

The International Journal on Advances in Internet Technology is published by IARIA.

ISSN: 1942-2652

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Internet Technology, issn 1942-2652

vol. 9, no. 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Internet Technology, issn 1942-2652

vol. 9, no. 3 & 4, year 2016, <start page>:<end page> , http://www.iariajournals.org/internet_technology/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2016 IARIA

International Journal on Advances in Internet Technology

Volume 9, Number 3 & 4, 2016

Editor-in-Chief

Padma Pillay-Esnault, Huawei Technologies, USA

Editorial Advisory Board

Eugen Borcoci, University "Politehnica"of Bucharest, Romania
Lasse Berntzen, University College of Southeast, Norway
Michael D. Logothetis, University of Patras, Greece
Sébastien Salva, University of Auvergne, France
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Dirceu Cavendish, Kyushu Institute of Technology, Japan

Editorial Board

Jemal Abawajy, Deakin University, Australia
Chang-Jun Ahn, School of Engineering, Chiba University, Japan
Sultan Aljahdali, Taif University, Saudi Arabia
Shadi Aljawarneh, Isra University, Jordan
Giner Alor Hernández, Instituto Tecnológico de Orizaba, Mexico
Onur Alparslan, Osaka University, Japan
Feda Alshahwan, The University of Surrey, UK
Ioannis Anagnostopoulos, University of Central Greece - Lamia, Greece
M.Ali Aydin, Istanbul University, Turkey
Gilbert Babin, HEC Montréal, Canada
Faouzi Bader, CTTC, Spain
Kambiz Badie, Research Institute for ICT & University of Tehran, Iran
Ataul Bari, University of Western Ontario, Canada
Javier Barria, Imperial College London, UK
Shlomo Berkovsky, NICTA, Australia
Lasse Berntzen, University College of Southeast, Norway
Marco Block-Berlitz, Freie Universität Berlin, Germany
Christophe Bobda, University of Arkansas, USA
Alessandro Bogliolo, DiSBeF-STI University of Urbino, Italy
Thomas Michael Bohnert, Zurich University of Applied Sciences, Switzerland
Eugen Borcoci, University "Politehnica"of Bucharest, Romania
Luis Borges Gouveia, University Fernando Pessoa, Portugal
Fernando Boronat Seguí, Universidad Politecnica de Valencia, Spain
Mahmoud Boufaida, Mentouri University - Constantine, Algeria
Christos Bouras, University of Patras, Greece
Agnieszka Brachman, Institute of Informatics, Silesian University of Technology, Gliwice, Poland
Thierry Brouard, Université François Rabelais de Tours, France
Carlos T. Calafate, Universitat Politècnica de València, Spain
Christian Callegari, University of Pisa, Italy
Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain
Miriam A. M. Capretz, The University of Western Ontario, Canada
Dirceu Cavendish, Kyushu Institute of Technology, Japan

Ajay Chakravarthy, University of Southampton IT Innovation Centre, UK
Chin-Chen Chang, Feng Chia University, Taiwan
Ruay-Shiung Chang, National Dong Hwa University, Taiwan
Tzung-Shi Chen, National University of Tainan, Taiwan
Xi Chen, University of Washington, USA
IlKwon Cho, National Information Society Agency, South Korea
Andrzej Chydzinski, Silesian University of Technology, Poland
Noël Crespi, Telecom SudParis, France
Antonio Cuadra-Sanchez, Indra, Spain
Javier Cubo, University of Malaga, Spain
Sagarmay Deb, Central Queensland University, Australia
Javier Del Ser, Tecnalia Research & Innovation, Spain
Philipe Devienne, LIFL - Université Lille 1 - CNRS, France
Kamil Dimililer, Near East Universiy, Cyprus

Martin Dobler, Vorarlberg University of Applied Sciences, Austria
Jean-Michel Dricot, Université Libre de Bruxelles, Belgium
Matthias Ehmann, Universität Bayreuth, Germany
Tarek El-Bawab, Jackson State University, USA
Nashwa Mamdouh El-Bendary, Arab Academy for Science, Technology, and Maritime Transport, Egypt
Mohamed Dafir El Kettani, ENSIAS - Université Mohammed V-Souissi, Morocco
Marc Fabri, Leeds Metropolitan University, UK
Armando Ferro, University of the Basque Country (UPV/EHU), Spain
Anders Fongen, Norwegian Defence Research Establishment, Norway
Giancarlo Fortino, University of Calabria, Italy
Kary Främling, Aalto University, Finland
Steffen Fries, Siemens AG, Corporate Technology - Munich, Germany
Ivan Ganchev, University of Limerick, Ireland
Shang Gao, Zhongnan University of Economics and Law, China
Kamini Garg, University of Applied Sciences Southern Switzerland, Lugano, Switzerland
Rosario Giuseppe Garroppo, Dipartimento Ingegneria dell'informazione - Università di Pisa, Italy
Thierry Gayraud, LAAS-CNRS / Université de Toulouse / Université Paul Sabatier, France
Christos K. Georgiadis, University of Macedonia, Greece
Katja Gilly, Universidad Miguel Hernandez, Spain
Feliz Gouveia, Universidade Fernando Pessoa - Porto, Portugal
Kannan Govindan, Crash Avoidance Metrics Partnership (CAMP), USA
Bill Grosky, University of Michigan-Dearborn, USA
Jason Gu, Singapore University of Technology and Design, Singapore
Christophe Guéret, Vrije Universiteit Amsterdam, Nederlands
Frederic Guidec, IRISA-UBS, Université de Bretagne-Sud, France
Bin Guo, Northwestern Polytechnical University, China
Gerhard Hancke, Royal Holloway / University of London, UK
Arthur Herzog, Technische Universität Darmstadt, Germany
Rattikorn Hewett, Whitacre College of Engineering, Texas Tech University, USA
Quang Hieu Vu, EBTIC, Khalifa University, Arab Emirates
Hiroaki Higaki, Tokyo Denki University, Japan
Dong Ho Cho, Korea Advanced Institute of Science and Technology (KAIST), Korea
Anna Hristoskova, Ghent University - IBBT, Belgium
Ching-Hsien (Robert) Hsu, Chung Hua University, Taiwan
Chi Hung, Tsinghua University, China
Edward Hung, Hong Kong Polytechnic University, Hong Kong
Raj Jain, Washington University in St. Louis , USA
Edward Jaser, Princess Sumaya University for Technology - Amman, Jordan
Terje Jensen, Telenor Group Industrial Development / Norwegian University of Science and Technology, Norway

Yasushi Kambayashi, Nippon Institute of Technology, Japan
Georgios Kambourakis, University of the Aegean, Greece
Atsushi Kanai, Hosei University, Japan
Henrik Karstoft , Aarhus University, Denmark
Dimitrios Katsaros, University of Thessaly, Greece
Ayad ali Keshlaf, Newcastle University, UK
Reinhard Klemm, Avaya Labs Research, USA
Samad Kolahi, Unitec Institute Of Technology, New Zealand
Dmitry Korzun, Petrozavodsk State University, Russia / Aalto University, Finland
Slawomir Kuklinski, Warsaw University of Technology, Poland
Andrew Kusiak, The University of Iowa, USA
Mikel Larrea, University of the Basque Country UPV/EHU, Spain
Frédéric Le Mouël, University of Lyon, INSA Lyon / INRIA, France
Juong-Sik Lee, Nokia Research Center, USA
Wolfgang Leister, Norsk Regnesentral (Norwegian Computing Center), Norway
Clement Leung, Hong Kong Baptist University, Hong Kong
Longzhuang Li, Texas A&M University-Corpus Christi, USA
Yaohang Li, Old Dominion University, USA
Jong Chern Lim, University College Dublin, Ireland
Lu Liu, University of Derby, UK
Damon Shing-Min Liu, National Chung Cheng University, Taiwan
Michael D. Logothetis, University of Patras, Greece
Malamati Louta, University of Western Macedonia, Greece
Maode Ma, Nanyang Technological University, Singapore
Elsa María Macías López, University of Las Palmas de Gran Canaria, Spain
Olaf Maennel, Loughborough University, UK
Zoubir Mammeri, IRIT - Paul Sabatier University - Toulouse, France
Yong Man, KAIST (Korea advanced Institute of Science and Technology), South Korea
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Chengying Mao, Jiangxi University of Finance and Economics, China
Brandeis H. Marshall, Purdue University, USA
Sergio Martín Gutiérrez, UNED-Spanish University for Distance Education, Spain
Constandinos Mavromoustakis, University of Nicosia, Cyprus
Shawn McKee, University of Michigan, USA
Stephanie Meerkamm, Siemens AG in Erlangen, Germany
Kalogiannakis Michail, University of Crete, Greece
Peter Mikulecky, University of Hradec Kralove, Czech Republic
Moeiz Miraoui, Université du Québec/École de Technologie Supérieure - Montréal, Canada
Shahab Mokarizadeh, Royal Institute of Technology (KTH) - Stockholm, Sweden
Mario Montagud Climent, Polytechnic University of Valencia (UPV), Spain
Stefano Montanelli, Università degli Studi di Milano, Italy
Julius Müller, TU- Berlin, Germany
Juan Pedro Muñoz-Gea, Universidad Politécnica de Cartagena, Spain
Krishna Murthy, Global IT Solutions at Quintiles - Raleigh, USA
Alex Ng, University of Ballarat, Australia
Christopher Nguyen, Intel Corp, USA
Petros Nicopolitidis, Aristotle University of Thessaloniki, Greece
Carlo Nocentini, Università degli Studi di Firenze, Italy
Federica Paganelli, CNIT - Unit of Research at the University of Florence, Italy
Carlos E. Palau, Universidad Politecnica de Valencia, Spain
Matteo Palmonari, University of Milan-Bicocca, Italy
Ignazio Passero, University of Salerno, Italy
Serena Pastore, INAF - Astronomical Observatory of Padova, Italy

Fredrik Paulsson, Umeå University, Sweden
Rubem Pereira, Liverpool John Moores University, UK
Padma Pillay-Esnault, Huawei Technologies, USA
Yulia Ponomarchuk, Far Eastern State Transport University, Russia
Jari Porras, Lappeenranta University of Technology, Finland
Neeli R. Prasad, Aalborg University, Denmark
Drogkaris Prokopios, University of the Aegean, Greece
Emanuel Puschita, Technical University of Cluj-Napoca, Romania
Lucia Rapanotti, The Open University, UK
Gianluca Reali, Università degli Studi di Perugia, Italy
Jelena Revzina, Transport and Telecommunication Institute, Latvia
Karim Mohammed Rezaul, Glyndwr University, UK
Leon Reznik, Rochester Institute of Technology, USA
Simon Pietro Romano, University of Napoli Federico II, Italy
Jorge Sá Silva, University of Coimbra, Portugal
Sébastien Salva, University of Auvergne, France
Ahmad Tajuddin Samsudin, Telekom Malaysia Research & Development, Malaysia
Josemaria Malgosa Sanahuja, Polytechnic University of Cartagena, Spain
Luis Enrique Sánchez Crespo, Sicaman Nuevas Tecnologías / University of Castilla-La Mancha, Spain
Paul Sant, University of Bedfordshire, UK
Brahmananda Sapkota, University of Twente, The Netherlands
Alberto Schaeffer-Filho, Lancaster University, UK
Peter Schartner, Klagenfurt University, System Security Group, Austria
Rainer Schmidt, Aalen University, Germany
Thomas C. Schmidt, HAW Hamburg, Germany
Zary Segall, Chair Professor, Royal Institute of Technology, Sweden
Dimitrios Serpanos, University of Patras and ISI/RC ATHENA, Greece
Jawwad A. Shamsi, FAST-National University of Computer and Emerging Sciences, Karachi, Pakistan
Michael Sheng, The University of Adelaide, Australia
Kazuhiko Shibuya, The Institute of Statistical Mathematics, Japan
Roman Y. Shtykh, Rakuten, Inc., Japan
Patrick Siarry, Université Paris 12 (LiSSi), France
Jose-Luis Sierra-Rodriguez, Complutense University of Madrid, Spain
Simone Silvestri, Sapienza University of Rome, Italy
Vasco N. G. J. Soares, Instituto de Telecomunicações / University of Beira Interior / Polytechnic Institute of Castelo
Branco, Portugal
Radosveta Sokullu, Ege University, Turkey
José Soler, Technical University of Denmark, Denmark
Victor J. Sosa-Sosa, CINVESTAV-Tamaulipas, Mexico
Dora Souliou, National Technical University of Athens, Greece
João Paulo Sousa, Instituto Politécnico de Bragança, Portugal
Kostas Stamos, Computer Technology Institute & Press "Diophantus" / Technological Educational Institute of
Patras, Greece
Cristian Stanciu, University Politehnica of Bucharest, Romania
Vladimir Stantchev, SRH University Berlin, Germany
Tim Strayer, Raytheon BBN Technologies, USA
Masashi Sugano, School of Knowledge and Information Systems, Osaka Prefecture University, Japan
Tae-Eung Sung, Korea Institute of Science and Technology Information (KISTI), Korea
Sayed Gholam Hassan Tabatabaei, Isfahan University of Technology, Iran
Yutaka Takahashi, Kyoto University, Japan
Yoshiaki Taniguchi, Kindai University, Japan
Nazif Cihan Tas, Siemens Corporation, Corporate Research and Technology, USA

Alessandro Testa, University of Naples "Federico II" / Institute of High Performance Computing and Networking

(ICAR) of National Research Council (CNR), Italy
Stephanie Teufel, University of Fribourg, Switzerland
Parimala Thulasiraman, University of Manitoba, Canada
Pierre Tiako, Langston University, USA
Orazio Tomarchio, Universita' di Catania, Italy
Dominique Vaufreydaz, INRIA and Pierre Mendès-France University, France
Krzysztof Walkowiak, Wroclaw University of Technology, Poland
MingXue Wang, Ericsson Ireland Research Lab, Ireland
Wenjing Wang, Blue Coat Systems, Inc., USA
Zhi-Hui Wang, School of Softeware, Dalian University of Technology, China
Matthias Wieland, Universität Stuttgart, Institute of Architecture of Application Systems (IAAS),Germany
Bernd E. Wolfinger, University of Hamburg, Germany
Chai Kiat Yeo, Nanyang Technological University, Singapore
Abdulrahman Yarali, Murray State University, USA
Mehmet Erkan Yüksel, Istanbul University, Turkey

International Journal on Advances in Internet Technology

Volume 9, Numbers 3 & 4, 2016

CONTENTS

pages: 41 - 51
Checklist for the API Design of Web Services based on REST
Pascal Giessler, Karlsruhe Institute of Technology (KIT), Germany
Michael Gebhart, iteratec GmbH, Germany
Roland Steinegger, Karlsruhe Institute of Technology (KIT), Germany
Sebastian Abeck, Karlsruhe Institute of Technology (KIT), Germany

pages: 52 - 62
Evaluation and Behavioral Analysis of Place-Oriented Radio by the Measurement of Cross-Cultural
Understandings
Ayaka Ito, Keio University, Japan
Katsuhiko Ogawa, Keio University, Japan

pages: 63 - 74
A Mass Storage System for Bare PC Applications Using USBs
William Thompson, Towson University, US
Hamdan Alabsi, Towson University, US
Ramesh Karne, Towson University, US
Sonjie Liang, Towson University, US
Alexander Wijesinha, Towson University, US
Rasha Almajed, Towson University, US
Hojin Chang, Towson University, US

pages: 75 - 88
Semantic Service Management and Orchestration for Adaptive and Evolving Processes
Johannes Fähndrich, DAI-Labor, Technische Universität Berlin, Germany
Tobias Küster, DAI-Labor, Technische Universität Berlin, Germany
Nils Masuch, DAI-Labor, Technische Universität Berlin, Germany

41

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Checklist for the API Design
of Web Services based on REST

Pascal Giessler, Roland Steinegger,
and Sebastian Abeck

Cooperation & Management
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
Email: pascal.giessler@kit.edu,

Email: roland.steinegger@kit.edu,
Email: sebastian.abeck@kit.edu

Michael Gebhart

iteratec GmbH
Stuttgart, Germany

Email: michael.gebhart@iteratec.de

Abstract—The trend towards creating web services based on
the architectural style REpresentational State Transfer (REST)
is unbroken. Several best practices for designing RESTful web
services have been emerged in research and practice to ensure
some degree of quality and share solutions to recurring challenges
in the area of API design. But, these best practices are often
described differently with the same meaning due to the nature
of natural language. Also, they are not collected, categorized
and presented in a central place but rather distributed across
several pages in the World Wide Web, which impedes their
application even further. Furthermore, it is often unclear which
best practice has to be taken into account when designing a
RESTful API for a particular scenario. In this article, we identify,
collect, and categorize several best practices for designing APIs
for RESTful web services and form a checklist. To support a
prioritization of relevant best practices, we have mapped them on
quality characteristics of the ISO/IEC 25010/2011. For illustration
purpose, we apply the checklist on the CompetenceService as
part of the SmartCampus ecosystem developed at the Karlsruhe
Institute of Technology (KIT).

