pearson’s Chi-squared test was used for categorical variables,
while the Wilcoxon rank-sum test was applied to continuous
variables. The significance threshold for all statistical tests
was set at a p-value (P) < 0.05 and all reported P-values were
two-tailed. The p-value or probability value is a statistical
measure ranging between 0 and 1. It expresses the probability
of obtaining a result at least as extreme as the one observed
under the assumption that the null hypothesis (Ho) is true. The
null hypothesis used as the starting point of a statistical test
states that there is no effect, no difference, or no relationship
between the variables under study. According to the most
commonly accepted convention a result is considered
statistically significant when p < 0.05. In this case, the
probability of obtaining the observed data (or more extreme
outcomes) under Ho, is less than 5%. The null hypothesis is
therefore rejected in favor of the alternative hypothesis (Hi),
suggesting the existence of an effect or a difference. All
statistical analyses were performed using R software (version
4.4.0, R Foundation for Statistical Computing, Vienna,
Austria).
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E. Model Development Using Supervised Machine
Learning

The construction of a predictive model relies primarily on
selecting a limited number of relevant variables. In geriatrics,
preventive  strategies implemented by geriatricians
traditionally rely on "predictive factors" identified using
logistic regression models (LRM). These factors correspond
to variables significantly associated with fall risk across
different patient groups (or clusters), formed based on
longitudinal (or panel) data collected at multiple time points
during the study.

In our work, after identifying the fall trajectories specific
to the study population, we extracted the most explanatory
variables for each of these trajectories. These predictive
variables then served as the basis for building several
predictive models, which we compared in order to evaluate
their performance.

We developed a fall risk prediction model by selecting the
best-performing algorithm among four classifiers: logistic
regression, Support Vector Machine (SVM), eXtreme
Gradient Boosting (XGBoost) and Random Forest. Logistic
regression is a linear supervised classification model
particularly suited for binary problems . SVM, on the other
hand, aims to maximize the margin between classes using an
optimal hyperplane [20]. Ensemble models such as XGBoost
and Random Forest rely on aggregating multiple decision
trees: the former through a sequential boosting process and
the latter through a bagging mechanism, both of which
enhance model accuracy and robustness [21], [22].

To optimize the performance of each classifier, we used
the RandomizedSearchCV method, which randomly explores
a subset of hyperparameter combinations within a defined
search space. Unlike GridSearchCV, which exhaustively
evaluates all possible combinations, this approach reduces
computational cost while efficiently exploring influential
parameters through cross-validation. Finally, to calibrate the
predicted probabilities of the models, we applied 5-fold
cross-validation calibration using CalibratedClassifierCV
(with cv=5) before evaluating final performance on the test
set.

No missing data were observed among the variables
included in the analysis. To address class imbalance, the
RandomUnderSampler method was applied, which consists
of randomly removing observations from the majority class
to rebalance the dataset. Given the sensitive and real nature
of health data, no synthetic oversampling method was used.
The dataset was randomly split into a training set (70%) and
a test set (30%).

Model performance was evaluated on both the training
and test sets using several metrics: Area Under the Curve
(AUC), accuracy, precision, recall, specificity, F1-score and
Brier score [23], [24], [25]. Among these, AUC, F1-score and
Brier score were selected as the main evaluation indicators.
AUC assesses the model’s discrimination ability, the F1-
score captures the balance between precision and recall,
while the Brier score measures the accuracy of probabilistic
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predictions; it is calculated as the mean squared difference
between predicted probabilities and actual outcomes. A high
AUC and F1-score, combined with a low Brier score, indicate
good classification performance and accurate probability
estimation.

For model interpretation, SHAP values were computed to
quantify the contribution of each variable to the individual
prediction of fall risk. SHAP is an explainable Al method that
provides insights into the contribution of each feature both
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participants included in the study, 48.6% reported at least one
fall prior to the follow-up period. Fallers exhibited several
characteristics that were significantly different (p < 0.05)
from non-fallers. Fallers were predominantly women
(74% vs 66%). Their functional and physical abilities were
generally more impaired: lower ADL scores, reduced SPPB
scores (6 £ 4 vs 8 = 3) and lower IADL scores. Depression,
as indicated by a pathological GDS score, was more frequent
among fallers (31% vs 20%) and postural instability, assessed
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globally (across the entire dataset) and locally (for individual
predictions) [26]. All algorithms were implemented in Python
3.10.16 (Python Software Foundation, Wilmington, DE).
Variable preprocessing was performed using OneHotEncoder
for categorical variables and StandardScaler for numerical
variables, via the scikit-learn library.

by a pathological one-leg stance test, was observed in 46% of
fallers compared to 34% of non-fallers. Participation in
leisure activities was also slightly lower among fallers (86%
vs 91%), which could reflect behavioral withdrawal or
functional restriction.

TABLE II. OVERVIEW OF THE SIX-MONTH INPUT FEATURES USED IN OUR
PREDICTIVE MODELS

III. RESULTS

A total of 1,648 individuals met the inclusion criteria for
the study. Table I presents the baseline socio-environmental

Falls of the study (N = 954)

oY b Features Total sample No falls Falls p-
and health characteristics of the sample that significantly (N=954) (n=490,51.4%) (n=464,48.6%) value’
differentiate fallers from non-fallers. Among the older adults n (%)
included, 1,113 (68%) were women and 535 (32%) were
men. Additionally, 73% had hypertension and only 288 Woman 664 (70%) 321 (66%) 343 (74%) 0.005
participants (17%) engaged in social activities. The mean age  Hypertension 688 (72%) 353 (72%) 335 (72%) 0.96
of participants was 83 + 6 years. Regarding falls, 823 Dyslipidemia 453 (47%) 237 (48%) 216 (47%) 0.57
participants (approximately 50%) had experienced a fall Obesity 254 (27%) 122 (25%) 132 (28%) 0.21
during the previous year. Concerning housing conldi.tions, Leisure 843 (88%) 445 (91%) 398 (86%)  0.015
991 (60%) were homeowners. Furthermore, 449 participants  yvsE. m + SD 2546 2546 2546 013

