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Abstract— Although the implementation of “Adaptive Virtual
Reality” is becoming feasible, understanding the main effects of
its realization on users based on cognitive models is essential.
Here, we first described a model of the flow of information
obtained by actual human perception through avatars in virtual
reality (VR) and the resulting human reactions, and confirm the
validity of the user models proposed thus far. We also considered
the degree of immersion predicted due to the integration of multi-
modal information. The cognitive processes of VR experiences are
largely categorized into “perception and recognition of informa-
tion (attention, memory, and decision making)” and “perception-
based physical actions and interactions with VR objects”. Based
from this, we describe a cognitive model of VR experiences. In
addition, as examples of the discrepancies in sensory perception
experienced in real/VR spaces, we briefly describe the phenomena
that occur in communication. We describe the cognitive models
for these phenomena and qualitatively consider the degree to
which sensory information obtained from the real/VR space
affects the degree of chunks activation. The intensity of human
sense is expressed as a logarithm according to Weber-Fechner’s
Law, suggesting that human senses can distinguish differences
even with weak sensory information. We argue that the “slightly
different from the real world” sense felt in VR content is caused
by such slight differences in sensory information. Overall, we
advance the cognitive understanding of the immersive experience
particularly in the VR space, and qualitatively describe the
possibility of designing highly immersive VR content which are
adapted to each individual.

Keywords— sensory perception; cognitive model; virtual reality;
experience.

I. INTRODUCTION

This paper is based on the previous work originally pre-
sented in AIVR2024 [1]. The following changes were made:
(1) a restructuring of the model diagram, (2) the addition
of preliminary experimental results, and (3) the addition of
corresponding discussions.

A concept called “Adaptive Virtual Reality (Adaptive VR)”
has been discussed in recent years. Baker and Fairclough [2]
described it as follows: Adaptive VR monitors human behav-
ior, psychophysiology, and neurophysiology to create a real-
time model of the user. This quantification is used to infer
the emotional state of individual users and induce adaptive
changes within the virtual environment during runtime. There-
fore, the authors argued that the efficacy of the emotional expe-
rience can be increased by modeling individual differences in
the way users interact within a particular virtual environment
as a system.

Several methods exist for inferring emotional states.
The most classical approach, following Russell’s circular
model [3][4], involves measuring a person’s valence and
arousal states to predict their emotions. These are often pre-
dicted through measurements such as pupil response or heart
rate. Specifically, regarding visual behavior, Bao et al. [5] pro-
posed a method to recognize learners’ emotional states during
distance learning, suggesting emotion recognition techniques
for relatively simple emotions such as interest, happiness, con-
fusion, and boredom. Furthermore, Sun et al. [6] suggested that
arousal related to cognitive effort interacted informationally
with luminance, and that the strongest pupil response due to
arousal occurred at luminances below 37 cd/m2.

Given this background, the implementation of Adaptive
VR is becoming feasible. However, the main effects of its
implementation on users should be understood based on a
cognitive model. Studies have mainly focused on bottom-up
content design with an awareness of Adaptive VR. However, it
is difficult for empirical developments to provide effects that
create a new phenomena. Hence, not only a bottom-up but
also a top-down approach is necessary.

On the other hand, with the growth in Virtual Reality (VR)
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goggles and the low cost of equipment for shooting omnidi-
rectional video, VR content has attracted substantial attention.
In addition to games, a wide range of VR contents have
been developed, including omnidirectional video playback,
education, sightseeing, property previews, and shopping. VR
systems that enable these contents to be viewed are also
growing rapidly. For example, the following innovations have
emerged in content design. VR systems using Head-Mounted
Displays (HMDs) sold to general consumers cover the user’s
field of vision; thus, the user cannot see their own body.
Therefore, VR systems using HMDs typically display a virtual
body drawn from the user’s first-person perspective. A mech-
anism for realizing the user’s first-person perspective is the
implementation of avatars. The effects of avatars have been
described by researchers. Steed et al. [7] suggested that the
use of avatars that follow the user’s movements can reduce the
cognitive load of certain tasks in the VR space. People around
the world have been using VR social networking services, such
as VRChat, where users enjoy interacting with other users
using avatars that they have selected and edited to their liking.
This shows that avatars are a means of self-expression in VR
communication.

There are many research approaches to VR contents and
systems, including research from the perspective of Human
Computer Interaction (HCI), research on the relation between
VR and working memory (WM), research on the differences
in sensory perception between the real world and VR, and
research on Adaptive VR that incorporates individual adapt-
ability into VR contents.

Among the studies from the perspective of HCI,
Mousavi et al. [8] integrate Emotion Recognition (ER) and
VR to provide an immersive and flexible environment in VR.
This integration can advance HCI by allowing the Virtual
Environment (VE) to adapt to the user’s emotional state.

According to Batra et al. [9], the following requirements for
VR are listed: First, the primary component called “visualiza-
tion” enables human-machine interaction to approximate real
life; Additionally, VR requires removing the barrier between
the real world and the virtual world. Through these means,
a series of simulation technologies must generate artificial
tactile, auditory, olfactory, and sensory experiences grounded
in reality. For this simulation, it is crucial to capture human
cognitive characteristics multi-modally.

As a stepping stone to this goal, we do the following in this
study. We describe a model of the flow of information obtained
by actual human perception through avatars in VR and the
resulting human reactions, and confirm the validity of the user
models proposed so far. The degree of immersion predicted
because of the integration of multi-sensory information is also
discussed. Understanding the role of multi-sensory information
can enable us to design VR contents for individual users and
how we can control sensory perception.

The remainder of this article is organized as follows. We
describe the sense-perception cognitive model on VR in Sec-
tion II. Section III describes experiments conducted to investi-
gate the behavioral characteristics of participants’ information

acquisition and attention direction within VR spaces, as well
as the relationship between the degree of recall and the variety
of perceptual information quantity and quality within the VR
space. Section IV argues the relationship between the variety
of perceptual information quality combinations and cognitive
load.

II. DESCRIPTION OF THE COGNITIVE MODEL FOR
SENSORY IN VR

In general, physical information in the VR space is rep-
resented as follows. Objects in the VR space (VR objects)
are represented by computer graphics, and their behavior is
based on a program previously written to interact with the
environment and other objects. The sound in the VR space is
provided by artificially preparing audio data that is predicted in
advance to be uttered in the space, and is played continuously
in a background music-like manner, or by using a sound engine
controlled by the user. Specifically, in the latter case, it can be
attached to a VR object and played when certain conditions
are met. Comprised of these elements, all human activities
and virtual experiences in the VR space are performed by
using the avatar as one’s own body. The avatar’s movement is
performed by tracking the user’s real-world body movements.
Tracking methods include three-point tracking, which consists
of an HMD and two hand controllers, and full-body tracking,
which uses motion capture and a tracking suit.

Consequently, the human experience in the VR space differs
slightly from perception and cognition in the real world,
and can be said to be the result of the interaction between
avatar and VR objects, as well as the perception of the
accompanying environment such as sound linked to these
objects. Considering this, the model of human perception,
cognition, and behavior in the VR space should be described
with an awareness of the various interactions in the VR space
with those in the real world.

Based on the above, the integration process of information
perceived in both the real world and VR is shown in Figure 1.
The concept is as follows.

A. Transformation of Perceptual Information Provided by
Objects

The perceptual information of an object existing in real
space is expressed through the five senses―visual, auditory,
touch (somatosensory), smell, and taste―in a form adapted to
our sensory organs. Perceptual information directly received
by humans from the real world is received without attenuation
beyond the capabilities of the individual’s sensory organs.
However, in VR, analog-to-digital conversion is applied to
the perceptual information possessed by real-world objects.
Consequently, this information exists within the VR space
in a form where some information is missing. This means
that in Figure 1, the chunk cj(transferred) provided by the
object transferred to the virtual world―resulting from the
analog/digital conversion of the analog perceptual information
in chunk cj(real) provided by the real-world object―exists in
a form where information is missing.
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Figure 1. The information flow received by the senses in different environments.

Figure 2. Staying timeline of sensory information stored in working
memory and information invoked from long-term memory.

B. Perception of Information Provided by Objects in Virtual
World

In general VR experiences using current HMDs, visual, au-
ditory, and somatosensory information are used as perceptual
information. The VR experience begins when the user puts
on the HMD and views the images displayed on the lenses;
by moving their head while wearing the HMD, the user can
perceive the virtual space in the same way as they perceive
the real world. Auditory information is output from the HMD’s
built-in or external speakers, and audio is played in response to
the behavior of VR objects. The somatosensory information is
used to make operations in the VR space clearer by vibrating
the controllers in both hands to generate tactile feedback when
operating the User Interface (UI) in the VR space or selecting
VR objects.

C. Cognition of Information in Virtual World

The perception of information in virtual world is fundamen-
tally no different from that in the real world. However, even

when perceiving the same object, the provided information
from the object is incomplete compared to that in the real
world. The process differs in that it involves cross-referencing
with similar memories. Thus, we describe the sequence of
events as below.

1) Attention: Perceptual information moves to the sensory
register, and then only the information to which the user’s
attention is directed passes through the selective filter and into
the WM. Here, each sensory information does not completely
enter the WM at the same time, but one piece of information
passes through per processing.

2) Memory: If the sensory information obtained in the VR
space is similar to that obtained in the real world, the user
perceives the VR space as if it were a real space. In addition,
based on the information in the Long-Term Memory (LTM),
the user anticipates and expects the response of objects in the
VR space to his or her actions, and engagement is generated.

3) Decision: Based on the perceptual information, the next
action is determined. Here, when actions on a VR object are
performed via a controller, the actions in the real world are
converted into the corresponding controller operations.

D. Body Movement Based on Perception

The operator (actual body) moves, and the avatar in the
VR space moves in response to the movement. There are two
methods for incorporating human motion into VR:

• Image sensing by the camera attached to the HMD:
Basic UI operations (clicking and screen scrolling) and
grasping VR objects (realized by holding something
with a hand gesture) are possible. The high degree of
synchronization between the actual hand and the avatar’s
hand motion is an advantage of this method. Conversely,
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TABLE I. The difference between past or current input information and
situations, and the degree of matching

difference of input information
difference of situation almost never little greatly
almost never − + ++
little + ++ ++
greatly ++ ++ +++

precise manipulation, movements large enough to cause
both hands to move out of the camera’s field of view, and
very fast hand movements are weaknesses.

• Yaw, pitch, roll + relative position by controller:
The accurate tracking of position, posture, and motion
information by sensors is possible, and the sense of actual
body motion is directly reflected during the operation,
resulting in a high sense of immersion. However, if the
reflection of body motion by the HMD is not synchro-
nized with the actual body motion, it may cause a sense
of discomfort and reduce the immersiveness of the VR
experience.

1) Interaction with VR Objects: VR objects not only
appear to be three-dimensional, but can also be actually
manipulated. Examples include playing a musical instrument
or a push-button switch. Here, the immersiveness of the VR
experience can be enhanced by providing not only a visual
3D effect, but also contextual information that one’s actions
affect the VR object.

E. Integration of Information Obtained in the Virtual World
and Past Experiences

Based on Figures 1 and Table I, we consider the perception
of a phenomenon in the real (R) or virtual (V ) space as
follows. The chunk Cj stored in the LTM is constructed from
the information group Ienvi (t) obtained from sensory organ
i (1 ≤ i ≤ 5) in the past. Here, i refers to the five sensory
organs possessed by a person. Each Ienvi (t) passes through the
attention filter F env

i (t) via the sensory register. And at time t,
only the information obtained from a specific sensory organ
passes through. Cj contains the information obtained from
each sensory organ as a set I(t) and is denoted as Cj(I(t)).
Here, I(t) is represented as follows:

I(t) = {I |F env
i (t)Ienvi (t), 1 ≤ i ≤ 5}.

The information that has passed through the attention filter
is stored in the WM for a specific time τk, and a set of
information I(t) is sent to the LTM at the same time or
with a time lag. In the LTM, Cj(I(t)) is matched with
Cj(I(t)) based on the information in I(t), and the closest or
matching Cj(I(t)) is used as knowledge. The used knowledge
is overwritten in the LTM through the WM in the form that the
information in I(t) is enhanced. Here, we target two sensory
organs – visual and auditory. We consider how the information
flows through these three types of sensory organs in turn.

Suppose that at a certain time, a specific amount of in-
formation Ienvi (t) (1 ≤ i ≤ 5) is received from the external

environment. Ienvi (t) correspond to Information N in Figure 2.
Information N simultaneously activates several chunks. Al-
though the degree of chunk activation varies, F env

i (t)Ienvi (t)
is integrated into a single piece of information and sent to
the LTM. This difference, the integrated information Isyn(t),
can be expressed using the integration operator G as follows.
However, since G depends on the individual, it does not take
a unique form.

Isyn(t) = G(i, j, F env
i (t)Ienvi (t), Cj(I(t)))

For the sake of simplicity, we simply add the amount of
information and the degree of chunk activation as follows.

Genv(t) =

m∑
j

n∑
i

F env
i (t)Ienvi (t)Cj(I(t)) (1)

III. INFORMATION ACQUISITION AND ATTENTION
DIRECTION IN METAVERSE SPACE

If the cognitive framework described in Section II is correct,
differences in sensory perception should be observed between
the real and virtual worlds. The following are examples of
what these differences in sensory perception might cause:

• Differences in memory quantity/quality:
Information easily memorized in the real world may be
difficult to contextualize in the virtual world, or vice
versa.

• Differences in reaction:
In the real world, even minor changes can trigger signifi-
cant reactions. Conversely, in the virtual world, reactions
may be difficult to elicit without substantial changes. Or
the opposite may occur.

We consider the differences in sensory perception is caused
by depending on the degree of matching within working
memory, described in Figure 1, namely the value of Isyn(t).
We also consider Isyn(t) as the cognitive load incurred during
the integration of perceived similar information of past and
current, the greater the divergence between the two pieces of
information, the higher the load required to generate Isyn(t).
To realize this divergence, this research sets the number of
objects in the virtual world as the excess or deficiency of inte-
gration targets for visual information, and the audio quality of
explanatory narration for specific objects as the difficulty level
of integration targets for auditory information. We confirm the
possibility of measuring the load on information integration
through the combination of these two factors. Based on the
above, we propose the following hypotheses regarding the
quality of visual and auditory information:

• Hypothesis 1: Different combinations of quality result in
different cognitive load for information integration, and
an optimal combination exists that provides the least load.

• Hypothesis 2: Consequently, differences are observed in
the memory of information perceived during activities in
a virtual world.

• Hypothesis 3: When the combination provides optimal
load, the perceived cognitive load is closer to that expe-
rienced in the real world, leading to a sense of immersion.
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In this study, we design experiments to gain insights into
Hypotheses 1 and 2 and verify their validity.

To verify this, one method involves recreating real-world
objects within a virtual world with appropriate explanations,
then conducting visual behavior analysis and memory depth
analysis using variables such as fixation time on the object
and depth of memory for the explanation. The experimental
method for this is described below.

A. The Configuration of the Target Virtual World and Exper-
imental Conditions

To conduct experiments testing hypotheses, it is necessary
to construct a virtual world and set the quality and quantity
of objects. In this study, to perform trend analysis for the
hypothesis, we designed the space as follows as a preliminary
experiment.

The virtual world is structured with sightseeing in mind.
Consequently, activities within the virtual world are as follows:

• Free exploration (primarily focused on acquiring visual
information)

• Discovery of distinctive objects (discovery through visual
information). We focuse on architectural structures.

• Receiving supplementary knowledge through explanatory
narration on architectural styles and structures (learning
involving auditory information).

The primary object is content featuring the construction of
shrines―people often seen but rarely understood in detail
in real world. A screenshot of the VR space used in the
experiment and the intensity condition waveform of the sound
source are shown in Figure 3.

The virtual world space was constructed using Unity. Within
the VR space, a shrine model and an explanatory audio track
about the shrine’s construction were placed. For the shrine’s
3D model, a commercially available standard architectural
style was used. However, since the focus was specifically
on learning architectural styles, decorative items that should
be placed inside were excluded. The commentary audio is
designed to play when the participant pushes the speaker icon.
The content consists of standard explanatory text combined
and read aloud by a automated voice, with only amplitude
adjustments made. However, for the lower quality setting,
a lowpass filter is applied to achieve telephone-like audio
quality. Three explanatory audio clips were prepared for each
shrine, with their auditory quality set to three varieties. For
the building exteriors, objects related to shrines―such as trees,
torii gates, and chozuya purification fountains―were placed to
enhance visual and contextual information, making it closer to
the real thing.

In this virtual world, each participant freely moves through
the space, exploring both inside and outside the shrine. They
memorize the space sometimes using only visual information,
sometimes only auditory information, and sometimes by in-
tegrating both types of information. Therefore, a recall test
for the memorized content can serve as an indicator of how
information acquired in various ways is expressed.

For visual and auditory information, their quality was set
according to the conditions shown in Table II. For visual
information variations, three patterns were prepared:

• A simple plane with only a shrine (condition L),
• A simple plane with a shrine and related objects (trees,

torii gate, chozuya) which represents condition N , and
• A shrine located within a forest, accompanied by a torii

gate and chozuya which represents condition R.
For auditory information variations, we prepared three pat-
terns:

• poor audio quality for the explanatory narration (with
lowpass filter for normal sound) which represents con-
dition L,

• standard commentary audio (default automated voice and
no customize) which represents condition N , and

• consistently high volume (amplifying power) which rep-
resents condition R.

B. Experimental Procedure

The experiment was conducted as follows. The overall flow
is shown in Figure 4. The HMD used for the experiment was
the Meta Quest 2, and the Tobii Pro Glasses 3 were used for
eye tracking. Data acquired with the Tobii Pro Glasses 3 was
processed in Tobii Pro Labo to identify saccades, fixations,
and obtain gaze point coordinates. Furthermore, to mitigate
VR sickness, teleportation was adopted as the method of
movement within the VR space. Before the experiment began,
subjects were asked to answer questions regarding:

• Previous VR experience,
• Prior knowledge of architecture, and
• Prior knowledge of shrine construction.

Additionally, subjects were asked to answer several ques-
tions before the experiment began, including their knowledge
of shrines, learning experiences, and whether they had recently
visited a shrine. Sessions were conducted for each visual
condition, and at the end of viewing each session,

• Did you feel as if you were actually present there?
• Did you feel the VR world was so realistic that you forgot

the outside world?
• Did you feel like you were watching a video, or did you

feel like you were actually in the space?
They were asked to rate their responses on an eight-point scale.

After the questionnaire, participants were given a tutorial
and then experienced VR content with sensory information ap-
propriately altered. To measure participants’ gaze information,
they wore an HMD over an eye tracker while experiencing VR
content. Participants experienced one session consisting of an
audio playback task with three different auditory conditions
under the same visual condition, completing a total of three
sessions for different visual conditions. At the end of each
session, they answered questions about the content. After
completing the three sessions, a recall test was conducted.

In the recall test, a free-response section was included where
subjects were asked to write about what they remembered
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(a) (b) (c)

(f)(d) (e)

Figure 3. VR content presented to participants. Visual conditions (V ) are: (a) less (weak) stimulus (L), (b) normal stimulus (N), (c) rich (strong)
stimulus (R). Audio conditions (A) are: (d) low quality (L), (e) normal quality (baseline), (N)), and (f) rich quality (R).

TABLE II. VR content presentation stimulus change patterns.

condition1 : weak stimuli L condition2 : normal stimuli N condition3 : strong stimuli R

visual V Only the shrine is placed on the flat
surface.

Arrange a shrine, 47 trees, a torii
gate, and ground texture on a flat
surface.

Arrange a shrine, 75 trees, three-
dimensional terrain, grass, torii gates,
a chozuya, and background on a flat
surface.

auditory A A muffled sound quality like over the
phone, which apply a low-pass filter
to achive the situation.

Unadjusted audio.
The volume is excessively loud,
which change amplitude to achive the
situation.

about the content and what they felt during the experience.
The questions were:

• Please freely write down what you remember about the
content.

• Please freely describe what you felt while experiencing
the VR content.

The free-response session had no time limit, and subjects were
permitted to write down as much information as they could
recall. A 3-minute break followed the free-response session,
during which subjects spent time with the HMD removed.

C. Experimental Conditions

The experimental conditions for visual and auditory in-
formation are as shown in Table II, with three variations
prepared for each. For variations in visual information, three
patterns were prepared: a simple plane with only a shrine, a
simple plane with a shrine and shrine-related objects (trees,
torii gate, chozuya), and a shrine located within a forest,
accompanied by a torii gate and chozuya. For variations in
auditory information, three patterns were prepared: a case with
poor audio quality for the explanatory narration, a case with

TABLE III. Average fixation time for each subject across combinations of
visual variety and auditory variety.

visual (V )
R N L

au
di

to
ry
(A

)

Sa 213.5 183.1 225.5
R Sb 159.1 124.7 172.3

Sc 144.6 154.8

Sa 210.0 198.5 190.2
N Sb 198.5 164.6

Sc 190.2 138.1 101.1

Sa 190.2 208.8 193.5
L Sb 208.8 173.0 177.6

Sc 193.5 115.6 144.9

normal audio quality for the explanatory narration, and a case
with high volume for the explanatory narration. Examples of
scenes presenting each condition are shown in Figure 3.
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Figure 4. Experimental design.
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Figure 5. The result of free description in recall test.

D. Results (1) : Effect of Fixation Time and Visual/Auditory
Quality

We focused on three participants Sa, Sb, Sc whose recall
test results were particularly distinctive as a case study to
confirm the validity of this experiment. Among them, Sa and
Sb both had almost no interest in architecture, while Sc was
a graduate of an architecture department. The characteristics
of their respective descriptions were as follows.

• Sa described information obtained within the virtual
world simply but faithfully, as seen in the rich class of
Figure 5,

• Sb described information obtained within the virtual
world solely through deformed drawings (poor class of

Figure 5), and
• Sc described information obtained within the virtual

world using both simple text and detailed drawings.

Table III shows the average fixation time for each participant
across visual and auditory condition combinations. The two
blank entries indicate missing data due to malfunction of
the auditory information presentation program. Although the
values varied considerably across subjects, several trends were
observed. When examining the (visual, auditory) conditions,
fixation times were generally longer for (R, N), (R, L), and
(L, L). Furthermore, for (N, R), fixation times tended to be
shorter overall.

Figure 6 shows a boxplot of fixation time for combinations
of manipulated perceptual information. In the figure, V de-
notes visual, A denotes auditory, and L, N, R denote the
quality of each perceptual information as low/normal/high.
Figure 6(a) is a boxplot of fixation time for shots grouped
by visual quality on the left and auditory quality on the right.
Figure 6(b) is a boxplot of fixation time for shots segmented
by visual quality-auditory quality combinations.