Keywords–REST; RESTful; best practices; checklist; quality-
driven; catalog; design; quality; api design; resource-orientation;
SmartCampus

I. INTRODUCTION

This article is an extended version of [1]. It represents a
collection of common best practices for designing Application
Programming Interface (API)s for RESTful web services that
have been derived from a range of articles, magazines, and
pages on the World Wide Web (WWW). The motivation for
this collection was because more and more web services
based on the architectural style REST over Hypertext Transfer
Protocol (HTTP) were developed and deployed compared to
traditional web services with Simple Object Access Protocol
(SOAP). This trend can also be seen at big companies, such as
Twitter or Spotify, are using REST-like API for their services,
which are shown in their API documentations [4] [5]. We are
calling it REST-like at this point since we do not want to
evaluate if this API considers all constraints of the uniform
interface defined by Fielding [6] and can, therefore, be called
RESTful. But, there is a lack of standards and guidelines on
how to design an appropriate API, for example regarding the
usability or the maintainability [2] [3].

Today, an own business model has been established around
APIs when looking at the revenue of Salesforce or Expedia [7]
[8]. For instance, “Salesforce.com generates 50% of its revenue
through APIs,” [7] according to the Harvard Business Review.
That is why it is more important than ever that APIs have to be
designed carefully especially when dealing with a large user
base and heterogeneous platforms. For example, a change of
an API should not break any consumer and, therefore, must be
robust toward evolvability of the API. As discussed in [9], the
API design and its strategy were also identified as a solution
approach for the challenges of the digital transformation in
software engineering.

To meet these challenges regarding the design of APIs,
we have collected, categorized and formalized several best
practices in the form of a checklist so it can be easily applied
during the design of APIs for RESTful web services. To
support a prioritization and selection of relevant best practices
for a particular application scenario, we have mapped them
on quality characteristics of the ISO 25010:2011 [10]. For
instance, if it is important to support mobile platforms, then
you should consider reducing the necessary requests to get the
needed information.

For the purpose of illustration, we first show how we have
integrated the checklist in our software development process
to ensure an API design with quality in mind. Besides, we
show exemplarily the applied best practices on the Compe-
tenceService as part of the SmartCampus system at the KIT.
The SmartCampus is a system that provides functionality for
students, guests, and members of a university to support their
daily life. Today, the SmartCampus is designed according to
the trending microservice approach [11] and offers already
some services, such as the ParticipationService to support
the decision-making process between students, professors and
members of the KIT with a new approach called system-
consenting [12]. The developed services at the SmartCampus
are based on REST, so that they can be used for several
different devices as a lightweight alternative to SOAP.

The current paper is structured as follows: In Section II,
the architectural style REST will be described in detail to lay
the foundation for this article. Afterward, existing papers and
articles will be discussed in Section III to show the necessity

42

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of identification, collection, and categorization of existing best
practices for the API design of RESTful web services. The
CompetenceService is presented in Section IV of which the
best practices will be exemplarily illustrated. Besides, our
development process will be described to show how APIs
will be designed and how the best practices are integrated.
In Section V, the checklist containing the best practices will
be explained in detail. Section VI focusses the mapping of
quality characteristics of the ISO 25010:2011 [10] onto the
previously introduced best practices by illustrating them on a
concrete scenario. Finally, a summary of this article and an
outlook on further work will be given in Section VII.

II. FOUNDATION

This section shall impart the necessary foundation for the
scope of this article. First, the architectural style REST and
its constraints will be described. Then, the term API will be
described while a classification model for APIs based on REST
will be introduced. In addition, informal characteristics of a
API will be represented that can be found in literature.

A. REpresentational State Transfer (REST)
REST is an architectural style, which was developed and

first introduced by Fielding [6] in his dissertation. According to
Garlan and Shaw [13], an architectural style can be described
as follows: “an architectural style determines the vocabulary
of components and connectors that can be used in instances of
that style, together with a set of constraints on how they can
be combined.” [13, p. 6].

For the design of REST, Fielding [6] has identified four
key characteristics, which were important for the success
of the current WWW [14]. To ensure these characteristics,
the following constraints were derived from existing network
architectural styles together with another constraint for the
uniform interface [6]:

1) Client and Server: A client component sends a re-
quest to a server component for executing a remote
operation. It is incumbent upon the server component
to perform or reject the request [6].

2) Statelessness: Each request from client to server has
to contain all necessary information to perform the re-
quest, which leads to the following advantage: “There
is no need for the server to maintain an awareness
of the client state beyond the current request” [6, p.
119].

3) Layered Architecture: A layered-client-server archi-
tecture enables the application of the Separation of
Concern (SoC) principle and the opportunity to add
features like load balancing or caching mechanisms
to multiple layers [6] [15].

4) Caching: This constraint allows a client to match its
request to a previous response from the server with
the result that no request has to be transmitted over
the network [14].

5) Code on Demand: With the usage of Code on De-
mand, additional programming logic can be requested
from the server that is needed for processing received
information from the server [14].

6) Uniform interface: The term “uniform interface”
(hereinafter API) can be seen as an umbrella term,
since it can be decomposed into four sub constraints

[14]: 6.1) Identification of resources, 6.2) manipula-
tion of resources through representations, 6.3) Self-
descriptive messages and 6.4) Hypermedia.

If all of these constraints are fulfilled by a web service, it can
be called RESTful. The only exception is “Code on Demand”,
since it is an optional constraint and has not be implemented
by a web service. The mentioned constraints are illustrated in
Figure 1.

$

$

$

$

$

$

$

$

Client Connector: Client+Cache: Server Connector: Server+Cache:$

$

Figure 1. REST style [6, p. 84]

B. (Web) API
An Application Programming Interface (API) is a “local

interface from higher-level component to a lower-level com-
ponent” and can also be called as a horizontal interface [16, p.
915]. It acts as a contract between the service and the service
consumer in the area of web services. It describes how the
client can communicate with the service and how the request
will be processed and responded to. An API can be called a
web API, when the interface can be accessed via the internet
or via internet-enabled technologies, such as HTTP.

For the classification of APIs based on REST, Richardson
et. al. have developed a maturity model that classifies the API
according their compliance of the mentioned preconditions for
the uniform interface (see Section II-A 6.1 - 6.4) [17]. This so-
called Richardson Maturity Modell (RMM) consists of three
different maturity levels: 1) Usage of a resource-oriented styles
rather than Remote Procedure Call (RPC) style, 2) Usage of
HTTP methods according to their semantic and, 3) Usage of
Hypermedia so that the API is self-documenting. For better
illustration, the RMM is represented by Figure 2.

Level 3 : Hypermedia

Level 2 : HTTP methods

Level 1 : Resources

Maturity

Figure 2. Richardson Maturity Model

Besides this classification, there are also informal criteria
that can be found in literature especially when looking for
integration technology. According to Newman [11], breaking
changes should be avoided. This means that the API should
be robust in terms of its evolution since it acts as a contract
between service consumer and service provider. Also, the API
should be technology-agnostic and hide internal implemen-
tation details not to increase the coupling. That is why the

43

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

API should abstract from a particular implementation by not
exposing internal details, such as the used technology or any
proprietary standard. Another important characteristic is the
simplicity, and the comprehension from a service consumer
perspective since other developers or development teams are
the primary target group.

III. BACKGROUND

This section discusses different articles, magazines and
approaches in the context of RESTful best practices, which
respect the architectural style REST and its underlying con-
cepts.

In Fielding [6], Fielding presents the structured approach
for designing the architectural style REST, while it remains
unclear how a REST-based web service can be developed in a
systematic and comprehensible manner. Furthermore, there is
also a lack of concrete examples of how hypermedia can be
used as the engine of the application state, which can be one
reason why REST is understood and implemented differently.

In [11], Newman presents a book about the microservice
approach that is followed by several companies. Although,
there is dedicated chapter regarding the ideal integration
technology, it lacks on concrete best practices or guidelines
especially for APIs based on REST. Instead of this, the book
provides rather an overview about the technology choices that
have to be made when choosing an integration technology.

Mulloy [18] presents different design principles and best
practices for Web APIs, while he puts the focus on “pragmatic
REST”. By “pragmatic REST” the author means that the
usability of the resulting Web API is more important than
any design principle or guideline. But, this decision can
lead to neglecting the basic concepts behind REST, such as
hypermedia.

Jauker [19] summarizes ten best practices for a RESTful
API, which represent, in essence, a subset of the described
best practices by Mulloy [18] and a complement of new best
practices. Comparable with [18], the main emphasis is placed
on the usability of the web interface and not so much on the
architectural style REST, which can lead to the previously
mentioned issue.

Papapetrou [20] classifies best practices for RESTful APIs
in three different categories. However, there is a lack of
concrete examples of how to apply these best practices on
a real system compared to the two previous articles.

In [21], a checklist of best practices for developing REST-
ful web services is presented, while the author explicitly
clarifies that REST is not the only answer in the area of
distributed computing. He structures the best practices in four
sections, which addressing different areas of a RESTful web
service, such as the representation of resources. Despite all
of his explanations, the article lacks in concrete examples to
reduce the ambiguousness.

Richardson et. al [14] cover in their book as a successor
of [22], among other topics, the concepts behind REST and
a procedure to develop a RESTful web service. Furthermore,
they place a great value on hypermedia, as well as Hypermedia
As The Engine Of Application State (HATEOAS), which is not
taken into account by all of the prior articles. But, the focus of
this work is the comprehensive understanding of REST rather
than providing best practices for a concrete implementation to

reduce the complexity of development decisions. s In [23],
Burke presents a technical guide of how to develop web
services based on the Java API for RESTful Web Services
(JAX-RS) specification. But, this work focuses on the imple-
mentation phase rather than the design phase of a web service,
where the necessary development decisions have to be made.

In [24], Guinard and Trifa provide a guide on how to
design and implement Internet of Things (IoT) solutions on the
Web to ensure interoperability across different platforms. They
recommend using a hypermedia approach when designing an
API. But, common challenges, such as troubleshooting of an
API, naming of resources and error handling are not discussed
in detail.

IV. SCENARIO

This section addresses the domain at which the best
practices for the API design will be illustrated. Besides, it
shows the engineering principle behind the design and the
development of the SmartCampus at the KIT to highlight the
importance of APIs and the necessity of best practices.

A. Domain
The SmartCampus is a modern web application, which

simplifies the daily life of students, guests, and members at
the university (see Figure 3). Today, it offers several services,
such as the ParticipationService for decision-making [12],
the SmartMeetings for discussions or the CampusGuide for
navigation and orientation on the campus, and the Workspace-
Service to find a free working place by using smart devices.
By using non-client specific technologies, the services can be
offered to a wide range of different client platforms, such as
Android or iOS.

Figure 3. SmartCampus [25].

The CompetenceService is a new service as part of the
SmartCampus to capture and semantically search competences
in the area of information technology. For easier acquisition
of knowledge information, the CompetenceService offers the
import of competence and profile information from various
social networks, such as LinkedIn or Facebook. The resulting
knowledge will be represented by an ontology, while the profile
information will be saved in a relational database. SPARQL
Protocol And RDF Query Language (SPARQL) is used as
the query language for capturing and searching knowledge
information in the ontology.

In Figure 4, the previously described CompetenceService is
illustrated in the form of a component diagram. As integration

44

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

technology according to Newman [11], REST was chosen
since we are dealing with semantic information that should
be reflect by the API. For implementation of the Competence-
Service, the Java framework Spring was used.

Relational
database

Ontology
database

Competence
Server

use

SQ
L

useSPARQL

Competence
Client

REST-based
API

REST-based
API

REST-based
API

Facebook

LinkedIn

Google+

XING

Figure 4. Component model of the CompetenceService.

To demonstrate the benefits of this service, a simple use
case will be described in the following. A young startup
company is looking for a new employee, who has competences
in “AngularJS” and “Bootstrap”. For that purpose, the startup
company uses the semantics search engine of the Compe-
tenceService to search for people with the desired skills. The
resulting list of people will be ordered by relevance so that the
startup company can easily contact the best match.

B. API-Driven Development Process
For the design and development of our services as part of

the previously introduced SmartCampus, we have decided to
choose the API-First key engineering principle. The API-First
engineering principle allows us to focus on the quality of the
API design before any implementation effort is made. In our
eyes, the APIs are an important and highly valuable business
asset since they define what we can do with the system.

In Figure 5, our API-First engineering principle is shown.
First, we identify the service requirements that we have
gathered from scenarios. Scenarios are described from the
perspective of a user that interacts with the software by using
its user interface [26]. The resulting service operations are used
for the first draft of the API. For the design of the API, we
have defined some API guidelines based on the checklist in
this article to ensure the consistency, maintainability, and us-
ability of our service landscape. The API guidelines represent
decisions that we have taken in previous development projects.
After the first draft of the API specification is created, an ample
peer review based on the checklist and the application scenario
will be conducted by a dedicated team to ensure the quality of
the API. For the API specification, we rely on the OpenAPI
as a vendor neutral API specification format (former Swagger
specification) since it is open source and is supported by a
vast majority of big companies, such as Google, Microsoft, and
IBM [27]. When reviewing the API, the responsible developers
have to explain their design decisions. If the resulting quality
report revealed some issues, the iteration cycle starts from the

Designing/
modifying web API

Reviewing
web API

Identifying service
requirements

Implementing
service

Implementing
service consumer

API spec
(draft)

API spec
(contract)

Service
operatons

API
guidelines

<<
us

es
>>

<<
us

es
>>

… …

Figure 5. API-First engineering principle.

beginning with the modification of the API specification draft.
In the other case, the API gets the status of a contract and will
be handed over to the appropriate development teams.

V. CHECKLIST FOR THE API DESIGN
OF WEB SERVICES BASED ON REST

This section presents eight different categories of best
practices for designing REST-based web services, whereby
each one is represented by a subsection (see Figure 6). The
categories semantically group the found best practices and
shall act as a checklist of important aspects that have to
be considered when designing APIs for web services based
on REST. Furthermore, we are providing recommendations
for each category based on literature, that we have found
during our conduction. The best practices should not be seen
as strict guidelines. Furthermore, it is important to point out
here that the fulfillment of the following best practices does
not guarantee the compliance of the mentioned constraints in
Section II. For this, the RMM can be used to analyze the
preconditions of a REST-based web service (see Section II-B).