o . . )
(27%) were classified as having depression. SPPB, m £ SD 714 8+3 6+4 <0.001
TABLE I. OVERVIEW OF BASELINE CHARACTERISTICS ACCORDING TO ADL, m £SD S1 61 51 <0.001
FALLS OF THE STUDY IADL, m = SD 6+2 T+2 62 <0.001
Falls of the study Pathological GDS 238 (25%) 96 (20%) 142 (31%) <0.001
Features of the study Total sample  No falls Falls p- Pathological SLB 381 (40%) 167 (34%) 214 (46%) <0.001
— — — * *Pearson's Chi-squared test; Wilcoxon rank sum test. i (p-value < .05).m,mean
(N - 1’648) (l’l - 794’ (n - 854’ Value SD, Standard deviation; SLB, Single leg balance; CDT, Clock-drawing test; ADL, Activities of Daily Living; IADL, Instrumental ,u/ tivities of Daily Living;
n (%) 48-2%) 5 1 8%) MMSE, Mini-Mental State Examination; MNA, Mini Nutritional Assessment; SPPB, Short Physical Performance Battery; GDS, Geriatric Depression Scale.
Data are shown as the number (percentage) or mean  SD unless otherwise indicated.
Woman 1,113 (68%) 500 (63%) 613 (72%) <0.001 In contrast, hypertension, dyslipidemia, obesity and
Age, m£ 8D, years  83£6 82+6 83£6 ~ 0.001 MMSE scores were not statistically associated with falls in
Diabetes 339 (21%) 146 (18%) 193 (23%) 0.035 this cohort
Leisure 1,377 (84%) 689 (87%) 688 (81%) <0.001 Th ) n it the h thesis of ltifactorial
Social activity 288 (17%) 162 (20%) 126 (15%) 0.003 | nese results support the ypothesis ol a multitactoria
Human assistance 1,402 (85%) 644 (81%) 758 (89%) <0.001  ctiology of falls, primarily driven by physical function
ADL, m £ SD 541 5+1 541 <0.001 impairment, loss of autonomy, mood disorders, depression
IADL, m + SD 6+2 6+2 5+2 <0.001 and postural balance issues.
MMSE, m + SD 23+7 24+7 237  0.006 A comparison of Table I and Table II shows that variables
Pathological CDT 585 (35%) 244 (31%) 341 (40%) <0.001 such as hypertension, obesity and dyslipidemia are predictive
Patll:oll(;]gical 672 (41%) 269 (34%) 403 (47%) <0.001 factors of falls but do not significantly differentiate fallers
verba uency _ . . .
MNA. m = SD 2aid 2424 1314 <0.001 from non fal.ler.s. The remaining variables reported in Table
SPPB, m + SD 714 714 6+4  <0.001 I are also significant in Table I.
Pathological GDS 449 27%) 176 (22%) 273 (32%) <0.001 Fig. 1 presents the AUC of the four models evaluated for
Pathological SLB 708 (43%) 261 (33%) 447 (52%) <0.001 predicting fall risk, namely logistic regression, SVM,
*Pearson’s Chi-squared test; Wilcoxon rank sum fest. Statistically significance (p-value < .05). XGB 0 OSt and random forest.
m, mean; SD, Standard deviation; SLB, Single leg balance; CDT, Clock-drawing test; ADL, Activities of Daily Living; IADL, Instrumental
Activities of Daily Living; MMSE, Mini-Mental State Examination; MNA, Mini Nutritional Assessment; SPPB, Short Physical Performance
Battery; GDS, Geriatric Depression Scale.
Data are shown as the number (percentage) or mean + SD unless otherwise indicated,

In Table II, which presents the variables included in our
predictive models, it is observed that among the 954
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Figure 1. Area Under the Curve (AUC) of the Different Models

Table III reports the performance metrics of the different
models. All models achieved an identical precision of 0.78,
with balanced Fl-scores ranging between 0.71 and 0.73,
indicating comparable overall classification performance.

TABLE III. SUMMARY OF PREDICTIVE PERFORMANCE OF THE DIFFERENT

MODELS
Meties oS SVM XGBoost oo
AUC 0.74 0.75 0.76 0.77
Accuracy 0.73 0.71 0.72 0.73
Precision 0.78 0.78 0.78 0.78
Recall 0.68 0.65 0.67 0.68
Specificity 0.78 0.78 0.78 0.78
F1 score 0.73 0.71 0.72 0.73
Brier score 0.20 0.20 0.19 0.19

However, XGBoost and Random Forest show better areas
under the ROC curve, with AUC values of 0.76 and 0.77
respectively (see Fig. 1), suggesting higher discriminative
ability compared to logistic regression (AUC = 0.74) or SVM
(AUC = 0.75). Recall is slightly lower for XGBoost (0.67)
than for Random Forest (0.68), which may reflect a tendency
to under-detect certain fall cases. Finally, the lowest Brier
scores (0.19) are achieved by XGBoost and Random Forest,
indicating better probabilistic calibration of predictions.
Thus, although all models perform similarly in classification,
Random Forest appears to offer the best trade-off between
discrimination and calibration.

XGBoost and Random Forest are the models with the best
overall performance. Both are tree-based methods; while
Random Forest makes binary decisions, XGBoost has the
advantage of computing individualized probabilities, which
makes it more suitable for personalized care approaches. To
better understand the contribution of each variable to the
model’s predictions, we apply SHAP to XGBoost.
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The analysis of SHAP values presented in Fig.2
highlights both the relative importance and the direction of
effect of each variable in predicting fall risk within the
XGBoost model.

High
Fell in past year *-" - "*
MMSE - 0-.— -
Pathological SLB e e
ADL mﬂ— - ameww
SPPB « oo 29 )
IADL e 3
Dyslipidemia .‘ %
—
Hypertension +
Gender }
Obesity *
Pathological GDS }
Leisure |'
0.4

Low

-1.0 -0.5 0.5 1.0

SHAP value (impact on model output)

Figure 2. Impact of the Different Variables on the Best Model (XGBoost)

The use of SHAP values provides transparent model
interpretation and may help inform priorities for targeted
preventive strategies. A low score (values in blue) contributes
significantly to risk reduction, whereas a high score (shown
in red) is associated with increased predicted risk.

Among all the variables considered, fall history emerges
as the most influential factor thereby confirming the strong
predictive power of prior fall events. Physical performance,
as assessed by the SPPB score also plays a central role in fall-
risk prediction, low SPPB values (indicating physical
impairment) are strongly associated with higher risk.
Pathological single-leg stance reflecting balance impairments
does not appear to be correlated with elevated fall risk ; in
some cases, it may even be linked to severely limited mobility
thereby reducing exposure to risk through restricted
movement.

At the cognitive level, the MMSE score shows a more
nuanced relationship while low scores are generally
considered a risk factor, their impact appears less pronounced
in the model. Conversely, higher scores may
counterintuitively be associated with increased risk possibly
due to overconfidence or engagement in unsafe physical
activities.

The ADL and IADL scores indicators of functional
autonomy exhibit patterns consistent with clinical evidence
reduced functional capacity is generally associated with
increased fall risk. However, very low IADL scores may not
strongly correlate with higher risk suggesting that advanced
dependency could reduce exposure to hazardous situations.

Dyslipidemia reflecting cardiovascular impairment is
unexpectedly associated with a lower risk of falls potentially
indicating a tendency to avoid physical activity due to fear of
falling.
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Other variables including hypertension, obesity, gender,
and the presence of depression (pathological GDS), exert a
more moderate or marginal influence on model predictions.
Participation in leisure activities shows a modest protective
effect, although its overall contribution to fall-risk prediction
remains limited.

In summary, this analysis underscores that the most
influential predictors of fall risk are functional and physical
domains, while cognitive and psychosocial dimensions exert
secondary effects.

After examining the impact of each variable on the
model’s predictions, we now turn to some examples of
personalized predictions.

The personalized predictions will be evaluated using the
final selected XGBoost model. XGBoost is a gradient
boosting ensemble algorithm that aggregates multiple weak
decision trees to produce a high-performing predictive model
[22]. In binary classification, it generates a raw output in log-
odds, which is then transformed by the logistic function to
obtain a probability. The log-odds (logarithm of the odds) is
a way to transform a probability into a value that can range
from —0 to +oo. The raw output value of XGBoost is the
weighted sum of the decision trees:

K
f6) =Y T
k=1

where:
o Tp(x) is the output of the k-th tree for the
observation,
e K is the total number of trees,
e  f(x) is the raw model output, expressed in log-odds.
We then transform the raw output f(x) into a probability
p(x) with the sigmoid function :

p(x) = o(f(x)) = T1o7®

0.23
0.20
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where the sigmoid function is defined as:

1

The reference value (base value) is the mean of f (x) and the
associated probability is the overall prevalence in the training
sample.