Figure 6 shows as follows: First, the distribution of fixation
times for visual V was slightly longer for the R condition, with
a median of approximately 120 ms; The distribution of fixation
times for auditory A was slightly longer for the L condition,
with a median of approximately 120 ms. These results suggest
that fixation times are longer when the perceptual information
condition is RV LA. Indeed, examining Figure 6(b) and con-
firming the median for RV LA in Figure 6(a), it was approxi-
mately 150 ms, a value clearly larger than the medians for the
V or A groups alone. Furthermore, both RV RA and NV LA
were around 120 ms, larger than the median for the V or A
single-stimulus groups. Considering the above, it is reasonable
to conclude that for the perceptual conditions RV LA, RV RA,
and NV LA in the shot, information integration takes longer
compared to a single perceptual condition.

To verify this, we conducted an analysis of vari-
ance (ANOVA) on the distribution of fixation times for the
independent variables visual variety and auditory variety.
First, a two-way ANOVA on the fixation times for three
participants revealed a weak tendency toward an interaction
effect (F (2, 1201) = 2.258, p = 0.06). A weak tendency
was also observed for the main effect of auditory variety
(F (2, 1201) = 2.414, p = 0.09). Next, focusing specifically
on participant Sc who drew with particular precision in the
recall test, a two-way ANOVA was performed using only Sc’s
data. No interaction was confirmed (F (2, 402) = 1.65, p =
0.177), a significant main effect was observed for auditory
variety (F (2, 402) = 4.081, p = 0.018). Furthermore, mul-
tiple comparisons revealed a significant tendency for (visual
variety, auditory variety) = (N,R) and (L,N) (p = 0.087).

E. Result (3): Distribution of Shot Duration for Vi-
sual/Auditory Variety

Next, we discuss the pupil diameter changes during auditory
information listening for each of Sa, Sb, and Sc. Table IV
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Figure 6. Boxplot of fixation time for combinations of manipulated perceptual information. In the figure, V denotes visual, A denotes auditory, and L,N,R
denote the quality of each perceptual information as low/normal/high.

TABLE IV. Auditory Experimental Conditions Results and Measurements in
Two-Second Time Period. The under number of each visual condition

represents lightness for each condition which calculated by Matlab.

Visual Condition
L(166.98) N(129.14) R(122.99)

A
ud

ito
ry

C
on

di
tio

n L 0.196 0.341 0.172

N 0.163 0.261 0.125

R 0.172 0.291 0.148

shows the APD during auditory information listening for each
visual variety.

The pupil diameter change was calculated as follows. First,
it is necessary to determine the baseline rb for the pupil
diameter acquired simultaneously during gaze measurement,
which is obtained for each gaze (∼20 [ms]). rb was set as the
average pupil diameter from 500 [ms] before the time tsa of
entering the actual space after the tutorial in the experiment
until tsa. Using the pupil diameter rp(t) measured at time t,
r̄p is calculated as follows.

r̄p =
1

nrp

nrp∑
i

(rp(ti)− rb),

where nrp represents the number of data observed r(t) from
tsa to tsa +∆t. We set ∆t to 2000 [ms], which is considered
sufficient for the response to the presented stimuli to settle.

In Table IV, when visual condition is N , r̄p shows a larger
value compared to the others. Particularly in (N, L), r̄p
shows a large value. For (N, L), the value is nearly twice of
that of the other r̄p’s. Furthermore, comparing r̄p in auditory
condition, all variety of visual condition have large r̄p when
auditory condition L.

F. Result (2): Distribution of Shot Duration for Vi-
sual/Auditory Variety

Next, we perform a preliminary analysis of fixation behavior
among participants. For participants’ fixation behavior, we
classified visual actions according to the conceptual diagram
shown in Figure 7. Participants’ eye movement behavior is
broadly categorized into saccades and fixations. Regarding
fixations, participants repeatedly make very short fixations to
acquire information from the target object. In this process, the
distribution of fixations that can occur can be categorized into
the following three types:

• Remaining stationary on a specific point of a specific
object for an extended period ((a) in Figure 7)

• Remaining stationary on the same object while shifting
gaze to several parts of it ((b) in Figure 7)

• Repeating very short stationary periods and saccades,
each time stationary on a different object ((c) in Figure 7)

We defined the three visual action classifications shown in
Figure 7 as “1 shot”, and examined the distribution of the
time tshot required for each shot to reveal the distribution of
visual actions among participants. Table V shows the statistics
for this. A clear difference in trend is that the visual behavior
of Sc differs significantly from that of Sa and Sb. For Sc,
the median tshot was (R, N, L) = (581, 621, 641) [ms],
approximately half the time compared to Sa and Sb. Addi-
tionally, Sc exhibited very small values for other metrics such
as Q1, Q2, Q3, and IQR compared to the other groups.

IV. THE RELATIONSHIP BETWEEN THE VARIETY OF
PERCEPTUAL INFORMATION QUALITY COMBINATIONS

AND COGNITIVE LOAD

Based on the above results, we consider the relationship
between the combination of variety of perceptual information
quality and the cognitive load experienced by participants.
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saccading saccading saccading

(b) (c)(a)
Figure 7. Setting fixation variety. (a) represents a state of continuously fixating on the same object, (b) represents a state of continuously fixating on

different locations within the same object with saccades in between, and (c) represents a state of rapidly shifting gaze(short fixation) between different
objects with saccades in between.

TABLE V. Visual variety-individual shot distribution statistics for each participant.

Sa Sb Sc

R N L R N L R N L
Q1 426.0 481.0 721.0 530.8 761.0 641.5 290.5 281.0 270.5
Q2 891.5 761.0 1323.0 1282.5 1683.0 1302.0 581.0 621.0 641.0
Q3 2083.3 1884.0 2124.0 2519.0 2424.0 4077.5 1202.0 1503.0 1542.5

average 1505.3 1443.4 1810.7 2335.6 2215.8 2336.2 1133.6 1087.9 1264.0
stdev 1578.0 1698.9 1631.6 2929.2 2208.3 2246.6 1863.3 1132.4 1472.5
min 60.0 161.0 40.0 100.0 201.0 160.0 80.0 80.0 20.0
max 8556.0 9056.0 8055.0 13425.0 10800.0 9598.0 15729.0 5631.0 7434.0

Percentage of total fixation time on shots
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Figure 8. Relationship between the ratio of total fixation-saccadic time per memorized shot and the number of saccades per unit time.

TABLE VI. Summary of experimental results.

visual condition
L(++) N(−) R(−)

A
ud

ito
ry

C
on

di
tio

n

Fixation time N/A N/A N/A
L ANOVA N/A N/A N/A

r̄p + ++ +

Fixation time ++ N/A −−
N ANOVA ∗ N/A N/A

r̄p + + −−

Fixation time ++ −− ++
R ANOVA N/A ∗ N/A

r̄p + + −

A. Relationship between Average Fixation Time, Information
Integration, and Cognitive Load

Characteristics of fixation time distributions across different
perceptual information qualities revealed a fundamental inter-
action effect dominated by auditory information. Furthermore,
fixation time statistics showed that combining visual and
auditory qualities tend to result in longer fixation durations
compared to single information quality varieties, relative to the
average fixation time for either visual or auditory quality alone.
This phenomenon is explained based on Figure 1 as follows.
In multimodal information processing, as depicted in Figure 1,
integrating Isym(t) at the degree of matching requires search-

ing for objects within long-term memory that contain multiple
perceptual information types. In the example from Section III,
focusing on the quality of the input information (visual and
auditory), Table VI shows various results for the combination
of variety.

The main effect was observed for auditory information, so
we will examine each auditory information category.

First, for the auditory information condition L, there was no
significant trend in fixation time, while r̄p showed a tendency
toward dilation. This suggests complex information processing
is occurring due to the auditory information. Specifically,
(N, L) exhibited significant pupil dilation. If this auditory
condition is appropriate for the listener, it indicates cognitive
load arising from language processing.

Next, for auditory information with condition N , the ten-
dency differs depending on the visual condition. For (L, N),
pupil dilation occurred, while for (R, N), pupil constriction
occurred. Additionally, for (L, N), fixation time was longer,
while for (R, N), fixation time was shorter. From them, it
suggests that pupil response and fixation are linked. Therefore,
depending on the quality of visual information, the following
behavioral differences are expected:

• When quality is low, auditory information is obtained in
a state where nothing else is visible. To confirm which
part the explanation refers to, longer fixation times occur.
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Figure 9. Distribution of fixation activity time per subject. (a) and (b) represent subjects with no interest in architecture (Sa, Sb), (c) represents subjects
with interest in architecture (Sc).

• Under the conditions of this study, excessively high
quality is approximately equivalent to having too much
visual information (objects). That is, obtaining auditory
information amidst numerous visual targets leads to un-
stable visual point, resulting in shorter fixation times. This
cognitive overload may explain the smaller r̄p values.

Therefore, under the (N, N) condition, where a moderate
cognitive load is applied, the results suggest that the value of
r̄p may show a slight upward trend.

Next, the condition where auditory information was R also
had a very large effect on fixation time. Condition pair (N, R)
had very short fixation times, while the others had long ones.
Furthermore, the pupil response in condition pairs (L, R) and
(N, R) was somewhat large. This suggests that when visual
information is excessively scarce or abundant, longer fixations
may be maintained to integrate it with auditory information.
In our case, the origin of complexity is considered to stem
from the integration of auditory and visual information. On
the other hand, for condition pair (R, R), where there is
much to integrate, it is suggested that subjects may abandon
memory of what they saw and heard in the VR space, primarily
as a result of receiving excessive stimuli from visual/auditory
information.

B. Individual Differences in Eye-Movement Behavior

Due to individual differences in human behavior, we focus
on eye-movement behavior within the virtual world to perform
individual-level analysis. Figure 8 shows the total fixation time
- total saccadic time ratio and the average saccade frequency
per second for shots recalled in the recall test. Although
individual differences exist, a general trend shows a slight

increase in saccade frequency as visual information moves
from left to right. From the figure, the fixation-to-saccade ratio
per shot was generally around 0.4, and the saccade frequency
averaged approximately 8 to 10 saccades per second. We
consider this trend to show no significant variation.

Figure 9 shows the shot time distribution for each par-
ticipant. The number of shots for Sa was (L, N, R) =
(87, 50, 44), for Sb it was (45, 50, 36), and for Sc it was
(153, 106, 111). Looking at the distributions for Sa and
Sb, while there are differences in peak locations and visual
conditions, they show distinct distributions for each condition.
Generally, the peak is around 500ms, but the shot distribution
extends relatively far up to about 1500ms. Additionally, there
is a second peak around 4000ms. This trend is particularly
pronounced when the visual condition is L.

In contrast, Sc consistently changed shot scenes at similar
time intervals regardless of visual condition, showing no vari-
ation based on visual condition. On the other hand, during the
recall test, Sc provided quite detailed descriptions regarding
drawing but used few verbal expressions.

This suggests that the way information is acquired in the
virtual world is significantly influenced by the participant’s
timing for selecting specific scenes―that is, the shots. Partic-
ipants like Sc, who possess an interest in architecture and are
skilled at information acquisition, extract shots at consistent
intervals regardless of visual appearance. They acquire a large
amount of information in relatively short, fragmented inter-
vals, enabling the extraction of detailed features. In contrast,
participants like Sa and Sb, who lack interest in architecture
and are beginners in information acquisition, likely attempt
to gather as much information as possible in a single shot,
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Figure 10. The trends of estimated Isyn(t) which are changed three perceptual information(visual, auditory, somatic) amplified in Virtual Reality space.

resulting in a more variable shot time distribution.
Specifically, focusing on Sc and analyzing the details, when

the objects of interest were A,B,C, a tendency was frequently
observed where the fixation point would shift from the object
of interest to another object―such as A − B, A − C, or
B−C―before returning to the original location. This suggests
a connection to the findings of Kurihara et al. [10], who
demonstrated that temporarily shifting the fixation point away
and then returning it to the same location enhances memory
consolidation.

C. Perception in the Real/Virtual World

So far, we discussed that the impact of combining mul-
timodal perceptual information in virtual spaces on cognitive
load. Finally, we will mention what can be expected regarding
the relationship between perception and cognition in real and
virtual spaces. Figure 10 shows the trend of Isyn(t) when the
degrees to which visual, auditory, and somatic information are
emphasized in VR are varied. The solid red line in the figure
shows Isyn(t) when visual, auditory, and somatic information
are received in the real world. Here, we set j = 1, 2. Both
visual and auditory information equal 1 for one, and 2 for the
other. The somatic information is set to 0.5 on one side and
0.3 on the other. The solid blue lines indicate the degree to
which the same information is distorted in VR.

Figure 10 (e) shows the duration of information obtained
from each sense. In contrast, Figures 10 (a)∼(d) show the
degree of integrated information activation calculated by Equa-
tion (1). Figure 10 (a) shows the case where auditory is
multiplied by a factor of 2 and somatic by a factor of 0.5. For

t < 50, the VR space is slightly more chunk activated, but the
characteristics are almost same. However, at t ≥ 50, when only
somatic information is perceived, the chunk activation in the
VR space is lower. In Figure 10 (b), the visual information
is markedly increased, while the somatic information is not
reproduced in the VR space. For t < 50, the activation of
chunk in the VR space is markedly increased, but at t ≥ 50, the
somatic information is lost; Hence, there is no chunk activation
in the VR space. In Figure 10 (c), the somatic information
is lowered to 0.1 and the information is emphasized in the
form of visual<auditory. In particular, at t ≥ 50, the somatic
information is still present, but its effect is much smaller.
Figure 10 (d) is the case where the somatic information is
also doubled. Compared with Figures 10 (b) and (c), chunk
activation remains high at t ≥ 50.

The intensity of human sensation is expressed as a logarithm
according to Weber-Fechner’s Law. Therefore, as shown in
Figure 10, even if the difference in sensory information is
very slight, it suggests that the human senses can distinguish
this difference. The sense of “slightly different from the real
world” felt in VR content is thought to be caused by such slight
differences in sensory information. The sensory information
obtained in real space is not necessarily large, as shown in the
example in Section III. However, it is easy to understand that
these small differences lead to a sense of discomfort, which
in turn indicates a decrease in immersive perception.

In the present case, we only dealt with a very simple
integration of information. To advance our understanding of
human sensory perception and use knowledge in VR spaces,
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scholars should develop a new approach that uses operators
in Equation (1), such as Adaptive Control of Thought―
Rational (ACT-R) [11] and Model Human Processor with
Realtime Constraints (MHP/RT) [11] which incorporate Two
Minds, to integrate information in a cognitive architec-
ture [12][13][14].

V. CONCLUSION AND FUTURE WORK

To realize adaptive VR, we need to design deeper immersion
resulting from human interaction with real/VR spaces. As a
first step, this study describes a sensory-cognitive model for
VR spaces. Based on the described model, we analyzed how
information is acquired in a virtual world, focusing on visual
and auditory information, and how behavior changes when
conditions are altered, using results of recall test. The results
suggested that some malfunction occurs under conditions other
than (N, N). Furthermore, it suggested that the degree of
proficiency in acquiring information from space may influ-
ence eye-movement behavior and, consequently, the state of
memory. Connecting the two issues, multimodal information
and chunk activatin, we undertake the research qualitatively
and explain the phenomenon that can occur when one or
more types of information (visual, auditory, or somatic) is
overemphasized or surpressed in a VR space. Expressing
human sensory intensity as a logarithm according to Weber-
Fechner’s Law, we suggest that human senses can distinguish
differences in sensory information, even if the differences are
very slight. Considering these points, we are able to deepen
our understanding of how the VR space realizes the immersive
effect with impressive each other. Moreover, we are able
to design “adaptive” immersive contents. In the future, it is
necessary to investigate in experiments whether the degree of
immersion felt by users changes when they experience VR
content by changing the degree of emphasis of each sensory
information. The metrics used to judge the degree of similarity
between the real and virtual worlds can be defined as the
overlap between the information held in the WM and the
information in the LTM that has been activated up to that
point in time. As the activation of information in the LTM
is considered to be reflected in biological information, future
experiments could be conducted using eye gaze and skin
resistance measurements and subjective evaluation by means
of questionnaires. Hysteresis can be considered based on the
impact of inputs from the environment on the memory of the
time series.
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Abstract—In many operational contexts, particularly those
that are safety-critical, it is imperative that human participants
maintain appropriate emotional conditions. Consequently, the
accurate recognition of these states is a central challenge in
modern research. While mainstream methods have utilized Pre-
trained Language Models (PLMs) for emotional understanding,
the emergence of Large Language Models (LLMs) like ChatGPT
offers new possibilities. This study investigates the underexplored
zero-shot capabilities of ChatGPT-4 for image-based emotion
analysis. We focus on its performance in classifying emotional va-
lence (positive vs. negative) and predicting its temporal evolution.
Our findings demonstrate that ChatGPT-4 can effectively forecast
changes in emotional states, surpassing expectations. Nonetheless,
we note deficiencies in its ability to accurately discern specific
negative emotions, highlighting a need for further refinement.
The study further introduces a hierarchical stochastic model to
formalize these emotional shifts, providing a theoretical bridge
between empirical LLM outputs and psychological stability
parameters.

Keywords-image emotion prediction; large language model;
ChatGPT4; zero-shot; markov chain; emotion stability parameter.

I. INTRODUCTION

Accurately interpreting human emotion is fundamental to
communication, enabling connection while revealing under-
lying mental states and intentions. For this reason, research
has increasingly focused on integrating emotional insight into
AI, from early human-computer dialogue systems [1][2] to
the advanced Large Language Models (LLMs) of today. The
arrival of models like ChatGPT [3] and Instruct-GPT [4] has
sparked immense interest in LLM-based emotion recogni-
tion, particularly for providing emotional support in personal,
clinical, and customer service settings. This study evaluates
how effectively the latest iteration, ChatGPT-4 [5], can infer
emotions from facial expressions alone.

The need for reliable emotion recognition is not merely
academic; it is critical for safety, mental health, and user
experience [6, 7]. Social stressors such as occupational strain,
perceived injustice, and relationship loss can precipitate signif-
icant harm [8, 9]. Tragic incidents, including suicidal ideation
linked to work demands [8], school shootings, road rage, and
even a depressed pilot’s attempt to shut down engines mid-
flight [9], underscore the urgent need for better technological
aids. Advanced emotion recognition and prediction systems
could offer critical support for safety and mental health
interventions [10].

While neural networks have long enabled emotionally re-
sponsive generation [11], the nuanced linguistic competence of
modern LLMs like ChatGPT-4 has transformed conversational
AI. Yet, the extent to which these systems can track or express
emotion, especially through non-textual data, remains underex-
plored. This research assesses the strengths and limitations of
ChatGPT-4 in multimodal emotion recognition and prediction
[12, 13, 14]. By leveraging its capabilities, we can also reduce
the human-rater bias often present in psychological studies,
thereby promoting fairness and ethically tailored interventions.

A. Related Work: From Static to Generative Approaches

Historically, emotion recognition has relied on static clas-
sification models, such as Convolutional Neural Networks
(CNNs) trained on fixed datasets like FER-2013 or AffectNet
[15]. These “discriminative” models are excellent at catego-
rizing a single frame but often fail to capture the temporal
fluidity of human emotion. They view emotion as a snapshot
rather than a process.

In contrast, Generative AI and LLMs offer a “generative”
approach. They can synthesize context, history, and multi-
modal cues (text + image) to infer not just the current state, but
the likely future state. However, the stochastic nature of LLMs
introduces variability. This necessitates a robust mathematical
framework to model that variability. Our work bridges this gap
by applying stochastic process theory—specifically Markovian
dynamics—to the output of generative models, providing a
rigorous structure to the fluid predictions of an LLM.

Our work is grounded in established theories of emotion.
These include categorical models, such as Ekman’s six uni-
versal emotions (joy, sadness, fear, anger, surprise, disgust)
[16] and Plutchik’s wheel of eight (joy, trust, fear, surprise,
sadness, disgust, anger, anticipation) [17], which posit a fixed
set of basic emotions. In contrast, dimensional models view
emotions along continuous axes of valence (positive/negative),
arousal (intensity), and dominance [18, 19].

B. Contribution and Relation to Prior Work

This manuscript represents a substantial extension of our
preliminary study presented at the BRAININFO 2025 confer-
ence [1]. While our initial work established the baseline fea-
sibility of using ChatGPT-4 for zero-shot emotion prediction
under hypothetical situations, the current study significantly
expands the theoretical framework, experimental scope, and
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comparative analysis. The specific contributions that distin-
guish this article from the conference version are as follows:

1) Hierarchical Stochastic Modeling: We upgrade the
mathematical framework from a standard Markov chain
to a hierarchical model. This includes the introduction of
a binary valence layer based on a Poisson process (Sec-
tion II-B), which mathematically links global emotional
volatility to categorical transitions.

2) Multimodal Dataset Expansion: Whereas [1] re-
lied exclusively on static facial expression datasets,
this study incorporates the Multimodal EmotionLines
Dataset (MELD). This allows us to evaluate the model’s
performance on complex scenarios involving dialogue
and sentiment-tagged utterances.

3) New Experimental Tasks: We introduce a new pre-
diction task involving emotion-conditioned sentences.
Unlike the situational prompts used in [1], this task tests
the model’s ability to predict emotional evolution based
on specific verbal cues (e.g., an angry utterance vs. a
surprised utterance).

4) Comparative Analysis: We provide a comprehensive
comparison between ChatGPT-4 and the Doubao (Tik-
Tok) Large Language Model, highlighting critical diver-
gences in how these models interpret negative emotional
states and zero-shot multimodal prompts.

Section II introduces the hierarchical stochastic model used
to formalise emotion shifts. Section III describes the datasets,
prompting protocol, and quantitative evaluation results. Sec-
tion IV discusses limitations, ethical considerations, and future
directions.

C. Problem Setting and Research Questions

We study zero-shot emotion inference where the model
receives (i) a facial image and (ii) an optional textual con-
tinuation (a scenario description or an emotion-conditioned
utterance), and must output both a current emotion label and
a plausible next emotion label. This differs from standard
facial-expression classification in two ways. First, the output
is inherently temporal (a transition rather than a single label).
Second, the “ground truth” for a hypothetical future emotion
is not directly observable; therefore, our evaluation separates
(a) recognition correctness (agreement with dataset labels
for the current frame) from (b) transition consistency under
controlled polarity cues (positive vs. negative situations) and
under utterances drawn from MELD-style emotion categories.

Accordingly, we structure the study around three research
questions:

• RQ1 (Recognition): When prompted with facial images
only, how reliably can ChatGPT-4 infer the dataset emo-
tion label, and how does performance differ between
positive vs. negative categories?

• RQ2 (Shift prediction): Given an initial facial emotion,
does the model predict transitions that are consistent with
the polarity of the subsequent situation/utterance (e.g.,
reward-like vs. breakup-like contexts), and where does it
fail?

• RQ3 (Mechanism): Can a compact stochastic process
model (Poisson + Markov + persistence) explain the
empirical pattern that valence is often correct while fine-
grained negative categories are frequently confused?

These questions motivate our hierarchical model in Sec-
tion II and the prompting/evaluation protocol in Section III.