A. Versioning
Versioning of a Web API is one of the most important

considerations during the design of web services since the API
represents the central access point of a web service and hides
the service implementation. This is why a web interface should
never be deployed without any versioning identifier according
to Mulloy [18]. For versioning, many different approaches
exist, such as embedding it into the base Uniform Resource
Identifier (URI) of the web service or using the HTTP-Header
for selecting the appropriate version [18]. But, web services
based on REST do not need to be versioned due to hypermedia.
The hypermedia aspect allows us to update the hyperlinks
at runtime since the client does not hardcoded them in its

45

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Versioning

Naming

Identification

Error Handling /
Troubleshooting

Documentation

Usage of Query
Paramters

Interaction

MIME-Types

API Design
for Web Services
Based on REST

Figure 6. Categories of best practices for designing REST-based web services

client code and is, therefore, up to date as soon as the service
provides a new representation of a requested resource.

That is why RESTful web services can be compared with
traditional websites that are still accessible on all web browsers
when modifying the content of the websites. So, no additional
adjustment is necessary on the client side. Furthermore, ver-
sioning also has a negative impact on deployed web services,
which Fielding states as follows: “Versioning an interface is
just a polite way to kill deployed applications” [28] since it
increases the effort for maintaining the web service.

B. Naming
The naming and description of resources correlates with

the usability of the web service since the resources represent
or abstract the underlying domain model. Furthermore, by
defining guidelines for naming, we can ensure a consistent
naming style across several services within the service-oriented
architecture. This leads to a consistent look and feel regardless
of the development team, who has designed and developed it.
For this category, five best practices could be identified:

1) According to Vinoski [21], Papapetrou [20] and Mul-
loy [18], nouns should be used for resource names.
Since a subresource is simply a resource with a com-
position relationship to another resource, we think
this rule should be applied here as well.

2) The name of a resource should be concrete and
domain specific, so that the semantics can be inferred
by a user without any additional knowledge [18] [20].

3) The amount of resources should be bounded to limit
the complexity of the system, whereby this recom-
mendation depends on the degree of abstraction of
the underlying domain model [18].

4) The mixture of plural and singular by naming re-
sources should be prevented to ensure consistency. In
addition, a resource should be able to handle several
entities instead of just one one. But, there may be
exceptions, such as Spotify‘s me resource [18] [19].

5) The naming convention of JavaScript should be con-
sidered since the media type JavaScript Object No-
tation (JSON) is the most used data format for the
client and server communication by this time [3] [18]
[29]. For instance, Google has defined an extensive
styleguide [30].

Figure 7 illustrates the first, second and third best practice of
this category.

1 /* ProfileController */
2 @RestController
3 @RequestMapping(value = "/profiles")
4 public class ProfilesController {
5 ...
6 @RequestMapping(method = RequestMethod.GET)
7 public List<Profile> getProfiles() {...}
8 ...
9 }

10
11 /* CompetenceController */
12 @RestController
13 @RequestMapping(value = "/competences")
14 public class CompetenceController {
15 ...
16 @RequestMapping(method = RequestMethod.GET)
17 public List<Competence> getCompetences() {...}
18 ...
19 }

Figure 7. Example for description of resources.

C. Resource Identification

According to Fielding [6], URIs should be used for unique
identification of resources. If we take it accurately, there is
no need for declaring best practices for resource identification
when following a hypermedia approach since only the meta-
information of the hyperlink will be evaluated and processed
by the service consumer. But, we have found several best
practices regarding resource identification. On the basis of
this result, we assume that most so-called REST-based APIs
are positioned on the second level of the RMM rather than
third one. That is why we have decided to list the found best
practices to improve the usability for this kind of API:

1) An URI should be self-explanatory according to the
affordance [18]. The term affordance refers to a
design characteristic by which an object can be used
without any guidance. Since the main part of a URL
consists of resource names, we have to ensure that
these names are also domain-related and not termed
in an abstract way.

2) A resource should only be addressed by two URIs.
The first URI address represents a set of states of the
specific resource and the other one a specific state of
the previously mentioned set of states [18].

3) The identifier of a specific state should be difficult
to predict [20] and not references objects directly
according to the Open Web Application Security
Project (OWASP) [31], if there is no security layer
available.

4) There should be no verbs within the URI since this
implies a method-oriented approach, such as SOAP
[18] [19].

Figure 8 illustrates the second best practice of this category.
Note that there are no verbs within the URIs, hence the fourth
best practice is also fulfilled.

46

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 /* Set of profiles */
2 competence-service/profiles
3
4 /* Specific profile with identifier {id} */
5 competence-service/profiles/{id}

Figure 8. Example for identification of resources.

D. Error Handling and Troubleshooting

As already mentioned, the API represents the central access
point web service, which is comparable with a provided inter-
face of a software component [32]. Each information about
the implementation of the service is hidden by the interface.
Therefore, only the outer behavior can be observed through re-
sponses by the web service, which is why well-known software
debugging techniques, such as setting exception breakpoints
can not be applied.

For this reason, the corresponding error message has to be
clear and understandable so that the cause of the error can be
easily identified. With this in mind, we could identify three
best practices:

1) The amount of used HTTP status codes should be
limited to reduce the feasible effort for looking up
in the specification. At this time, there are over 60
different status code with different semantic [18] [19].

2) Specific HTTP status codes should be used accord-
ing to the official HTTP specification [33] and the
extension [34] [19] [21] [20].

3) A detailed error message should be given as a hint for
the error cause on client side [18] [19]. That is why
an error message should consist of six ingredients:
3.1) An absolute Uniform Resource Locator (URL)
that identifies the problem type, 3.2) A short sum-
mary of the problem type, that is written in english
and comprehensible for software engineers, 3.3) The
HTTP status code that was generated by the origin
server, 3.4) An application specific error code, 3.5)
A detailed human readable explanation specific to
this occurrence of the problem and 3.6) An URL
with further information about the specific error and
occurrence.

4) For operational troubleshooting, it would be benefi-
cial to use an application-specific or unique identifier
that will be send with each request. This allows a
filtering of service logs, when an issue was reported.

Figure 9 illustrates the mentioned ingredients of an error
message according to the third best practice of error handling.

E. Documentation

A documentation for Web APIs is a debatable topic in the
context of RESTful web services since it represents an out-
of-band information, which should be prevented according to
Fielding: “Any effort spent describing what method to use on
what URIs of interest should be entirely defined within the
scope of the processing rules for a media type” [35]. This
statement can be explained with the fact that documentation
is often used as a reference book in traditional development

1 HTTP/1.1 503 SERVICE UNAVAILABLE
2 /* More header information */
3 {
4 "problem":
5 {
6 "type": "http://httpstatus.es/503",
7 "status": 503,
8 "error_code": 173,
9 "title": "The service is currently under

maintenance",
10 "detail": "Connection to database timed out",
11 "instance": "http://.../errors/173"
12 }
13 }

Figure 9. Example for detailed error message.

scenarios. As a result of this, it can lead to hardcoded hyper-
links in the source code instead of interpreting hyperlinks of
the current representation following the HATEOAS principle.
Also business workflows will be often implemented according
to the documentation. In this case, we call it Documentation
As The Engine Of Application State (DATEOAS). As a result
of this, we have developed a new kind of documentation in
consideration of HATEOAS to give developers a guidance for
developing a client component.

The new documentation consists of three ingredients: 1)
Some examples which show how to interact with different
systems according to the principle of HATEOAS due to the
fact that some developers are not familiar with this concept
[35], 2) an abstract resource model in form of a state diagram,
which defines the relationship and the state transitions between
resources. Also, a semantics description of the resource and
its attributes should be given in form of a profile, such as
Application-Level Profile Semantics (ALPS) [36], which can
be interpreted by machines and humans and 3) a reference
book of all error codes should be provided so that developers
can get more information about an error that has occurred.

profiles
competencies

competencies

self self

profiles

Figure 10. Example for documentation of the Web API.

Figure 10 illustrates an abstract resource model of the
CompetenceService. Based on this model, it can be derived
which request must be executed to get the desired information.
For example to get all competences of a specific profile, we
have to first request the resource profiles. This results in a set of
available profiles, whereby each profile contains one hyperlink
for further information. After following the hyperlink by
selecting the desired profile, the whole information about the
profile will be provided, as well as further hyperlinks to related
resources, such as competences.

47

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. Usage of Query Parameters
Each URI of a resource can be extended with parameters to

forward optional information to the service. This is important
when operating on the result set before transmitting over the
network. For instance, the selection of relevant information
can reduce the transmitted payload. We have identified five
different use cases since they will be supported by several
platforms, such as Facebook or Twitter.

1) Filtering: For information filtering of a resource either
its attributes or a special query language can be used. The
election for one of these two variants depends on the neces-
sary expression power of the information filtering. Figure 11
illustrates how a special user group can be fetched by using a
query language [19].

1 GET /profiles?filter=(competencies=java%20and%20
certificates=MCSE_Solutions_Expert)

Figure 11. Filtering information by a using query language.

2) Sorting: For information sorting, Jauker [19] recom-
mends a comma separated list of attributes with “sort” as
the URI parameter followed by a plus sign as a prefix for
an ascending order or a minus sign for a descending order.
Finally, the order of the attributes represents the sort sequence.
Figure 12 illustrates how information can be sorted by using
the attributes education and experience.

1 GET /profiles?sort=-education,+experience

Figure 12. Sorting a resource by using attributes.

3) Selection: The selection of information in form of
attributes reduces the transmission size over the network by
responding only with the requested information. For this
purpose, Mulloy [18] and Jauker [19] recommend a comma
separated list of attributes and the term fields as the URI
parameter. Figure 14 represents an example how the desired
information can be selected before transmitting over the net-
work.

1 GET /profiles?fields=id,name,experience

Figure 13. A selection of resource information.

4) Search: The search for relevant information is a com-
mon use case. It is recommended to use the default query
parameter q or using entity attributes, such as id or uuid.

1 GET /profiles?q=Java;Scala

Figure 14. A search of relevant information.

5) Pagination: Pagination enables the splitting of
information on several virtual pages, while references for the
next (next) and previous page (prev) exist, as well as for the
first and last page (first and last).

1 GET /profiles?offset=0&limit=10

Listing 1. Requesting 10 profiles by using pagination.

As URI parameter, offset and limit were recommended,
whereby the first one identifies the virtual page and the last
one defines the amount of information on the virtual page [18]
[19]. A default value for offset and limit can not be given since
it depends on the information to be transmitted to the client,
which Mulloy stated [18] as follows: “If your resources are
large, probably want to limit it to fewer than 10; if resources
are small, it can make sense to choose a larger limit” [18,
p. 12]. Figure 1 illustrates a request using pagination on the
resource profiles.

Although, the mentioned pagination technique is often
recommended in literature, there are some issues especially
when dealing with big data volumes or when fetching two
virtual pages during inserting or deleting operation. These
issues are outlined in [37].

G. Interaction with Resources
By using REST as the underlying architectural style of a

system, a client interacts with the representations of a resource
instead of using it directly. The interaction between client and
server is built on the application layer protocol HTTP, which
already provides some functionality for the communication.
For the interaction with a resource, we could identify five
different best practices:

1) According to Jauker [19] and Mulloy [18], the used
HTTP methods should be conform to the method’s
semantics defined in the official HTTP specification.
So, the HTTP-GET method should only be used by
idempotent operations without any side effects. For a
better overview, Table I sums up the most frequently
used HTTP methods and their characteristics. These
characteristics can be used to associate the HTTP
methods with the correct Create Read Update Delete
(CRUD)-operation [21].

2) The support of HTTP-OPTIONS is recommended if
a large amount of data has to be transmitted since it
allows a client to request the supported methods of
the current representation before transmitting infor-
mation over the shared medium. But, this additional
HTTP-OPTIONS request is only necessary, if the
supported operations were not written explicitly in
the representation or when dealing with Cross-Origin
Resource Sharing CORS) [38].

3) A compression mechanism, such as GZIP should be
supported to reduce the payload. By using the HTTP
header field “Accept-Encoding”, the client can indi-
cate that he expects an appropriate encoding while
on the other side, the server can set the “Content-
Encoding” field when using content encoding. If the
client does not set the “Accept-Encoding”, the server
should use compression by default.

48

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) The support of conditional GET should be consid-
ered during the development of a service based on
HTTP since it prevents the server from transmitting
previously sent information. Only if there are mod-
ifications of the requested information since the last
request, the server responds with the latest represen-
tation. For the implementation of conditional GET,
there are two different approaches that are already
described by Vinoski [21].

5) The support of partial updates should be considered
so that the client does not have to send unchanged
information. This is relevant when sending a large
amount of data since the bandwidth of upstream is
usually much lower than for downstream.

TABLE I. CHARACTERISTICS OF THE MOST USED HTTP METHODS.

HTTP method safe idempotent

POST No No

GET Yes Yes

PUT No Yes

DELETE No Yes

OPTIONS Yes Yes

PATCH No No

H. MIME Types
Multipurpose Internet Mail Extensions (MIME) types are

used for the identification of data formats, which will be
registered and published by the Internet Assigned Numbers
Authority (IANA). These types can be seen as representation
formats of a resource. For this category, we could identify the
following four best practices:

1) At least two representation formats should be sup-
ported by the web service, such as JSON or Extensi-
ble Markup Language (XML) [18].

2) JSON should be the default representation format
since its increasing distribution [18].

3) Existing MIME types should be used, which already
support hypermedia, such as JSON-LD (JSON for
Linking Data), Collection+JSON and Siren [21].

4) Content negotiation should be offered by the web
service, which allows the client to choose the rep-
resentation format by using the HTTP header field
“Accept” in his request. Furthermore, there is the
opportunity to weight the preference of the client with
a quality parameter [21].

VI. QUALITY-DRIVEN PRIORITIZATION
OF BEST PRACTICES

After describing the identified categories of best practices
for the API, the next logical step is the selection of rel-
evant best practices for a given scenario. That is why we
have mapped them on quality characteristics of the ISO/IEC
25010:2010 [10] (see Figure 15). For illustration purpose, we
take the assumption that API of the current CompetenceService
has to be optimized for mobile platforms. This means, for
example, that the necessary requests for getting the needed
information of the service have to be minimized and transmit-
ted as fast as possible to reduce the latency and improve the
responsiveness for the consumers. If we look at Figure 15, this

will comply with the time behaviour quality sub characteristic
as part of the performance efficiency quality characteristic.

Figure 15. Product quality model of the ISO/IEC 25010:2011 [10]

After gathering the non-functional requirements or qual-
ity requirements for the API, we can select the appropriate
categories and best practices that have to be considered.
The method for the quality-driven prioritization approach is
illustrated in Figure 16.

Designing/
modifying web API

Reviewing
web API

Implementing
service

Implementing
service consumer

API spec
(draft)

API spec
(contract)

Service
operatons

API
guidelines/

best practices

<<
us

es
>>

<<
us

es
>>

… …

<<
us

es
>>

Identifying service
requirements

Selecting/
Prioritizing best

practices or
guidelines

Quality
characteristics

Figure 16. Revised API-First engineering principle with quality-driven
prioritization

49

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Best Practices for Performance Efficiency
For the improvement of the performance efficiency accord-

ing to the ISO/IEC 25010:2010 [10], we have identified five
relevant best practices that should be considered when design-
ing an API. In particular, we make no statement regarding the
completeness of the upcoming list of best practices for the
performance efficiency.

1) Usage of Query Parameters (see Section V-F): The
required network bandwidth load for transferring the
response can be further reduced by a preprocess-
ing step on service side based on given optional
parameters. The optional parameters can be handed
over through query parameters. For instance, a subset
of representation fields can be selected by using
the appropriate query parameter fields. Besides, the
parsing effort on service consumer side can also lead
to an increasing responsiveness.

2) Support of HTTP-OPTIONS (see Section V-G-2)
should be implemented to allow requesting the sup-
ported HTTP methods. Keep in mind, the support is
necessary when dealing with CORS and asynchrony.