Fig. 3 below illustrates a correctly predicted low fall risk
(f(x) =0.23) compared with the base value of 0.48.
Protective factors such as a lower MMSE score of 18,
preserved ADL of 6, and a high IADL of 8 strongly
contributed to reducing the predicted risk. A history of falls
also contributed to lowering the prediction. Although risk-
increasing variables such as the absence of a pathological
one-leg stance and a low SPPB score of 4 were present, they
were outweighed by the protective factors.

Fig. 4 below illustrates a case classified as high fall risk,
with a predicted probability of 0.65. However, the prediction
is incorrect; in the collected data, the patient did not fall.
Several strong risk factors were present including a history of
falls, dyslipidemia, low IADL (6) and a low SPPB score (9)
all of which contributed to increasing the predicted risk.
Nevertheless, these were insufficiently weighted by the
model while mitigating factors such as a relatively high
MMSE score (23), a non-pathological SLB and a moderate
ADL score (6) overly influenced the output leading to a
misclassification. This highlights the model’s limitation in
edge cases where compensatory features may mask critical
risks.

These personalized predictions of two different patients
highlight that the model’s outputs do not depend solely on
fall history, even though it is the strongest predictor among
all variables (Fig. 2). The trends observed in the SHAP values
of all variables in Fig. 2 are confirmed by the prediction
shown in Fig. 3.

035 040 045 0.50

) )

025 0.30
SPPB=4.0 Fell in past yea

Pathological SLB = 0.0 1.0

(S N

]
MMSE = 18.0 ADL = 6.0

ADL=8.0

Figure 3. Correct Prediction with SHAP

03 04 05

nigher «lowe

0.65

Dyslipidemia = 0.0 [ADL = 6.0 SPPB =9.0

06 07
Fell in past year= 1.0 | MMSE =23.0 Pathological SLB=1.0| ADI

Figure 4. Incorrect Prediction with SHAP
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IV. DISCUSSION

The evaluation of various fall risk predictors (see Table
1), based on data from patients who completed both the first
and second visits, revealed that most variables showed
significant differences between fallers and non-fallers. This
highlights the importance of identifying predictive factors
within the least stable clusters (i.e., those in which falls were
observed), as opposed to more stable clusters. Among the
variables analyzed, the following were significantly different
depending on group membership (fallers vs. non-fallers):
gender (female), ADL score, IADL score, SPPB score,
presence of a pathological GDS score, pathological SLB and
participation in leisure activities.

Among these variables, only sex and participation in
leisure activities pertain to the socio-environmental domain
and could be collected in other protocols. The remaining
variables are scores derived from the CGA conducted at the
patients' homes. These findings support the hypothesis that a
holistic approach is necessary for predicting fall risk.
Specifically, the pathological GDS score reflects the
thymic/cognitive dimension, while the ADL, IADL and
SPPB scores, along with the pathological one-leg stance,
reflect the physical/organic dimension.

Using the variables most significantly associated with fall
risk (see Table II) as input data represents a relevant strategy,
as the model’s objective is to differentiate fallers from non-
fallers in a personalized manner. In order to remain aligned
with the clinical approach of identifying predictive factors to
develop targeted prevention plans, all variables identified
(see Table II) were retained for model training. Fig.2
confirms the importance of these variables, showing that they
rank among the most influential in the XGBoost model, with
the exception of gender and pathological GDS score, which
were replaced by dyslipidemia and MMSE score in terms of
predictive weight. The integration of dyslipidemia, a
cardiovascular risk factor and the MMSE score, a marker of
cognitive function, further reinforces the model’s holistic
approach.

Not every feature within the three ROF dimensions is a
predictive factor for falls. The effectiveness of a predictive
factor depends on its statistical significance, correlation with
fall occurrences and its interaction with other variables across
the physical/organic, socio-environmental and cognitive
dimensions. In some studies, the identified predictive
variables did not encompass all three dimensions of ROF.
Kawazoe et al. [27], Tkeda et al. [28] and Cella et al. [29]
demonstrated that age category related to socio-environmental
was a predictor of falls, suggesting a strong association
between age and falls. Bath et al. [30] found that the predictive
variables related to the socio-environmental dimension are
diverse and varied, contributing to effective prevention. In
fact, a higher number of variables related to gait and balance
is associated with a more robust predictive model for falls.

In the literature review conducted by Rubenstein, only
cognitive impairment was identified as a predictive variable
related to the thymic/cognitive [31]. Conversely,
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Ikeda et al. [28], Kawazoe et al. [27] and Bath et al. [30]
identified at least two predictive variables involving the
thymic/cognitive dimension, providing a better understanding
of the ROF associated with the thymic/cognitive dimension
and facilitating preventive measures. In those features, we can
find fear of falling, depressive symptoms, self-rated health,
impaired consciousness and dementia at admission. Recent
studies by Ikeda et al. [28] and Kawazoe et al. [27] achieved
Area Under the receiver operating characteristic Curve (AUC)
scores of 88% and 85%, respectively, using comprehensive
approaches. lkeda et al. [28] employed a Random Forest-
based Boruta algorithm for feature selection, while Kawazoe
et al. [27] used a combination of Bidirectional Encoders and
Bidirectional Long Short-Term Memory (BiLSTM) networks
to process sequential data. These AUC scores indicate strong
model performance, reflecting high discriminative ability in
classification tasks [25].

Pennone et al. [32] highlighted the difficulty in predicting
fall risk among older adults with low levels of daily activity,
emphasizing the importance of measuring such activity using
standardized indicators. In our predictive model, we included
ADL and IADL scores, which are already well-established in
the literature as robust predictive factors [33], [34], [35]. A
history of falling, which by definition places an older adult at
risk of recurrent falls has consistently been identified as a
major predictor in recent studies when collected. It is also
consistently ranked among the most influential variables in
predictive fall models [28], [29], [36], [37]. The cognitive
dimension represented here by the MMSE score has also been
widely recognized in prior research as an important
determinant of fall risk [38], [39], [40]. In addition,
Bharadwaz et al. [41] emphasized the influence of depression
and sleep disorders on fall risk. Although the pathological
GDS score was not among the most influential variables in
our final model, it remains relevant when analyzing
trajectories. As for sleep disturbances, while not directly
measured their impact likely manifests indirectly through
reduced performance in activities of daily living further
justifying the inclusion of ADL and IADL scores in our
predictive approach.

Pathological SLB, combined with the SPPB score, which
evaluates gait and balance ability, emerged as one of the
strongest determinants in predicting fall risk. Several studies
have confirmed that these variables reflecting the physical
and organic dimension are essential fall predictors [36], [42],
[43], [44]. In the work of Lathouwers et al. [45], it was also
shown that maintaining physical, mental, or social activity
significantly reduces the probability of falling in older adults,
a finding that aligns with our own results.

Indeed, Landers et al. [46] demonstrated that such
activities help prevent the onset of fear of falling (FOF) and
contribute to maintaining a high level of confidence in one’s
balance abilities as measured by the Activities-specific
Balance Confidence (ABC) scale, both identified as major
risk factors. Similarly, Schumann et al. [47] recently
highlighted the role of FOF as a predictor of falling.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

105



The only variable present in our model that is notably
absent in recent studies is dyslipidemia, a cardiovascular risk
factor. This discrepancy may be explained by the
methodological specificity of our study, which was based on
data collected directly from patients in their homes, allowing
for a more integrative assessment of overall health. The
inclusion of dyslipidemia in our model underscores the
importance of considering cardiovascular risk as a potential
contributor to falls, especially when falls occur suddenly and
without prior functional warning signs.