II. MATHEMATICAL MODEL

This section formalizes the stochastic model that we use to
describe the temporal evolution of emotions and to interpret
the empirical behaviour of ChatGPT-4 and Doubao in Sec-
tion III. The construction proceeds in three layers: (i) a binary
valence layer based on a Poisson process, (ii) a categorical
layer using an eight-state Markov chain, and (iii) a stability
layer with emotion-specific persistence parameters.

A. Notation

Table I summarises the main notation used in this section.

B. Binary valence model (Poisson switching)

At the coarsest level, we distinguish positive from negative
valence. Let

S(t) ∈ {+1,−1} (1)

denote the valence state at continuous time t, with S(0) = +1
indicating an initially positive state.

Valence switches are driven by a homogeneous Poisson
process N(t) with rate λ > 0. Each arrival of the process
flips the sign of S(t). If the number of arrivals in (0, t] is
even, the valence remains positive; if it is odd, the valence is
negative.

Let pk = Pr{N(t) = k} be the Poisson probabilities with
parameter λt. The probability that valence is still positive at
time t, given that it started positive, is

Pr{S(t) = 1 | S(0) = 1} = p0+p2+p4+· · · = e−λt cosh(λt).
(2)

Similarly, the probability that the state has flipped to negative
is

Pr{S(t) = −1 | S(0) = 1} = e−λt sinh(λt). (3)

The parameter λ therefore acts as a global emotional
volatility parameter: small λ implies long-lasting valence (rare
switches), whereas large λ produces rapid alternation between
positive and negative states.

1) Discrete-step interpretation and an explicit stay/flip
form: In many applications the model is queried at discrete
steps (e.g., turns in a dialogue or time bins of a fixed duration
∆t). Under Poisson-driven sign flips, the probability of staying
in the same valence over one step is

Pr{S(t+∆t) = S(t)} = e−λ∆t cosh(λ∆t) =
1 + e−2λ∆t

2
,

(4)
and the probability of a flip is

Pr{S(t+∆t) ̸= S(t)} = e−λ∆t sinh(λ∆t) =
1− e−2λ∆t

2
.

(5)
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TABLE I
MAIN NOTATION USED IN THE MODEL.

Symbol Description
S(t) Valence state at continuous time t (+1 = positive, −1 = negative)
N(t) Poisson process counting valence switches up to time t
λ Global valence switching rate (Poisson intensity)
Et Categorical emotion at discrete step t
E Emotion set {Joy,Trust, Surprise,Anticipation,

Sadness,Disgust,Anger, Fear}
E+ Positive emotions {Joy,Trust, Surprise,Anticipation}
E− Negative emotions {Sadness,Disgust,Anger, Fear}
pi(t) Probability Pr{Et = Ei} of emotion Ei at step t
p(t) Column vector [p1(t), . . . , p8(t)]⊤
p̃i(t) Stability-adjusted probability of emotion Ei at step t
λi Stability parameter for emotion Ei (smaller = more persistent)
Pij One-step transition probability from Ei to Ej

P 8× 8 row-stochastic state transition matrix

These closed forms clarify how λ controls volatility: for small
λ∆t, flips are rare; as λ∆t grows, the process approaches a
near-random alternation with stay probability ≈ 1/2.

Moreover, if an empirical estimate p̂stay of the valence stay
probability over ∆t is available, one may invert (4) to obtain

λ̂ = − 1

2∆t
ln
(
2p̂stay − 1

)
, valid when p̂stay > 1

2 . (6)

This provides a principled link between observed stability
(from repeated LLM trajectories) and the volatility parameter.

C. Categorical extension: eight-emotion Markov chain

To represent which emotion is being expressed, we refine
the valence layer into eight categorical states,

E = {Joy,Trust,Surprise,Anticipation, (7)
Sadness,Disgust,Anger,Fear}. (8)

We partition these into positive and negative subsets,

E+ = {Joy,Trust,Surprise,Anticipation} (9)

E− = {Sadness,Disgust,Anger,Fear} (10)

and define a simple valence map g : E → {+1,−1} with
g(Ei) = +1 for Ei ∈ E+ and g(Ei) = −1 for Ei ∈ E−.

Time is now indexed in discrete steps t ∈ {0, 1, 2, . . . } (e.g.,
conversational turns or fixed-size time bins). Let Et denote the
emotion at step t, and define

pi(t) = Pr{Et = Ei}, p(t) = [p1(t), . . . , p8(t)]
⊤, (11)

with
∑8

i=1 pi(t) = 1.
The categorical dynamics follow an eight-state Markov

chain with transition matrix P :

Pij = Pr{Et+1 = Ej | Et = Ei},
8∑

j=1

Pij = 1 ∀i.

(12)
Using the column-vector convention, the one-step update is

p(t) = P⊤p(t− 1). (13)

1) Theoretical Implications: This hierarchical structure im-
plies that emotional stability is not uniform. The Poisson
layer dictates the “mood” (valence), while the Markov layer
dictates the specific “affect” (emotion). This aligns with psy-
chological appraisal theories where a general valence check
often precedes specific emotional labeling. In our experiments
with ChatGPT-4, we observe that the model often gets the
valence correct (Poisson layer) even when it confuses the
specific category (Markov layer), supporting the validity of
this hierarchical separation.

D. Stability and persistence parameters

To keep the model simple and interpretable, we group
emotions by polarity and assign

λi =

{
0.2, Ei ∈ E+ (more persistent positive emotions),

0.5, Ei ∈ E− (more volatile negative emotions).
(14)

Given a current distribution p(t) = [p1(t), . . . , p8(t)]
⊤,

the probability that emotion Ei stays the same at time t is
modelled analogously to (2):

Pstay,i(t) = pi(t) e
−λit cosh(λit). (15)

The complementary probability mass pi(t) − Pstay,i(t) corre-
sponds to transitions out of Ei.

We then redistribute this transition mass according to the
matrix P . Let Pji be the probability of moving from Ej to
Ei. The stability-adjusted probability of emotion Ei at time t
is

p̃i(t) = Pstay,i(t) +
∑
j ̸=i

[
pj(t)− Pstay,j(t)

]
Pji. (16)

E. Constructing P from empirical transitions

The Markov transition matrix P can be interpreted in two
complementary ways. First, it can be treated as a theoretical
prior encoding psychologically plausible shifts (e.g., Surprise
→ Joy under positive contexts). Second, it can be estimated
from model-generated trajectories to summarise how a partic-
ular LLM tends to “move” between emotion labels.
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Concretely, suppose we collect Cij counts of predicted one-
step transitions Et = Ei → Et+1 = Ej across all prompts and
samples. A maximum-likelihood estimate is obtained by row-
normalising:

P̂ij =
Cij∑8
k=1 Cik

. (17)

To avoid zero-probability artifacts (common when some transi-
tions are rarely observed), a simple additive smoothing scheme
can be used:

P̂
(α)
ij =

Cij + α∑8
k=1(Cik + α)

, (18)

where α > 0 acts like a symmetric Dirichlet prior and
guarantees a well-defined stochastic matrix. In Section III,
we primarily use P to (i) generate reference trajectories via
Algorithm 1 and (ii) interpret confusion patterns: large off-
diagonal mass from a negative emotion into Neutral/Joy-like
predictions is consistent with low specificity and reduced AUC
for that category.

F. Numerical Simulation Algorithm

To visualize the prediction process, we formalize the simu-
lation steps in Algorithm 1. This algorithm iteratively updates
the emotion state vector based on the Markov transition matrix
and stability adjustments defined above.

Algorithm 1: Emotion Evolution Simulation
Input: Initial state vector p(0), Transition Matrix P ,

Stability parameters λi, Time horizon T .
Output: Probability distributions p̃(t) for t = 1 . . . T .
for t = 1 to T do

// Step 1: Standard Markov Update
p(t)← P⊤p(t− 1);
// Step 2: Calculate Persistence
for i = 1 to 8 do

Pstay,i(t)← pi(t)e
−λit cosh(λit);

end
// Step 3: Redistribute Mass
for i = 1 to 8 do

p̃i(t)← Pstay,i(t) +
∑

j ̸=i[pj(t)− Pstay,j(t)]Pji;
end
// Step 4: Normalize and Store
p̃(t)← Norm(p̃(t));

end
return p̃(1 . . . T )

This algorithmic approach ensures that for any given initial
emotion detected by the LLM, we can project a probabilistic
trajectory of how that emotion might decay or shift, providing
a benchmark to compare against the LLM’s own predictions.

G. Connection to ROC/AUC metrics and LLM experiments

The model above provides a conceptual bridge between
emotional stability and the classification metrics observed in
Section III. At the valence level, a larger global λ or larger
negative-emotion λi produces more frequent sign flips and

greater overlap between positive and negative trajectories. In
classical detection theory, increased overlap translates into
lower AUC: the ROC curve moves closer to the diagonal.

Empirically, we observe that positive emotions (e.g., happi-
ness, surprise) achieve high accuracies and AUC values close
to 1, indicating stable, well-separated positive trajectories.
Negative emotions, especially disgust, exhibit lower accuracies
and smaller AUC, suggesting that their score distributions
overlap more with positive classes. This pattern is precisely
what the model predicts when negative emotions have larger
λi (more volatile, shorter dwell times).

III. EXPERIMENTAL DESIGN AND RESULTS

Understanding and predicting emotion is a major frontier
in conversational AI. By analyzing not just the words people
use, but also visual and auditory cues, we can forecast how
their feelings will shift throughout a dialogue.

A. Evaluation Metrics

To rigorously assess the model’s performance, we utilize
standard classification metrics derived from the confusion
matrix. Let TP be True Positives, TN be True Negatives,
FP be False Positives, and FN be False Negatives.

• Accuracy: The proportion of total predictions that are
correct.

Accuracy =
TP + TN

TP + TN + FP + FN
(19)

• Sensitivity (Recall): The ability of the model to correctly
identify positive emotional states.

Sensitivity =
TP

TP + FN
(20)

• Specificity: The ability of the model to correctly identify
negative emotional states.

Specificity =
TN

TN + FP
(21)

Additionally, we calculate the Area Under the Receiver
Operating Characteristic Curve (AUC-ROC), which plots Sen-
sitivity against 1 − Specificity. An AUC of 0.5 represents
random guessing, while 1.0 represents perfect classification.

1) Uncertainty reporting: Point estimates can hide vari-
ability across samples and prompts. Where space permits, we
recommend reporting uncertainty via nonparametric bootstrap
confidence intervals. Specifically, we resample the evalua-
tion set with replacement, recompute Accuracy and AUC
for each resample, and report the 2.5/97.5 percentiles as a
95% interval. This is particularly important when comparing
models (ChatGPT-4 vs. Doubao) where differences may be
concentrated in a small subset of hard negative categories.

B. Emotion Recognition with different situations

For the experimental part, we chose three Data sets from
Kaggle which are Emotion Detection, Facial Expressions
Training Data, and Natural Human Face Images for Emotion
Recognition.
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TABLE II
SAMPLE OF FOUR DIFFERENT SITUATIONS

Dataset Question 1 Question 2 Question 3 Question 4

What is the emotion of
this person? If they are
about to be praised by

their boss or their
parents respectively,

what do you think their
emotions become?

If they were to be
criticized, what do you

think their emotions
would be?

If they were to receive
a $1,000 reward, what

do you think their
emotions would be?

If they were to break
up, what do you think
their emotions would

be?

What is the emotion of
this person? If they are
about to be praised by

their boss or their
parents respectively,

what do you think their
emotions become?

If they were to be
criticized, what do you

think their emotions
would be?

If they were to receive
a $1,000 reward, what

do you think their
emotions would be?

If they were to break
up, what do you think
their emotions would

be?

What is the emotion of
this person? If they are
about to be praised by

their boss or their
parents respectively,

what do you think their
emotions become?

If they were to be
criticized, what do you

think their emotions
would be?

If they were to receive
a $1,000 reward, what

do you think their
emotions would be?

If they were to break
up, what do you think
their emotions would

be?

1) Label harmonisation across datasets and the eight-
state model: Different datasets use partially overlapping tax-
onomies. For consistent reporting, we focus on the shared
labels {anger, disgust, happiness, neutral, sadness, surprise}
for the six-way experiments. Our stochastic model uses an
eight-state affect set inspired by Plutchik; the mapping is
summarised in Table III. Neutral is treated as a separate
category in evaluation (not one of the eight affect states),
which is a common practical compromise when combining
categorical theories with “no strong affect” dataset labels.

2) Datasets: Emotion Dection This dataset is the same
as the FER-2013 [20] dataset. The collection features 35,685
grayscale images, each 48x48 pixels. The images have been
categorized by the creators into several emotions, namely
anger, disgust, fear, happiness, neutrality, sadness, and sur-
prise.

Facial Expression Training Data The AffectNet [21]
database, a substantial compilation of facial images annotated
with expressions, serves as the foundation for this dataset. To
adapt to typical memory constraints, image resolution is scaled
down to 96x96 pixels.

Natural Human Face Images for Emotion Recognition

This unique dataset is curated from the Internet, encompassing
more than 5,500 images manually labeled for eight emotional
expressions. Each image captures real human expressions in
grayscale format of 224x224 pixels.

3) Task Definition of Emotion Prediction with Four Situ-
ations: To assess ChatGPT-4’s capacity for predicting emo-
tional evolution, we performed a zero-shot prompting experi-
ment. We curated a dataset of images spanning six emotions
and provided the model with four unique situational prompts.

a) Prompt Engineering Strategy: Crucial to the repro-
ducibility of Large Language Model research is the structure of
the prompt. We utilized a zero-shot Chain-of-Thought (CoT)
style prompt to encourage the model to reason about the facial
features before predicting the emotional shift. The standard
prompt template used is shown below:

This structured approach minimizes parsing errors and stan-
dardizes the output for automated scoring.

4) LLM querying, output parsing, and scoring pipeline: A
practical challenge in LLM evaluation is that outputs are free-
form by default. To enable automated scoring, we enforce a
structured JSON output (Figure 1) and apply a strict parsing-
and-normalisation pipeline:
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TABLE III
LABEL HARMONISATION USED IN EXPERIMENTS AND MODELLING.

Source label Model state Ei Valence g(·)

happiness / happy Joy +1
surprise Surprise +1 (often valence-ambiguous in practice)
neutral (Neutral; evaluation-only) 0 (excluded from binary valence)
anger Anger −1
sadness / sad Sadness −1
disgust Disgust −1

System Prompt: You are an expert psychologist spe-
cializing in facial micro-expressions and emotional dy-
namics.
Input: [Image File]
User Query: 1. Identify the current emotion shown in
the image. 2. Consider the following scenario: [Insert
Scenario, e.g., “They receive a $1,000 reward”]. 3.
Based on the initial emotion and the scenario, predict
the most likely subsequent emotional state. 4. Provide a
confidence score (1-3) for your prediction.
Output Format: JSON {current emotion,
predicted emotion, confidence}

Figure 1. Zero-shot prompt template used for emotion prediction.

• Output normalisation: Map synonyms (e.g.,
“happy”→“happiness”) and enforce the label set in
Table III. If an output label is out-of-set, we map it to
the nearest valence-consistent category when possible;
otherwise it is marked as invalid.

• Confidence as a score: The confidence field (1–3) is
treated as an ordinal score used for ROC/AUC where
applicable. If confidence is missing, a default mid-score
is assigned to avoid discarding samples.

• Binary valence evaluation: For valence-only tasks, Neu-
tral is excluded and we map labels to {+,−} via Ta-
ble III.

Algorithm 2 summarises the end-to-end evaluation proce-
dure used to produce confusion matrices and ROC/AUC.

Remark on undefined metrics (NaN). In some one-vs-
rest settings, the denominator of Sensitivity (TP + FN ) or
Specificity (TN + FP ) can be zero (e.g., if no samples of
a target class remain after filtering, or if the model never
predicts a class under a specific condition). In these cases
the metric is mathematically undefined and we report NaN
to avoid misleading values.

5) Preliminary Results: Table IV reports ChatGPT-4’s pre-
dictions of emotion evolution. For images initially labeled
negative, accuracy in negative contexts was 79.4%; in positive
contexts it was 72.8%. For images initially labeled positive,
accuracy was higher in positive than in negative contexts.
This aligns with intuition: negative states are less likely to
flip to positive under a positive context than to persist under
a negative one; similarly, positive states are more stable in
positive contexts.

Algorithm 2: Reproducible LLM evaluation pipeline.

Input: Dataset D = {(xn, yn)}Nn=1, prompt set Q,
label map ϕ(·), valence map g(·).

Output: Confusion matrices;
Accuracy/Sensitivity/Specificity; AUC where
applicable.

foreach (xn, yn) ∈ D do
foreach q ∈ Q do

Query LLM with (image xn, prompt q) → raw
text r;

Parse r as JSON → (ŷcur, ŷnext, ĉ);
Normalise labels: ŷ ← ϕ(ŷ);
Update task-specific counters (six-way or
valence-only);

Store score ĉ for ROC/AUC when defined;
end

end
Compute metrics from confusion matrices; compute
ROC/AUC from stored scores.

TABLE IV
RESULT OF FOUR DIFFERENT SITUATIONS

Emotion Parameter Positive Situation Negative Situation

Anger
accuracy 68.30% 73.30%

sensitivity NaN NaN
specificity 68.30% 73.30%

Disgust
accuracy 78.30% 85.00%

sensitivity NaN NaN
specificity 78.30% 85.00%

Happiness
accuracy 91.70% 83.30%

sensitivity 91.70% 83.30%
specificity NaN NaN

Neutral
accuracy 86.70% 83.30%

sensitivity 86.70% 83.30%
specificity NaN NaN

Sad
accuracy 71.70% 80.00%

sensitivity NaN NaN
specificity 71.70% 80.00%

Surprise
accuracy 85.00% 90.00%

sensitivity 85.00% 90.00%
specificity NaN NaN

Negative
accuracy 72.80% 79.40%

sensitivity NaN NaN
specificity 72.80% 79.40%

Positive
accuracy 87.80% 85.60%

sensitivity 87.80% 85.60%
specificity NaN NaN
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Given safety considerations, we focus on anger, disgust, and
sadness. For negative starting emotions followed by positive
events (zero shot), the predictive precision ranks disgust,
sadness, anger, with FPR of 78.3%, 71.7% and 68.3%, respec-
tively. Anger appears most resistant to immediate improvement
under positive events, whereas disgust—being semantically
heterogeneous (e.g., dislike, contempt, displeasure)—shows
the highest apparent accuracy.

6) Analysis and Discussion: Two issues emerged during
evaluation. First, some dataset images diverge from common
real-world interpretations. Second, there is a policy mis-
match between ChatGPT-4’s open-ended descriptions and the
dataset’s labeling guidelines: for example, an image tagged as
“anger” in the dataset may be read as “sadness” or “confu-
sion” by the model. These observations imply two practical
paths. If strict adherence to the dataset taxonomy is not
required, performance can be improved via prompt refinement
(e.g., enumerating candidate emotions and contextual cues)
and human-in-the-loop review. If strict adherence is required,
prompt engineering alone is unlikely to suffice; supervised
fine-tuning is the more appropriate strategy.

C. Emotion Prediction with Different Categories of Emotional
Sentences

1) Dataset: In the second task, we added a dataset called
MELD [22]. MELD The Multimodal EmotionLines Dataset
(MELD) builds upon and enriches the original EmotionLines
dataset by incorporating additional modalities such as audio
and visual elements alongside text. MELD features over 1,400
dialogue sequences and 13,000 spoken exchanges drawn from
the “Friends” TV series.

2) Task Definition: Part Two mirrors Part One by using the
same image set, but augments each image with six emotion-
conditioned utterances. To assess cross-model diversity, we run
the identical protocol with the Doubao large language model
[23] and compare outputs.

3) Preliminary Results: Overall accuracy (highest→lowest)
is: happiness, surprise, neutral, anger, sadness, disgust. Within
the “positive” set, happiness is generally most accurate; the
main failure mode is a direct flip from happiness to anger,
which yields the lowest accuracy for that class. Surprise and
neutral track closely—consistent with ChatGPT-4’s descrip-
tions that treat both as valence-ambiguous. Among negative
emotions, disgust is hardest to judge, reflected in the highest
FPR (per the definition above) and the lowest accuracy. As in
earlier tasks, zero-shot prompts are often insufficient for fine-
grained negative labels: ChatGPT-4 reliably detects “negative”
vs. “positive,” but needs richer cues to distinguish specific
negative categories.

The comparison model shows similar trends. Table VII
contrasts accuracies for ChatGPT-4 and the Doubao LLM
[23]. Doubao is notably less accurate on negative emotions,
frequently defaulting to neutral or even (in zero-shot) mis-
classifying negatives as positive—patterns not observed with
ChatGPT-4. While ChatGPT-4 may still confuse specific neg-
ative types (e.g., disgust vs. anger), it typically identifies that

the affect is negative, explaining its stronger performance on
emotion-evolution prediction.

Building on the earlier definitions, this section focuses on
the Empirical ROC Area. The empirical Area Under the Curve
(AUC) measures a model’s ability to distinguish positives
from negatives. From our data, sensitivities across the three
datasets are broadly similar except for prompts expressing
disgust. When the initial state varies, ChatGPT-4 finds disgust
hardest to identify—e.g., in positive contexts it may reinterpret
disgust as banter or a prank, reducing sensitivity. Specificity,
however, is consistently strong, especially when the initial
sentiment is positive, where predictions are nearly always
correct. Taken together with the ROC curves, these results
indicate that ChatGPT-4’s emotion-conditioned sentence pre-
dictions perform better than anticipated.

IV. DISCUSSION AND CONCLUSION

A. Ethical Considerations and Limitations

While the ability of LLMs to predict emotional states offers
significant benefits for empathetic human-computer interac-
tion, it raises substantial ethical concerns. First, reliance on
facial analysis for emotion detection has been criticized for po-
tential bias; systems often perform poorly on underrepresented
demographic groups if the training data is not diverse. In
our study, although we used diverse datasets (Natural Human
Faces), the underlying LLM’s training distribution remains
opaque.

Second, the “black box” nature of models like ChatGPT-
4 presents a challenge for clinical deployment. If a model
predicts a high risk of negative emotional spiraling (e.g.,
depressive states), the lack of explainability makes it difficult
for human practitioners to trust the output without verifica-
tion. Our Markov-based model attempts to mitigate this by
imposing a mathematical structure on the output, but the core
inference remains opaque.

Lastly, privacy is paramount. Real-time emotion tracking
implies constant surveillance of user expressions. Any imple-
mentation of such systems must adhere to strict data privacy
standards, ensuring that emotional data is processed locally
where possible and not stored without explicit consent.

B. Failure Mode Taxonomy and Practical Implications

Across both tasks, errors are not uniformly distributed; they
follow recurring patterns that are useful for both modelling
and deployment.

(1) Valence-correct but category-wrong. A common out-
come is that the model correctly predicts negative vs. positive
affect while confusing specific negative labels (e.g., Disgust
vs. Anger, or Disgust vs. Sadness). This directly supports the
hierarchical assumption in Section II: a coarse valence layer
can be stable even when fine-grained categorical boundaries
are blurred.