3) Use Compression (see Section V-G-3): Each trans-
ferred information over the shared network should be
compressed since mobile networks have often higher
latency and lower bandwidth compared to traditional
networks.

4) Support of conditional GET (see Section V-G-4)
should be implemented by the service so that only
new information will be send to the client.

5) Support partial updates (see Section V-G-5): The
bandwidth for upstream is lower than for downstream
so that the service should be able to handle partials
updates and not expect a full representation of a
resource.

Besides these mentioned best practices, we have also
recognized that the number of requests should be minimized
in a mobile scenario. But, we have found no best practice that
can be directly mapped onto this. In our eyes, this can be
achieved by one of the following approaches. For the sake of
completeness, we have also list a non REST-like approach at
the end.

1) Combining resources to a new more abstract resource
tailored to the specific use case that is needed on the
mobile client.

2) Providing an additional orchestration layer (e.g.
Backend-For-Frontend (BFF) [11]) that splits the
client request in multiple server requests and responds
with a collected response.

3) Using a technology-driven and not REST-like ap-
proach, such as GraphQL that offers a declarative way
for fetching the required information [39].

By following the mentioned best practices, we have could
improve the perceptible responsiveness of the mobile client
application. Figure 17 illustrates the average latency of two
different versions of one mobile client - 1) before and 2) after
application of the mentioned best practices that results in an
API change. At the beginning, the mobile client application
requests some initial data plus some app configuration so the
latency is typically higher compared to the further course of
the usage.

0 10 20 30 40

0

1,000

2,000

3,000

Duration of mobile client application usage (s)

L
at

en
cy

(m
s)

Before API change
After API change

Figure 17. Mobile client application latency before and after applying the
quality-driven selection of best practices

B. Mapping of Best Practices and Quality Characteristics

In the previous section, we have illustrated the quality-
driven approach by selecting best practices according to their
influence on the performance efficiency. This section shall
focus the whole set of the quality characteristics by presenting
a influence map from the mentioned best practices onto the
quality characteristics of the ISO/IEC 25010:2011 [10] (see
Figure 18). The dashed lines represent positive impacts of the
best practices on the quality characteristics.

Functional suitability

Performance efficiency UsabilityReliability Security

Maintainability Portability Compatibility

Product Quality Model
(ISO/IEC 25010:2011)

Versioning

Naming

Identification Error Handling /
Troubleshooting

DocumentationUsage of Query
Paramters

Interaction

MIME-Types

API Design for Web Services
Based on REST

Figure 18. Influence map of best practices for API design for web services
based on REST onto the ISO/IEC 25010:2011 [10]

The intention is to support API designers especially for
web services based on REST by a kind of prioritization of
best practices. In our eyes, the selection of best practices based
on quality characteristics is more intuitive than traditional
approaches, such as the requirement-level indication of the
RFC 2119 [40]. The reason for this is that the importance
of different best practices can vary from organization to
organization.

50

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. SUMMARY AND OUTLOOK

In this article, we created a checklist for the API design
of web services based on REST. More precisely, we identified
and collected best practices for the API design. These best
practices were classified into eight different categories that
focus on different aspects of an API. The categories and best
practices represent the checklist: Each category describes an
aspect that has to be considered when designing an API. The
best practices within one category represent recommendations
that have to be kept in mind when the category as aspect is
important for a specific API. For instance, one category is
versioning. If versioning is something that is important for
the specific API, then the best practices within this category
should be kept in mind when designing the API. Finally, we
associated the categories with quality characteristics of the
ISO/IEC 25010:2010 [10] to show the impact of best practices
on the quality of the API.

The intention of this article was not to reinvent the wheel.
For this reason, the best practices within this article were re-
used from existing work. Instead, the focus of this work was
to identify and collect existing best practices, to unify them,
and to associate them with certain aspects of an API design.
Best practices are only helpful when software architects and
developers know when to consider them and what they are for.
For this reason, our classification into eight categories helps to
decide, whether a certain best practice should be considered
or not. Furthermore, our best practices are not meant to be
complete. They are more a recommendation about what should
be kept in mind when a certain aspect (category) is relevant
for an API design.

To illustrate the applicability of our checklist, we applied
the checklist, i.e., its categories and their best practices on a
concrete scenario. As a scenario, we chose the SmartCampus
of the Karlsruhe Institute of Technology. SmartCampus is
a modern web application. Its purpose is to simplify the
daily life of students, guests, and members at the university.
The SmartCampus consists of several provided services. One
service is the CompetenceService that semantically searches
competences in the area of information technology. By ap-
plying our checklist, we could identify relevant best practices
for our API. The checklist helped us to identify, which of
the best practices are relevant for this service and which ones
are not. The best practices are not strict guidelines; they are
more recommendations that helped us to keep certain aspects
in mind. By using the checklist during the API design, we had
a concrete list about what to consider. This helped us to not
forget relevant aspects when creating the API.

Summarized, the checklist, i.e., the categories and their best
practices help software architects and developers to design the
API of web services with certain recommendations kept in
mind. As today, best practices are distributed across several
existing works, until now, it was hard to find a unified set of
best practices. Furthermore, the best practices were isolated. It
was not clear, whether a certain best practice should be consid-
ered or not. Its impact was not obvious. With our classification
into eight categories, software architects and developers get the
possibility to filter the best practices and to understand, which
ones are necessary and which ones are not relevant for a certain
API design. This reduces the amount of best practices to the
relevant ones and simplifies the application of best practices.
Even though our checklist is not meant to be complete, it is

a helpful list of best practices, i.e., recommendations. This
list reminds software architects and developers of aspects
they should consider when designing an API with certain
categories being relevant. Furthermore, for software architects
and developers it is not necessary any more to lookup best
practices in literature. As the checklist is a first collection and
unification of widespread best practices, software architects
and developers can directly start with this checklist in their
daily projects. As we build on existing work and reference
this work, detailed descriptions can be looked up if necessary.
But it is not necessary to spend time to collect best practices
from scratch. With the association to quality characteristics of
ISO/IEC 25010:2010 [10], software architects and developers
get an understanding about the impact of the best practices
and certain design decisions on the quality of the API. This
increases the awareness of design decisions and helps to create
APIs in a quality-oriented manner.

In the future, we plan to investigate the impact of our
checklist on the development speed, as well as the quality. To
evaluate the usefulness of the best practices for API design, we
consider setting up two teams of students, Team A and Team B.
Both teams get the requirement to develop two services as part
of the SmartCampus at the KIT of similar complexity. Both
teams are expected to have similar experiences in developing
software systems, and both teams should not have knowledge
about best practices for API design. However, Team A will
be equipped with our checklist. We expect that Team A will
spend much less time searching appropriate best practices. The
checklist will provide Team A appropriate best practices about
how to design the API. Figure 19 shows the expected results.

2 4 6 8

Team B

Team A

Week

Requirements
Design

Implementation
V erification

Figure 19. Duration of the development phases in weeks.

In addition, we plan to extend our checklist with further
best practices and to describe the best practices by means of
technology-independent metrics. In a next step, we plan to map
these technology-independent metrics onto concrete technolo-
gies, such as Java and JAX-RS. This mapping constitutes the
basis for an automated application of the metrics on concrete
design or implementation artifacts [41]. Besides, we will use
the checklist on upcoming projects an exemplifies the whole
API design process in a more detail so that each development
team is capable of applying it on its own projects.

REFERENCES
[1] P. Giessler, M. Gebhart, D. Sarancin, R. Steinegger, and S. Abeck,

“Best Practices for the Design of RESTful web Services,” International
Conferences of Software Advances (ICSEA), 2015. [Online].
Available: http://www.thinkmind.org/download.php?articleid=icsea\
2015\ 15\ 10\ 10016

51

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[2] R. Mason, “How rest replaced soap on the web: What it means to you,”
October 2011, URL: http://www.infoq.com/articles/rest-soap [accessed:
2015-02-20].

[3] A. Newton, “Using json in ietf protocols,” the IETF Journal, vol. 8,
no. 2, October 2012, pp. 18 – 20.

[4] Spotify, “Web API Endpoint Reference,” URL: https:
//developer.spotify.com/web-api/endpoint-reference/ [accessed: 2016-
09-30].

[5] Twitter, “REST APIs,” URL: https://dev.twitter.com/rest/public [ac-
cessed: 2016-09-30].

[6] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[7] B. Iyer and M. Subramaniam, “The Strategic Value of APIs,” URL:
https://hbr.org/2015/01/the-strategic-value-of-apis [accessed: 2016-07-
26].

[8] Deloitte, “API economy - From systems to business services,” URL:
http://dupress.com/articles/tech-trends-2015-what-is-api-economy/ [ac-
cessed: 2016-09-30].

[9] M. Gebhart, P. Giessler, and S. Abeck, “Challenges of the Digital
Transformation in Software Engineering,” International Conferences
of Software Advances (ICSEA), 2016. [Online]. Available: http://
www.thinkmind.org/download.php?articleid=icsea 2016 5 30 10067

[10] ISO/IEC, “Std 25010:2011 - Systems and software engineering -
Systems and software Quality Requirements and Evaluation (SQuaRE)
- System and software quality models,” International Organization for
Standardization, Geneva, CH, Standard, 2011.

[11] S. Newman, Building Microservices. O’Reilly Media, Incorporated,
2015.

[12] M. Gebhart, P. Giessler, P. Burkhardt, and S. Abeck, “Quality-oriented
requirements engineering for agile development of restful participation
service,” Ninth International Conference on Software Engineering Ad-
vances (ICSEA 2014), October 2014, pp. 69 – 74.

[13] D. Garlan and M. Shaw, “An introduction to software architecture,”
Pittsburgh, PA, USA, Tech. Rep., 1994.

[14] L. Richardson, M. Amundsen, and S. Ruby, RESTful Web APIs.
O’Reilly Media, 2013.

[15] Evans, Domain-Driven Design: Tacking Complexity In the Heart of
Software. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2003.

[16] C. Pautasso and E. Wilde, “Why is the web loosely coupled? a multi-
faceted metric for service design,” in 18th World Wide Web Conference
(WWW2009), ACM. Madrid, Spain: ACM, April 2009, pp. 911–920.

[17] J. Webber, S. Parastatidis, and I. Robinson, REST in Practice: Hyper-
media and Systems Architecture. O’Reilly Media, 2010.

[18] B. Mulloy, “Web API Design - Crafting Interfaces that Developers
Love,” March 2012, URL: http://pages.apigee.com/rs/apigee/images/
api-design-ebook-2012-03.pdf [accessed: 2015-04-09].

[19] S. Jauker, “10 Best Practices for better RESTful API,” Mai 2014,
URL: http://blog.mwaysolutions.com/2014/06/05/10-best-practices-
for-better-restful-api/ [accessed: 2015-02-19].

[20] P. Papapetrou, “Rest API Best(?) Practices Reloaded,” URL: http://
java.dzone.com/articles/rest-api-best-practices [accessed: 2015-02-26].

[21] S. Vinoski, “RESTful Web Services Development Checklist,” Internet
Computing, IEEE, vol. 12, no. 6, 2008, pp. 94–96. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs\ all.jsp?arnumber=4670126

[22] L. Richardson and S. Ruby, Restful Web Services. O’Reilly Media,
2007.

[23] B. Burke, RESTful Java with JAX-RS 2.0. O’Reilly Media, 2013.

[24] D. D. Guinard and V. M. Trifa, Building the Web of Things With
examples in Node.js and Raspberry Pi. Manning, 2016.

[25] C&M, “The system SmartCampus and the project SmartCampusbarrier-
free,” URL: http://cm.tm.kit.edu/smartcampus.php [accessed: 2016-09-
30].

[26] M. B. Rosson and J. M. Carroll, “The human-computer interaction
handbook,” J. A. Jacko and A. Sears, Eds. Hillsdale, NJ, USA:
L. Erlbaum Associates Inc., 2003, ch. Scenario-based Design,

pp. 1032–1050. [Online]. Available: http://dl.acm.org/citation.cfm?id=
772072.772137

[27] OAI, “Open API Initiative,” URL: https://openapis.org/ [accessed: 2016-
09-30].

[28] R. T. Fielding, “Evolve’13 - The Adobe CQ Community Technical
Conference - Scrambled Eggs,” 2013, URL: http://de.slideshare.net/
royfielding/evolve13-keynote-scrambled-eggs [accessed: 2015-09-23].

[29] A. DuVander, “1 in 5 APIs Say “Bye XML”,” 2011, URL: http:
//www.programmableweb.com/news/1-5-apis-say-bye-xml/2011/05/25
[accessed: 2015-02-20].

[30] Google, “Google JSON Style Guide,” 2015, URL: https:
//google.github.io/styleguide/jsoncstyleguide.xml [accessed:
02.12.2015].

[31] OWASP, “Testing for insecure direct object references (otg-authz-004),”
2014, URL: https://www.owasp.org/index.php/Testing for Insecure
Direct Object References (OTG-AUTHZ-004) [accessed: 2015-05-
12].

[32] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach, ser. ACM Press Series. Addison-
Wesley, 2000.

[33] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Rfc 2616, hypertext transfer protocol – http/1.1,”
http://tools.ietf.org/html/rfc2616, 1999.

[34] M. Nottingham and R. Fielding, “Rfc 6585, additional http status
codes,” 2012, URL: http://tools.ietf.org/html/rfc6585 [accessed: 2015-
02-18].

[35] R. T. Fielding, “REST APIs must be hypertext-driven,” October 2008,
URL: http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-
driven [accessed: 2015-02-20].

[36] M. Amundsen, L. Richardson, and M. W. Foster, “Application-Level
Profile Semantics (ALPS) ,” Tech. Rep., August 2014, URL: http://
alps.io/spec/ [accessed: 2015-04-09].

[37] M. Winand, “We need tool support for keyset pagination,” 2014, URL:
http://use-the-index-luke.com/no-offset [accessed: 2015-12-23].

[38] W3C, “Cross-Origin Resource Sharing,” URL: https://www.w3.org/TR/
cors/ [accessed: 2016-09-30].

[39] Facebook, “GraphQL,” URL: https://facebook.github.io/graphql/ [ac-
cessed: 2016-09-30].

[40] S. Bradner, “Rfc 2119, key words for use in rfcs to indicate requirement
levels,” 1997, URL: http://www.rfc-base.org/txt/rfc-2119.txt].

[41] M. Gebhart, “Query-based static analysis of web services in service-
oriented architectures,” International Journal on Advances in Software,
2014, pp. 136 – 147.

52

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Evaluation and Behavioral Analysis of Place-Oriented Radio
by the Measurement of Cross-Cultural Understandings

Ayaka Ito
Graduate School of Media and Governance

Keio University
Fujisawa, Japan

e-mail: ayk@sfc.keio.ac.jp

Katsuhiko Ogawa
Faculty of Environment and Information Studies

Keio University
Fujisawa, Japan

e-mail: ogw@sfc.keio.ac.jp

Abstract— The number of foreigners who visit Japan is
increasing and thus it is important to build mutual
understanding with people of different cultural backgrounds.
In order to enhance foreign visitors’ further understanding of
Japan, we propose a place-oriented Internet radio called
Cross-Cultural Radio (CCR). Consequently, we proposed a
new measurement, the Cross-Cultural Understanding Scale
(CCUS), to validate the effectiveness of CCR, and conducted a
set of evaluation experiments in Tokyo. Our experimental
results illustrate that CCR can be effective in certain aspects of
cross-cultural understanding. This paper aims to explore
foreign visitors’ concrete process of understanding by
analyzing the behaviors of participants during the experiment.
Additionally, the type of place-oriented contents that are
suitable for enhancing cultural awareness will be discussed.

Keywords— place orientation; Internet radio; cross-cultural
understanding; measurement; evaluation experiment.