While fall history is consistently identified as one of the
most influential predictors of future falls, our analysis shows
that the model does not rely exclusively on this variable to
make its predictions (Fig. 3 and Fig. 4). SHAP value
interpretation reveals that the XGBoost model incorporates a
wide range of factors, including physical performance,
functional autonomy, cognitive status and psychosocial
indicators, when estimating fall risk.

In several correctly classified cases, the presence of a
prior fall is counterbalanced by protective factors such as
high ADL and IADL scores, preserved cognitive function (as
indicated by MMSE) and non-pathological balance
performance (e.g., SPPB score or SLB). This demonstrates
that the model takes into account the complex interplay
between risk and protective variables rather than basing its
prediction on fall history alone.

Inversely, certain misclassified cases highlight that a
history of falls does not always lead to a high-risk prediction.
When other variables present a favorable profile, the model
may underestimate the actual risk, suggesting that fall history
while important is insufficient on its own to ensure predictive
accuracy.

Moreover, the model’s use of additional variables such as
dyslipidemia and cognitive scores reflects a broader more
integrative view of fall risk. These results confirm the
necessity of a multidimensional approach and support the
implementation of interpretable machine learning models
that can provide individualized, clinically meaningful
insights beyond any single predictor.

This study confirms the relevance of machine learning
models, particularly XGBoost for predicting fall risk in older
adults with good discriminative performance and calibration.
The analysis of SHAP values enabled a transparent and
clinically meaningful ranking of predictive factors. Fall
history, impairments in physical performance (SPPB, one-leg
stance) and functional limitations (ADL, IADL) emerged as
the main determinants. Cognitive and psychosocial factors
play a secondary yet non-negligible role. These findings
highlight the importance of a multidimensional assessment
that incorporates interpretable technological tools to guide
personalized prevention strategies. The integration of such
approaches into geriatric practice could enhance early
identification of at-risk patients and contribute to reducing
the incidence of falls.

Nonetheless, our work presents several limitations. First,
although the XGBoost model demonstrated good
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performance (AUC of 0.76, Brier score of 0.19, precision of
0.78), its implementation in clinical practice could be
hindered by the time required to perform the assessments,
even though the number of variables that significantly
influence predictions is relatively low. This complexity may
limit its use by healthcare professionals in care settings where
workload and time constraints are critical factors. A clinical
arbitration process aimed at identifying substitutable or
priority variables could facilitate the operational integration
of the model.

Moreover, the model was built using all variables
identified as predictive, without applying a selection
procedure based solely on significant differences between
fallers and non-fallers. Such a selection approach might
optimize the trade-off between predictive performance and
ease of use.

From a methodological standpoint, the study did not
include a control group. A randomized design comparing a
control group (receiving no care) and an intervention group
(receiving personalized follow-up) would have allowed for a
more detailed analysis of the impact of care on the dynamics
of fall risk factors and would have helped to better identify
common or distinguishing predictive variables between the
two groups.

Finally, the data used were exclusively collected from
patients in France. This geographical limitation restricts the
generalizability of the findings to other cultural and socio-
environmental contexts. Since falls are a multifactorial
phenomenon strongly influenced by lifestyle, home
environment and care practices, significant variations may
exist in other countries. In particular, the socio-
environmental dimension deserves to be examined through a
multicenter international approach.

Overall, while our model is grounded in a realistic
approach aimed at clinical integration, these limitations open
avenues for improvement in both methodological robustness
and the transferability of results.

V. CONCLUSION

This study contributes to advancing fall prevention by
leveraging a 12-year dataset collected in home settings to
develop an Al-based predictive model. Our approach
integrates the three dimensions of ROF, optimizing model
performance while reducing the number of required input
features.

By applying explainable Al techniques, we identified the
contribution of each feature to fall risk, thereby supporting the
development of more targeted and effective intervention
strategies. These findings may help enhance the quality of
elderly care by informing personalized prevention efforts and
guiding future research in geriatric risk assessment.

As with most Al models, ours can be continuously refined
with additional data over time. In our case, improving the
model also provides an opportunity to collect data from
patients' homes while offering them personalized fall
prevention advice. During the intervals between practitioner
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visits, necessary adjustments to home configurations can also
be made if needed.

The clinical utility of the final model could be explored in
future studies using Decision Curve Analysis (DCA). This
method helps identify the clinical range in which the model
provides a net benefit, thereby allowing practitioners to
determine the optimal threshold for patient management while
taking available resources into account.
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Abstract—In this era, the rapid increase of health and
pandemic-related information on social-media platforms has
led to diverse issues that includes public anxiety, stress and
behavioral volatility. Even though, prior researchers have
explored various techniques still there are challenges due to the
dependency on post-level analysis using static embeddings that
limits exposure intensity, temporal progression and longitudinal
psychological patterns. Therefore, to resolve these challenges a
Longitudinal Exposure-Aware Mental-Impact Prediction
Network namely LEMIP-Net is proposed, which models
evolving emotional and linguistic behavior of users interacting
with pandemic discourse. Initially, raw user-generated social-
media posts are restructured into temporal sequences that
enables observation of gradual psychological drift.
Subsequently, individual post is semantically encoded by
incorporating Cross-lingual Language Model with Robustly
Optimized Bidirectional Encoder Representations from
Transformers approach (XLM-RoBERTa). Consequently,
exposure-classification module estimates probability of every
post related to health or pandemic discourse, and these
probabilities are aggregated to quantify user-specific exposure
intensity. Further, a hybrid weak-supervision strategy refines
mental-health labels through sparse self-reports and lexicon-
based cues. Finally, the fused sequences are processed using a
Transformer-Bidirectional Long Short Term Memory based
architecture to capture global behavioral trends and short-term
emotional shifts, which performs multi-task prediction of
mental-health class, severity and deterioration risk. Hence, the
experimental results illustrate that the proposed LEMIP-Net
significantly outperforms state-of-the-art models, achieving
robust and generalizable mental-health prediction by jointly
modeling longitudinal behavior and exposure intensity.

Keywords-cross-lingual language model; exposure modelling;
mental-health prediction; pandemic-related social media;
temporal modelling.

l. INTRODUCTION

In recent years, expanding of social media plays the
massive impact on human’s mental and physical health
especially students. Although social media provides

information of politics, education and Information
Technology (IT), still impacts the human’s self-esteem,
mental health and sleep patterns [1]. In particular, social
platforms such as twitter, Facebook and Instagram allow the
users to share their posts, thoughts and ideas. In addition,
studies revealed that link between negative consequences in
social media does increase the stress, depression and anxiety
[2]. Moreover, due to lack of offline communication, the
depressed people have negative thoughts, low confidence and
ambiguous issues [3]. However, using the social media
negatively, impact the user’s health issues such as disturbance
of sleep, guilt feelings, difficulty in concentrating and suicidal
thoughts [4]. Moreover, number of patients has been
increasing every year with mental problems due to problems
of social media and people who are already suffering with
mental issues or physiological orders, will face more
difficulties [5]. Also, there was a survey, where social media
created development of fear and panic among the people and
also females were affected mentally more than males in
content of social media. [6]. To overcome these problems,
early detection of stress, depression could prevent the mental
health issues. In particular, the computers have the ability to
express and recognize the emotions assists give better
feedback to the users [7]. Further, sentiment analysis
examines the people emotions, feelings, mood and attitude
and one of the active types of research area in Natural
Language Processing (NLP) [8]. Moreover, detecting the
depression in posts has achieved important advancement in
identifying the depression from social media posts. Further
researchers analyzed the social media data to extract the
valuable patterns and insights that related to the mental health
problems. Further, by analyzing the huge information on
social media, researches understand about mental health
problems of users [9]. State of the art methods include
Convolutional Neural Network (CNN), Transformer and
Bidirectional Long Short-Term Memory (Bi-LSTM)
performed the strategies to detect the depression. However,
these models have huge training time and transformers models
was not able to captured the important content that effect the
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accuracy [10]. Further, Long Short-Term Memory (LSTM)
models have been utilized to examine sequential text data
from social media platforms such as Twitter, where they learn
contextual feature representations from documents,
paragraphs and sentences. However, LSTM struggles with
long term dependencies [11] and moreover, NLP techniques
used for mental status of a person based on writing or speech
and predicting the depression. However, most NLP techniques
does not appreciate the variability [12] of depression.