(2) Ambiguity between Neutral and Surprise. Surprise
is frequently treated as valence-ambiguous by the model,
especially when facial cues are subtle. In practice, these
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TABLE V
EXAMPLE OF SIX DIFFERENT CATEGORIES EMOTIONAL SENTENCES.

Dataset Question 1 Question 2 Question 3 Question 4 Question 5 Question 6

What is the
emotion of this
person? If the
next thing they
say is, “Well,

why don’t you
tell her to stop
being silly!”
What do you

think their
emotions will

become?

If the next
sentence they
say is, “Say it
louder, I don’t

think the guy in
the back heard
you!” What do
you think their
emotions will

become?

If the next
sentence they
say is, “Guess
what, I got an

audition!” What
do you think

their emotions
will become?

If the next
sentence they
say is, “Great.

He’s doing great.
Don’t you worry

about him?”
What do you

think their
emotions will

become?

If the next
sentence they

say is, “Yeah but
we won’t be able
to like to get up
in the middle of

the night and
have those long
talks about our
feelings and the
future.” What do
you think their
emotions will

become?

If the next
sentence they
say is, “Look

what I got! Look
what I got! Can
you believe they
make these for
little people?”
What do you

think their
emotions will

become?

What is the
emotion of this
person? If the
next thing they
say is, “Well,

why don’t you
tell her to stop
being silly!”
What do you

think their
emotions will

become?

If the next
sentence they
say is, “Say it
louder, I don’t

think the guy in
the back heard
you!” What do
you think their
emotions will

become?

If the next
sentence they
say is, “Guess
what, I got an

audition!” What
do you think

their emotions
will become?

If the next
sentence they
say is, “Great.

He’s doing great.
Don’t you worry

about him?”
What do you

think their
emotions will

become?

If the next
sentence they

say is, “Yeah but
we won’t be able
to like to get up
in the middle of

the night and
have those long
talks about our
feelings and the
future.” What do
you think their
emotions will

become?

If the next
sentence they
say is, “Look

what I got! Look
what I got! Can
you believe they
make these for
little people?”
What do you

think their
emotions will

become?

What is the
emotion of this
person? If the
next thing they
say is, “Well,

why don’t you
tell her to stop
being silly!”
What do you

think their
emotions will

become?

If the next
sentence they
say is, “Say it
louder, I don’t

think the guy in
the back heard
you!” What do
you think their
emotions will

become?

If the next
sentence they
say is, “Guess
what, I got an

audition!” What
do you think

their emotions
will become?

If the next
sentence they
say is, “Great.

He’s doing great.
Don’t you worry

about him?”
What do you

think their
emotions will

become?

If the next
sentence they

say is, “Yeah but
we won’t be able
to like to get up
in the middle of

the night and
have those long
talks about our
feelings and the
future.” What do
you think their
emotions will

become?

If the next
sentence they
say is, “Look

what I got! Look
what I got! Can
you believe they
make these for
little people?”
What do you

think their
emotions will

become?
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TABLE VI
RESULT OF SIX DIFFERENT CATEGORIES EMOTIONAL SENTENCES.

Emotion Anger
sentence

disgust
Sentence

Happiness
sentence

Neutral
Sentence

Sad
sentence

Surprise
sentence

Anger 70.00% 86.70% 86.70% 86.70% 86.70% 83.30%
Disgust 60.00% 70.00% 60.00% 56.70% 83.30% 56.70%

Happiness 70.00% 96.70% 100.00% 96.70% 96.70% 96.70%
Neutral 76.70% 86.70% 96.70% 96.70% 90.00% 90.00%

Sad 63.30% 76.70% 76.70% 76.70% 86.70% 86.70%
Surprise 73.30% 86.70% 96.70% 96.70% 93.30% 96.70%

TABLE VII
ACCURACY OF DIFFERENT LARGE LANGUAGE MODELS.

LLM Negative Emotion Accuracy Positive Emotion Accuracy
ChatGPT 68.89% 80.56%
Doubao 26.11% 40%

TABLE VIII
RESULT OF DATASET FOR SIX DIFFERENT CATEGORIES EMOTIONAL SENTENCES

Dataset Parameter Anger Sentence Disgust
Sentence

Happiness
Sentence

Neutral
Sentence

Sad Sentence Surprise
Sentence

Emotion
Detection

Accuracy 88.30% 53.30% 93.30% 90.00% 71.70% 91.70%
Sensitivity 83.30% 30.00% 96.70% 96.70% 70.00% 93.30%
Specificity 93.30% 76.70% 90.00% 83.30% 73.30% 90.00%

Empiric ROC Area 0.989 0.837 0.997 0.994 0.92 0.993

Facial
Expression

Accuracy 81.70% 58.30% 93.30% 91.70% 78.30% 95.00%
Sensitivity 83.30% 46.70% 100% 100% 83.30% 96.70%
Specificity 80.00% 70.00% 86.70% 83.30% 73.30% 93.30%

Empiric ROC Area 0.967 0.84 1 1 0.956 0.998

Neutral
Human

Accuracy 73.30% 58.30% 93.30% 93.30% 79.70% 85.00%
Sensitivity 76.70% 50.00% 100% 100% 79.30% 100%
Specificity 70.00% 66.70% 66.70% 86.70% 80.00% 70.00%

Empiric ROC Area 0.93 0.833 1 1 0.959 1

confusions can inflate six-way errors while leaving valence-
level performance relatively strong, depending on the mapping
used.

(3) Dataset-label vs. commonsense mismatch. Several
images in crowd-sourced datasets encode expression intensity,
pose, or occlusion patterns that do not align cleanly with
everyday interpretations. This produces “apparent errors” that
may actually reflect label noise. In safety-sensitive settings,
a conservative design choice is to prioritise reliable detection
of negative valence over precise negative subtyping, and then
escalate ambiguous cases to human review.

(4) Prompt sensitivity. The same image can yield differ-
ent predicted transitions under small variations in wording,
especially for negative emotions. This motivates the use of
structured prompts (Figure 1), explicit candidate label sets,
and (when feasible) repeated trials with aggregation to reduce
variance.

C. Future Work
Our evaluation relies on static inputs (single images or

texts), whereas real emotions evolve during interaction. With-

out real-time feedback to update predictions, immediate ap-
plicability to adaptive systems (e.g., conversational agents or
monitoring tools) is limited. Although we center on ChatGPT-
4 for image-based emotion recognition, future comparisons
with other LLMs (e.g., Claude 3) and real-world trials are
needed to assess robustness and generalizability. Improving
transparency and accuracy may involve prompt refinement
or supervised fine-tuning. Because responses are stochastic,
single-trial outputs can vary; repeated runs with fixed seeds
and averaged results would provide more reliable estimates
and reduce variance-driven bias. Finally, judgments based
solely on perceived emotional shifts can introduce labeling
bias; careful protocol design and human review remain im-
portant.

We examined ChatGPT-4’s zero-shot performance on
image–text emotion interpretation and compared it with the
Doubao model. ChatGPT-4 generally achieves higher accu-
racy, though it can confuse specific negative categories (e.g.,
classifying disgust as sadness/depressive affect). Targeted
prompts and mental-health-aware guidance improve inference
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quality. Doubao underperforms ChatGPT-4 overall and, in
zero-shot settings, more often maps negative affect to neu-
tral or positive. For subjective tasks, we recommend prompt
templates with explicit emotion taxonomies and illustrative
exemplars; where strict adherence to dataset labels is required,
supervised fine-tuning is likely necessary to align outputs with
annotation guidelines. Finally, divergences between dataset
tags and real-world perceptions can introduce bias; comparing
human assessments with model outputs helps surface and
correct such mismatches.
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Abstract—Wearable technologies powered by artificial 

intelligence (AI) can offer a non-invasive method to enhance 

health monitoring. However, the implementation of such 

wearable kinematic technologies among older adults with 

cognitive impairment remains underexplored. This study aims 

to evaluate the feasibility, usability, and acceptability of a 

wearable ring sensor powered by AI in long-term care (LTC) 

residents with and without dementia. A mixed-methods study 

was conducted with ten LTC residents (five with dementia and 

five without). Participants engaged in structured shoulder 

mobility exercises while continuously wearing an AI-integrated 

ring sensor for one day. Feasibility, usability, and acceptability 

were assessed through various questionnaires. A post-study 

focus group was conducted with 6 of the participants, followed 

by reflexive thematic analysis to identify qualitative themes. No 

significant differences in feasibility were found between groups 
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for device usage adherence, exercise frequency and intensity. 

Similarly, quantitative data revealed usability, and acceptability 

did not significantly differ between dementia and non-dementia 

participants. However, participants without dementia reported 

a significantly more positive attitude toward the technology. 

Thematic analysis identified three key themes: high ring 

comfortability, low ring significance, and ease of use. The AI-

integrated wearable ring sensor was well accepted across 

varying degrees of cognitive impairment, highlighting the non-

intrusive nature. Our findings suggest feasibility, usability, and 

acceptability of the wearable ring device in a LTC setting. 

Future research should explore its usability in a larger 

population of individuals with varying cognitive impairment 

and assess its clinical utility for movement monitoring in older 

adults. 

 

Keywords—Wearable Devices; Artificial Intelligence; 

Dementia; Feasibility; Aging; cognitive impairment, Remote 

Movement Monitoring, Long Term care. 

I.  INTRODUCTION 

This is an extended version of the paper published at AIVR 

2025 [1]. The current manuscript presents data from the full 

sample, allowing comparisons between individuals living 

with and without dementia. 

Dementia affects memory, thinking, behavior, and the 

ability to perform daily activities. The World Health 

Organization identifies dementia as a critical public health 
and social care issue of the 21st century [2]. Currently, 35.6 

million people worldwide live with dementia, and this 

number is projected to double by 2030 and triple by 2050 [2], 

[3]. Historically, people with dementia and cognitive 

disabilities have been systematically excluded from geriatric 

research, reflecting a broader pattern of ableism that has 

marginalized individuals living with dementia [4]. However, 

this paradigm has started to shift over the past decade, with 

growing awareness of the importance of addressing these 

biases and including diverse populations in health technology 

research to promote equitable opportunities for access, 

utilization, and benefits from technological advancements 

[5][6][7][8]. 

This shift toward inclusivity is especially significant in the 

context of advancing technologies like wearable devices, 

which have the potential to improve care for dementia 

populations [9]. Advancements in kinematic technology, 

such as accelerometers, GPS trackers, gyroscopes, and 

motion detection tools integrated into mobile platforms, 

present a cost-effective means to assess disease burden and 

deliver personalized care [5]. Likewise, these innovative 

kinematic technologies enable minimally invasive and real-

time monitoring for tailored delivery [9]. Wearable devices 

(WDs), capable of continuously monitoring physiological 

metrics in real-world settings such as a patient’s home (i.e., 

smartwatches), provide insights that surpass those of 

traditional in-clinic assessments [10].  

Wearable devices, including smart bracelets, rings, belts, 

necklaces, glasses, watches, earphones, headbands, and 

clothing with built-in sensors, are generally used to measure 

physiological parameters (e.g., heart rate, breathing rate, etc.) 

or to monitor physical movement [9][11]. Wearable devices 

for tracking physical movement such as range of motion, are 

increasingly being used, especially for individuals with 

neurological or musculoskeletal impairments [12]. These 

wearable technologies support rehabilitation and address the 

needs of aging populations, by providing real-time data 

which informs strategies to help preserve mobility and daily 

functioning in older adults [12]. Tracking upper body 

movements can contribute to maintaining mobility and 

activities of daily living (ADL) in older adults [13]. 

Various research on the use of wearable technologies for 

monitoring movement, including upper body functioning, has 

evolved alongside advancements in the field of kinematic 

technology. Early studies focused on inertial measurement 

unit (IMU)-based devices, accurately tracking shoulder joint 

angles during ADLs [14][15]. With the introduction of 

smartwatches in subsequent years, research expanded to 

include wearable IMU-based devices, leveraging their ability 

to monitor movements and assess rehabilitation progress in 

real-life situations and over a longer period of time. Wearable 

IMU-based devices are widely used to assist in tracking 

movements, making them integral tools in health monitoring 

[16]. Studies exploring the use of smartwatches using upper 

extremity rehabilitation exercises measure shoulder function 

indirectly [17]. Wearable technologies such as wearable rings 

have emerged as a potential alternative. However, research 

on the use of wearable rings has largely focused on other 

health monitoring applications, such as measuring blood 

pressure or tracking action-planning impairments [18][19]. 

Artificial intelligence (AI) is significantly changing 

healthcare, offering innovative solutions for managing 

dementia [20][21]. AI-driven tools, such as wearables, 

assistive robots and telepresence systems, provide cognitive 

support, medication reminders, and opportunities for social 

interaction, improving both the well-being of patients and the 

lives of their caregivers. These technologies have 

demonstrated benefits, including reduced caregiver burden, 

enhanced patient engagement, and improved mental health 

[20]. 

Healthcare services for disease diagnosis and monitoring 

are often expensive and limited in accuracy, driving interest 

in wearable health technologies based on flexible electronics. 

These devices offer benefits such as reduced costs, non-

invasive implementation, and real-time access to health data, 

enabling personalized health monitoring through the accurate 

measurement of physical and biochemical signals [22]. AI 

algorithms enhance the functionality of these wearables, 

analyzing movement patterns and enabling precise tracking 

of motor activity, early intervention, and tailored care [20]. 

AI may improve data accuracy, with the potential to facilitate 

real-time decision-making and promote inclusivity in 

research through seamless and accessible monitoring [22]. 

Expanding on these advancements, AI-powered wearable 

devices, such as a ring sensor designed to monitor shoulder 
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movements, present a novel approach to supporting 

individuals with dementia. However, the feasibility, 

usability, and acceptability of such AI-powered wearable 

devices have not been extensively studied in older adults, 

especially when considering individuals living with 

dementia. 

This study aims to assess the feasibility, usability, and 

acceptability of a wearable ring powered with AI designed to 

track upper body movements, comparing individuals with 

and without dementia in a long-term care (LTC) facility. It 

focuses on evaluating how well the device meets the specific 

needs of both groups and identifying factors that influence its 

usability and overall acceptance. 

II. METHODS 

A. Study Design 

This pilot study employed an explanatory sequential 

mixed methods to assess the feasibility, usability, and 

acceptability of wearable sensor technology for older adults 

in LTC facilities [23]. The initial phase involved using 

quantitative methods to document feasibility, usability, and 

acceptability. This provided information into the practicality 

and potential success of the intervention. Following the 

quantitative phase, qualitative methods, including a focus 

group, were used to explore participants' experiences and the 

factors influencing the adoption of the technology. 

B. Participants 

Participants were recruited from a LTC facility in a rural 

area of Nova Scotia, Canada. Convenience sampling was 

used to select 10 participants, ensuring variability in 

functional abilities, cognitive function, and health status. 

Older adults (aged 65 and above) residing in the LTC facility 

were included if informed consent was obtained, either 

directly from the resident or from their substitute decision-

maker when appropriate. Exclusion criteria included: 1) 

significant mobility restrictions, or 2) medical conditions that 

could interfere with sensor use. These conditions included 

severe hand arthritis, hand tremors, Raynaud's disease, skin 

conditions (such as dermatitis or eczema), and hand injuries 

(previous hand injuries or surgeries). Participants with motor 

impairments were excluded as it would limit their ability to 

perform the upper body movements required for tracking, 

preventing meaningful data collection. The potential for 

discomfort or confusion from using the device could also lead 

to distress, affecting participant well-being. For these 

reasons, these individuals were excluded to ensure accurate 

data collection and to prioritize participant comfort and 

safety. 

C. Intervention 

Participants were asked to wear the AI-driven ring sensor 

to monitor upper-body movements during the one-week 

intervention period. The LTC facility site coordinator 

provided instructions to participants to ensure proper use and 

maintenance of the device, supporting its functionality 

throughout the study. Participants with dementia were 

instructed to wear the sensor continuously for one day from 

8:30 am until 3:30 pm. This approach was used to assess the 

feasibility of continuous wearing of the ring device to 

determine if participants could maintain wearing the device, 

without removal. Participants without dementia were 

instructed to wear the device only during exercise or 

recreational activities and to remove the ring afterwards. This 

contrasting protocol was implemented as part of a later phase 

of the study aimed to explore capabilities of the ring device. 

The site coordinator monitored the residents’ use of the 

device and reviewed collected data daily to assess progress 

and address any concerns. The intervention prioritized 

accurate data collection while ensuring participant safety and 

comfort. 

D. Intervention 

Each participant was provided with a ring device by XO 

TECHNOLOGY©, along with information regarding its use 

[24]. However, the primary focus was on assessing the 

feasibility, usability, and acceptability of wearing the ring, so 

participants did not interact with the app themselves during 

the study period. The XO HEALTH© app, which displayed 

details such as Participant ID, Start and End Period, Last Data 

Sync, Average Wear Time, Device ID, and Device Status, 

was installed on Android tablets running the Android 

operating system or Apple iPads on iOS. A personal account 

was created on the XO HEALTH platform for each 

participant, enabling the device to collect and store data. The 

software platform utilized AI algorithms and data collection 

to monitor and analyze everyday shoulder movements. Data 

collected includes the angle of shoulder flexion, extension, 

abduction, adduction, internal rotation and external rotation, 

along with the number of repetitions for each. The collected 

data are processed by a neural network in order to classify 

various types of daily activities and quantify the frequency 

and intensity of these shoulder activities. Employing machine 

learning techniques, the platform could identify anomalous 

data points and deliver actionable insights, possibly enabling 

early detection of potential issues and facilitating proactive 

health risk mitigation. Further exploration into the ring device 

capabilities will be addressed in a later phase of the study. 

E. Quantitative Data Collection and Measures 

Data collection was conducted from October 21st to 25th, 

2024, by a research assistant, with support from the site 

coordinator. Demographic information and cognitive status 

were obtained from the participant’s medical record at the 

start of the study visit. The demographic questionnaire 

captured the age, gender, medical history, and functional 

status of all participants. The Mini-Mental State Examination 

(MMSE) was used to assess cognitive impairment [25]. 

Through a data-sharing agreement, the most recent MMSE 

scores (i.e., within the last 6 months) were obtained for each 

participant via their records at the LTC facility. For this 
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study, “dementia” classification refers to participants with 

MMSE scores consistent with up to moderate Alzheimer’s 

disease, using a cutoff of ≤20, whereas “non-dementia” 

refers to those scoring ≥21. These thresholds align with the 

following ranges: normal cognition (≥25), mild Alzheimer’s 

disease (21–26), moderate Alzheimer's disease (10–20), and 

moderately severe Alzheimer's disease (10–14) [25]. 

Feasibility was assessed by tracking adherence to device 

usage and monitoring shoulder exercises between participant 

groups via the observational checklist. These measures 

allowed for an evaluation of the technical and operational 

feasibility of the device by recording the time and exercises 

performed. Usability and acceptability were documented 

after completing the intervention using the Technology 

Acceptance Questionnaire (TAQ), and the User Acceptance 

Questionnaire (UAQ) [26], [27]. The TAQ consists of 12 

items on a 7-point Likert Scale and focuses on both perceived 

usefulness and perceived ease of use of the sensor. The UAQ 

involves 26 items on a 6-point Likert scale, that 

comprehensively assess acceptance based on a range of 

questions about comfort, enjoyment, effort expectancy, 

attitude toward technology, etc. 

F. Qualitative Data Collection and Measures 

Approximately one week after the intervention period 

(November 5, 2024), participants who had completed the 

intervention were invited to participate in a semi-structured 

focus group conducted at the LTC facility with a trained staff 

member. A focus group was used to foster interaction among 

participants and encourage their expression of their 

perceptions of the sensor. A research assistant joined the 

focus group online using Zoom (Zoom Video 

Communications Inc.) to facilitate participation, while the 

site coordinator asked predetermined questions to prompt 

discussion. Focus group questions were developed to explore 

further comfort, benefits, concerns, and the impact on daily 

activities (see Supplementary Material for the interview 

guide). The research assistant transcribed and anonymized 

the audio recordings of the focus group discussions on Zoom 

using the qualitative software QSR NVivo 14. 

G. Statistical Analysis: Quantitative Analysis 

All questionnaire data were presented as mean and 

standard deviation and initially assessed for normality using 

the Kolmogorov-Smirnov test. Since the data did not follow 

a normal distribution, comparisons between groups were 

made using the Mann-Whitney U test. Categorical variables 

were reported as absolute and relative frequencies, with 

group differences analyzed using Fisher's exact test. All 

statistical analyses were conducted with a 95% confidence 

interval using SPSS (version 28.0); IBM Corp, Armonk, NY) 

for Mac. Qualtrics data management system (Qualtrics 

International Inc.) was used for data capture. These methods 

were selected to ensure a robust analysis of differences 

between dementia and non-dementia participants, 

considering the small sample size and the distribution 

characteristics of the data. 

H. Statistical Analysis: Qualitative Analysis 

The qualitative data was analyzed following the Braun 

and Clarke (2019) reflexive thematic analysis methodology 

[28]. Our approach followed a constructivist epistemology 

and an experiential orientation, whereby the three authors 

(HS, LY, MR) first read all transcripts to become familiar 

with the full dataset. The authors engaged in reflexive 

journaling and independently generated initial codes through 

an approach driven mainly by a latent-coding perspective and 

inductive analysis. Finally, themes were then generated and 

refined through discussion among these authors. Our 

reporting adheres to the Standards for Reporting Qualitative 

Research (SRQR) guideline, previously done by O’Brien et 

al. [29]. 

III. RESULTS 

There were no significant differences between participants 

with dementia and those without dementia across several 

characteristics, as illustrated in Table 1. In terms of cognitive 

status, scores on the Mini-Mental State Examination ranged 

from 5 to 30, with a mean score of 20.90 (SD ±8.84). Both 

groups had a similar biological sex distribution, with 80% 

females and 20% males in each group.  

TABLE 1: SOCIODEMOGRAPHIC CHARACTERISTICS OF PARTICIPANTS 

Note. P<0.05 indicated statistical significance based on the Mann-Whitney test (mean±SD) or Fisher’s 
exact text (n,%). 

 

Regarding participation in recreational activities involving 

shoulder exercises, 100% of non-dementia participants and 

80% of dementia participants were involved. The majority of 

participants in both groups reported no shoulder pain or 

discomfort with the device (see Table 2). Overall, the lack of 

significant differences in these variables suggests that they 

did not influence the comparison between dementia and non-

dementia participants in this study. The participants did not 

report adverse events. 