I. INTRODUCTION
Due to the great diversity in the modern world and its

continuous change, defining the term “culture” is an
extremely difficult activity. However, many scholars have
attempted to conceptualize their understanding of culture.
Nonetheless, as we claimed in our previous work [1],
several aspects of culture, such as goods, feelings, actions,
and words can be very specific to a particular region. They
are difficult to grasp from guidebooks or simply by
browsing the Internet, because in many cases these contents
are provided based on visible (and generally superficial)
information. It is quite easy to acquire stereotypical ideas
about Japan in front of the laptop but there will never be a
better experience than direct interaction with local people.
This is because they provide foreigners with real cultural
ideas, and thus, having a channel to boost such
communication is highly important.

For instance, a keyword that seems distinctive to
Japanese culture is “Kodawari,” which is difficult to
translate literally into English, yet “to be particular about a
manner” would be the closest. Its meaning is not just to be
particular, but to have a strong belief, or an excessive target
on the action. Many craftspeople in Japan have “Kodawari”
regarding what they create or how they become involved in

the industry, and having strong pride in what they do and
never compromising their work is regarded as a virtue.

Another example of a keyword is “Omotenashi,” which
became slightly famous after Japan’s presentation to host
the Olympics in 2020. “Omotenashi” means to treat
everyone sincerely and warmheartedly, whether or not that
person is a customer, a guest, a family member, or an
acquaintance. The core of this concept is to express
consideration and respect to others. This act would also
require the person to understand the atmosphere, feel the
mood and invisible energy, which is wrapped around the
occasion or person. Ultimately, it does not mean
entertaining the person or achieving any kind of self-
satisfaction, but to quickly perceive the person’s needs,
desires, and overall mood, and entertain the person
accordingly with a warm heart.

Damasio [2] claimed, “culture is a regulator of human life
and identity.” As people’s mobility has increased, so has the
number of foreigners who visit Japan [3], and recognizing
diversity to build cross-cultural understanding is becoming a
matter of great interest in the country. We must be aware
that all foreigners are unique individuals, and we should not
generalize them by nationality, ethnic group, or religion.
Foreigners are visiting Japan for various purposes, such as
sightseeing, studying abroad, or working. Likewise,
depending on the length of their stay in Japan or their
cultural background, the problems they encounter vary
greatly, and there will never be a solution that is applicable
to everyone. In particular, these problems faced by foreign
visitors are derived from not knowing the Japanese cultural
keywords previously exemplified (and there are countless
others besides “Kodawari” and “Omotenashi”), or occur
when the meaning of keywords conflicts with their cultural
beliefs in various communicative settings. To propose a way
to solve their problems individually, thus creating new
media to provide foreigners with opportunities to
understand Japanese culture at a deeper level, is meaningful
from a cross-cultural perspective. In other words, foreign
visitors’ further understanding of Japanese culture will be
achieved when they listen to local people’s stories in a
particular place, or the opinions of other foreigners who
have visited a given place.

53

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Previous literature (Yoon [4] and Bramwell [5]) has
demonstrated that the effect of motivation and satisfaction is
prominent in the decision of tourists to re-visit places.
Alegre [6] and Ekinci et al. [7] also pointed out the
eagerness of tourists to visit based on the characteristics of a
place. In terms of information systems, Masuda [8] and
Takagi [9] proposed a recommender system for tourists,
which provides customized tour information depending on
users’ needs, including the use of smartphone applications.
However, there is almost no research on using Internet radio
specifically as a tool for building cross-cultural
understanding in Japan.

In this paper, we propose a place-oriented Internet radio
called CCR, which helps foreigners to recognize Japan from
a cross-cultural perspective by providing place-oriented
content. In addition, we created some original criteria
named CCUS and conducted an evaluation experiment in
Tokyo to measure the actual effectiveness of the content and
CCR itself.

The paper is structured as follows: First, Section II
describes the design phase of CCR, including its concept
and system configuration. Secondly, a detailed explanation
of CCUS measurement is offered in Section III, including
background research. Section IV describes a complete set of
evaluation experiments conducted in Tokyo, and Section V
examines the result in a further behavioral analysis. Lastly,
the conclusion and future works are mentioned in Section
VI.

II. DESIGN OF CROSS-CULTURAL RADIO

A. Concept
The above-mentioned previous research, particularly

Masuda and Takagi’s recommender system for tourists, is
designed for usage in a specific place. However, the
information they provide to listeners only focuses on
tourists’ preferences and does not include the cultural
perspective of the host country, which promotes cross-
cultural understanding amongst international listeners.

Regarding the type of information available, visual
material, such as detailed information on smartphones,
contributes to a certain extent to obtaining a general idea
about a place. Nevertheless, aural information is far superior
to visual information in terms of listener flexibility, by
allowing listeners to stretch their imagination regarding
what they have heard. Furthermore, aural information can
provide direct interaction with the place, including local
people’s stories or comments from other tourists. This may
also be a trigger to increase international listeners’
understanding of Japanese culture.

For these reasons, this paper proposes a place-oriented
Internet radio called CCR as a new sound-focused media, by
providing international listeners with several types of
content. The detailed concept is shown in Figure 1.

CCR works in three steps. The first step consists in
content design for different listeners. The second step is the

listening process, which various listeners engage in, such as
international tourists, study-abroad students, and employees
of multinational corporations who are not yet familiar with
Japanese culture. The third step is obtaining feedback from
listeners, plus revision of the content. To maximize the
influence of content, the preferred target of CCR is
international visitors who are staying in Japan for a
relatively long period of time, from a few months to years,
rather than just for a couple of days, because, in general,
understanding a certain culture takes time and the
experience in a host country is enriched by daily life
communicative settings.

Figure 1. Concept of Cross-Cultural Radio “CCR”

 (This paper only deals with Guidebook and Locals content)

Three types of content are available for international
visitors: the Guidebook (audio clips from famous
guidebooks such as Lonely Planet), the Locals (stories or
tips from local people), and Visitors (feedback from
listeners to be shared with other listeners). As a first step of
the cycle, this paper deals explicitly with the content of the
Guidebook and the Locals.

B. System
Previous research [10]-[13] has shown that an acceptable

duration of content should be approximately 1 to 1 and a half
minutes. Several companies produce audio guide players,
supporting the delivery of such content as described above.

1) Selecting the Location
As CCR is designed for international visitors to Japan, the

selection of a place where content is mapped is also
important. In this research, Asakusa, one of the most famous
and popular tourist spots in Tokyo, was selected because it
has a rich cultural heritage, including Japanese traditional
temples and shrines, as well as dining venues and souvenir
shops that attract many international tourists. In addition,
Asakusa is located at the heart of Tokyo and has great
accessibility, which enables us to conduct fieldwork
effortlessly.

54

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) “Guidebook” Content
For the guidebook content, several tips about

accommodation, introduction to restaurants, and explanation
of famous architecture were selected from Lonely Planet
Tokyo [14] and recorded using voice synthesis software
(Figure 2).

Figure 2. Example of Guidebook content

3) “Locals” Content
For the locals content, several interviews with locals

were conducted in Japanese and stories related to their daily
lives in Asakusa were selected. Each story was translated
into English and supplementary explanation of cultural
activities was added if necessary (Figure 3).

Figure 3. Example of Locals content

4) Mapping content into CCR

Figure 4. CCR can be accessed via a QR code

The audio clips are stored on the website, and linked to
icons using JavaScript code. When the user clicks on an icon,
the associated audio clip is played. The website can be
accessed by URL [15] or by using the QR code shown in
Figure 4.

III. MEASUREMENT CCUS

To validate the credibility of CCR, an evaluation process
with appropriate criteria is essential. Since CCR has a
unique concept, inventing a new and suitable measurement
tool is more realistic than using conventional criteria
without localization. Related literature about measurement
design and cross-cultural adjustment has been demonstrated
by Cui & Awa [16], and Yellen [17]. Ten dimensions of
cross-cultural understanding have been determined, which
are:

A. Mobility
According to Benson [18], an individual’s ability to find

his/her way around in a foreign place is one of the most
important dimensions of cross-cultural understanding.
Knowing the local geography and usage of public
transportation systems are two potential items for this
dimension. It also includes the ability to ask for directions
when one is uncertain, as well as the usage of appropriate
tools, such as map applications on a smartphone.

B. Food/Diet
Although food allergies are not addressed here, this

dimension involves being open-minded about trying new
foods. Accepting foreign food and culinary manners cannot
be omitted when understanding a certain culture, and for
many people eating food is a major aspect of cultural
exchange [19].

C. Flexibility
As Hofstede defined “uncertainty avoidance” in his

prominent work [20], people from any cultural background
may face culture shock to a certain extent, and may attempt
to escape from that anxiety. Being flexible, patient, and
tolerant of such uncertain activity or unexpected cultural
norms is one dimension.

D. Knowledge
Whether one accepts it or not, acknowledgment of the

host culture is an essential aspect of cross-cultural
understanding. In terms of socially appropriate behaviors,
host country nationals have certain expectations as to how
foreigners in their country should behave, and this includes
avoiding offensive actions. Webb et al.’s unobtrusive
measure [21] could be useful in this regard.

E. Language Skills
This dimension appears consistently in the literature as a

core criterion of mutual understanding [22]-[24]. However,
we should be aware that when cultural adaptation or
acculturation occurs, an adapted individual will learn the

 “Asakusa Engei-hall”
Have you ever seen standup comedy in your country? If
you want to experience Japanese traditional comedy
performance, here is the place. This is called Asakusa
Engei-hall, and provides humorous speech by classic
rakugo speakers. The audience also enjoys stage arts
unique to the theater, including the paper cutout and
funny music played using a carpenter’s tool.

 “Future of Asakusa”
Before World War 2, Asakusa was one of the most
energetic, cutting edge cities in Japan. But unfortunately
nowadays it has been overtaken by other big cities like
Roppongi or Shinjuku. She feels that to revitalize
Asakusa as a vivid city, collaboration with the local
community is important, not just bringing lots of tourists
from outside. Using social networking services can be
one way; so the young generation helps older shop
owners to introduce these up-to-date technologies into
traditional Japanese shops.

55

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

language, but an individual who learns the language may or
may not adapt.

F. Interaction
The nature and frequency of interactions with host

country individuals is an indication of an individual’s level
of cross-cultural understanding [25]. This involves one’s
ability to initiate interaction, as well as the extent of one’s
eagerness to communicate with Japanese people, regardless
of language ability.

G. Awareness of Cultural differnce
A question such as “to what extent are you aware that

Japanese culture/society is different from yours?” is asked
in this dimension. Recognition of cultural difference from
one’s own culture is a starting point to build mutual
understanding in any circumstances [26].

H. Nonverbal Communication
In addition to language, there are a variety of ways to

communicate nonverbally. Understanding visible gestures
and appreciating personal space are some of them [27]. Also,
having a reasonable repertoire of “communicative currency”
may be useful as a criterion dimension.

I. Respect
Being interested in the host country citizens and casual

friendliness towards them should be part of cross-cultural
understanding [28]. For instance, willingness to participate
in activities distinctive to the host country will increase
fundamental respect for others and might lead to an
appreciation of one’s current state.

J. Relationship
The inclination to establish and maintain relationships

regardless of skills is one crucial dimension. Although this
can be influenced by an individual’s personal character,
such as extroversion or introversion, we should be aware
that every individual has his/her own pace for building
relationships [29]. For instance, not all introverts are weaker
at relationship building than extroverts; they often establish
deeper and more stable relationships with others.

After the relevant literature was reviewed and the
dimensions mentioned above were rationalized, these new
criteria were named CCUS. In the evaluation phase, we
measured users’ scores on each dimension from 1 to 10
(Figure 5), using the self-evaluation method.

Figure 5. Scoring system of CCUS

This evaluation was conducted twice, before and after
any related experiments such as fieldwork or interviews.
Afterwards, the two score results were compared and
discussed.

IV. EVALUATION EXPERIMENT

A. Method
Fieldwork was conducted with 12 international visitors as

CCR listeners, using the same scheme to explore how the
cycle of CCR works as an evaluation experiment. In order to
observe various cultural exchanges, we tried to select
tourists from diverse cultural backgrounds, as well as their
length of stay in Japan. Fieldwork details and participants’
attributes are shown below (Table 1).

TABLE I. FIELDWORK DETAILS AND PARTICIPANTS’ ATTRIBUTES

Nationality /
Code (xx)

Participants’ Attributes

Age Sex Date / Time

China
(CH1) 28 F October 31st, 2015 / 11:00 – 13:00

Malaysia
(ML) 23 F October 31st, 2015 / 14:00 – 16:00

Taiwan
(TW) 20 F November 1st, 2015 / 11:00 – 13:00

Japan/Korea
(JP) 22 F November 1st, 2015 / 14:00 – 16:00

England
(UK) 22 M November 1st, 2015 / 14:00 – 16:00

Korea
(KR) 18 F November 7th, 2015 / 11:15 – 13:00

India
(IN) 19 M November 7th, 2015 / 15:00 – 16:30

Uzbekistan
(UZ) 22 M November 16th, 2015 / 11:00 – 13:00

China
(CH2) 24 F November 18th, 2015 / 10:00 – 12:00

China
(CH3) 25 F November 18th, 2015 / 10:00 – 12:00

Vietnam
(VN) 24 F November 18th, 2015 / 15:30 – 17:30

Russia
(RU) 28 M November 28th, 2015 / 15:00 – 16:30

B. Fieldwork Route
In the experiment, two fieldwork routes were prepared

for participants and they were allowed to choose whichever
they preferred. The routes were determined by the reference
of Asakusa’s rickshaw company Jidaiya [30], because their
tours are recognized as a popular activity in Asakusa and in
general they are successful at suggesting appropriate
sightseeing routes. Route 1 (Figure 6) goes through
Asakusa’s most touristy district, a major temple called
Senso-ji in the green area on top. As illustrated in the blue
line, walking along the main street named Nakamise-dori is
the so-called golden route of Asakusa sightseeing.

|------|------|------|------|------|------|------|------|------|

1 2 3 4 5 6 7 8 9 10

Low ---à High

56

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Fieldwork route 1

On the other hand, route 2 (Figure 7) is set in a rather
local district, including the place for community daily life.
Compared to route 1, route 2 is less crowded with tourists
and may be similar to other towns, but still holds the flavor
of historic Tokyo downtown.

Figure 7. Fieldwork route 2

C. Contents
Figures 6 and 7 illustrate how each route has 10 mapped

contents, shown as numbered speech bubble icons. We
attempted to select random contents from several sources
such as guidebooks and original conversation extracted from
interviews with local people, and placed them as equal a
distance apart as possible on the map. Content a) mapped on
route 1 is specified as “C1a” for instance, and brief
explanations of all contents are as follows:

1) Route 1
a) People who visit Senso-ji temple (C1a)

This is “Locals” content. The local fabric shop owner
(henceforth Mr. M) talks about the people who visit Senso-ji
temple for various reasons, such as sightseeing, religious
visits, and souvenir hunting. After he talks, the English
translation follows.

b) Kaminari-mon of Senso-ji temple (C1b)
This is “Guidebook” content. Kaminari-mon (Thunder

gate), the entrance of Senso-ji and one of the most famous
gates in Japan at the approach to a temple, is explained.

c) Tohoku earthquake and tsunami in 2011 (C1c)

This is “Locals” content. Mr. M discusses what his and
other shops in the arcade were like on the day following the
Tohoku earthquake and tsunami. He also talks about his
experience of electricity power-saving related to the
Fukushima Daiichi Power Plant Nuclear Disaster [31].

d) Asakusa visitors about a half century ago (C1d)
This is “Locals” content. Mr. M talks about his shop

customers from all over the world. During the previous
Tokyo Olympics in 1964, he remembers how many
international visitors from Eastern Europe and the Soviet
Union came to try Japanese handmade fabric, and says they
were widely accepted.

e) Daikoku-ya restaurant (C1e)
This is “Guidebook” content. Daikoku-ya, the famous

tempura place is recommended for its menu.

f) Senso-ji Kindergarten (C1f)
This is “Locals” content. Mr. M explains that there is a

kindergarten in Senso-ji premises, and as an alumnus
approximately 60 years ago he recalls his experience of the
Japanese cultural event “mamemaki (bean throwing)” [32].

g) Demboin and its garden (C1g)
This is “Guidebook” content. Demboin, the residence of

the head priest of Senso-ji for generations is described.

h) Fortune slip of Senso-ji (C1h)
This is “Guidebook” content. Senso-ji’s Omikuji, a kind

of fortune-telling using a small piece of paper on which
one’s fortune is written, is explained.

i) Asakusa shrine (C1i)
This is “Guidebook” content. At the very next premises to

Senso-ji, there is a relatively large shrine called Asakusa
Jinja. It is explained that the coexistence of two different
religions, Buddhism and Shintoism, in the same district
reflects Japanese animistic religious belief, and something
that some international visitors do not fully comprehend
depending on their religious or cultural beliefs.

j) Subsidy for Asakusa residents (C1j)
This is “Locals” content. As a resident who was born and

raised in Asakusa, Mr. M tells of the recent subsidy policy
of Asakusa city to promote the younger generation
including newlyweds to settle down in the city.