The key contributions of the research are as follows:

e A Longitudinal and Exposure-Aware Mental-Health
Prediction Framework (LEMIP-Net) is proposed,
which jointly captures user’s temporal linguistic
behavior and their cumulative exposure to health and
pandemic-related content. Therefore, by transforming
raw social media posts into structured behavioral
timelines, the proposed LEMIP-Net model allows
clinically aligned assessment of mental-health risk.

e A domain-specific exposure classification and
intensity modelling mechanism is employed that
quantifies the likelihood and intensity of health-
related content encountered by individual user, which
provides an essential dimension for understanding the
impact in psychological outcomes.

e The proposed LEMIP-Net improves inherently noisy
user-reported mental-health labels by combining
linguistic symptom markers, contextual cues and rule-
based heuristics. Thus, this hybrid weak-supervision
strategy systematically enhances label fidelity and
significantly increases model learning robustness
when compared to dependency on self-reports.

The overall research is structured as follows: Section Il
describes the literature review, Section Il demonstrates
proposed LEMIP-Net framework, Section IV illustrates
experimental results, discussion and Section V includes
Conclusion.

Il.  LITERATURE REVIEW

The literature review is performed through an organized
selection strategy that assisted to recognize relevant research
on mental-health prediction from social media during large-
scale health crises. Specifically, peer-reviewed journal and
research articles published were retrieved from standard
journals using keywords including mental health prediction,
social media analytics, pandemic-related sentiment analysis
and longitudinal modeling. Then, the studies were filtered
based on methodological consistency and relevance with
significance on Machine Learning (ML) and Deep Learning
(DL) approaches that are applied to mental-health inference
from user-generated textual data.

Bashar, Nayak and Balasubramaniam [13] determined a
hybrid deep learning model, which integrated Semi-
Supervised Neural Topic Model (SNTM) and Informed
Neural Network (INN) that evaluated COVID-19 discussions
happened in Australian Twitter. Specifically, 2.9 million
tweets were the data acquired, which were pre-processed and
applied for SNTM, INN for topic discovery and sentiment
classification, respectively through lexicon-based prior
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knowledge. Further, evolving public quires at outbreak time
were interpreted by tweet volume, dynamic topic modelling,
and semantic brand scoring. Thus, this method captured topic
diversity and sentiments connected with real-world actions,
but this model had challenges such as dependency on
keyword-filtered data, English-only tweets, and lack of
multimodal context, which affects the real-world deployment.

Inamdar, Chapekar, Gite & Pradhan [14] recommended a
Machine Learning (ML) based framework, which detected
mental stress in Reddit posts through NLP techniques.
Further, this framework utilized reddit dataset that contains
approximately 2800 labelled texts, which were pre-processed
by various embedding strategies. Where the pre-processing
techniques included Bidirectional Encoder Representations
from Transformers (BERT) tokenization, Embeddings from
Language Models (ELMo), and Bag-of-Words (BoW)
representations. Specifically, these features were utilized to
train classifiers such as logistic regression, SVM, XGBoost,
and random forest models. Subsequently, this framework
determined that with the limited data, the effective stress
detection was possible. However, lack of demographic
context, and exclusion of multimodal indications limits
generalization among various sectors.

Abbas, Munir, Raza, Samee, Jamjoom & Ullah [15]
introduced a depression detection model, which was a
combination of BERT contextual embeddings and
probabilistic features produced by random forest approach.
Specifically, a dataset that contained 20,000 labelled tweets
was considered and applied pre-processing. Subsequently,
extracted contextual BERT embeddings and given to random
forest that generated depression-related probability features,
then these enhanced features were utilized to train many
classifiers. Among which logistic regression attained greater
accuracy and evaluated through statistical T-tests and k-fold
cross-validation. Therefore, this model improved feature
quality for mental health prediction, despite advantages this
approach relied more on textual content and lacks user
behavioral context that limits the real-world use cases.

Villa-Pérez, Trejo, Moin & Stroulia [16] demonstrated a
ML approach, which used English and Spanish Twitter
communications to detect nine mental health disorders.
Further, two bilingual datasets were created from collected
timelines of analyzed users by strict self-report patterns and
cross verified with control users. Moreover, pre-processing of
tweets were performed, through which linguistic features
were extracted, which included, Part-of-speech (POS) tags,
Linguistic Inquiry n-grams, g-grams, Word Count (LIWC),
and word embeddings. Thus, this method attained greater
accuracy through n-gram features, but this method contains
limitations such as dependency on unverifiable self-reports,
imbalance in dataset, minimized performance for low-
frequency disorders and demographic mismatching.

Radwan, Amarneh, Alawneh, Ashgar, AlSobeh &
Magableh [17] suggested an advanced approach that utilized
Large Language Models (LLMs), ML algorithms and
Generative Pre-trained Transformer 3 (GPT-3) embeddings.
Specifically, these were to detect and classify social media
posts that caused stress disorders and lower the mental health
of individuals. Further, through all these considered
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techniques, a screen tool was generated that used online
textual data, whereas posts were converted into vectors by
GPT-3 embeddings, which also captured linguistic nuances
and semantic meaning. However, there were challenges such
as model bias, limited generalizability, dataset imbalance, low
performance among populations, and require to improve the
pre-processing techniques, which are significant for the
further process in the approach.

Recent state-of-the-art approaches signifies that
transformer-based embeddings and hybrid learning
frameworks assists to effectively capture psychological
signals from social media posts [13], [15], [17]. However,
most existing methods depend on post-level classification,
static representations and sparse self-reported labels, while
neglecting cumulative exposure effects and longitudinal
behavioral evolution [14], [16]. Thereby, these approaches
remain limited in modeling sustained mental-health
trajectories and exposure-induced distress. Hence, these
limitations motivate the proposed LEMIP-Net framework,
which integrates exposure-aware modeling with longitudinal
sequence learning that helps for the development of mental-
health prediction beyond static post-level baselines.