 

 

Category Dementia  

(n=5) 

Non-

Dementia  
(n=5) 

P-value 

Gender 
 

  

Women 4 (80.0%) 4 (80.0%) 1.000 

Man  1 (20.0%) 1 (20.0%)  

Ethnicity 
 

  

White 5 (100.0%) 5 (100.0%) 1.000 

Other 0 (0.0%) 0 (0.0%)  

Highest Level of Education 
 

  

High School or Equivalent 4 (80.0%) 4 (80.0%) 1.000 

Other 1 (20.0%) 1 (20.0%)  

Age (Mean ± SD) 78.60  

± 81.60 

81.60  

± 80.10 

0.917 
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TABLE 2: RING WEARING CHARACTERISTICS FOR PARTICIPANTS 

Note. P<0.05 indicated statistical significance based on the Mann-Whitney test (mean±SD) or Fisher’s 

exact text (n,%). 

A. Feasibility: Shoulder Exercises 

The feasibility of the device was demonstrated, as no 

residents removed or requested to remove the ring during the 

intervention period. However, an issue arose when the ring 

sensor size was too large for one participant, causing it to fall 

off. For most shoulder exercises, no significant differences 

were observed between the two groups (see Table 3).  

TABLE 3: COMPARISON OF SHOULDER RANGE OF MOTION EXERCISES 

BETWEEN PARTICIPANTS 

Note. P<0.05 indicated statistical significance based on the Mann-Whitney test (mean±SD) or Fisher’s 
exact text (n,%). 

 

Specifically, the number of sets and repetitions for 

shoulder flexion, extension, abduction, and external rotation 

showed no significant variation, with p-values ranging from 

0.317 to 0.796. However, the number of repetitions for 

shoulder internal rotation approached significance, with a p-

value of 0.055, suggesting a potential trend where 

participants with dementia performed slightly more 

repetitions than those without dementia. Despite this, none of 

the differences reached the standard threshold for statistical 

significance (p<0.05), indicating that overall, the frequency 

and intensity of shoulder exercises were similar between the 

two groups  

B. Usability and Acceptability 

Overall, for usability, the results of the UAQ (see Table 4) 

indicate that there were no significant differences between 

the two groups for the total score and most of the questions 

(p > 0.05). However, one notable exception was found in 

UAQ_6 (attitude towards technology), where participants 

with dementia reported a significantly more positive attitude 

(p = 0.018). These findings suggest that while there may be 

minor variations in specific areas, the overall technology 

acceptance and user experience were similar between 

participants with and without dementia. 

TABLE 4: COMPARISON OF THE USER ACCEPTANCE QUESTIONNAIRE 

BETWEEN PARTICIPANTS 

Type of Shoulder Range of Motion Dementia  

(n=5) 

Non-

Dementia  

(n=5) 

P-

value 

UAQ_1: Ease of use 4.60 ± 4.75 4.75 ± 4.67 0.524 

UAQ_2: Usefulness 5.40 ± 4.25 4.25 ± 4.89 0.602 

UAQ_3: Perceived usefulness 3.80 ± 2.75 2.75 ± 3.33 0.197 

UAQ_4: Likelihood of usage 2.80 ± 2.50 2.50 ± 2.67 0.897 

UAQ_5: Interction satisfaction 4.40 ± 4.00 4.00 ± 4.22 0.107 

UAQ_6: Attitude toward technology 4.80 ± 3.50 3.50 ± 4.22 0.018* 

UAQ_7: Interest in future use 2.40 ± 1.75 1.75 ± 2.11 0.618 

UAQ_8: Overall satisfaction 2.00 ± 1.75 1.75 ± 1.89 0.694 

UAQ_9: Perceived value 1.60 ± 2.50 2.50 ± 2.00 0.530 

UAQ_10: Intention to continue use 2.60 ± 2.75 2.75 ± 2.67 0.700 

UAQ_11: Likelihood of recommending 3.00 ± 1.00 1.00 ± 2.11 0.121 

UAQ_12: Use in future 3.00 ± 3.25 3.25 ± 3.11 0.694 

UAQ_13: Usefulness in daily life 2.60 ± 1.75 1.75 ± 2.22 0.521 

UAQ_14: Impact on quality of life 2.40 ± 3.75 3.75 ± 3.00 0.258 

UAQ_15: Technology frustration 1.20 ± 2.25 2.25 ± 1.67 0.302 

UAQ_16: Engagement with technology 2.60 ± 2.00 2.00 ± 2.33 0.706 

UAQ_17: Comfort using the technology 4.80 ± 4.25 4.25 ± 4.56 1.000 

UAQ_18: Willingness to recommend 4.40 ± 4.75 4.75 ± 4.56 0.893 

UAQ_19: Ease of learning technology 5.20 ± 5.25 5.25 ± 5.22 1.000 

UAQ_20: Ability of troubleshoot 1.60 ± 2.25 2.25 ± 1.89 0.434 

UAQ_21: Overall technology 

confidence 

4.00 ± 4.75 4.75 ± 4.33 1.000 

UAQ_22: Understanding of technology 

features 

3.00 ± 3.00 3.00 ± 3.00 1.000 

UAQ_23: Motivation to use technology 3.00 ± 2.25 2.25 ± 2.67 0.455 

UAQ_24: Technology fits with needs 4.80 ± 5.00 5.00 ± 4.89 0.418 

UAQ_25: Satisfaction with technology 

design 

4.00 ± 4.25 4.25 ± 4.11 0.500 

UAQ_26: Frequency of use 3.80 ± 2.50 2.50 ± 3.22 0.266 

Total UAQ Score 87.80 ± 

66.20 

66.20 ± 

77.00 

0.465 

Note. P<0.05 indicated statistical significance based on the Mann-Whitney test (mean±SD) or Fisher’s 
exact text (n,%). 

Category Dementia 

(n=5) 

Non-Dementia 

(n=5) 

P-

value 

Duration (in seconds) 1703.00 

± 348.00 

1025.00 

± 348.00 

0.251 

Engaged in Recreational Activities 

Involving Shoulder Exercises? 

 
  

No 0 (0.0%) 1 (20.0%) 1.000 

Yes 5 (100.0%) 4 (80.0%)  

Expressed Shoulder Pain Today? 
 

  

No 4 (80.0%) 5 (100.0%) 1.000 

Yes 1 (20.0%) 0 (0.0%)  

Expressed Discomfort with the 

Device? 

 
  

No 4 (80.0%) 5 (100.0%) 1.000 

Yes 1 (20.0%) 0 (0.0%)  

Type of Shoulder Range of 

Motion 

Dementia  

(n=5) 

Non-Dementia  

(n=5) 

P-

value 

Shoulder Flexion – Number of Sets 1.33 ± 1.67 1.67 ± 1.50 0.796 

Shoulder Flexion – Number of 

Repetitions per Set 

10.00 ± 9.00 9.00 ± 9.56 0.699 

Shoulder Extension – Number of 

Sets 

1.00 ± 1.33 1.33 ± 1.17 1.000 

Shoulder Extension – Number of 
Repetitions per Set 

5.00 ± 7.50 7.50 ± 6.11 0.519 

Shoulder Abduction – Number of 

Sets 

1.67 ± 1.33 1.33 ± 1.50 0.796 

Shoulder Abduction – Number of 

Repetitions per Set 

8.00 ± 6.50 6.50 ± 7.33 0.502 

Shoulder Internal Rotation – 

Number of Sets 

1.33 ± 1.00 1.00 ± 1.17 0.317 

Shoulder Internal Rotation – 

Number of Repetitions  per Set 

8.60 ± 5.00 5.00 ± 7.25 0.055 

Shoulder External Rotation – 
Number of Sets 

1.33 ± 1.00 1.00 ± 1.17 0.317 

Shoulder External Rotation – 

Number of Repetitions  per Set 

6.60 ± 5.00 5.00 ± 6.00 0.121 
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For acceptability, there were no significant differences 

between dementia and non-dementia participants for most of 

the TAQ items. For example, the ratings on the ease of use 

(TAQ_1), usefulness (TAQ_2), perceived usefulness 

(TAQ_3), and other items like interest in future use (TAQ_7) 

and overall satisfaction (TAQ_8) showed no significant 

differences between the two groups. Some items had slightly 

higher or lower scores in one group compared to the other, 

however, these differences did not reach statistical 

significance. For instance, participants with dementia rated 

"ease of use" and "likelihood of usage" slightly higher than 

those without dementia, but the p-values (0.197 and 0.193, 

respectively) indicated that these differences were not 

statistically significant. The overall total TAQ score was also 

not significantly different between the two groups, with a p-

value of 0.251. This suggests that, despite minor variations in 

individual responses, the overall technology acceptance 

between participants with and without dementia was similar. 

C. Participant Experiences 

The focus group comprised six participants, with a mean 

age of 78.5 years (SD ±10.97). In terms of gender identity, 

66.7% identified as women (n=4), and 33.3% identified as 

men (n=2). All participants (100%) identified as Caucasian. 

The qualitative analysis yielded 3 themes (see Figure 1). No 

privacy or security concerns were raised during the focus 

group. Only one participant identified having prior 

experience with using a wearable device for health or fitness 

monitoring. 

 

 

 

 
 

 

 
 

 
 

 

 

Figure 1. Schematic summary of themes derived from the qualitative analysis. 
 

Theme 1: High Ring Comfortability  

A crucial part of using wearable devices is how 

comfortable they are for the individual wearing them. A 

major factor contributing to the comfort of the ring device is 

its familiarity with the participants. “I mean, I’ve had a ring 

on my finger for years; I just put it on top of this one (P1).” 

Many participants said that the device's design closely 

resembled that of a conventional ring they were used to 

wearing in everyday life. This resemblance made the device 

non-intrusive while also allowing participants to adjust to 

wearing it quickly. While some participants expressed 

worries about swelling, it did not appear to influence general 

comfort. Many participants expressed “It didn’t bother me, I 

was comfortable with it (P2).” However, size difficulties did 

arise. One individual stated that the ring felt uncomfortable 

since it was too large for their finger, pointing out the need to 

make size adjustments for the best fit. 

Theme 2: Low Ring Significance  

A theme that participants consistently demonstrated 

was a perceived low ring significance. One participant noted, 

“I couldn’t see any difference when I had it on (P3)”, 

underscoring the lack of discerned impact and benefit from 

the ring. Additionally, participant 2 stated, “Think I need 

more information on it,” when asked how important having 

a ring to track their shoulder movements and exercises was to 

them. This statement demonstrates a recurring trend among 

respondents, as many did not feel they had sufficient 

information to decide if the ring made a personal difference. 

Furthermore, several individuals involved in the focus group 

expressed that they felt the ring had low significance in their 

lives, as they did not notice a tangible difference after using 

it. Participant 1 reported, “I didn’t even really know what the 

ring was going to do and what we were supposed to do”, 

illustrating that multiple participants were under the 

impression it would provide observable results after 

completion of the study. 

Theme 3: Ease of use 

The final emerging theme centered on the ease of use of 

the ring sensor in participants' daily lives. Several individuals 

reported that they often forgot they were wearing the ring, 

which enhanced their confidence and comfort in moving 

through daily routines without feeling as though they were 

part of a study. “It was very easy. You can wash with it on 

and shower. Go outside. And it's perfect for me”. Participants 

were able to complete daily activities like exercising, 

showering, and recreational activities without any 

interruption from the ring. Participant 8 explained; “I don't 

feel it had any real impact. I used it for most things.” Overall, 

the ring did not have any negative outcome on participants.  

IV. DISCUSSION 

This mixed-methods study assessed the usability and 

acceptance of an AI-powered wearable ring sensor designed 

to track upper body movements. This study introduces the 

novelty of assessing a wearable ring device among 

individuals with dementia compared to those without, whilst 

evaluating feasibility, usability, and acceptability. We 

evaluated how well the device met the specific needs of 

individuals with and without dementia in a LTC facility. We 

identified factors that influence its overall usability and 

acceptance. No significant differences were observed in 

shoulder exercises between the two groups based on the 

frequency or intensity of the exercises. Similarly, there were 

no significant differences in the total scores from the 

technology acceptance or user acceptance questionnaires. 

However, when examining the specific questions, attitudes 

towards technology significantly differed, whereas 

participants with dementia reported a more positive attitude. 

Prior literature has identified motivation and positive 

attitudes as key factors when implementing new technologies 

for older adults [30]. Furthermore, positive attitudes toward 

active aging have been found to influence learning and 
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technical skills associated with the implementation of new 

devices in older adults [31][32]. Recognizing positive 

attitudes and motivation among participants can be a strength 

to build on, enhancing feasibility and engagement with 

wearable technologies. 

Prioritizing the assessment of feasibility, usability, and 

acceptability provides a necessary foundation for the 

successful integration of new technologies into healthcare 

and rehabilitation for the aging population. Even if a device 

demonstrates strong technical performance in later stages, it 

will not be adopted if it is not considered acceptable to users, 

practical to implement, or easy to use across diverse 

populations. Focusing first on these dimensions allows 

researchers to identify barriers to adoption, cultural or 

contextual concerns, and potential design improvements that 

enhance user experience. These outcomes ensure that future 

research builds on a device that is not only technically 

promising but also aligned with the lived experiences and 

needs of its intended users. Understanding differences in 

adoption and usability between these groups is crucial, as 

cognitive and functional impairments may influence the 

device's practicality. 

Feasibility, usability, and acceptability were also 

demonstrated in participant experiences, with three emerging 

main themes, 1) high ring comfortability, 2) low ring 

significance, and 3) low ring impact. By integrating both 

quantitative and qualitative results, this approach enhances 

the potential for real-world application and informs future 

advancements in wearable health technologies tailored to 

individuals with varying cognitive abilities.  

Regarding feasibility, both dementia and non-dementia 

participants wore the ring sensor without removing the 

device. While the outcomes of this study indicate the high 

feasibility of implementing such a device among LTC 

residents, there is still room for improvement regarding the 

communication of study expectations and end goals between 

researchers and participants. Based on focus group feedback, 

it is evident that participant understanding would have been 

greatly improved had they received more information on the 

ring’s function, as confusion on this front was the primary 

reported concern. Although the authors note moderate 

cognitive impairment in this population could contribute to a 

misunderstanding of the details of the ring sensor, future 

research should better target digital literacy in older adults 

[33][34][35]. Nonetheless, the findings indicate that the 

wearable ring device is a feasible technology for individuals 

with cognitive impairment, including dementia [1]. Even in 

the absence of full understanding, passive compliance was 

maintained, whereby participants still displayed a high 

willingness to wear the device. These results align with 

findings reported by Rocha et al., affirming the use of 

wearable ring devices in older adult populations [9]. 

Individuals with dementia frequently have cognitive 

impairment, which might restrict their ability to utilize and 

accept wearable technology. As a result, while developing 

such devices, it is critical to prioritize aspects such as ease of 

use, adaptability, and intuitiveness [5]. In this study, these 

core aspects were integrated into the ring’s design, which 

significantly enhanced the acceptability of the technology. In 

this population, individuals often remove or avoid using 

devices that feel out of place or obtrusive [5][9]. The 

participants were so comfortable with the ring that after 

putting it on, they were unaware of wearing it throughout the 

day. The ability to put the ring on the finger and monitor 

movements without needing constant adjustments makes the 

technology highly beneficial in this population. Such 

simplicity reduces the cognitive load, ensuring that the user 

does not feel overwhelmed or frustrated [5]. These aspects 

enhance user acceptability and support sustained use of the 

device among individuals with dementia. 

These findings have important implications for 

telerehabilitation, particularly for older adults in rural, remote 

and underserved settings where in-person monitoring is 

limited. Evidence from recent rapid reviews supports the 

feasibility and effectiveness of wearable and sensor-based 

monitoring in delivering remote rehabilitation to populations 

with limited access to in-person care [36]. The high comfort 

and acceptability of the AI-powered ring among residents 

with varying cognitive abilities suggest that similar wearable 

technologies could be integrated into remote rehabilitation 

programs to support continuous, unobtrusive movement 

monitoring. Such integration would enable clinicians to 

receive real-time data on upper limb mobility without 

requiring complex user interaction, addressing barriers 

related to geography, mobility limitations, and cognitive 

impairment, and thereby promoting equity in access to 

rehabilitation services. From an ethical perspective, the 

deployment of AI-powered wearables in these contexts must 

ensure that data collection, storage, and use respect privacy, 

autonomy, and informed consent, particularly for individuals 

with cognitive impairment, while also avoiding the risk of 

exacerbating digital health inequities [37]. 

A. Limitations and Future Directions 

This study had some limitations that should be 

acknowledged when interpreting the results. First, 

individuals with significant mobility restrictions or medical 

conditions that could interfere with sensor use, such as severe 

hand arthritis, hand tremors, Raynaud's disease, skin 

conditions, or previous hand injuries, were excluded. These 

exclusions were made to ensure the accuracy and reliability 

of data collection, as these conditions could compromise 

participants' ability to use the wearable ring effectively or 

lead to discomfort and distress. As a result, the study's 

findings may not fully represent the experiences of 

individuals with more advanced physical impairments, 

limiting the generalizability of the results to a broader 

population of people with dementia. Additionally, a key 

limitation of the study was the lack of data from the wearable 

ring's app and sensor outputs. Although this data would have 

enhanced the study by offering insights into the device's 

effectiveness, this study focused on evaluating user 
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experience, comfort, and acceptance of wearing the ring 

device. Validation of the AI-driven functionalities of the ring 

device, including AI accuracy, kinematic data reliability and 

user interactions with the app interface, will be examined in 

future work. The ring wearing protocol was intentionally 

designed to explore device capabilities in terms of continuous 

versus fragmented use of the ring. The dementia group 

partook in sustained ring use, to assess feasibility, given the 

potential challenges with adherence. However, we 

acknowledge that this difference in the ring wearing protocol 

limits direct group comparisons and therefore should be 

interpreted cautiously. Finally, as a pilot feasibility study, the 

small sample size limits statistical power and 

generalizability; therefore, the findings should be interpreted 

as preliminary. Future studies should consider a larger sample 

size of individuals with varying cognitive disabilities to 

assess how wearable technology can be adapted for their 

needs, including the use of wearable technology interfaces 

(i.e., applications). This would expand the generalizability of 

findings and better address the diverse experiences of people 

living with dementia. The limitations related to the missing 

data and exclusion criteria are important to consider but do 

not detract from the study's contribution to understanding the 

practical application of wearable technology in dementia 

care. Furthermore, while this pilot study focused primarily on 

the feasibility of ring wearability, future work should explore 

the integration of AI to enhance dementia monitoring 

capabilities more in depth. Although AI was not directly 

applied to this study, its potential in wearable data could 

significantly improve personalized intervention strategies.  

V. CONCLUSIONS 

This study evaluated the feasibility, usability, and 

acceptability of an AI-enhanced wearable ring for tracking 

upper-body movements in participants with and without 

dementia. No significant differences were observed between 

the two groups in demographics, device-related adverse 

events, or technology acceptance. Both groups reported 

similar satisfaction with the device, highlighting its non-

intrusive nature and minimal impact on daily routines. 

Integrating AI capabilities enhances the device's ability to 

accurately track movement patterns and provide reliable data, 

making it a valuable tool for real-time monitoring. Given the 

small sample size, these findings should be interpreted as 

exploratory, as this pilot study was designed to assess 

feasibility rather than draw definitive conclusions about 

group differences. In conclusion, the wearable device was 

found to be acceptable for both groups. The study 

underscores its potential for improving care delivery, 

particularly in dementia care, by leveraging AI-driven data to 

guide clinical decisions, monitor disease progression, and 

personalize interventions in LTC facilities. 
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Abstract—Falls among older adults are a major public health 

concern due to their frequency, consequences and impact on 

autonomy and mortality. The Risk Of Falling (ROF) is linked to 

three dimensions: physical/organic, socio-environmental and 

thymic/cognitive.  Identifying individuals at high risk is essential 

to implementing personalized prevention strategies. While fall 

history is a well-known predictor, the integration of multi-

dimensional health data and interpretable machine learning 

models may enhance prediction accuracy. We conducted a 

retrospective analysis of 1,648 older adults who underwent a 

Comprehensive Geriatric Assessment (CGA) at two time points. 

Based on clinical, functional, cognitive and psychosocial 

variables, we developed and compared four supervised 

classification models: logistic regression, Support Vector 

Machine (SVM), random forest and eXtreme Gradient Boosting 

(XGBoost). Predictive performance was evaluated using Area 

Under the receiver operating characteristic Curve (AUC), F1-

score and Brier score. SHapley Additive exPlanations (SHAP) 

values were used to interpret variable contributions at the 

individual level. XGBoost and random forest models 

demonstrated the best performance (AUC = 0.76 and 0.77, F1-

score = 0.72 and 0.73, Brier score = 0.19 for both). SHAP 

analysis confirmed that fall history was a strong predictor but 

not the sole contributor to the model's decisions. Functional 

limitations,  low Activities of Daily Living  (ADL) and low 

Instrumental Activities of Daily Living (IADL), impaired 

physical performance (low Short Physical Performance Battery 

(SPPB)), pathological Single Leg Balance (SLB) and cognitive 

scores (Mini-Mental State Examination (MMSE)) also played 

substantial roles. Misclassified cases illustrated the importance 

of multidimensional balance in the model's outputs. Our 

findings support the use of interpretable machine learning 

models, particularly XGBoost, for personalized fall risk 

prediction in older adults. Beyond fall history, a combination of 

physical, cognitive and psychosocial variables contributes 

meaningfully to risk estimation. Such models may help guide 

targeted preventive interventions in geriatric practice, provided 

operational complexity is managed to allow real-world clinical 

integration. 

Keywords-fall; older population; prevention; personalized 

medicine; AI. 

I.  INTRODUCTION 

This article is an extended version of the international 
conference paper entitled “Enhancing Fall Prediction in 
Older Adults: A Data-Driven Approach to Key Parameter 
Selection” [1]. In this extended version, some models have 
been upgraded by including dyslipidemia, a cardiovascular 
factor, among the predictive variables for falls. However, we 
retain XGBoost as our final model, since it remains one of the 
most effective approaches for ensuring both high predictive 
performance and interpretability in personalized prediction. 

According to the World Health Organization (WHO), 
older individuals are those aged ≥ 60 years. The proportion of 
older individuals worldwide is expected to nearly double 
between 2015 and 2050, increasing from 12% to 22% [2]. The 
National Institute of Statistics and Economic Studies (INSEE) 
estimates that one in three individuals in France will be 
aged ≥ 60 years by 2060, compared to one in four individuals 
in 2021 [3]. Aging leads to a gradual decline in functional 
capacity, increasing the ROF [4]. Falls in older adults 
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represent a major public health concern due to their high 
frequency, their functional, psychological and economic 
consequences, as well as their impact on mortality. In the 
study by Tan et al. [5], falling was identified as one of the main 
predictive factors integrated into a model designed to identify 
long-term care patients at highest risk of death. Similarly, 
Shaik et al. [6] highlighted that, in both older and younger 
individuals, falls, along with bone pathologies, are among the 
primary causes of hip fractures. 

Fall prevention has always been a central focus in medical 
practice, notably through clinical test batteries or by adjusting 
specific functions according to identified predictive factors, 
generally using linear regression models (LRMs), after 
grouping patients based on shared health characteristics. 
While traditional regression models have long been the 
standard tool for analyzing risk factors, machine learning 
methods now offer improved predictive performance by 
accounting for complex interactions between variables. 