57

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0.0
2.0
4.0
6.0
8.0

10.0
Mobility

Food/Diet

Flexibility

Knowledge

Language
skills

Interaction

Awareness of
cultural

difference

Nonverbal
communication

Respect

Relationship

Before
After

2) Route 2
a) Asakusa Engei-hall (Figure 2, C2a)

This is “Guidebook” content. Asakusa Engei-hall, a
Japanese comedy theatre playing traditional Rakugo and
Yose performances, is explained.

b) Don Quixote (C2b)
This is “Guidebook” content. Don Quixote, or Donki for

short, is a popular discount store franchise throughout Japan.
Asakusa store’s localized Japanese souvenir collection for
international visitors is explained.

c) Asakusa Rockza (C2c)
This is “Locals” content. Asakusa Rockza is one of the

oldest and most famous striptease theatres in Japan,
established in the 1940s. A professional Mikoshi, which is a
divine palanquin or “portable Shinto shrine” carrier
(henceforth Mr. T) tells its history and how the building and
performance has remained, and is accepted as the cultural
heritage of Asakusa.

d) Sukerokuno-yado Sadachiyo hotel (C2d)
This is “Guidebook” content. This hotel is of the historical

Edo period’s ryokan type and intrigues many international
tourists as well as Japanese guests. Their Japanese style hot
spring service is also explained.

e) Japanese traditional craft museum (C2e)
This is “Guidebook” content. Gallery Takumi is a free

admission Japanese handicraft museum, which contains
many types of craftsmanship and in which their elaborate
works are introduced.

f) Hanayashiki theme park (Figure 3, C2f)
This is “Locals” content about Hanayashiki, one of the

oldest theme parks, which began its history as a botanical
garden. The theme park’s PR manager (henceforth Ms. H)
talks about its current target users and its marketing strategy
focused on local families and kids, as well as international
visitors by providing interactive activities such as the “Ninja
experience.”

g) Future of Asakusa (C2g)
This is “Locals” content as already mentioned in Figure 3.

Ms. H gives her opinion about Asakusa in comparison with
other famous Tokyo cities and suggests what the local
community can contribute to revitalizing the city.

h) Awashimado-hall in Senso-ji (C2h)

This is “Guidebook” content about Awashimado-hall, a
small segregated garden in Senso-ji premises. A unique
ritual ceremony showing animistic belief called “needle
funeral” happens in this garden, which is a memorial service

for broken needles to show gratitude for bringing about
outstanding fabric and clothes through their works.

i) Asakusa shrine (C2i)

This is “Guidebook” contents and is shared with route 1
during the experiment.

j) Subsidy for Asakusa residents (C2j)

This is “Locals” contents and is also shared with route 1
during the experiment.

D. Instruction
In the first phase of the fieldwork, a sheet of paper

giving the experiment instructions was distributed to the
participants. The fieldwork route was printed and the
participants were asked to walk and listen to the contents
mapped on the route in numerical order. Before they began
walking, they filled in the CCUS form. We observed and
took pictures of participants while they were walking
(Figure 16), and asked participants questions on each
content, such as “what did you think about the place or
object, which is explained in the content?” or “do you have
any implications or comments compared to your home
culture?”

The fieldwork was conducted in either English or
Japanese, depending on the participant’s language ability.
The conversation was recorded and, after they had listened
to all the content, they completed the CCUS form again.

E. Result
Figure 8 shows the average scores for each dimension.

The blue line shows the results prior to the fieldwork; the red
line shows the results after the fieldwork was finished and
participants had listened to the “Guidebook” and “Locals”
content.

Figure 8. 12 participants’ average CCUS score

According to the results, most dimensions improved
slightly after the fieldwork. Specifically, “Flexibility”
(+1.4pt), “Knowledge” (+1.0pt), and “Interaction” (+1.0pt)
improved more than other dimensions, while “Language

58

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

skills” declined slightly (-0.2pt). However, these scores are
based on only 12 international visitors’ experiment results
and are therefore highly dependent on participants’
individual characteristics, such as cultural backgrounds,
attitudes, and personalities. We believe it is rather important
to conduct further behavioral analysis for individual
participants in the next section.

V. BEHAVIORAL ANALYSIS OF PARTICIPANTS
As shown in the section V findings, CCR has enriched

most aspects of the dimensions. We will have a closer look
at specific participants’ scores based on arbitrary choices,
which recorded notable differences for “Flexibility,”
“Knowledge,” “Interaction,” and “Language skills,” as well
as those who formed a distinct shape of the 10 dimensions.

A. Participant CH2 (Figure 9)
CH2 is a close friend of CH3 and they participated in the

evaluation experiment together. As she has never been in
Asakusa before, she was a beginner tourist in a way.

Figure 9. Participant CH2’s CCUS score

Particularly after listening to “Guidebook” content about
small museum shows and offering of Japanese traditional
handcrafts (refer to C2e), she seemed interested in the place
mentioned and took a number of pictures in front of it. She
had a conversation with CH3 in Chinese and invited CH3 to
go into the museum. CH2 told us they were talking about
the elaborate work of Japanese craftspeople and its
comparison with Chinese merchandise, including price.
They mentioned that the handcrafts sold in the museum
were very expensive and unfortunately they were unable to
purchase any; nevertheless, they were surprised by their
high quality.

Talking with a peer participant in her native language
raised her satisfaction levels with “Flexibility” and
“Nonverbal communication,” which represents the
acculturation process [33]–[35] including elimination of
uncertainty about Japanese culture. It is assumed that CH2
encountered the “Kodawari” of Japanese craftspeople

through their works at the museum as a tangible experience,
and the content acted as a trigger for this cultural encounter.

B. Participant UZ (Figure 10)
UZ is a university student who has been studying

Japanese for two years, and shows a great enthusiasm for
understanding local cultures. He was particularly interested
in the concept of CCR and was cooperative about
participating in the evaluation experiment. He walked to the
main street of Asakusa called Nakamise-dori, and after
listening to content in which a local person discussed the
future of Asakusa (refer to C2f or Fig. 3), he mentioned his
hometown Samarkand. He said he genuinely loved his
hometown but, for financial reasons, many residents are
leaving the city and flowing into Toshkent, the capital of
Uzbekistan; he feels sad about this. He wishes the people in
Samarkand would love their city just as Asakusa locals do.
Obviously, he felt some kinship with the Japanese people
and had cultivated an affinity toward Japanese culture.

Figure 10. Participant UZ’s CCUS score

He commented, “it was fun and I learned some
internal/external factors of Japan, especially Asakusa city’s
culture and society.” What he implies to be internal and
external factors regard the context of both content, the
Guidebook, and the Locals. Internal factors are invisible
cultural aspects such as Asakusa locals’ attitudes or value
for the place, in relation to his radical improvement of
“Awareness of cultural difference.” In contrast, external
factors are attainable by information input, corresponding to
“Knowledge.” The synthesis of these noticeable two
dimensions has appeared as the improvement of
“Flexibility.”

C. Participant JP (Figure 11)
JP is a friend of UK and they participated in the

experiment together. Although born in Japan and a Japanese
citizen, she has an international background. She is half
Korean and was raised in Hawaii. After listening to “Locals”
content about the founding story of Nakamise-dori and a

0

2

4

6

8
Mobility

Food/Diet

Flexibility

Knowledge

Language skills

Interaction

Awareness of
cultural

difference

Nonverbal
communication

Respect

Relationship

0
2
4
6
8

10
Mobility

Food/Diet

Flexibility

Knowledge

Language
skills

Interaction

Awareness of
cultural

difference

Nonverbal
communication

Respect

Relationship

59

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

kindergarten nearby (refer C1f), she remembered learning
phonetics during her childhood in Hawaii.

Figure 11. Participant JP’s CCUS score

As she looks Asian, some of her peers automatically
assumed that she did not understand any English; hence, she
had a difficult time building close friendships with them.
Now, English is her native language and a similar
circumstance occurs when she encounters Japanese people
who think she will understand Japanese perfectly whilst, in
fact, she does not. JP admits “that awkward and annoying
moment” frequently occurs whenever she recognizes
disappointment on their faces. JP’s biggest decline in
“Language skills” is not unrelated with her story. On the
other hand, she improved in “Mobility,” as explained in her
comment “now I feel more confident walking in Asakusa
without GoogleMaps.”

D. Participant UK (Figure 12)
The fieldwork for JP and UK was conducted in English

since we wanted to encourage casual conversation between
two peers, which enabled us to observe frequent cultural
exchange.

Figure 12. Participant UK’s CCUS score

UK arrived in Japan approximately two months before
the fieldwork, and had just started learning Japanese
language and culture. According to his feedback, “Locals”
content was more enjoyable than “Guidebook” although he
had never visited Asakusa before. JP and UK were taking
the same university courses in their study abroad and had
already established a good rapport. UK is researching
theories of traditional Japanese music for his master’s
degree, so it is reasonable to assume that he is more
interested in Japanese culture than most other international
visitors.

After listening to “Locals” content about subsidy policy
to promote the movement of newlyweds into Asakusa city
due to the population decline, particularly of the young
generation (refer C1j), he commented, “Here is very packed
and I didn’t even know that (the population drop) was an
issue. As for in Britain, honestly I really don’t know (about
the government policy).” He may have felt sympathy with
the local people talking about the city’s problem and a
possible solution, which might have influenced his
improvement in “Relationship,” “Awareness of cultural
difference,” and “Interaction.” The listening experience
gave him recognition of Japanese culture to a certain extent.

E. Participant IN (Figure 13)
IN is a university freshman and quite new in Japan, as he

arrived in Tokyo approximately two months before the
fieldwork. His family has been working in Japan for a while,
and he came to live with them and to pursue his academic
career. He had never been in Asakusa before, and since his
Japanese is still at beginner level, his fieldwork was
conducted in English.

Figure 13. Participant IN’s CCUS score

After listening to the content about Asakusa Engei-hall
(refer C2a), he was asked if he would be interested in
watching such a Japanese traditional comedy performance if
they were available in a more understandable language (not
only in Japanese, but with an English audio guide for
instance). He answered, “Honestly, I’m not interested, I

0
2
4
6
8

10
Mobility

Food/Diet

Flexibility

Knowledge

Language
skills

Interaction

Awareness of
cultural

difference

Nonverbal
communication

Respect

Relationship

0
2
4
6
8

10
Mobility

Food/Diet

Flexibility

Knowledge

Language
skills

Interaction

Awareness of
cultural

difference

Nonverbal
communication

Respect

Relationship

0
2
4
6
8

10
Mobility

Food/Diet

Flexibility

Knowledge

Language
skills

Interaction

Awareness of
cultural

difference

Nonverbal
communication

Respect

Relationship

60

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

never wanted to. Because I wouldn’t even understand, as it’s
connected to the very localized humor. That’s why I never
really had the motivation (to go to a Japanese comedy
performance).”

When we meet international visitors to Japan, they
normally have some type of positive motivation, such as
interest in Japanese language or culture, and many are open
to knowing new things. IN’s straightforward remark is
noteworthy, because what differentiates him from other
internationals is that he is very truthful in his attitude toward
Japanese culture. His initial motivation for visiting Japan,
which is that he simply followed his family, may be relevant.
This gives us the insight that CCR might not contribute to
those who already have a fixed impression of Japanese
culture, and the contents will not be sufficiently strong to
change their attitudes. IN’s decrease in certain dimensions,
particularly his 3pt drop in “Awareness of cultural
difference” seems to prove this hypothesis.

F. Participant ML (Figure 14)
ML is a senior university student who has been in Japan

for a few years. Although she speaks fluent Japanese, she
preferred to conduct the fieldwork in English, as it is still a
better language of communication for her.

Figure 14. Participant ML’s CCUS score

After listening to the content about when the Tohoku
earthquake hit Japan in March 2011 (refer to C1c), she
related her experience of university enrollment four years
ago. As the Japanese university semester starts in April, she
had a family discussion to persuade her mother, who was
worried about radioactive contamination after the quake.
Luckily, she was passionate enough to have a new endeavor
in Japan and her father was very supportive. She
commented, “You have to overcome the scare, or you just
never learn anything,” and admitted that her mindset helped
her to decide to study abroad in Japan.

Looking at her CCUS score result, she has improved in
terms of “Awareness of cultural difference.” Presumably,
listening to the contents and having a conversation reminded
her of her initial motivation to study in Japan. It is also

notable that similar to JP, who is an advanced Japanese
speaker, ML has also dropped in terms of “Language skill.”

G. Summary
As shown in the previous result, it is reasonable to say

that CCR has contributed to the enhancement of some
aspects of cultural understanding. In particular, some
dimensions, such as “Flexibility,” “Awareness of cultural
difference,” “Knowledge,” “Interaction,” and “Language
skills,” recorded dominant changes (both positive and
negative).

1) Flexibility/Awareness of cultural difference
Most participants have improved in these dimensions. The

biggest difference was made by CH2, but other participants,
such as TW, CH3, and RU, also had a similar CCUS score
distribution.

2) Knowledge

UZ and ML are the tractors of this dimension’s increase,
whereas some participants have not improved at all. These
two participants had both been in Japan for a few years, and
their Japanese was at an advanced level. Their listening
experience, particularly of “Locals” contents, might have
worked as a lecture to boost their knowledge of Japanese
culture. VN also improved in this dimension.

3) Language Skills
Most participants did not change in this dimension at all,

while some, who were relatively fluent in Japanese such as
JP and ML, decreased in this dimension (JP dropped 3pts),
which caused an average overall decrease. JP and ML’s
score drop will be revisited further in the next section.

4) Interaction
More than half of the participants improved in this

dimension by approximately 1pt, which also reflects the
average 1pt increase. CCR has an interactive characteristic
to promote international listeners’ “cultural exchange” by
allowing them to discuss freely while walking, during and
after they listened to each content.

VI. FINDINGS AND DISCUSSION
According to the overall result of the evaluation

experiment conducted in Tokyo for 12 participants, it is
reasonable to assume that CCR has contributed to the
enhancement of several aspects, such as “Flexibility,”
“Awareness of cultural difference,” and “Interaction,”
which are cultivated by listening to locals’ stories, and
“Knowledge” in relation to the information provided by the
guidebook.

1) CCUS dimensions categorized into 4 types
From each participants’ episodes found in behavioral

analysis, it is reasonable to assume that CCR contributes to
international listeners’ awareness of some aspects of culture.