Il.  METHODOLOGY

The proposed research incorporates LEMIP-Net, which is
a deep sequential neural architecture designed to model the
temporal progression of user’s emotional and linguistic
behavior while simultaneously quantifying their exposure
levels to pandemic-related content. Initially, the user-
generated social-media posts are pre-processed into
longitudinal timelines that allows the model to capture gradual
psychological patterns instead of isolated expressions.
Subsequently, individual post is semantically encoded using
XLM-RoBERTa, then an exposure-classification module is
utilized to evaluate every post to estimate the probability that
belongs to health or pandemic discourse. Consequently, these
probabilities are aggregated across temporal windows to
compute a quantitative health-content intensity score, which
provides a key variable reflecting how frequently and
intensely user interacts with pandemic information. Further,
the fused sequence of semantic embeddings, exposure
intensities and refined mental-health indicators is then
processed through the LEMIP-Net architecture, where
temporal patterns are learned using Transformer and Bi-
LSTM layers. Finally, a multi-task prediction module outputs
the user’s mental-health status, severity score and risk of
future deterioration. Hence, this integrated design as
demonstrated in Fig. 1, ensures that both content exposure and
temporal behavioral evolution facilitates to provide accurate
context-aware prediction of mental-health impact.

A. System Model and Data Description

The research incorporates the pandemic-period mental-
health dataset [17] that comprises 32,487 social-media posts,
which were collected from 4,216 unique users between March
2020 and July 2022. Specifically, each record includes the
post text, timestamp, engagement metadata and sparse self-
reported mental-health indicators. Additionally, the dataset
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includes content in English and Arabic, which reflects
multilingual pandemic discourse. The dataset is split into 70%
training, 15% validation and 15% testing that facilitates in
maintaining user-level separation to avoid leakage. In
particular, user-level separation facilitates that all posts from
a specified user are allocated effectively to a single subset
(training, validation, or testing), which helps in preventing
overlap of user-specific linguistic or behavioral patterns
across splits. This avoids information leakage and enables a
reliable evaluation of the model’s generalization to unseen
users. Hence, this dataset provides a sufficiently large and a
temporally rich resource for modeling longitudinal behavior,
as the dataset comprises time-stamped post sequences
spanning multiple months per user. Thereby, this operation
allows the analysis of psychological changes over time instead
of isolated observations. Further, each user u contributes a
chronological sequence of posts P, = {p;,p2,--.,pr}, each
associated with a timestamp t; and enhanced metadata
including hashtags, mentions, engagement and contextual
cues, which are related to COVID-19, health fear, vaccination,
restrictions, anxiety and uncertainty. Thus, the dataset for each
user is expressed using (1):

Dy = (P Ty My) O]

Where P, signifies the post sequence, T, refers to the
corresponding timestamps and M,, defines the available
mental-health labels or self-reports. Additionally, the textual
content comprises naturally occurring pandemic-related
expressions such as cases rising, quarantine, fever symptoms
and vaccine fear while the mental-health indicators include
user self-assessments, sentiment scores or psychological
lexicon matches. Subsequently, data pre-processing is
performed, which removes noise, bot-generated content,
irrelevant posts and normalizes the text for stable embedding
generation. Specifically, to define temporal granularity, a
data-driven stability rule is applied, where the posting density
is evaluated for individual user and choose the minimum
window (At) where > 80% of users have at least one post.
Hence, the weekly windows assist to maximize temporal
continuity while preventing sparse user sequences.
Henceforth, to formally select the optimal temporal window
At, the posting-density stability is assessed through (2):

S@t) = (3) 5, I(n,(4t) = 1) )

Where candidate window size (1,3,7,14 days) is defined as
At, the proportion of user with > 1 post in each window is
demonstrated as S(4t), U signifies the total users and n,, (4t)
determines the number of posts of user u in window At and
I(.) determines the indicator function. Thus, the temporal
windowing is selected as At = 7 days since it maximizes the
S(4t) while preventing fragmentation in low-activity users.

In particular, the raw dataset is transformed into a
structured longitudinal behavioral record using a temporal
aggregation technique, where user posts are chronologically
organized into definite time window size that assists to
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reconstruct complete behavioral timelines for proposed
LEMIP-Net.
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Figure 1. Flow diagram of proposed LEMIP-Net framework

Hence, this step ensures that the raw dataset, which is
initially heterogeneous and sparse converted into a structured,
time-sensitive representation. Hence, this operation is
essential for capturing gradual psychological changes and
exposure accumulation that a single-post models struggles to
detect, thereby resolves a core limitation of design using only
post.

B. Initialization and Semantic Embedding Construction

Further, each post p, is converted into a dense semantic
embedding by employing XLM-RoBERTa model, which is
chosen based on the multilingual strength and ability to
capture pandemic-related emotional and contextual features.
Additionally, due to multilingual and code-switched
pandemic discourse, the employed XLM-RoBERTa model
applies SentencePiece tokenization with 250k vocabulary,
Unicode NFKC normalization and maximum sequence length
of 128 tokens where these parameters ensure multilingual
consistency. Thus, the embedding process and semantic
matrix is defined using (3) and (4), respectively:

e; = fxum-r(®@i) 3)
E = e ey ...,er]" 4)

Where embedding vector of post p; is defined as e;,
pretrained multilingual encoder is symbolized as fx;m—gr, USer
level embedding matrix is demonstrated as E and T signifies
the number of temporal steps. In addition, by enhancing raw
text with contextual semantics facilitates to improve data
quality beyond the existing static LLM embeddings. Thus,
this stage ensures that the model receives psychologically
significant and globally representative language patterns
which are related to mental-health change. Hence, the use of
XLM-RoBERTa model for semantic embedding is essential
as pandemic discourse is multilingual and context-sensitive.
Also, the XLM-R model, which captures emotional,
psychological and health-related semantics across languages
which results with richer and more generalizable
representations than English-only or traditional LLM
embeddings. Henceforth, this semantically enhanced
representation formulates the foundation upon which
exposure estimation and mental-health inference depend.

C. Exposure Classification and Health-Content Intensity
Estimation

Furthermore, to calculate the amount health-related
content each user is exposed to, the proposed LEMIP-Net
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incorporates an exposure classifier F,,, , that computes each
embedding e,. Specifically, the Modelling exposure is crucial
because psychological stress enhances with frequency of
pandemic-related content. Thereby, without exposure
modelling, the emotional variation may be misinterpreted.
Thus, the classifier outputs the probability that the post
concerns pandemic or health-related information as
demonstrated in (5):

~eEm

yi = O-(Vl/expei + bexp) (5)
Where the exposure probability is defined as 9,
Wexp, Dexp refers to classifier weight, bias respectively and o
denotes the sigmoid activation function. Hence, the
cumulative exposure intensity over a window W, is assessed
through (6):

1
1747

Ey Ypiew, I (6)

Here, E} refers to the normalized exposure frequency and
intensity, specifically this module identifies posts discussing
infection fear, symptoms, lockdown rules, rising cases,
medical updates or anxiety triggers. Specifically, the training
data for exposure classifier is established from manually
tagged COVID-19 posts which includes 4,180 positive, 8,700
negative. Thereby, 2-layer MLP (128-64-1), learning rate =
le—4, batch size = 32, Adam optimizer and dropout = 0.3 are
utilized. In addition, the class imbalance is handled using focal
loss (y = 2) and random oversampling. Thus, the exposure
classifier is trained using weighted binary cross-entropy as
demonstrated in (7):

Lexy = —wpylog(p) — wp (1 — y)log(l —p) (7)
In particular, the exposure label is assigned through (8):

A lifp=r1
= 8
y {0 otherwise ®)

Where class weights for imbalance are defined as wy,, w,
respectively, y signifies true exposure label, predicted
probability is defined as p and t signifies the decision
threshold where T = 0.5 during evaluation which is further
optimized on validation. Subsequently, to define domain
boundaries for exposure intensity, the predicted probability p
is categorized into three regions based on the p range which is
as follows: p < 0.2 signifies low-exposure, 0.2 < p <
0.8 defines medium-exposure and p > 0.8 represents high-
exposure. Hence, these boundaries are selected on the basis of
maximizing inter-class separation on the validation set. Thus,
the decision threshold t© = 0.5 is considered for binary
exposure assignment because it yields the highest Youden’s J-
statistic during classifier calibration.