We developed predictive models using as input data the 
factors identified in various fall trajectories. The objective is 
to evaluate whether these variables are sufficiently 
discriminative to power an effective predictive model, among 
all those tested and thereby contribute to a targeted and 
personalized fall risk prevention strategy. Early identification 
of ROF facilitates the administration of personalized 
interventions for individuals [7]. 

Most recent studies predict falls using sensors or 
Electronic Health Records (EHRs). With data collected 
directly from elderly individuals’ homes, our objective is to 
develop an effective predictive model using the fewest 
possible features.  

In this study, we evaluated and compared several 
classification algorithms to predict fall risk based on clinical, 
functional and psychosocial data collected from a CGA. 
Model interpretability was ensured using SHAP values, in 
order to facilitate clinical understanding of the results and to 
precisely identify the factors that most contributed to the 
prediction of fall risk. 

II. MATERIALS AND METHODS 

A. Study Design 

Our study is based on a dataset collected between 

September 2011 and September 2023 through multiple home 

visits conducted by the Unit for Prevention, Monitoring and 

Analysis of Ageing (UPSAV – Unité de Prévention, de Suivi 

et d'Analyse du Vieillissement) at Limoges University 

Hospital, Limoges, France. The UPSAV team comprises 

nurses, geriatricians and other healthcare professionals. Each 

patient underwent an initial visit, followed by a second visit 

six months later and a third visit one year after the second. If 

the patient remains in the study after the third visit, 

subsequent visits occur annually. The study includes men and 

women aged 60 and older. To be eligible, participants had to 

meet the following criteria: 

• Provide written informed consent, either personally 

or through a legal representative. 

• Not be enrolled in a clinical trial that modifies their 

standard medical management. 

• Not have progressive pathologies that could 

significantly affect short-term prognosis. 

• Not reside in a long-term care unit or a nursing home. 

• Be covered by social security at 100%. 

B. Falls and Comprehensive Geriatric Assessment 

During the Follow-up, a fall was defined as 

unintentionally coming to rest on the ground or other lower 

level not as a result of a major intrinsic event (e.g., 

myocardial infarction, stroke, or seizure) or an overwhelming 

external hazard (e.g., hit by a vehicle) [8], [9]. Each patient 

underwent a CGA and received a personalized care plan. The 

CGA is a multidimensional and standardized approach 

designed to enhance clinical practices in the care of older 

adults through a comprehensive health assessment. CGA are 

widely used to evaluate the physical, cognitive, social and 

medical factors associated with fall risk in older adults [10]. 

Although they provide valuable clinical information, CGAs 

often involve numerous variables and can be time-consuming 

to administer and interpret, particularly in home care settings. 

This highlights the growing need for efficient and scalable 

tools that can help prevent falls without increasing the burden 

on caregivers or patients. 
Falls may occur repeatedly within a year. In geriatric 

practice, individuals who experience at least two falls within 
a 12-month period are classified as “fallers” [11].  

A holistic fall prediction approach considers three key 
dimensions: 

• The physical/organic dimension gathers data related 
to an individual’s medical history and current 
symptoms, diagnosis of underlying health issues and 
treatment effectiveness. 

• The thymic/cognitive dimension refers to an 
individual’s mental, emotional and cognitive states. 

• The socio-environmental dimension refers to age, 
gender, family and social support, housing 
conditions, home configuration, the presence of 
slippery rugs, stairs without railings, uneven surfaces 
and inadequate lighting. 

Evaluating the ROF involves at least a gait and balance 
assessment of the physical/organic dimension and the age and 
gender of the socio-environmental dimension. Data involving 
the thymic/cognitive dimension allow for a comprehensive 
review of the potential causes of a fall. The term “dimension” 
refers to the types of factors that contribute to the ROF and 
their evaluation. 

Hospitalized patients often receive incomplete health 
assessments across all dimensions. Our home-collected data 
encompass features from all three dimensions. 

C. Data Collection and Variable Processing 

Covariates included fall occurrences, cardiovascular risk 

factors, socio-environmental characteristics and the CGA 

summary. Fall occurrences refer to falls that occurred 

between visits. 
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Socio-environmental characteristics assessed in the home 

included gender, age, lifestyle, housing conditions, presence 

of an elevator, long-term illness status, leisure activities, 

social activity, human assistance and pet ownership. 

Cardiovascular risk factors considered were 

hypertension, diabetes, dyslipidemia, obesity and tobacco 

use. 

The CGA summary encompassed multiple functional and 

cognitive assessments, including: 

• Verbal fluency test [12], 

• Single Leg Balance (SLB) test, scored 0-60 

seconds [13], 

• Clock-drawing test (CDT), scored 0-5 [14], 

• Instrumental Activities of Daily Living 

(IADL), scored 0-8 [15], 

• Mini-Mental State Examination (MMSE), 

scored 0-30 [16], 

• Mini Nutritional Assessment (MNA), scored 0-

30 [17], 

• Short Physical Performance Battery (SPPB), 

scored 0-12 [18], 

• Geriatric Depression Scale (GDS), scored 0-30 

[19]. 

For consistency, in the rest of the document, we added 

'Pathological' to the feature names SLB test, CDT, Verbal 

Fluency and GDS to indicate whether the test result is 

positive or not. 

D. Data analysis  

In our study, the sample size decreased from 1,648 

patients at the first visit to 954 patients followed up at the 

second visit. A descriptive analysis was conducted to provide 

an overview of the study variables and their distribution 

between individuals who had fallen and those who had not. 

Pearson’s Chi-squared test was used for categorical variables, 

while the Wilcoxon rank-sum test was applied to continuous 

variables. The significance threshold for all statistical tests 

was set at a p-value (P) < 0.05 and all reported P-values were 

two-tailed. The p-value or probability value is a statistical 

measure ranging between 0 and 1. It expresses the probability 

of obtaining a result at least as extreme as the one observed 

under the assumption that the null hypothesis (H₀) is true. The 

null hypothesis used as the starting point of a statistical test 

states that there is no effect, no difference, or no relationship 

between the variables under study. According to the most 

commonly accepted convention a result is considered 

statistically significant when p < 0.05. In this case, the 

probability of obtaining the observed data (or more extreme 

outcomes) under H₀, is less than 5%. The null hypothesis is 

therefore rejected in favor of the alternative hypothesis (H₁), 

suggesting the existence of an effect or a difference. All 

statistical analyses were performed using R software (version 

4.4.0, R Foundation for Statistical Computing, Vienna, 

Austria). 

E. Model Development Using Supervised Machine 

Learning  

The construction of a predictive model relies primarily on 

selecting a limited number of relevant variables. In geriatrics, 

preventive strategies implemented by geriatricians 

traditionally rely on "predictive factors" identified using 

logistic regression models (LRM). These factors correspond 

to variables significantly associated with fall risk across 

different patient groups (or clusters), formed based on 

longitudinal (or panel) data collected at multiple time points 

during the study. 

In our work, after identifying the fall trajectories specific 

to the study population, we extracted the most explanatory 

variables for each of these trajectories. These predictive 

variables then served as the basis for building several 

predictive models, which we compared in order to evaluate 

their performance. 

We developed a fall risk prediction model by selecting the 

best-performing algorithm among four classifiers: logistic 

regression, Support Vector Machine (SVM), eXtreme 

Gradient Boosting (XGBoost) and Random Forest. Logistic 

regression is a linear supervised classification model 

particularly suited for binary problems . SVM, on the other 

hand, aims to maximize the margin between classes using an 

optimal hyperplane [20]. Ensemble models such as XGBoost 

and Random Forest rely on aggregating multiple decision 

trees: the former through a sequential boosting process and 

the latter through a bagging mechanism, both of which 

enhance model accuracy and robustness [21], [22]. 

To optimize the performance of each classifier, we used 

the RandomizedSearchCV method, which randomly explores 

a subset of hyperparameter combinations within a defined 

search space. Unlike GridSearchCV, which exhaustively 

evaluates all possible combinations, this approach reduces 

computational cost while efficiently exploring influential 

parameters through cross-validation. Finally, to calibrate the 

predicted probabilities of the models, we applied 5-fold 

cross-validation calibration using CalibratedClassifierCV 

(with cv=5) before evaluating final performance on the test 

set. 

No missing data were observed among the variables 

included in the analysis. To address class imbalance, the 

RandomUnderSampler method was applied, which consists 

of randomly removing observations from the majority class 

to rebalance the dataset. Given the sensitive and real nature 

of health data, no synthetic oversampling method was used. 

The dataset was randomly split into a training set (70%) and 

a test set (30%). 

Model performance was evaluated on both the training 

and test sets using several metrics: Area Under the Curve 

(AUC), accuracy, precision, recall, specificity, F1-score and 

Brier score [23], [24], [25]. Among these, AUC, F1-score and 

Brier score were selected as the main evaluation indicators. 

AUC assesses the model’s discrimination ability, the F1-

score captures the balance between precision and recall, 

while the Brier score measures the accuracy of probabilistic 
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predictions; it is calculated as the mean squared difference 

between predicted probabilities and actual outcomes. A high 

AUC and F1-score, combined with a low Brier score, indicate 

good classification performance and accurate probability 

estimation. 
For model interpretation, SHAP values were computed to 

quantify the contribution of each variable to the individual 
prediction of fall risk. SHAP is an explainable AI method that 
provides insights into the contribution of each feature both 
globally (across the entire dataset) and locally (for individual 
predictions) [26]. All algorithms were implemented in Python 
3.10.16 (Python Software Foundation, Wilmington, DE). 
Variable preprocessing was performed using OneHotEncoder 
for categorical variables and StandardScaler for numerical 
variables, via the scikit-learn library. 

III. RESULTS 

A total of 1,648 individuals met the inclusion criteria for 

the study. Table I presents the baseline socio-environmental 

and health characteristics of the sample that significantly 

differentiate fallers from non-fallers. Among the older adults 

included, 1,113 (68%) were women and 535 (32%) were 

men. Additionally, 73% had hypertension and only 288 

participants (17%) engaged in social activities. The mean age 

of participants was 83 ± 6 years. Regarding falls, 823 

participants (approximately 50%) had experienced a fall 

during the previous year. Concerning housing conditions, 

991 (60%) were homeowners. Furthermore, 449 participants 

(27%) were classified as having depression. 

TABLE I. OVERVIEW OF BASELINE CHARACTERISTICS ACCORDING TO 

FALLS OF THE STUDY 

  Falls of the study  

Features of the study Total sample  

(N = 1,648)  

n (%) 

No falls 

(n = 794, 

48.2%) 

Falls 

(n = 854, 

51.8%) 

p-

value* 

Woman 1,113 (68%) 500 (63%) 613 (72%) <0.001 

Age, m ± SD, years 83 ± 6 82 ± 6 83 ± 6 0.001 

Diabetes 339 (21%) 146 (18%) 193 (23%) 0.035 

Leisure 1,377 (84%) 689 (87%) 688 (81%) <0.001 

Social activity 288 (17%) 162 (20%) 126 (15%) 0.003 

Human assistance 1,402 (85%) 644 (81%) 758 (89%) <0.001 

ADL, m ± SD 5 ± 1 5 ± 1 5 ± 1 <0.001 

IADL, m ± SD 6 ± 2 6 ± 2 5 ± 2 <0.001 

MMSE, m ± SD 23 ± 7 24 ± 7 23 ± 7 0.006 

Pathological CDT 585 (35%) 244 (31%) 341 (40%) <0.001 

Pathological  

verbal fluency 

672 (41%) 269 (34%) 403 (47%) <0.001 

MNA, m ± SD 24 ± 4 24 ± 4 23 ± 4 <0.001 

SPPB, m ± SD 7 ± 4 7 ± 4 6 ± 4 <0.001 

Pathological GDS 449 (27%) 176 (22%) 273 (32%) <0.001 

Pathological SLB 708 (43%) 261 (33%) 447 (52%) <0.001 
*Pearson's Chi-squared test; Wilcoxon rank sum test. Statistically significance (p-value < .05). 

m, mean; SD, Standard deviation; SLB, Single leg balance; CDT, Clock-drawing test; ADL, Activities of Daily Living; IADL, Instrumental 

Activities of Daily Living; MMSE, Mini-Mental State Examination; MNA, Mini Nutritional Assessment; SPPB, Short Physical Performance 

Battery; GDS, Geriatric Depression Scale.   

Data are shown as the number (percentage) or mean ± SD unless otherwise indicated. 

In Table II, which presents the variables included in our 

predictive models, it is observed that among the 954 

participants included in the study, 48.6% reported at least one 

fall prior to the follow-up period. Fallers exhibited several 

characteristics that were significantly different (p ≤ 0.05) 

from non-fallers. Fallers were predominantly women 

(74% vs 66%). Their functional and physical abilities were 

generally more impaired: lower ADL scores, reduced SPPB 

scores (6 ± 4 vs 8 ± 3) and lower IADL scores. Depression, 

as indicated by a pathological GDS score, was more frequent 

among fallers (31% vs 20%) and postural instability, assessed 

by a pathological one-leg stance test, was observed in 46% of 

fallers compared to 34% of non-fallers. Participation in 

leisure activities was also slightly lower among fallers (86% 

vs 91%), which could reflect behavioral withdrawal or 

functional restriction. 

TABLE II. OVERVIEW OF THE SIX-MONTH INPUT FEATURES USED IN OUR 

PREDICTIVE MODELS 

 Falls of the study (N = 954)  

Features Total sample 

(N = 954) 

n (%) 

No falls 

(n = 490, 51.4%) 

Falls  

(n = 464, 48.6%) 

p-

value* 

Woman 664 (70%) 321 (66%) 343 (74%) 0.005 

Hypertension 688 (72%) 353 (72%) 335 (72%) 0.96 

Dyslipidemia 453 (47%) 237 (48%) 216 (47%) 0.57 

Obesity 254 (27%) 122 (25%) 132 (28%) 0.21 

Leisure 843 (88%) 445 (91%) 398 (86%) 0.015 

MMSE, m ± SD 25 ± 6 25 ± 6 25 ± 6 0.13 

SPPB, m ± SD 7 ± 4 8 ± 3 6 ± 4 <0.001 

ADL, m ± SD 5 ± 1 6 ± 1 5 ± 1 <0.001 

IADL, m ± SD 6 ± 2 7 ± 2 6 ± 2 <0.001 

Pathological GDS 238 (25%) 96 (20%) 142 (31%) <0.001 

Pathological SLB 381 (40%) 167 (34%) 214 (46%) <0.001 
*Pearson's Chi-squared test; Wilcoxon rank sum test. Statistically significance (p-value < .05).m,mean; 

SD, Standard deviation; SLB, Single leg balance; CDT, Clock-drawing test; ADL, Activities of Daily Living; IADL, Instrumental Activities of Daily Living; 

MMSE, Mini-Mental State Examination; MNA, Mini Nutritional Assessment; SPPB, Short Physical Performance Battery; GDS, Geriatric Depression Scale. 

Data are shown as the number (percentage) or mean ± SD unless otherwise indicated. 

In contrast, hypertension, dyslipidemia, obesity and 

MMSE scores were not statistically associated with falls in 

this cohort. 

These results support the hypothesis of a multifactorial 

etiology of falls, primarily driven by physical function 

impairment, loss of autonomy, mood disorders, depression 

and postural balance issues. 

A comparison of Table I and Table II shows that variables 

such as hypertension, obesity and dyslipidemia are predictive 

factors of falls but do not significantly differentiate fallers 

from non-fallers. The remaining variables reported in Table 

II are  also significant in Table I.   

Fig. 1 presents the AUC of the four models evaluated for 

predicting fall risk, namely logistic regression, SVM, 

XGBoost and random forest. 
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Figure 1. Area Under the Curve (AUC) of the Different Models 

 

Table III reports the performance metrics of the different 

models. All models achieved an identical precision of 0.78, 

with balanced F1-scores ranging between 0.71 and 0.73, 

indicating comparable overall classification performance. 

TABLE III. SUMMARY OF PREDICTIVE PERFORMANCE OF THE DIFFERENT 

MODELS 

Metrics 
Logistic 

Regression 
SVM XGBoost 

Random 

Forest 

AUC 0.74 0.75 0.76 0.77 

Accuracy 0.73 0.71 0.72 0.73 

Precision 0.78 0.78 0.78 0.78 

Recall 0.68 0.65 0.67 0.68 

Specificity 0.78 0.78 0.78 0.78 

F1 score 0.73 0.71 0.72 0.73 

Brier score 0.20 0.20 0.19 0.19 

 

However, XGBoost and Random Forest show better areas 

under the ROC curve, with AUC values of 0.76 and 0.77 

respectively (see Fig. 1), suggesting higher discriminative 

ability compared to logistic regression (AUC = 0.74) or SVM 

(AUC = 0.75). Recall is slightly lower for XGBoost (0.67) 

than for Random Forest (0.68), which may reflect a tendency 

to under-detect certain fall cases. Finally, the lowest Brier 

scores (0.19) are achieved by XGBoost and Random Forest, 

indicating better probabilistic calibration of predictions. 

Thus, although all models perform similarly in classification, 

Random Forest appears to offer the best trade-off between 

discrimination and calibration. 

XGBoost and Random Forest are the models with the best 

overall performance. Both are tree-based methods; while 

Random Forest makes binary decisions, XGBoost has the 

advantage of computing individualized probabilities, which 

makes it more suitable for personalized care approaches. To 

better understand the contribution of each variable to the 

model’s predictions, we apply SHAP to XGBoost. 

The analysis of SHAP values presented in Fig. 2 

highlights both the relative importance and the direction of 

effect of each variable in predicting fall risk within the 

XGBoost model. 

 
 

Figure 2. Impact of the Different Variables on the Best Model (XGBoost) 

 

The use of SHAP values provides transparent model 

interpretation and may help inform priorities for targeted 

preventive strategies. A low score (values in blue) contributes 

significantly to risk reduction, whereas a high score (shown 

in red) is associated with increased predicted risk.  

Among all the variables considered, fall history emerges 

as the most influential factor thereby confirming the strong 

predictive power of prior fall events. Physical performance, 

as assessed by the SPPB score also plays a central role in fall-

risk prediction, low SPPB values (indicating physical 

impairment) are strongly associated with higher risk. 

Pathological single-leg stance reflecting balance impairments 

does not appear to be correlated with elevated fall risk ; in 

some cases, it may even be linked to severely limited mobility 

thereby reducing exposure to risk through restricted 

movement. 

At the cognitive level, the MMSE score shows a more 

nuanced relationship while low scores are generally 

considered a risk factor, their impact appears less pronounced 
in the model. Conversely, higher scores may 

counterintuitively be associated with increased risk possibly 

due to overconfidence or engagement in unsafe physical 

activities. 

The ADL and IADL scores indicators of functional 

autonomy exhibit patterns consistent with clinical evidence 

reduced functional capacity is generally associated with 

increased fall risk. However, very low IADL scores may not 

strongly correlate with higher risk suggesting that advanced 

dependency could reduce exposure to hazardous situations. 

Dyslipidemia reflecting cardiovascular impairment is  

unexpectedly associated with a lower risk of falls potentially  

indicating a tendency to avoid physical activity due to fear of 

falling. 
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Other variables including hypertension, obesity, gender, 

and the presence of depression (pathological GDS), exert a 

more moderate or marginal influence on model predictions. 

Participation in leisure activities shows a modest protective 

effect, although its overall contribution to fall-risk prediction 

remains limited. 

In summary, this analysis underscores that the most 

influential predictors of fall risk are functional and physical 

domains, while cognitive and psychosocial dimensions exert 

secondary effects. 

After examining the impact of each variable on the 

model’s predictions, we now turn to some examples of 

personalized predictions. 

The personalized predictions will be evaluated using the 

final selected XGBoost model. XGBoost is a gradient 

boosting ensemble algorithm that aggregates multiple weak 

decision trees to produce a high-performing predictive model 

[22]. In binary classification, it generates a raw output in log-

odds, which is then transformed by the logistic function to 

obtain a probability. The log-odds (logarithm of the odds) is 

a way to transform a probability into a value that can range 

from –∞ to +∞. The raw output value of XGBoost is the 

weighted sum of the decision trees: 

𝑓(𝑥) =  ∑ 𝑇𝑘(𝑥)

𝐾

𝑘=1

  

 

where: 

• 𝑇𝑘(𝑥)  is the output of the k-th tree for the 

observation, 

• 𝐾 is the total number of trees, 

• 𝑓(𝑥) is the raw model output, expressed in log-odds. 

 We then transform the raw output 𝑓(𝑥) into a probability 

𝑝(𝑥) with the sigmoid function : 

𝑝(𝑥) =  𝜎(𝑓(𝑥)) =  
1

1 + 𝑒−𝑓(𝑥)
 

where the sigmoid function is defined as: 

𝜎(𝑥)  =  
1

1 + 𝑒−𝑥 

The reference value (base value) is the mean of 𝑓(𝑥) and the 

associated probability is the overall prevalence in the training 

sample. 

Fig. 3 below illustrates a correctly predicted low fall risk 

( 𝑓(𝑥)  = 0.23) compared with the base value of 0.48. 

Protective factors such as a lower MMSE score of 18, 

preserved ADL of 6, and a high IADL of 8 strongly 

contributed to reducing the predicted risk. A history of falls 

also contributed to lowering the prediction. Although risk-

increasing variables such as the absence of a pathological 

one-leg stance and a low SPPB score of 4 were present, they 

were outweighed by the protective factors. 

Fig. 4 below illustrates a case classified as high fall risk, 

with a predicted probability of 0.65. However, the prediction 

is incorrect; in the collected data, the patient did not fall. 

Several strong risk factors were present including a history of 

falls, dyslipidemia, low IADL (6) and a low SPPB score (9) 

all of which contributed to increasing the predicted risk.  

Nevertheless, these were insufficiently weighted by the 

model while mitigating factors such as a relatively high 

MMSE score (23), a non-pathological SLB and a moderate 

ADL score (6) overly influenced the output leading to a 

misclassification. This highlights the model’s limitation in 

edge cases where compensatory features may mask critical 

risks. 

These personalized predictions of two different patients 
highlight that the model’s outputs do not depend solely on 

fall history, even though it is the strongest predictor among 

all variables (Fig. 2). The trends observed in the SHAP values 

of all variables in Fig. 2 are confirmed by the prediction 

shown in Fig. 3. 

Figure 4. Incorrect Prediction with SHAP 

Figure 3. Correct Prediction with SHAP 
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IV. DISCUSSION  

The evaluation of various fall risk predictors (see Table 

II), based on data from patients who completed both the first 

and second visits, revealed that most variables showed 

significant differences between fallers and non-fallers. This 

highlights the importance of identifying predictive factors 

within the least stable clusters (i.e., those in which falls were 

observed), as opposed to more stable clusters. Among the 

variables analyzed, the following were significantly different 

depending on group membership (fallers vs. non-fallers): 

gender (female), ADL score, IADL score, SPPB score, 

presence of a pathological GDS score, pathological SLB and 

participation in leisure activities. 