0
2
4
6
8

10
Mobility

Food/Diet

Flexibility

Knowledge

Language
skills

Interaction

Awareness of
cultural

difference

Nonverbal
communication

Respect

Relationship

61

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Furthermore, based on the episodes, it is possible to relate
the 10 dimensions of CCUS into four categories of
contribution (Figure 15). Hence observing CCUS score
distribution enables us to roughly categorize each
participant’s mode of cultural understanding for these four
types. This time, we observed 12 participants, and adding
more participants will validate the effectiveness of this
categorization.

Figure 15. CCR contribution to international listeners

 Through the contents listening experience, some
participants realized the difference between their own
culture and Japanese culture. For instance, CH2 pointed out
the elaborateness of Japanese craftsmanship compared to
Chinese merchandize.

Others may recognize themselves through self-reflection
and conversation with peers as a next step. UZ recalled his
own Usbek culture after listening to the “Locals” content. JP
and ML were made more aware of their Japanese language
skills by listening to interviews with local people. The
discussion after the fieldwork became a trigger for ML to
remember her initial motivation for studying abroad in
Japan.

To a certain participant, CCR directly approaches
recognition of Japanese culture or knowledge itself. UK,
who was already fond of Japan, gained information about
Japan’s social policy after listening to a local’s story.

On the other hand, the evaluation experiment has
revealed that, for some participants, CCR may not
contribute greatly to enhancing their cultural understanding.
For example, IN clarified his lack of motivation to attend
Japanese comedy performances through his honest feedback.
Their personality, attitudes, and experiences will greatly
influence the result.

Regarding Japanese culture itself, although more or less
all participants showed recognition of it, it is assumed that
“Visitors” contents will make a greater contribution in this
regard.

2) “Locals” versus “Guidebook” Contents
In terms of the effectiveness of place-oriented contents,

for each participant’s approximately two-hour fieldwork,
one outstanding episode was taken and discussed in the
paper. Amongst the six participants individually analyzed in
the paper, five were “Locals” content and 1 was
“Guidebook” content. In addition, feedbacks elicited in the
follow-up questionnaire after the fieldwork showed that
“Locals” contents were more enjoyable for participants to
listen to. More consultation is required for the result;
however, we may rationalize that “Locals” content is more
effective than “Guidebook” content for cultural
understanding in this setting specifically.

VII. CONCLUSION AND FUTURE STUDIES
In this paper, a place-oriented Internet radio called CCR

was proposed by providing three types of content,
“Guidebook,” “Locals,” and “Visitors,” which give an idea
of real cultural aspects of Japan, represented as “cultural
keywords.” The paper explicitly deals with the “Guidebook”
and “Locals” content. To validate the effectiveness of these
unique media, we also proposed CCUS as a new criteria set
to measure the level of cross-cultural understanding. The
evaluation experiment and subsequent behavioral analysis of
individual participants illustrated that CCR can be effective
for certain international visitors’ cultural understanding.
Furthermore, place-oriented contents, including locals’ real
voices, focused on their attitudes or values, are found to be
more enjoyable to listen to.

For future work, we will develop a variety of place-
oriented content and add more participants to the evaluation
experiment so that CCUS will be more reliable. Additionally,
the introduction of “Visitors” content to encourage listeners’
self/mutual reflection with other listeners is required, to
compare with conventional “Locals” and “Guidebook”
content. This time, we chose Asakusa for a fieldwork
location as one of Tokyo’s most touristy cities; however, we
may need to investigate if the same scheme can be applied
not only in Asakusa but also in different cities, or if it
significantly varies depending on the characteristics of the
place. In addition, one possibility of the evaluation
experiment is to employ Japanese tourists as participants for
comparative research.

REFERENCES
[1] A. Ito and K, Ogawa, “Design and evaluation of place

oriented internet radio by the measurement of cross-cultural
understandings,” IARIA ICDS 2016 conference proceedings,
2015, pp. 49-55.

[2] R. Damasio, “Self comes to mind: Constructing the concious
mind,” New York, Pantheon, 2010.

[3] Japanese Ministry of Justice. Retrieved on March 12th 2016
from: http://www.moj.go.jp/ENGLISH/index.html

[4] Y. Yoon and M. Uysal, “An examination of the effects of
motivation and satisfaction on destination loyalty - a
structural model,” Tourism Management, 2005, vol. 26(1), pp.
45-56.

62

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] B. Bramwell, “User satisfaction and product development in
urban tourism,” Tourism Management, 1998, vol. 19(1), pp.
35-47.

[6] J. Alegre and M. Cladera, “Repeat visitation in mature sun
and sand holiday destinations,” Journal of Travel Research,
2006, vol. 44(3), pp. 288-297.

[7] Y. Ekinci, M. Riley, and J. Chen, “A review of comparisons
used in service quality and customer satisfaction studies:
Emerging issues for hospitality and tourism research,”
Tourism Analysis, 2001, vol. 5(2) pp. 197-202.

[8] M. Masuda, T. Izumi, and Y. Nakatani, “A system that
promotes repeat tourists by making sightseeing unfinished,”
Human Interface Society, 2012, vol. 14(3), pp. 259-270.

[9] S. Takagi, M. Masuda, and Y. Nakatani, “Tour navigation
system using landmarks customized by personal preferences,”
Information Processing Society of Japan, 2012, vol. 3, pp.
305-306.

[10] M. Hatala and R. Wakkary, “Ontology-based user modeling
in an augumented audio reality system for museums,” User
Modeling and User-Adapted Interaction, 2005, vol. 15(3), pp.
339-380.

[11] S. Bodker, “Through the interface: a human activity approach
to user interface design,” Malwah, NJ: Lawrence Erlbaum
Associates, Inc, 1990.

[12] D. Dean, “Museum exhibition: theory and practice,” London,
Routledge, 1994.

[13] C. Hummels and A. Helm, “ISH and the search for resonant
tangible interaction,” Personal Ubiquitous Computing, 2004,
vol. 8(5), pp. 385–388.

[14] T. Hornyak and R. Milner, “Lonely Planet Tokyo (Travel
Guide) 9th Edition,” NY: Lonely Planet, 2012.

[15] Cross-Cultural Radio. Retrieved on March 12th 2016 from:
http://web.sfc.keio.ac.jp/~ayk/reradio/map.php

[16] G. Cui and N. Awa, “Measuring intercultural effectiveness:
an integrative approach,” International Journal of Intercultural
Relations, 1992, vol. 16, pp. 311–328.

[17] T. Yellen, “The cross-cultural interaction inventory:
development of overseas criterion measures and items that
differentiate between successful and unsuccessful adjusters,”
National Technical Information Service, 1975, vol. 3, pp. 1-
19.

[18] P. Benson, “Measuring cross-cultural adjustment: the problem
of criteria” International Journal of Intercultural Relations,
1978, vol. 2(1), pp. 21–37.

[19] J. Chrzan and J. Brett, eds., “Food culture: anthropology,
linguistics and food studies,” NY: Berghahn Books, 2016.

[20] G. Hofstede, “Cultures and organization: software of the
mind,” NY: McGraw-Hill, 1991.

[21] E. Webb, D. Campbell, R. Schwartz, and L. Sechrest,
“Unobtrusive measures – nonreactive research in the social
sciences,” IL: Rand McNally and Co, 1966.

[22] C. Kinginger, “Student mobility and identity-related language
learning,” Intercultural Education, 2015, vol. 26, pp.6-15.

[23] W. Chan, S. Bhatt, M. Nagami, and I. Walker, “Culture and
foreign language education: Insights from research and
implications for the practice,” Berlin, Walter de Gruyter
GmbH & Co, 2015.

[24] C. Yao and G. Zuckermann, “Language vitality and language
identity – which one is more important?” Language Problems
and Language Planning, 2016, vol. 40(2), pp. 163-186.

[25] K. Hwang, “Culture-inclusive theories of self and social
interaction: the approach of multiple philosophical paradigms,”
Journal for the theory of social behaviour, 2014, vol. 45(1), pp.
40-63.

[26] D. Caganova, M. Cambal, and S. Luptakova, “Intercultural
management – trend of contemporary globalized world,”
Elektronika ir Elektrotechnika, 2015, vol. 102(6), pp. 51-54.

[27] M. Remland, “Nonverbal communication in everyday life,”
NY: Sage Publications, 2016.

[28] J. Banks, “Cultural diversity and education,” London,
Routledge, 2015.

[29] K. Matzler, A. Strobl, N. Sauer, A. Bobovnicky, and F. Bauer,
“Brand personality and culture: The role of cultural
differences on the impact of brand personality perceptions on
tourists' visit intentions,” Tourism Management, 2016, vol. 52,
pp. 507-520.

[30] Asakusa Jidaiya. Retrieved on August 23rd 2016 from:
http://www.jidaiya.biz/kanko-j-eng.html

[31] BBC news press release. “Reactor breach worsens prospects”.
Retrieved on August 23rd 2016 from:
http://www.bbc.com/news/science-environment-12745186

[32] Setsubun – Bean throwing festival in Japan. Retrieved on
August 23rd 2016 from:
http://gojapan.about.com/cs/japanesefestivals/a/setsubun.htm

[33] J. Berry, “Acculturation: living successfully in two cultures,”
International Journal of Intercultural Relations, 2005, vol.
29(6), pp. 697-712.

[34] T. Graves, “Psychological acculturation in a tri-ethnic
community,” South-Western Journal of Anthropology, 1968,
vol. 23, pp. 337-350.

[35] A. Ryder and L. Alden, “Is acculturation uni-dimensional or
bi-dimensional?” Journal of Personality and Social
Psychology, 2000, vol. 79, pp. 49-65.

Figure 16. Participants engaging in the evaluation experiment in Asakusa

63

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Mass Storage System for Bare PC

Applications Using USBs

William V. Thompson, Hamdan Alabsi, Ramesh K. Karne, Sonjie Liang, Alexander L. Wijesinha, Rasha

Almajed, and Hojin Chang
Department of Computer & Information Sciences

Towson University

Towson, MD

(wvthompson, halabsi, rkarne, sliang, awijesinha, ralmajed, hchang) @towson.edu

Abstract—Bare machine applications eliminate the overhead

and the security vulnerabilities that are due to operating

systems. This paper describes a mass storage system for bare PC

applications that uses USBs. It is implemented by extending a

scalable FAT32 USB file system for a bare PC. First, details of

the bare PC file system including the file API, file system

internals, and file operations are given. Then the architecture of

the mass storage system and its design and implementation are

presented. A mass storage system based on this architecture is

built by using four USBs on a desktop PC. Capabilities of the

mass storage system are demonstrated by storing conventional

files and SQLite database files on multiple USBs. Experiments

to measure raw versus conventional file system performance

show a 12% improvement for writes and a 33% improvement

for reads with 30 MB files. This work is a first step towards

building mass storage systems to support future bare machine

big data and mobile applications with improved security and

performance.

Keywords-bare machine computing; bare PC; FAT32 file

system; mass storage; USB.

I. INTRODUCTION

Mass storage systems are used with Web servers, database
systems, clients, and numerous applications. Media for mass
storage include hard disk drives, optical drives, memory cards,
and USB flash drives. A mass storage system for a
conventional application typically requires the support of an
operating system (OS) or kernel. This paper considers a mass
storage system for bare PC applications using USBs.

Bare PC applications are based on the BMC (Bare
Machine Computing) paradigm, which eliminates the
vulnerabilities and overhead of an OS. In the BMC paradigm,
no OS, kernel, or middleware is required to communicate
between an application and the hardware, i.e., an application
contains everything it needs to run on a bare machine or bare
PC. The BMC application uses direct interfaces to
communicate with the hardware.

Mass storage systems are associated with file systems that
manage both conventional data files and raw data files. File
systems provide a means for organizing and retrieving the data
needed by many computer applications. Typically, they are
closely tied to the underlying operating system (OS) and mass
storage technology. The mass storage system for bare PC
applications uses a file system that is independent of any OS

or platform. Such a file system can also be used by OS-based
applications.

We first describe the bare PC file system including the file
API [1]. We then show how the file system can be used as a
basis for the architecture, design, and implementation of a
mass storage system for bare PC applications using USBs.
USB flash drives are ideal for file systems and mass storage
in bare machine computing as they are inexpensive and able
to store increasing amounts of data. We also demonstrate the
capabilities of a bare PC mass storage system consisting of
four USBs on a desktop PC by storing conventional files and
SQLite database files on multiple USBs. We lastly present
experimental results using the bare PC mass storage system to
compare raw versus conventional file performance for both
writes and reads. The bare PC file system and mass storage
system can be used to support future bare machine database
management systems and big data applications, or Web
servers and mobile applications.

The rest of the paper is organized as follows. Section II
gives a brief overview of BMC applications and related work.
Section III gives details of the bare PC file system and its
operation. Section IV describes the system architecture for the
mass storage system, and Section V presents its design and
implementation. Section VI illustrates functional operation,
and presents the experimental performance results. Section
VII concludes the paper and suggests possibilities for future
research.

II. BMC APPLICATIONS AND RELATED WORK

A BMC application suite consists of an application, the
necessary protocols and drivers, and the code to boot and load
the application. A hard disk is not used in a bare PC, so all the
code must be stored on a removable device such as a secured
USB flash drive. Currently, BMC applications run on any
x86-based bare PC. Bare PC applications include a Webserver
[2][3], Webmail and email servers [4][5], split protocol
servers [6], server clusters [7], SIP servers and user agents [8],
and peer-to-peer VoIP systems [9].

Many approaches have been used to reduce OS overhead
or build high-performance systems. Some use lean kernels,
while others move OS-functionality into applications.
Examples include Exokernel [10], IO-Lite [11], OS-Kit [12],
and Palacios and Kitten [13].

64

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The BMC paradigm [14] eliminates the OS and uses direct
interfaces to the hardware to run applications on a bare PC.
This approach to computing differs from a conventional
approach as there is no underlying OS to manage resources,
i.e., the application programmer manages memory and
schedules tasks. The application is written primarily in C/C++
(with some assembly code) and runs as an AO (Application
Object) that includes its own interfaces to the hardware [16]
and the necessary OS-independent device drivers.

There are many types of file system specifications such as
FAT32 [17], NTFS [18] and exFAT [19]. The BMC file
system currently uses FAT32 as it is simple and easy to
implement. The FAT32 file system has been used for building
high performance clusters [20]. The Umbrella file system,
which also integrates two different types of storage devices, is
an example of a mass storage system that uses USB flash
drives [21]. Driver-level caching can be used to improve file
system for removable storage devices [22]. However,
removable storage media can be exploited through the OS
[23]. Bare PC USB file systems and mass storage systems
have no OS-related vulnerabilities. Since there is no OS, a
USB device driver needs to be integrated with the bare PC
application [24].

SQLite is a lean database management system [25]. It is
self-contained, self-configured, and stand-alone (i.e., it does
not require a separate client and a server). SQLite is included
in Web browsers, mobile devices and embedded systems. It
requires an OS and the amalgamated version has about 130K
lines of code. SQLite has been transformed to run on a bare
PC with no OS or kernel [26].

III. BARE PC FILE SYSTEM

The material in this section previously appeared in [1]. The

bare PC USB file system depends on the USB architecture

[27], USB Mass Storage Specification [28], USB Enhanced

Host Controller Interface Specification [29], FAT32 standard

[17], and the BMC paradigm [14]. The file system is stored

on a USB along with its application. The USB layout is

similar to a memory layout providing a LBA (Linear Block

Addressing) scheme. That is, a USB address map is similar

to a memory map. However, a USB is accessed with sector

numbers that are directly mapped to memory addresses. It

uses SCSI (small Computer System Interface) commands

[30] that are encapsulated in USB commands. Thus, a bare

PC USB driver that works with this file system is needed

[24]. The FAT32 standard is complex and has a variety of

options that are needed for an OS based system as it is

required to work with many application environments. The

FAT32 options implemented in this system and the file API

are designed for bare PC applications.