Therefore, the resulting exposure time-series allows
modelling the extent and persistence of health-related
information a user observe. In particular, the exposure
classification is employed because mental-health impact is
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strongly mediated by the volume, frequency and intensity of
health-related content a user encounter. Hence, without
explicit exposure modelling, Al systems risk conflating
general emotional expression with crisis-driven psychological
stress. Henceforth, by computing a quantitative exposure-
intensity score for each time window, the proposed LEMIP-
Net isolates the effect of health-content saturation, which
allows downstream components to differentiate between
natural emotional variability and exposure-induced distress.

D. Mental-Health Label Refinement Through Hybrid Weak
Supervision

In addition, self-reported mental-health labels in social-
media data are infrequent, therefore to obtain dense and usable
supervision, the proposed LEMIP-Net integrates self-reported
scores s, with lexicon-derived psychological features I, using

(9):
ped _ op AeE
Yo =ay, +(1-a)y, ", 0<a<1 9)

Where the refined label is represented as yf and a stands
for confidence weight based on self-report presence. For
instance, if a user reports self-stress score s = 0.6 but the
lexicon score is the refined label which is demonstrated in
Equation (10):

yP* = 0.7(0.6) + 0.3(0.3) = 0.51 (10)

Specifically, if a user provides stress or anxiety self-
ratings, the system preserves them. In particular, when such
ratings are absent, psychological lexicons detect emotional
features related to worry, fear, exhaustion and distress. Hence,
these contradictions across self-reports and lexicon features
are determined using a noise-aware correction rule as
demonstrated where if both signals disagree, confidence-
weighted averaging is used, missing values use only lexicon-
based features and also lexicon noise is decrease through
minimum-support threshold (= 3 symptom terms).

Thus, the hybrid label facilitates every temporal step in the
user’s sequence which carries a mental-health estimate.
Hence, this step assists to mitigate label sparsity which is a
major limitation in the existing research by creating a stable
ground truth that enhances learning and prevents temporal
gaps in mental-state representation. Henceforth, hybrid label
refinement through weak supervision is justified by the
inherent sparsity and inconsistency of self-reported mental-
health scores in real social-media datasets. Also, the manual
labels are insufficient for training deep temporal models.
Thus, combining  self-reports  with  lexicon-based
psychological indicators provides dense, consistent
supervision signals which allows proposed LEMIP-Net the
model to learn stable mental-health patterns without
oversensitivity to annotation gaps.

E. Longitudinal Sequence Construction and Temporal
Feature Encoding

Subsequently, each time step is defined by concatenating
semantic embedding, exposure intensity and refined mental-
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health score. Specifically, for users with missing posts in
window t, a padding vector is applied using (11):

x = [0,0,u)] (11

Here, the mean refined label of user is defined as u,, and
thereby the padding operation prevents temporal
discontinuities. Further, the transformer assists to capture
long-range global behaviour, whereas Bi-LSTM helps to
capture local fluctuations using (12):

xe = [ecllTelly™ ] (12)

Here, the fused vector is denoted by x,, embedding is
represented as e;, || refers to concatenation, exposure intensity
is defined as I, and y/' signifies the refined label. Further, the
transformer layer models long-range behavioral dependencies
and hence the fused vector first fed through the transformer,
whose output is then sequentially embedded into the Bi-
LSTM as illustrated in (13):

H" = Transformer(X) (13)

Where the transformer output is denoted as H'" , X
signifies sequence of all x,. Thus, this operation facilitates
global-to-local feature flow that includes global patterns first
then short-term variations. Subsequently, a Bi-LSTM layer
captures short-term emotional fluctuations and bidirectional
mental-health evolution as demonstrated in (14):

H's'™ = BIiLSTM(H®") (14)

Here, the BiLSTM output is defined as H**™. Thus, the
fused vectors determine a complete psychological snapshot at
individual time step. In particular, the Transformer captures
global trends such as steadily increasing anxiety, while the Bi-
LSTM models instant changes influenced by daily exposure.
Thereby, this longitudinal modelling resolves the inability to
account for temporal mental-health progression. Hence, the
use of Transformer and Bi-LSTM layers is essential where the
transformers learn global behavioral patterns, such as
persistent anxiety themes or sustained exposure to crisis
information, while Bi-LSTM assists to capture fine-grained
emotional shifts between adjacent time steps. Henceforth, this
integration ensures that both long-term mental-health
evolution and short-term fluctuations are effectively
modelled.

F. Multi-Task Mental-Health Impact Prediction
Finally, a multi-task prediction head is employed which
processes temporal features to estimate three outcomes as
illustrated in (15) — (17):
¢ = Softmax(W_hy + b.) (15)

$ = Why + b, (16)
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Here, predicted class is defined as ¢, severity score is
represented as $, deterioration risk is symbolized as 7, the
final Bi-LSTM state is demonstrated as h;, the classifier
weights refer to W,, W;, W, and biases signifies b, b, b, .
Therefore, by jointly predicting class, severity and risk, the
proposed LEMIP-Net model, which captures both immediate
mental-health state and future vulnerability which allows a
comprehensive assessment. Thus, the Multi-task training loss
is demonstrated using (18):

L= AIL)(?»G + AZ'EGEUJ + )'SLPLGK (18)

Where classification loss is defined as L , severity
regression loss is symbolized as L, and risk prediction loss
is determined as L, and 14, 1,, A5 signifies chosen weights
(0.5,0.3,0.2) respectively. Specifically, the multi-task head
is optimized using AdamW with learning rate of 1e — 5, 0.01
weight decay and at 1.0 gradient clipping. Therefore, to
stabilize multi-task optimization, an equalized gradient
scaling g; is applied which is expressed through Equation

(19):

r _ _Gi
9t = g, (19)

Here, the gradient contribution of each task i is denoted by
gi, specifically the gradient normalization facilitates that no
single task dominates the optimization. Thereby, tach task-
specific gradient g; is scaled by its L2-norm || g;||,, which
provides a balanced contribution during joint training. In
particular, the single-task classification struggles to capture
the subtle gradations of mental-health decline or quantify
future vulnerability. Hence, the multi-task outputs provide
clinically significant insights and enable predictive
interpretations aligned with psychological theory.

IV. EXPERIMENTAL SETUP

The proposed LEMIP-Net framework is executed using
Python with PyTorch and the Hugging Face Transformers
library for model development and fine-tuning. Specifically,
data pre-processing and evaluation are performed using
standard scientific-computing packages such as NumPy,
pandas and scikit-learn. Thus, the experiments are
implemented on a system with at least 32-64 GB RAM and a
multi-core CPU that assists to handle sequence construction
and exposure modelling efficiently. Hence, all experiments
are executed in a controlled environment with fixed random
seeds to ensure reproducibility and the complete training
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pipeline from embedding generation to multi-task prediction
is performed on the same hardware and software
configuration. Hence, the proposed LEMIP-Net framework is
evaluated in terms of accuracy, precision, recall and F1-Score
as demonstrated in the (20) — (23), respectively:

TP+TN

Accuracy = m (20)
Precision = —— (21)
TP+FP
Recall = —=~ (22)
TP+FN

F1 — Score = 2 X PrecisionXRecall (23)

Precision+Recall

Here, TP is true positive, TN is true negative, FP is false
positive, and FN is false negative, respectively.