Among these variables, only sex and participation in 

leisure activities pertain to the socio-environmental domain 

and could be collected in other protocols. The remaining 

variables are scores derived from the CGA conducted at the 

patients' homes. These findings support the hypothesis that a 

holistic approach is necessary for predicting fall risk. 

Specifically, the pathological GDS score reflects the 

thymic/cognitive dimension, while the ADL, IADL and 

SPPB scores, along with the pathological one-leg stance, 

reflect the physical/organic dimension. 

Using the variables most significantly associated with fall 

risk (see Table II) as input data represents a relevant strategy, 

as the model’s objective is to differentiate fallers from non-

fallers in a personalized manner. In order to remain aligned 

with the clinical approach of identifying predictive factors to 

develop targeted prevention plans, all variables identified 

(see Table II) were retained for model training. Fig. 2 

confirms the importance of these variables, showing that they 

rank among the most influential in the XGBoost model, with 

the exception of gender and pathological GDS score, which 

were replaced by dyslipidemia and MMSE score in terms of 

predictive weight. The integration of dyslipidemia, a 

cardiovascular risk factor and the MMSE score, a marker of 

cognitive function, further reinforces the model’s holistic 

approach. 
Not every feature within the three ROF dimensions is a 

predictive factor for falls. The effectiveness of a predictive 
factor depends on its statistical significance, correlation with 
fall occurrences and its interaction with other variables across 
the physical/organic, socio-environmental and cognitive 
dimensions. In some studies, the identified predictive 
variables did not encompass all three dimensions of ROF. 
Kawazoe et al. [27], Ikeda et al. [28] and Cella et al. [29] 
demonstrated that age category related to socio-environmental 
was a predictor of falls, suggesting a strong association 
between age and falls. Bath et al. [30] found that the predictive 
variables related to the socio-environmental dimension are 
diverse and varied, contributing to effective prevention. In 
fact, a higher number of variables related to gait and balance 
is associated with a more robust predictive model for falls. 

In the literature review conducted by Rubenstein, only 
cognitive impairment was identified as a predictive variable 
related to the thymic/cognitive [31]. Conversely, 

Ikeda et al. [28], Kawazoe et al. [27] and Bath et al. [30] 
identified at least two predictive variables involving the 
thymic/cognitive dimension, providing a better understanding 
of the ROF associated with the thymic/cognitive dimension 
and facilitating preventive measures. In those features, we can 
find fear of falling, depressive symptoms, self-rated health, 
impaired consciousness and dementia at admission. Recent 
studies by Ikeda et al. [28] and Kawazoe et al. [27] achieved 
Area Under the receiver operating characteristic Curve (AUC) 
scores of 88% and 85%, respectively, using comprehensive 
approaches. Ikeda et al. [28] employed a Random Forest-
based Boruta algorithm for feature selection, while Kawazoe 
et al. [27] used a combination of Bidirectional Encoders and 
Bidirectional Long Short-Term Memory (BiLSTM) networks 
to process sequential data. These AUC scores indicate strong 
model performance, reflecting high discriminative ability in 
classification tasks [25]. 

Pennone et al. [32] highlighted the difficulty in predicting 

fall risk among older adults with low levels of daily activity, 

emphasizing the importance of measuring such activity using 

standardized indicators. In our predictive model, we included 

ADL and IADL scores, which are already well-established in 

the literature as robust predictive factors [33], [34], [35]. A 

history of falling, which by definition places an older adult at 

risk of recurrent falls has consistently been identified as a 

major predictor in recent studies when collected. It is also 

consistently ranked among the most influential variables in 

predictive fall models [28], [29], [36], [37]. The cognitive 

dimension represented here by the MMSE score has also been 

widely recognized in prior research as an important 

determinant of fall risk [38], [39], [40]. In addition, 

Bharadwaz et al. [41] emphasized the influence of depression 

and sleep disorders on fall risk. Although the pathological 

GDS score was not among the most influential variables in 

our final model, it remains relevant when analyzing 

trajectories. As for sleep disturbances, while not directly 

measured their impact likely manifests indirectly through 

reduced performance in activities of daily living further 

justifying the inclusion of ADL and IADL scores in our 

predictive approach. 

Pathological SLB, combined with the SPPB score, which 

evaluates gait and balance ability, emerged as one of the 

strongest determinants in predicting fall risk. Several studies 

have confirmed that these variables reflecting the physical 

and organic dimension are essential fall predictors [36], [42], 

[43], [44]. In the work of Lathouwers et al. [45], it was also 

shown that maintaining physical, mental, or social activity 

significantly reduces the probability of falling in older adults, 

a finding that aligns with our own results. 

Indeed, Landers et al. [46] demonstrated that such 

activities help prevent the onset of fear of falling (FOF) and 

contribute to maintaining a high level of confidence in one’s 

balance abilities as measured by the Activities-specific 

Balance Confidence (ABC) scale, both identified as major 

risk factors. Similarly, Schumann et al. [47] recently 

highlighted the role of FOF as a predictor of falling. 
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The only variable present in our model that is notably 

absent in recent studies is dyslipidemia, a cardiovascular risk 

factor. This discrepancy may be explained by the 

methodological specificity of our study, which was based on 

data collected directly from patients in their homes, allowing 

for a more integrative assessment of overall health. The 

inclusion of dyslipidemia in our model underscores the 

importance of considering cardiovascular risk as a potential 

contributor to falls, especially when falls occur suddenly and 

without prior functional warning signs. 

While fall history is consistently identified as one of the 

most influential predictors of future falls, our analysis shows 

that the model does not rely exclusively on this variable to 

make its predictions (Fig. 3 and Fig. 4). SHAP value 

interpretation reveals that the XGBoost model incorporates a 

wide range of factors, including physical performance, 

functional autonomy, cognitive status and psychosocial 

indicators, when estimating fall risk. 

In several correctly classified cases, the presence of a 

prior fall is counterbalanced by protective factors such as 

high ADL and IADL scores, preserved cognitive function (as 

indicated by MMSE) and non-pathological balance 

performance (e.g., SPPB score or SLB). This demonstrates 

that the model takes into account the complex interplay 

between risk and protective variables rather than basing its 

prediction on fall history alone. 

Inversely, certain misclassified cases highlight that a 

history of falls does not always lead to a high-risk prediction. 

When other variables present a favorable profile, the model 

may underestimate the actual risk, suggesting that fall history 

while important is insufficient on its own to ensure predictive 

accuracy. 

Moreover, the model’s use of additional variables such as 

dyslipidemia and cognitive scores reflects a broader more 

integrative view of fall risk. These results confirm the 

necessity of a multidimensional approach and support the 

implementation of interpretable machine learning models 

that can provide individualized, clinically meaningful 

insights beyond any single predictor. 

This study confirms the relevance of machine learning 

models, particularly XGBoost for predicting fall risk in older 

adults with good discriminative performance and calibration. 

The analysis of SHAP values enabled a transparent and 

clinically meaningful ranking of predictive factors. Fall 

history, impairments in physical performance (SPPB, one-leg 

stance) and functional limitations (ADL, IADL) emerged as 

the main determinants. Cognitive and psychosocial factors 

play a secondary yet non-negligible role. These findings 

highlight the importance of a multidimensional assessment 

that incorporates interpretable technological tools to guide 

personalized prevention strategies. The integration of such 

approaches into geriatric practice could enhance early 

identification of at-risk patients and contribute to reducing 

the incidence of falls. 

Nonetheless, our work presents several limitations. First, 

although the XGBoost model demonstrated good 

performance (AUC of 0.76, Brier score of 0.19, precision of 

0.78), its implementation in clinical practice could be 

hindered by the time required to perform the assessments, 

even though the number of variables that significantly 

influence predictions is relatively low. This complexity may 

limit its use by healthcare professionals in care settings where 

workload and time constraints are critical factors. A clinical 

arbitration process aimed at identifying substitutable or 

priority variables could facilitate the operational integration 

of the model. 

Moreover, the model was built using all variables 

identified as predictive, without applying a selection 

procedure based solely on significant differences between 

fallers and non-fallers. Such a selection approach might 

optimize the trade-off between predictive performance and 

ease of use. 

From a methodological standpoint, the study did not 

include a control group. A randomized design comparing a 

control group (receiving no care) and an intervention group 

(receiving personalized follow-up) would have allowed for a 

more detailed analysis of the impact of care on the dynamics 

of fall risk factors and would have helped to better identify 

common or distinguishing predictive variables between the 

two groups. 

Finally, the data used were exclusively collected from 

patients in France. This geographical limitation restricts the 

generalizability of the findings to other cultural and socio-

environmental contexts. Since falls are a multifactorial 

phenomenon strongly influenced by lifestyle, home 

environment and care practices, significant variations may 

exist in other countries. In particular, the socio-

environmental dimension deserves to be examined through a 

multicenter international approach. 

Overall, while our model is grounded in a realistic 

approach aimed at clinical integration, these limitations open 

avenues for improvement in both methodological robustness 

and the transferability of results. 

V. CONCLUSION 

This study contributes to advancing fall prevention by 
leveraging a 12-year dataset collected in home settings to 
develop an AI-based predictive model. Our approach 
integrates the three dimensions of ROF, optimizing model 
performance while reducing the number of required input 
features. 

By applying explainable AI techniques, we identified the 
contribution of each feature to fall risk, thereby supporting the 
development of more targeted and effective intervention 
strategies. These findings may help enhance the quality of 
elderly care by informing personalized prevention efforts and 
guiding future research in geriatric risk assessment. 

As with most AI models, ours can be continuously refined 
with additional data over time. In our case, improving the 
model also provides an opportunity to collect data from 
patients' homes while offering them personalized fall 
prevention advice. During the intervals between practitioner 
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visits, necessary adjustments to home configurations can also 
be made if needed. 

The clinical utility of the final model could be explored in 
future studies using Decision Curve Analysis (DCA). This 
method helps identify the clinical range in which the model 
provides a net benefit, thereby allowing practitioners to 
determine the optimal threshold for patient management while 
taking available resources into account. 
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Abstract—In this era, the rapid increase of health and 

pandemic-related information on social-media platforms has 

led to diverse issues that includes public anxiety, stress and 

behavioral volatility. Even though, prior researchers have 

explored various techniques still there are challenges due to the 

dependency on post-level analysis using static embeddings that 

limits exposure intensity, temporal progression and longitudinal 

psychological patterns. Therefore, to resolve these challenges a 

Longitudinal Exposure-Aware Mental-Impact Prediction 

Network namely LEMIP-Net is proposed, which models 

evolving emotional and linguistic behavior of users interacting 

with pandemic discourse. Initially, raw user-generated social-

media posts are restructured into temporal sequences that 

enables observation of gradual psychological drift. 

Subsequently, individual post is semantically encoded by 

incorporating Cross-lingual Language Model with Robustly 

Optimized Bidirectional Encoder Representations from 

Transformers approach (XLM-RoBERTa). Consequently, 

exposure-classification module estimates probability of every 

post related to health or pandemic discourse, and these 

probabilities are aggregated to quantify user-specific exposure 

intensity. Further, a hybrid weak-supervision strategy refines 

mental-health labels through sparse self-reports and lexicon-

based cues. Finally, the fused sequences are processed using a 

Transformer-Bidirectional Long Short Term Memory based 

architecture to capture global behavioral trends and short-term 

emotional shifts, which performs multi-task prediction of 

mental-health class, severity and deterioration risk. Hence, the 

experimental results illustrate that the proposed LEMIP-Net 

significantly outperforms state-of-the-art models, achieving 

robust and generalizable mental-health prediction by jointly 

modeling longitudinal behavior and exposure intensity. 

Keywords-cross-lingual language model; exposure modelling; 

mental-health prediction; pandemic-related social media; 

temporal modelling. 

I.  INTRODUCTION 

In recent years, expanding of social media plays the 
massive impact on human’s mental and physical health 
especially students. Although social media provides 

information of politics, education and Information 
Technology (IT), still impacts the human’s self-esteem, 
mental health and sleep patterns [1]. In particular, social 
platforms such as twitter, Facebook and Instagram allow the 
users to share their posts, thoughts and ideas. In addition, 
studies revealed that link between negative consequences in 
social media does increase the stress, depression and anxiety 
[2]. Moreover, due to lack of offline communication, the 
depressed people have negative thoughts, low confidence and 
ambiguous issues [3]. However, using the social media 
negatively, impact the user’s health issues such as disturbance 
of sleep, guilt feelings, difficulty in concentrating and suicidal 
thoughts [4]. Moreover, number of patients has been 
increasing every year with mental problems due to problems 
of social media and people who are already suffering with 
mental issues or physiological orders, will face more 
difficulties [5]. Also, there was a survey, where social media 
created development of fear and panic among the people and 
also females were affected mentally more than males in 
content of social media. [6]. To overcome these problems, 
early detection of stress, depression could prevent the mental 
health issues. In particular, the computers have the ability to 
express and recognize the emotions assists give better 
feedback to the users [7]. Further, sentiment analysis 
examines the people emotions, feelings, mood and attitude 
and one of the active types of research area in Natural 
Language Processing (NLP) [8]. Moreover, detecting the 
depression in posts has achieved important advancement in 
identifying the depression from social media posts. Further 
researchers analyzed the social media data to extract the 
valuable patterns and insights that related to the mental health 
problems. Further, by analyzing the huge information on 
social media, researches understand about mental health 
problems of users [9].  State of the art methods include 
Convolutional Neural Network (CNN), Transformer and 
Bidirectional Long Short-Term Memory (Bi-LSTM) 
performed the strategies to detect the depression. However, 
these models have huge training time and transformers models 
was not able to captured the important content that effect the 
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accuracy [10]. Further, Long Short-Term Memory (LSTM) 
models have been utilized to examine sequential text data 
from social media platforms such as Twitter, where they learn 
contextual feature representations from documents, 
paragraphs and sentences. However, LSTM struggles with 
long term dependencies [11] and moreover, NLP techniques 
used for mental status of a person based on writing or speech 
and predicting the depression. However, most NLP techniques 
does not appreciate the variability [12] of depression.      

The key contributions of the research are as follows: 

 A Longitudinal and Exposure-Aware Mental-Health 
Prediction Framework (LEMIP-Net) is proposed, 
which jointly captures user’s temporal linguistic 
behavior and their cumulative exposure to health and 
pandemic-related content. Therefore, by transforming 
raw social media posts into structured behavioral 
timelines, the proposed LEMIP-Net model allows 
clinically aligned assessment of mental-health risk. 

 A domain-specific exposure classification and 
intensity modelling mechanism is employed that 
quantifies the likelihood and intensity of health-
related content encountered by individual user, which 
provides an essential dimension for understanding the 
impact in psychological outcomes. 

 The proposed LEMIP-Net improves inherently noisy 
user-reported mental-health labels by combining 
linguistic symptom markers, contextual cues and rule-
based heuristics. Thus, this hybrid weak-supervision 
strategy systematically enhances label fidelity and 
significantly increases model learning robustness 
when compared to dependency on self-reports. 

The overall research is structured as follows: Section II 
describes the literature review, Section III demonstrates 
proposed LEMIP-Net framework, Section IV illustrates 
experimental results, discussion and Section V includes 
Conclusion. 

II. LITERATURE REVIEW 

The literature review is performed through an organized 
selection strategy that assisted to recognize relevant research 
on mental-health prediction from social media during large-
scale health crises. Specifically, peer-reviewed journal and 
research articles published were retrieved from standard 
journals using keywords including mental health prediction, 
social media analytics, pandemic-related sentiment analysis 
and longitudinal modeling. Then, the studies were filtered 
based on methodological consistency and relevance with 
significance on Machine Learning (ML) and Deep Learning 
(DL) approaches that are applied to mental-health inference 
from user-generated textual data. 

Bashar, Nayak and Balasubramaniam [13] determined a 
hybrid deep learning model, which integrated Semi-
Supervised Neural Topic Model (SNTM) and Informed 
Neural Network (INN) that evaluated COVID-19 discussions 
happened in Australian Twitter. Specifically, 2.9 million 
tweets were the data acquired, which were pre-processed and 
applied for SNTM, INN for topic discovery and sentiment 
classification, respectively through lexicon-based prior 

knowledge. Further, evolving public quires at outbreak time 
were interpreted by tweet volume, dynamic topic modelling, 
and semantic brand scoring. Thus, this method captured topic 
diversity and sentiments connected with real-world actions, 
but this model had challenges such as dependency on 
keyword-filtered data, English-only tweets, and lack of 
multimodal context, which affects the real-world deployment. 

Inamdar, Chapekar, Gite & Pradhan [14] recommended a 
Machine Learning (ML) based framework, which detected 
mental stress in Reddit posts through NLP techniques. 
Further, this framework utilized reddit dataset that contains 
approximately 2800 labelled texts, which were pre-processed 
by various embedding strategies. Where the pre-processing 
techniques included Bidirectional Encoder Representations 
from Transformers (BERT) tokenization, Embeddings from 
Language Models (ELMo), and Bag-of-Words (BoW) 
representations. Specifically, these features were utilized to 
train classifiers such as logistic regression, SVM, XGBoost, 
and random forest models. Subsequently, this framework 
determined that with the limited data, the effective stress 
detection was possible. However, lack of demographic 
context, and exclusion of multimodal indications limits 
generalization among various sectors.  

Abbas, Munir, Raza, Samee, Jamjoom & Ullah [15] 
introduced a depression detection model, which was a 
combination of BERT contextual embeddings and 
probabilistic features produced by random forest approach. 
Specifically, a dataset that contained 20,000 labelled tweets 
was considered and applied pre-processing. Subsequently, 
extracted contextual BERT embeddings and given to random 
forest that generated depression-related probability features, 
then these enhanced features were utilized to train many 
classifiers. Among which logistic regression attained greater 
accuracy and evaluated through statistical T-tests and k-fold 
cross-validation. Therefore, this model improved feature 
quality for mental health prediction, despite advantages this 
approach relied more on textual content and lacks user 
behavioral context that limits the real-world use cases.   

Villa-Pérez, Trejo, Moin & Stroulia [16] demonstrated a 
ML approach, which used English and Spanish Twitter 
communications to detect nine mental health disorders. 
Further, two bilingual datasets were created from collected 
timelines of analyzed users by strict self-report patterns and 
cross verified with control users. Moreover, pre-processing of 
tweets were performed, through which linguistic features 
were extracted, which included, Part-of-speech (POS) tags, 
Linguistic Inquiry n-grams, q-grams, Word Count (LIWC), 
and word embeddings. Thus, this method attained greater 
accuracy through n-gram features, but this method contains 
limitations such as dependency on unverifiable self-reports, 
imbalance in dataset, minimized performance for low-
frequency disorders and demographic mismatching. 

Radwan, Amarneh, Alawneh, Ashqar, AlSobeh & 
Magableh [17] suggested an advanced approach that utilized 
Large Language Models (LLMs), ML algorithms and 
Generative Pre-trained Transformer 3 (GPT-3) embeddings. 
Specifically, these were to detect and classify social media 
posts that caused stress disorders and lower the mental health 
of individuals. Further, through all these considered 
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techniques, a screen tool was generated that used online 
textual data, whereas posts were converted into vectors by 
GPT-3 embeddings, which also captured linguistic nuances 
and semantic meaning.  However, there were challenges such 
as model bias, limited generalizability, dataset imbalance, low 
performance among populations, and   require to improve the 
pre-processing techniques, which are significant for the 
further process in the approach.  

Recent state-of-the-art approaches signifies that 
transformer-based embeddings and hybrid learning 
frameworks assists to effectively capture psychological 
signals from social media posts [13], [15], [17]. However, 
most existing methods depend on post-level classification, 
static representations and sparse self-reported labels, while 
neglecting cumulative exposure effects and longitudinal 
behavioral evolution [14], [16]. Thereby, these approaches 
remain limited in modeling sustained mental-health 
trajectories and exposure-induced distress. Hence, these 
limitations motivate the proposed LEMIP-Net framework, 
which integrates exposure-aware modeling with longitudinal 
sequence learning that helps for the development of mental-
health prediction beyond static post-level baselines. 

III. METHODOLOGY 

The proposed research incorporates LEMIP-Net, which is 
a deep sequential neural architecture designed to model the 
temporal progression of user’s emotional and linguistic 
behavior while simultaneously quantifying their exposure 
levels to pandemic-related content. Initially, the user-
generated social-media posts are pre-processed into 
longitudinal timelines that allows the model to capture gradual 
psychological patterns instead of isolated expressions. 
Subsequently, individual post is semantically encoded using 
XLM-RoBERTa, then an exposure-classification module is 
utilized to evaluate every post to estimate the probability that 
belongs to health or pandemic discourse. Consequently, these 
probabilities are aggregated across temporal windows to 
compute a quantitative health-content intensity score, which 
provides a key variable reflecting how frequently and 
intensely user interacts with pandemic information. Further, 
the fused sequence of semantic embeddings, exposure 
intensities and refined mental-health indicators is then 
processed through the LEMIP-Net architecture, where 
temporal patterns are learned using Transformer and Bi-
LSTM layers. Finally, a multi-task prediction module outputs 
the user’s mental-health status, severity score and risk of 
future deterioration. Hence, this integrated design as 
demonstrated in Fig. 1, ensures that both content exposure and 
temporal behavioral evolution facilitates to provide accurate 
context-aware prediction of mental-health impact. 

 

A. System Model and Data Description 

The research incorporates the pandemic-period mental-
health dataset [17] that comprises 32,487 social-media posts, 
which were collected from 4,216 unique users between March 
2020 and July 2022. Specifically, each record includes the 
post text, timestamp, engagement metadata and sparse self-
reported mental-health indicators. Additionally, the dataset 

includes content in English and Arabic, which reflects 
multilingual pandemic discourse. The dataset is split into 70% 
training, 15% validation and 15% testing that facilitates in 
maintaining user-level separation to avoid leakage. In 
particular, user-level separation facilitates that all posts from 
a specified user are allocated effectively to a single subset 
(training, validation, or testing), which helps in preventing 
overlap of user-specific linguistic or behavioral patterns 
across splits. This avoids information leakage and enables a 
reliable evaluation of the model’s generalization to unseen 
users. Hence, this dataset provides a sufficiently large and a 
temporally rich resource for modeling longitudinal behavior, 
as the dataset comprises time-stamped post sequences 
spanning multiple months per user. Thereby, this operation 
allows the analysis of psychological changes over time instead 
of isolated observations. Further, each user 𝑢  contributes a 
chronological sequence of posts 𝑃𝑢 = {𝑝1, 𝑝2, . . . , 𝑝𝑇}, each 
associated with a timestamp 𝑡𝑖 and enhanced metadata 
including hashtags, mentions, engagement and contextual 
cues, which are related to COVID-19, health fear, vaccination, 
restrictions, anxiety and uncertainty. Thus, the dataset for each 
user is expressed using (1): 

𝐷𝑢 = (𝑃𝑢 , 𝑇𝑢 , 𝑀𝑢)

Where 𝑃𝑢 signifies the post sequence, 𝑇𝑢 refers to the 
corresponding timestamps and 𝑀𝑢 defines the available 
mental-health labels or self-reports. Additionally, the textual 
content comprises naturally occurring pandemic-related 
expressions such as cases rising, quarantine, fever symptoms 
and vaccine fear while the mental-health indicators include 
user self-assessments, sentiment scores or psychological 
lexicon matches. Subsequently, data pre-processing is 
performed, which removes noise, bot-generated content, 
irrelevant posts and normalizes the text for stable embedding 
generation. Specifically, to define temporal granularity, a 
data-driven stability rule is applied, where the posting density 
is evaluated for individual user and choose the minimum 
window (𝛥𝑡) where ≥ 80% of users have at least one post. 
Hence, the weekly windows assist to maximize temporal 
continuity while preventing sparse user sequences. 
Henceforth, to formally select the optimal temporal window 
𝛥𝑡, the posting-density stability is assessed through (2): 

𝑆(𝛥𝑡) =  (
1

𝑈
)𝛴𝑢 𝐼(𝑛𝑢(𝛥𝑡)  ≥  1)

Where candidate window size (1,3,7,14 days) is defined as 
Δ𝑡, the proportion of user with ≥ 1 post in each window is 
demonstrated as 𝑆(𝛥𝑡), 𝑈 signifies the total users and 𝑛𝑢(𝛥𝑡) 
determines the number of posts of user 𝑢 in window 𝛥𝑡 and 
𝐼(. )  determines the indicator function. Thus, the temporal 
windowing is selected as 𝛥𝑡 = 7 days since it maximizes the 
𝑆(𝛥𝑡) while preventing fragmentation in low-activity users.  