A. Performance Analysis

To evaluate the effectiveness of proposed LEMIP-Net,
performance analysis is performed against recent state-of-the-
art deep-learning and transformer-based models which are
used for mental-health prediction on social-media datasets.
Specifically, these models include BERT, RoBERTa and
XLNet which are strong baselines for emotional and
psychological signal extraction. Thus, each model is fine-
tuned under identical experimental conditions and evaluated
across the standard metrics as illustrated in Fig. 2.

From Fig. 2, it is depicted that the proposed LEMIP-Net
outperforms all the benchmark transformer models across
every evaluation metric. Although, the conventional models
such as BERT, RoBERTa and XLNet achieved better results
due to their robust contextual encoding capabilities, still lacks
explicit mechanisms that assists to model exposure intensity
or temporal emotional drift which are both essential factors in
mental-health prediction. Hence, these results illustrate that
integrating exposure signals and temporal dynamics resulted
with more reliable and clinically significant mental-health risk
estimation.

B. Ablation Study

To compute the individual contribution of each
architectural component in the proposed LEMIP-Net, an
ablation study is performed conducted by incrementally
integrating the major modules into a shared baseline.
Specifically, all variants are trained under identical conditions
and evaluated as presented in the Table I.
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Figure 2. Performance analysis of proposed LEMIP-Net with conventional models
TABLE I. ABLATION STUDY OF PROPOSED LEMIP-NET ACROSS DIFFERENT VARIANTS
Model Variant Accuracy Precision Recall F1-score
Only XLM-RoBERTa embeddings 0.84 0.84 0.85 0.85
XLM-RoBERTa -Hybrid Weak Supervision (HWS) 0.86 0.86 0.87 0.87
XLM-RoBERTa -HWS-Transformer—Bi-LSTM 0.88 0.89 0.89 0.89
XLM-R + HWS + Temporal (No Exposure) 0.90 0.91 0.91 0.91
Proposed LEMIP-Net 0.93 0.95 0.94 0.945

From Table I, it is observed that the ablation results
demonstrates that each component contributes significantly to
performance improvement. Specifically, the base model
provides only moderate accuracy which signifies that only
text embeddings are insufficient. Therefore, by adding HWS,
enhances label quality and further introducing temporal
modelling improves performance by capturing behavioral
changes across time. Additionally, included a no-exposure
variant that helps to validate the independent effect of
exposure modelling. Thus, the full proposed LEMIP-Net
model incorporates exposure classification and intensity
modelling that assists to obtain the highest accuracy and F1-
Score which determines exposure-aware and longitudinal
signals are essential for reliable mental-health impact
prediction.

C. Comparative Results

To assess the robustness of the proposed LEMIP-Net
framework, the performance is compared against the existing
models which are widely used in mental-health prediction
from social-media content. Specifically, the models include
traditional machine-learning classifiers (SVM), lexicon-
augmented gradient boosting (LIWC+XGB) and LLM-
enhanced models (GPT-3 + SVM) as demonstrated in Table
Il. Hence, all comparative models are re-processed with
identical tokenization, sequence length and filtering to ensure
fair comparison.

Specifically, the existing models such as SVM [14]
demonstrates moderate predictive capability, LIWC+XGB
[16] and GPT-3 + SVM [17] obtains stronger performance,
but still struggles due to the inability to incorporate temporal
dynamics and exposure intensity. Hence, the proposed
LEMIP-Net outperforms these models by incorporating
longitudinal behavioral patterns, refined supervision and
explicit modelling of pandemic-related exposure which
results with higher accuracy of 0.93, 0.95 precision, 0.94
recall and 0.945 F1-score. Henceforth, these results
demonstrates that modelling both the semantic evolution and

exposure context significantly improves mental-health
prediction compared to static or post-level baselines.

D. Discussion

The experimental results demonstrate that the proposed
LEMIP-Net effectively resolves the major limitations in
existing post-level mental-health prediction models.
Specifically, the existing approaches primarily depended on
isolated text embeddings or classical machine-learning
classifiers which limited their ability to capture the cumulative
psychological effects of prolonged exposure to pandemic-
related content. In contrast, the proposed LEMIP-Net
integrates diverse approaches including label refinement,
temporal behavioral modelling and exposure-intensity
quantification which results model that is both context-
sensitive and longitudinally effective. Thus, the performance
observed in both benchmark comparisons and ablation results
determine that mental-health risk is predicted effectively
when user behavior is considered as a dynamic trajectory
rather than a set of independent posts. Additionally, the results
illustrate that incorporating exposure intensity provides
substantial predictive advantage over transformer baselines
such as BERT, RoBERTa and XLNet. Hence, this defines that
psychological distress in digital environments is strongly
influenced by the frequency and severity of health-related
information encountered which evaluates the conceptual
foundation of exposure-aware modelling. Furthermore, HWS
significantly enhances label quality which illustrates those
self-reports alone lack reliability and benefit from linguistic
signal enhancement. In particular, on analyzing the errors, it
is determined that existing transformer-based approaches
misclassify posts with high exposure but neutral tone, whereas
the proposed LEMIP-Net model correctly incorporates
exposure signals to avoid such false negatives. Henceforth,
the proposed LEMIP-Net framework not only outperforms
existing models but also provides a methodology aligned with
psychological and behavioral science insights.
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TABLE II. COMPARATIVE RESULTS OF PROPOSED LEMIP-NET WITH EXISTING MODELS
Models Accuracy Precision Recall F1-score
SVM [14] 0.74 0.70 0.74 0.76
LIWC+XGB [16] 0.823 0.997 0.802 0.881
GPT-3 + SVM [17] 0.86 0.84 0.83 0.84
Proposed LEMIP-Net 0.93 0.95 0.94 0.945

V. CONCLUSION

In this research, the proposed LEMIP-Net, which is an
exposure-aware and longitudinal deep learning framework
that is designed for mental-health prediction. Specifically,
pandemic-related social media content is impacting every
individual mental health. Further, in the proposed LEMIP-Net
model raw user posts are converted into structured behavioral
timelines, through which this model captures linguistic
evolution, emotional drift, and cumulative effect of exposure
to pandemic. Hence, the experimental results demonstrates
that proposed LEMIP-Net consistently outperforms the
conventional models and transformer-based approaches. This
determines the requirement of combining exposure and
temporal dimensions into mental health prediction model.
Additionally, the ablation analysis shows that each component
such as hybrid weak supervision, temporal encoding, and
exposure modelling in the proposed LEMIP-Net influences
the overall performance of model. In particular, the capability
of the proposed LEMIP-Net in integration of refined labels,
time-dependent behavioral patterns and quantified exposure
signals determined as robust approach for mental-health risk
assessment. Thus, the proposed LEMIP-Net outperformed
existing model with which results with higher accuracy of
0.93, 0.95 precision, 0.94 recall and 0.945 F1-score.
Henceforth, the proposed approach resolves key challenges of
existing approaches and contributes a scalable and robust
framework for predicting mental-health risks in digital
ecosystems. In the future, the proposed LEMIP-Net will
explore multi-modal integration including images or
engagement behavior, demographic conditioning and real-
time deployment for public-health surveillance.
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