In particular, the raw dataset is transformed into a 
structured longitudinal behavioral record using a temporal 
aggregation technique, where user posts are chronologically 
organized into definite time window size that assists to 
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reconstruct complete behavioral timelines for proposed 
LEMIP-Net. 

 

Figure 1.  Flow diagram of proposed LEMIP-Net framework 

 Hence, this step ensures that the raw dataset, which is 
initially heterogeneous and sparse converted into a structured, 
time-sensitive representation. Hence, this operation is 
essential for capturing gradual psychological changes and 
exposure accumulation that a single-post models struggles to 
detect, thereby resolves a core limitation of design using only 
post. 

B. Initialization and Semantic Embedding Construction 

Further, each post 𝑝𝑡  is converted into a dense semantic 
embedding by employing XLM-RoBERTa model, which is 
chosen based on the multilingual strength and ability to 
capture pandemic-related emotional and contextual features. 
Additionally, due to multilingual and code-switched 
pandemic discourse, the employed XLM-RoBERTa model 
applies SentencePiece tokenization with 250k vocabulary, 
Unicode NFKC normalization and maximum sequence length 
of 128 tokens where these parameters ensure multilingual 
consistency. Thus, the embedding process and semantic 
matrix is defined using (3) and (4), respectively: 

𝑒𝑖 = 𝑓XLM−R(𝑝𝑖)

𝐸 = [𝑒1, 𝑒2, … , 𝑒𝑇]
𝑇

Where embedding vector of post 𝑝𝑖  is defined as 𝑒𝑖 , 
pretrained multilingual encoder is symbolized as 𝑓XLM−R, user 
level embedding matrix is demonstrated as 𝐸 and 𝑇 signifies 
the number of temporal steps. In addition, by enhancing raw 
text with contextual semantics facilitates to improve data 
quality beyond the existing static LLM embeddings. Thus, 
this stage ensures that the model receives psychologically 
significant and globally representative language patterns 
which are related to mental-health change. Hence, the use of 
XLM-RoBERTa model for semantic embedding is essential 
as pandemic discourse is multilingual and context-sensitive. 
Also, the XLM-R model, which captures emotional, 
psychological and health-related semantics across languages 
which results with richer and more generalizable 
representations than English-only or traditional LLM 
embeddings. Henceforth, this semantically enhanced 
representation formulates the foundation upon which 
exposure estimation and mental-health inference depend. 

C. Exposure Classification and Health-Content Intensity 

Estimation 

Furthermore, to calculate the amount health-related 
content each user is exposed to, the proposed LEMIP-Net 

incorporates an exposure classifier 𝐹𝑒𝑥𝑝 , that computes each 

embedding 𝑒𝑡. Specifically, the Modelling exposure is crucial 
because psychological stress enhances with frequency of 
pandemic-related content. Thereby, without exposure 
modelling, the emotional variation may be misinterpreted. 
Thus, the classifier outputs the probability that the post 
concerns pandemic or health-related information as 
demonstrated in (5): 

𝑦̂𝑖


= 𝜎(𝑊𝑒𝑥𝑝𝑒𝑖 + 𝑏𝑒𝑥𝑝

Where the exposure probability is defined as 𝑦̂𝑖
exp 

, 

𝑊𝑒𝑥𝑝 , 𝑏𝑒𝑥𝑝 refers to classifier weight, bias respectively and 𝜎 

denotes the sigmoid activation function. Hence, the 
cumulative exposure intensity over a window 𝑊𝑘 is assessed 
through (6): 

𝐸𝑘 =
1

|𝑊𝑘|
∑  𝑝𝑖∈𝑊𝑘

𝑦̂𝑖




Here, 𝐸𝑘 refers to the normalized exposure frequency and 
intensity, specifically this module identifies posts discussing 
infection fear, symptoms, lockdown rules, rising cases, 
medical updates or anxiety triggers. Specifically, the training 
data for exposure classifier is established from manually 
tagged COVID-19 posts which includes 4,180 positive, 8,700 
negative. Thereby, 2-layer MLP (128–64–1), learning rate = 
1e−4, batch size = 32, Adam optimizer and dropout = 0.3 are 
utilized. In addition, the class imbalance is handled using focal 
loss (𝛾 =  2) and random oversampling. Thus, the exposure 
classifier is trained using weighted binary cross-entropy as 
demonstrated in (7): 

𝐿𝑒𝑥𝑝  =  − 𝑤𝑝 𝑦 𝑙𝑜𝑔(𝑝)  − 𝑤𝑛 (1 −  𝑦) 𝑙𝑜𝑔(1 −  𝑝)

In particular, the exposure label is assigned through (8): 

ŷ = {
1  𝑖𝑓  𝑝 ≥  𝜏   
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  



Where class weights for imbalance are defined as 𝑤𝑝, 𝑤𝑛 

respectively, 𝑦  signifies true exposure label, predicted 
probability is defined as 𝑝  and τ  signifies the decision 
threshold where 𝜏 = 0.5 during evaluation which is further 
optimized on validation. Subsequently, to define domain 
boundaries for exposure intensity, the predicted probability 𝑝 
is categorized into three regions based on the 𝑝 range which is 
as follows: 𝑝 <  0.2  signifies low-exposure, 0.2 ≤  p ≤
 0.8 defines medium-exposure and p >  0.8 represents high-
exposure. Hence, these boundaries are selected on the basis of 
maximizing inter-class separation on the validation set. Thus, 
the decision threshold τ = 0.5 is considered for binary 
exposure assignment because it yields the highest Youden’s J-
statistic during classifier calibration. 

Therefore, the resulting exposure time-series allows 
modelling the extent and persistence of health-related 
information a user observe. In particular, the exposure 
classification is employed because mental-health impact is 
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strongly mediated by the volume, frequency and intensity of 
health-related content a user encounter. Hence, without 
explicit exposure modelling, AI systems risk conflating 
general emotional expression with crisis-driven psychological 
stress. Henceforth, by computing a quantitative exposure-
intensity score for each time window, the proposed LEMIP-
Net isolates the effect of health-content saturation, which 
allows downstream components to differentiate between 
natural emotional variability and exposure-induced distress. 

D. Mental-Health Label Refinement Through Hybrid Weak 

Supervision 

In addition, self-reported mental-health labels in social-
media data are infrequent, therefore to obtain dense and usable 
supervision, the proposed LEMIP-Net integrates self-reported 
scores 𝑠𝑡 with lexicon-derived psychological features 𝑙𝑡 using 
(9): 

𝑦𝑡


= 𝛼𝑦𝑡


+ (1 − 𝛼)𝑦𝑡


, 0 ≤ 𝛼 ≤ 1

Where the refined label is represented as 𝑦𝑡
ref and 𝛼 stands 

for confidence weight based on self-report presence. For 
instance, if a user reports self-stress score 𝑠 =  0.6 but the 
lexicon score is the refined label which is demonstrated in 
Equation (10): 

𝑦𝑡


= 0.7(0.6) + 0.3(0.3) = 0.51

Specifically, if a user provides stress or anxiety self-
ratings, the system preserves them. In particular, when such 
ratings are absent, psychological lexicons detect emotional 
features related to worry, fear, exhaustion and distress. Hence, 
these contradictions across self-reports and lexicon features 
are determined using a noise-aware correction rule as 
demonstrated where if both signals disagree, confidence-
weighted averaging is used, missing values use only lexicon-
based features and also lexicon noise is decrease through 
minimum-support threshold (≥ 3 𝑠𝑦𝑚𝑝𝑡𝑜𝑚 𝑡𝑒𝑟𝑚𝑠). 

Thus, the hybrid label facilitates every temporal step in the 
user’s sequence which carries a mental-health estimate. 
Hence, this step assists to mitigate label sparsity which is a 
major limitation in the existing research by creating a stable 
ground truth that enhances learning and prevents temporal 
gaps in mental-state representation. Henceforth, hybrid label 
refinement through weak supervision is justified by the 
inherent sparsity and inconsistency of self-reported mental-
health scores in real social-media datasets. Also, the manual 
labels are insufficient for training deep temporal models. 
Thus, combining self-reports with lexicon-based 
psychological indicators provides dense, consistent 
supervision signals which allows proposed LEMIP-Net the 
model to learn stable mental-health patterns without 
oversensitivity to annotation gaps. 

E. Longitudinal Sequence Construction and Temporal 

Feature Encoding 

Subsequently, each time step is defined by concatenating 
semantic embedding, exposure intensity and refined mental-

health score. Specifically, for users with missing posts in 
window 𝑡, a padding vector is applied using (11): 

𝑥𝑡  =  [0⃗  , 0, 𝜇𝑦]

Here, the mean refined label of user is defined as 𝜇𝑦 and 

thereby the padding operation prevents temporal 
discontinuities. Further, the transformer assists to capture 
long-range global behaviour, whereas Bi-LSTM helps to 
capture local fluctuations using (12): 

𝑥𝑡 = [𝑒𝑡‖It‖𝑦𝑡


]

Here, the fused vector is denoted by 𝑥𝑡 , embedding is 
represented as 𝑒𝑡, ∥ refers to concatenation, exposure intensity 

is defined as 𝐼𝑡 and 𝑦𝑡
ref  signifies the refined label. Further, the 

transformer layer models long-range behavioral dependencies 
and hence the fused vector first fed through the transformer, 
whose output is then sequentially embedded into the Bi-
LSTM as illustrated in (13): 

𝐻tr = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑋)                       (13) 

Where the transformer output is denoted as 𝐻𝑡𝑟 , 𝑋 
signifies sequence of all 𝑥𝑡 . Thus, this operation facilitates 
global-to-local feature flow that includes global patterns first 
then short-term variations. Subsequently, a Bi-LSTM layer 
captures short-term emotional fluctuations and bidirectional 
mental-health evolution as demonstrated in (14): 

𝐻𝑙𝑠𝑡𝑚 = BiLSTM(𝐻𝑡𝑟)

Here, the BiLSTM output is defined as 𝐻𝑙𝑠𝑡𝑚. Thus, the 
fused vectors determine a complete psychological snapshot at 
individual time step. In particular, the Transformer captures 
global trends such as steadily increasing anxiety, while the Bi-
LSTM models instant changes influenced by daily exposure. 
Thereby, this longitudinal modelling resolves the inability to 
account for temporal mental-health progression. Hence, the 
use of Transformer and Bi-LSTM layers is essential where the 
transformers learn global behavioral patterns, such as 
persistent anxiety themes or sustained exposure to crisis 
information, while Bi-LSTM assists to capture fine-grained 
emotional shifts between adjacent time steps. Henceforth, this 
integration ensures that both long-term mental-health 
evolution and short-term fluctuations are effectively 
modelled. 

F. Multi-Task Mental-Health Impact Prediction 

Finally, a multi-task prediction head is employed which 
processes temporal features to estimate three outcomes as 
illustrated in (15) – (17): 

𝑐̂ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑐ℎ𝑇 + 𝑏𝑐)

𝑠̂ = 𝑊𝑠ℎ𝑇 + 𝑏𝑠
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𝑟̂ = 𝜎(𝑊𝑟ℎ𝑇 + 𝑏𝑟)

Here, predicted class is defined as 𝑐̂ , severity score is 
represented as 𝑠̂ , deterioration risk is symbolized as 𝑟̂ , the 
final Bi-LSTM state is demonstrated as ℎ𝑇 , the classifier 
weights refer to 𝑊𝑐 ,𝑊𝑠,𝑊𝑟  and biases signifies 𝑏𝑐 , 𝑏𝑠, 𝑏𝑟 . 
Therefore, by jointly predicting class, severity and risk, the 
proposed LEMIP-Net model, which captures both immediate 
mental-health state and future vulnerability which allows a 
comprehensive assessment. Thus, the Multi-task training loss 
is demonstrated using (18): 

ℒ = 𝜆1ℒ + 𝜆2ℒ + 𝜆3ℒ

Where classification loss is defined as ℒcls , severity 
regression loss is symbolized as ℒsev and risk prediction loss 
is determined as ℒrisk and 𝜆1, 𝜆2, 𝜆3 signifies chosen weights 
(0.5, 0.3, 0.2) respectively. Specifically, the multi-task head 
is optimized using AdamW with learning rate of 1𝑒 − 5, 0.01 
weight decay and at 1.0 gradient clipping.  Therefore, to 
stabilize multi-task optimization, an equalized gradient 
scaling 𝑔𝑖

′  is applied which is expressed through Equation 
(19): 

𝑔𝑖
′ = 

𝑔𝑖

‖𝑔𝑖‖2
                                   (19) 

Here, the gradient contribution of each task 𝑖 is denoted by 
𝑔𝑖, specifically the gradient normalization facilitates that no 
single task dominates the optimization. Thereby, tach task-
specific gradient 𝑔𝑖  is scaled by its L2-norm ‖𝑔𝑖‖2 , which 
provides a balanced contribution during joint training. In 
particular, the single-task classification struggles to capture 
the subtle gradations of mental-health decline or quantify 
future vulnerability. Hence, the multi-task outputs provide 
clinically significant insights and enable predictive 
interpretations aligned with psychological theory. 

IV. EXPERIMENTAL SETUP 

The proposed LEMIP-Net framework is executed using 
Python with PyTorch and the Hugging Face Transformers 
library for model development and fine-tuning. Specifically, 
data pre-processing and evaluation are performed using 
standard scientific-computing packages such as NumPy, 
pandas and scikit-learn. Thus, the experiments are 
implemented on a system with at least 32–64 GB RAM and a 
multi-core CPU that assists to handle sequence construction 
and exposure modelling efficiently. Hence, all experiments 
are executed in a controlled environment with fixed random 
seeds to ensure reproducibility and the complete training 

pipeline from embedding generation to multi-task prediction 
is performed on the same hardware and software 
configuration. Hence, the proposed LEMIP-Net framework is 
evaluated in terms of accuracy, precision, recall and F1-Score 
as demonstrated in the (20) – (23), respectively: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁


𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃


𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁


𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙


Here, 𝑇𝑃 is true positive, 𝑇𝑁 is true negative, 𝐹𝑃 is false 
positive, and 𝐹𝑁 is false negative, respectively. 

A. Performance Analysis 

To evaluate the effectiveness of proposed LEMIP-Net, 
performance analysis is performed against recent state-of-the-
art deep-learning and transformer-based models which are 
used for mental-health prediction on social-media datasets. 
Specifically, these models include BERT, RoBERTa and 
XLNet which are strong baselines for emotional and 
psychological signal extraction. Thus, each model is fine-
tuned under identical experimental conditions and evaluated 
across the standard metrics as illustrated in Fig. 2. 
 

From Fig. 2, it is depicted that the proposed LEMIP-Net 
outperforms all the benchmark transformer models across 
every evaluation metric. Although, the conventional models 
such as BERT, RoBERTa and XLNet achieved better results 
due to their robust contextual encoding capabilities, still lacks 
explicit mechanisms that assists to model exposure intensity 
or temporal emotional drift which are both essential factors in 
mental-health prediction. Hence, these results illustrate that 
integrating exposure signals and temporal dynamics resulted 
with more reliable and clinically significant mental-health risk 
estimation. 

B. Ablation Study 

To compute the individual contribution of each 
architectural component in the proposed LEMIP-Net, an 
ablation study is performed conducted by incrementally 
integrating the major modules into a shared baseline. 
Specifically, all variants are trained under identical conditions 
and evaluated as presented in the Table I. 
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Figure 2.  Performance analysis of proposed LEMIP-Net with conventional models 

TABLE I.  ABLATION STUDY OF PROPOSED LEMIP-NET ACROSS DIFFERENT VARIANTS 

Model Variant Accuracy Precision Recall F1-score 

Only XLM-RoBERTa embeddings  0.84 0.84 0.85 0.85 

XLM-RoBERTa -Hybrid Weak Supervision (HWS) 0.86 0.86 0.87 0.87 

XLM-RoBERTa -HWS-Transformer–Bi-LSTM 0.88 0.89 0.89 0.89 

XLM-R + HWS + Temporal (No Exposure) 0.90 0.91 0.91 0.91 

Proposed LEMIP-Net 0.93 0.95 0.94 0.945 

From Table I, it is observed that the ablation results 
demonstrates that each component contributes significantly to 
performance improvement. Specifically, the base model 
provides only moderate accuracy which signifies that only 
text embeddings are insufficient. Therefore, by adding HWS, 
enhances label quality and further introducing temporal 
modelling improves performance by capturing behavioral 
changes across time. Additionally, included a no-exposure 
variant that helps to validate the independent effect of 
exposure modelling. Thus, the full proposed LEMIP-Net 
model incorporates exposure classification and intensity 
modelling that assists to obtain the highest accuracy and F1-
Score which determines exposure-aware and longitudinal 
signals are essential for reliable mental-health impact 
prediction. 

C. Comparative Results 

To assess the robustness of the proposed LEMIP-Net 
framework, the performance is compared against the existing 
models which are widely used in mental-health prediction 
from social-media content. Specifically, the models include 
traditional machine-learning classifiers (SVM), lexicon-
augmented gradient boosting (LIWC+XGB) and LLM-
enhanced models (GPT-3 + SVM) as demonstrated in Table 
II. Hence, all comparative models are re-processed with 
identical tokenization, sequence length and filtering to ensure 
fair comparison. 

 
 Specifically, the existing models such as SVM [14] 

demonstrates moderate predictive capability, LIWC+XGB 
[16] and GPT-3 + SVM [17] obtains stronger performance, 
but still struggles due to the inability to incorporate temporal 
dynamics and exposure intensity. Hence, the proposed 
LEMIP-Net outperforms these models by incorporating 
longitudinal behavioral patterns, refined supervision and 
explicit modelling of pandemic-related exposure which 
results with higher accuracy of 0.93, 0.95 precision, 0.94 
recall and 0.945 F1-score. Henceforth, these results 
demonstrates that modelling both the semantic evolution and 

exposure context significantly improves mental-health 
prediction compared to static or post-level baselines. 

D. Discussion 

The experimental results demonstrate that the proposed 
LEMIP-Net effectively resolves the major limitations in 
existing post-level mental-health prediction models. 
Specifically, the existing approaches primarily depended on 
isolated text embeddings or classical machine-learning 
classifiers which limited their ability to capture the cumulative 
psychological effects of prolonged exposure to pandemic-
related content. In contrast, the proposed LEMIP-Net 
integrates diverse approaches including label refinement, 
temporal behavioral modelling and exposure-intensity 
quantification which results model that is both context-
sensitive and longitudinally effective. Thus, the performance 
observed in both benchmark comparisons and ablation results 
determine that mental-health risk is predicted effectively 
when user behavior is considered as a dynamic trajectory 
rather than a set of independent posts. Additionally, the results 
illustrate that incorporating exposure intensity provides 
substantial predictive advantage over transformer baselines 
such as BERT, RoBERTa and XLNet. Hence, this defines that 
psychological distress in digital environments is strongly 
influenced by the frequency and severity of health-related 
information encountered which evaluates the conceptual 
foundation of exposure-aware modelling. Furthermore, HWS 
significantly enhances label quality which illustrates those 
self-reports alone lack reliability and benefit from linguistic 
signal enhancement. In particular, on analyzing the errors, it 
is determined that existing transformer-based approaches 
misclassify posts with high exposure but neutral tone, whereas 
the proposed LEMIP-Net model correctly incorporates 
exposure signals to avoid such false negatives.  Henceforth, 
the proposed LEMIP-Net framework not only outperforms 
existing models but also provides a methodology aligned with 
psychological and behavioral science insights. 
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TABLE II.  COMPARATIVE RESULTS OF PROPOSED LEMIP-NET WITH EXISTING MODELS 

Models Accuracy Precision Recall F1-score 

SVM [14] 0.74 0.70 0.74 0.76 

LIWC+XGB [16] 0.823 0.997 0.802 0.881 

GPT-3 + SVM [17] 0.86 0.84 0.83 0.84 

Proposed LEMIP-Net 0.93 0.95 0.94 0.945 

V. CONCLUSION 

In this research, the proposed LEMIP-Net, which is an 
exposure-aware and longitudinal deep learning framework 
that is designed for mental-health prediction. Specifically, 
pandemic-related social media content is impacting every 
individual mental health. Further, in the proposed LEMIP-Net 
model raw user posts are converted into structured behavioral 
timelines, through which this model captures linguistic 
evolution, emotional drift, and cumulative effect of exposure 
to pandemic. Hence, the experimental results demonstrates 
that proposed LEMIP-Net consistently outperforms the 
conventional models and transformer-based approaches. This 
determines the requirement of combining exposure and 
temporal dimensions into mental health prediction model. 
Additionally, the ablation analysis shows that each component 
such as hybrid weak supervision, temporal encoding, and 
exposure modelling in the proposed LEMIP-Net influences 
the overall performance of model. In particular, the capability 
of the proposed LEMIP-Net in integration of refined labels, 
time-dependent behavioral patterns and quantified exposure 
signals determined as robust approach for mental-health risk 
assessment. Thus, the proposed LEMIP-Net outperformed 
existing model with which results with higher accuracy of 
0.93, 0.95 precision, 0.94 recall and 0.945 F1-score. 
Henceforth, the proposed approach resolves key challenges of 
existing approaches and contributes a scalable and robust 
framework for predicting mental-health risks in digital 
ecosystems. In the future, the proposed LEMIP-Net will 
explore multi-modal integration including images or 
engagement behavior, demographic conditioning and real-
time deployment for public-health surveillance.  
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