In [31], the design of a lean USB file system for bare PC

applications was discussed and an initial version of the file

system was built and tested. However, the file system was not

easy to modify or use with existing bare PC applications. The

rest of this section describes the implementation of an

enhanced USB file system with a simple file API for bare PC

applications.

A. File API

In a bare PC application, code for data and the file system
reside on the same USB. In addition to the application as noted
above, the USB has the boot code and loader in a separate
executable, which enables the bare PC to be booted from the
USB. The application suite (consisting of one or more end-
user applications) is a self-contained AO that encapsulates all
the needed code for execution as a single entity. For example,
a Webmail server, SQLite database and the file system can all
be part of one AO. Since no centralized kernel or OS runs in
the machine, the AO programmer controls the execution of the
application on the machine. When an AO runs, no other
applications are running in the machine. After the AO runs, no
trace of its execution remains.

An overview of the USB file system for bare PC
applications is shown in Fig. 1. The simple API for the file
system consists of five functions to support bare PC
applications. These are (1) createFile(), (2) deleteFile(), (3)
resizeFile(), (4) flushFile() and (5) flushAll(). These functions
provide all the necessary interfaces to create and use files in
bare PC applications. The fileObj (class) uses a fileTable data
structure to manage and control the file system. A given API
call in turn interfaces with the USBO object, which is the bare
PC device driver for the USB [24]. This device driver has
many interfaces to communicate directly with the host
controller (HC). The HC interfaces with USB device using
low-level USB commands.

Fig. 2 lists the file API functions, and Fig. 3 shows an
example of their usage. The parameters for the createFile()
function are file name (fn), memory address pointer (saddr),
file size (size) and file attributes (attr); it returns a file handle
(h).

The file handle is the index value of the file in the fileTable
structure, which has all the control information of a file. This
approach considerably simplifies file system design as it can
be used as a direct index into the fileTable without the need

Figure 1. Bare machine USB file system.

Figure 2. File API functions.

65

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for searching. The deleteFile(h) function uses the file handle
to delete a file. When a file is deleted, it simply makes a mark
in the fileTable structure and its related structures such as the
root directory and FAT (File Allocation Table).

Figure 3. File API usage.

The resizeFile() function is used to increase or decrease a

previously allocated file size. Thus, an AO programmer needs
to keep track of the growth of a file from within the
application. The flushFile() function will update the USB
mass storage device from its related data structures and
memory data. An AO programmer has to call this function
periodically or at the end of the program to write files to
persistent storage. The flushAll() interface is used to flush all
files and related structures onto the USB drive. Note that the
programmer gets a file address, uses it as standard memory
(similar to memory mapped files), and manages the memory
to read and write to a file. There is no need for a read and write
API in this file system. All standard file IO operations are
reduced to the list shown in Fig. 2.

A significant difference between the bare PC file system
and a conventional OS-based file system is that an AO
programmer directly controls the USB device through the
API. That is, a user program directly communicates with the
hardware without using an OS, kernel or intermediary
software. For instance, the createFile() function invokes the
fileObj function, which in turn invokes the USBO function.
The latter then calls the HC low-level functions. In this
approach, an API call runs as a single thread of execution
without the intervention of any other tasks. Thus, writing a
bare PC application is different from writing conventional
programs as there is no kernel or centralized program running
in the hardware to control the application. These applications
are designed to run as self-controlled, self- managed and self-
executable entities. In addition, the application code does not
depend on any external software or modules since it is created
as a single monolithic executable.

B. File System Internals

Building a USB file system for bare PC applications is
challenging. The system involves several components and
interfaces, and it is necessary to map the USB specifications
to work with the memory layout in a bare PC application and

the bare machine programming paradigm. Details of file
system internals are provided in this section to illustrate the
approach.

1) USB Parameters: Each USB has its own parameters

depending on the vendor, size and other attributes. Some

parameters shown in Fig. 4 are used for identification and

laying out the USB memory map. These parameters are

analogous to a schema in a database system and are located

in the 0th sector.

Figure 4. USB parameters.

2) USB and Memory Layout: Fig. 5 displays the USB

layout for a typical file system with 2GB mass storage.The

boot sector contains many parameters as shown in Fig. 4. The

reserved sectors parameter is used to calculate the start

address of FAT1 table. The number of sectors per FAT

defines the size of FAT1 and FAT2 tables, which are

contiguous. The root directory entry follows the FAT2 table

as shown in Fig. 5. The number of clusters in the root

directory and number of sectors per cluster defines the

starting point for the files stored in the USB. The root

directory has 32 byte structures for each file on the USB.

These 32 byte structures describe the characteristics of a

FAT32 file system. The layout in Fig. 5 shows two files

prcycle.exe and test.exe. The first file is the entry point of a

program after boot and the second one is the application.

Other mass storage files created by the application are located

after test.exe. The bare PC file system has to manage the FAT

tables, root directory and file system data.

3) Memory Map: The USB layout and its entry points are

used to map these sectors to physical memory. A memory

map is then drawn as shown in Fig. 6. During the boot

process, the BIOS will load the boot sector at 0x7c00 and

boot up the machine. This code will run and load prcycle.exe

using a mini-loader. When prcycle.exe runs, it provides a

menu to load and run the application (test.exe). The original

boot, root directory and FATs as well as other existing files

and data in the USB are also stored in memory to manage

them as memory mapped files. The cache area stores all the

user file data and provides direct access to the application

program. In this system, the USB and memory maps are

controlled by the application and not by middleware.

66

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) Initialization: Fig. 7 illustrates the initialization

process after the bare PC starts. During initialization, existing

files from the USB are read into memory and file table

attributes are populated. In addition, FAT tables and other

relevant parameters are read and stored in the system. If the

file data size is larger than the available memory, then partial

data is read as needed and the file tables are updated

appropriately. A contiguous memory allocation strategy is

used to manage real memory. Because the file handle serves

as a direct index to the file table, the file management system

is simplified.

Figure 5. USB layout.

5) File Table Entry (FTE): The FTE is a 96-byte structure

as shown in Fig. 8. The file name is limited to 64 bytes

including name and type. 32-byte control fields are used to

store the file control information needed to manage files.

These attributes are derived from the root directory, FAT

tables and memory map. The file index is the first entry in the

FTE and it indicates the index of the file table. The index is

also used as a file handle to be returned to the user for file

control.

6) File Operations: The five file operations in the bare

PC system use the data structures file table and device driver

interfaces. The file system only covers a single directory

structure. When createFile() is called, it first checks the file

table for any existing file using the file name. If this file does

not exist, a new file is created with the given file name and

requested file size. Then an entry is made in the file table,

memory is assigned, and the root directory and FAT entries

are created for the file. When flushFile() is called, it updates

the USB and the call returns the file handle, which is an index

into the file table. Similarly, deleteFile() will delete the file

from the file table and flushAll() will update the USB with

all the USB data fields. The resizeFile() interface simply uses

the same entry with a different memory pointer and keeps the

data“as is” unless the size is reduced. When the size is

reduced, the extra memory is reset. All API calls and their

internals are visible to the programmer.

Figure 6. Memory map.

7) File Name: The file system supports both short and

long file names. At present, long file names are limited to 64

characters by design since they introduce difficulties when

creating the root directory and file table entries. The FAT32

root directory structure also results in complexity that affects

file system implementation.

8) System Interfaces: The USB file system runs as a

separate task in the bare PC AO. The AO has one main task,

one receive task and many application tasks such as server

threads. The main task enables plug-and-play when the USB

drive is plugged into the system. Each USB slot in the PC is

managed as a separate task. Tasks and threads are

synonymous in bare PC applications as threads are

implemented as tasks in the system. Each event in the system

is treated as a single thread of execution without interruption.

Thus, each file operation runs as one thread of execution.

C. Operation

The file system is written in C/C++, while the device
driver code is written in C and MASM. The MASM code is
27 lines and provides two functions that read and write to
control registers in the host controller. The fileObj code is
4262 lines including comments (30% of the code), and one

67

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

class definition. State transition diagrams are used to
implement USB operations and their sequencing. For
example, some of the state transitions occurring during the
initialization process are shown in Fig. 7. The fileObj in turn
invokes the USB device driver calls shown in Fig. 9.

Figure 7. Initialization.

Figure 8. File Table Entry (FTE).

File operations can be done anywhere in the bare PC

application. The task structure that runs in the bare PC file
system is similar to that used for the bare Web servers, and
runs on any Intel-based CPU that is IA32 compatible. Bare PC
applications do not use a hard disk; instead, the BIOS is used

to boot the system. The file system, boot code and application
are stored on the same USB. A bootable USB along with its
application is generated by a special tool designed for bare PC
applications. The USB file system was integrated with the
bare PC Web server for functional testing.

Figure 9. USB operations.

The operation of the bare PC file system is demonstrated

by having two existing files (prcycle.exe and test.exe) on the
USB along with the boot code. Small and large files are
created by the application with file sizes varying up to 100K.
To demonstrate file operations, four files were created and
tested as described here in addition to the two files prcycle.exe
and test.exe on the USB (after the program runs, there is a total
of six files on the USB). The data were read from the files and
also written to them using the file API. A USB analyzer [32]
was used to test and validate the file system and the driver.
Fig. 10 shows a sample trace from the analyzer that illustrates
reset, read descriptors, set configuration and clear. These low
level USB commands are directly controlled by the
programmer (they are a part of the bare PC application).

Fig. 11 shows the six files that exist on the USB displayed
on the screen of a Windows PC. The four created files can be
read from the Windows PC. Fig. 12 shows the file system in
the bare PC root directory in memory. This directory is used
to update the files until they are flushed. Fig. 13 shows the root
directory entries on the USB after the program is complete.
Fig. 14 is a screen shot on the bare PC showing the four files
(short and long) created successfully by the system. The bare
PC screen is divided into 25 rows and 8 columns to display
text using video memory. This display is used by the
programmer to print functional data, and for debugging. The
programmer controls writing to the display directly from the
bare PC application, with no interrupts used for display
operations.

IV. ARCHITECTURE

We now describe a mass storage system for BMC
applications by integrating the bare PC file system and the
SQLite database system. This mass storage system can then
be adapted for use with existing BMC applications. Fig. 15
shows the system architecture for the mass storage system.

 A USB flash drive is a complete file system by itself,
which consists of boot, FAT, root directory and file data. As
main memories are getting cheaper and larger, it is becoming
feasible to map high-capacity flash drives into main memory.
Such memory maps enable easier implementation and high

68

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance while avoiding the need for an intricate memory
management system.

The file system resident on the USB flash drive is
represented by a 32-byte data structure capturing its file
attributes. This is similar to a 32-byte structure in a FAT32
root directory structure. Conventional and SQLite files can all
be represented with the same data structure.

Figure 10. Analyzer trace.

The “file index” field is the entry point used as an index into
the root directory. The “file size” shows the number of bytes
in the file. The“start cluster” and “# of clusters” show the
starting point of the cluster on the physical media and the
number of clusters needed for the entire file. Usually, a cluster
is defined as 8 sectors, but a larger value can be used for larger
files. The “start addr” and “end addr” fields define the start
and end of the physical memory map in the system. In BMC
systems, all memory is physical memory, which avoids virtual
memory and paging overhead. The “start sector#” identifies

the LBA needed to access the flash drive. The LBA scheme
on the USB provides a convenient way to address it, which is
similar to addressing main memory. However, the USB
device needs to use SCSI (small computer system interfaces)
[30] commands for access. The “file attr” field defines the
file permissions needed to store the file in the system. Each
file in the system needs one 32-byte record, which provides
all the control information needed to manage the mass storage
system.

Figure 11. Windows trace.

As a mass storage system has high capacity (order of

terabytes or more), a large number of flash drives is needed.
Although a desktop usually provides only a dozen USB ports,
this limit can be increased to 127 ports by using a USB HUB.
Each device is addressed by a unique “portno” in the range 1
to 127. The system architecture allows creation of a separate
task for managing each port resulting in a “taskindex” from
0-126 (=portno–1). In a BMC application, one can define as
many tasks as needed for managing ports; alternatively, a
single task can be used to manage multiple USBs.

Figure 12. Bare PC root directory.

Mass storage needed for BMC applications can use up to

4 GB of real memory as this is the limit for a 32-bit address

69

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

space. If more storage is required, then the resident memory
can be swapped in and out of persistent storage on to flash
drives, without the need for virtual memory or paging. Raw
file structures in temporary storage on the flash drives can be
then used for swap space. We can also use a 64-bit CPU that
can provide larger main memory capacity and a larger address
space. The BMC architecture for the mass storage system is
scalable and simple, and can be extended to meet the needs of
new applications and future advances in technology. The
design and implementation of the mass storage system based
on the bare PC file system are detailed in the next two sections.

Figure 13. USB root directory.

V. DESIGN AND IMPLEMENTATION

The BMC mass storage system requires mechanisms to
integrate the file system with the bare PC application. We
integrated the SQLite file system with the application by using
a bridge and interfaces from C to C++. The multiple USBs in
a desktop need to host and manage multiple file systems in
memory. The plug-play feature of USBs requires task
structures that can detect the activity of flash drives and
provide appropriate functionality. As the USB driver is now
part of the application suite, timing-related and device-related
knowledge must be integrated with the application. The
device driver has to be managed by a separate file system task
as it requires internal transactions and setup to perform USB
operations. When SQLite is included as part of the mass
storage system, it requires special handling of database
functions to include the user interface and background
operations.

A. Bridge between C/C++

The BMC code is written as object-oriented C++ programs
with some C and Microsoft assembly code. The API to
address hardware takes a path from a C++ function to a C
function and then to an assembly function as needed. The C
functions are used in C++ by defining them in “extern”
blocks. This is a normal operation where C++ can call C code
as is acceptable to go from strict type checking to no type
checking. The SQLite code is written in C and it requires to
communicate to the bare PC application code for the file
system, device driver, and other function calls. Calling C++
from C to C++ violates object-oriented principles and
weakens the strict type checking of C++. The bridge shown in

Fig. 16 enables communication from C to C++. There are
variety of ways to implement this bridge [33]. The C to C++
bridge can be summarized in four steps. In Step 1, capture the
C++ member function address and store it in shared memory.
In Step 2, define a C function header and a “typedef” for a
dummy function. In Step 3, implement the C function, where
the dummy function address is derived from the member
function address in C++, which is stored in shared memory.
In Step 4, simply define a C prototype where it is needed and
call the C function. Notice that the “typedef” function
signature must be the same as the C function call. We have
defined many such functions in SQLite database to call the
bare PC C++ functions to achieve the necessary integration.

Figure 14. Bare PC screen shot.

B. USB Operation Flow Diagram

The USB operation flow diagram is shown in Fig. 17.
Every time a USB is plugged in, it goes through a sequence of
operations including: reset, read descriptors to capture device
parameters, setup, clear feature to enable its end points, test
unit ready, and read/write. The control flow for each USB has
to go through these steps before it can be used for read and
write operations. Note that some of these operations are SCSI
commands encapsulated in the USB commands. The order of
these operations are very important to make the USB
operational. In addition, there are some built-in delays needed
for reset operation. Determining these delay values and
adjusting them as needed in the bare PC USB device driver
proved to be somewhat challenging. Fig. 18 shows the design

70

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and implementation of the approach used for managing the
USB ports. There are two USB controllers in the Optiplex 960
desktop system. One controller provides four ports in the front
of the machine, which are used for testing this architecture.
The second controller’s ports are in the back of the machine.
A single task is designed to manage these four ports. These
port numbers vary from 3, 4, 5, and 6. Their task indexes are
one less than the port numbers. Each USB has its own file
system that is resident on the flash drive. The control program
is designed to check each port for its operation and
functionality.

Figure 15. System architecture.

We found that the USB controller behaves differently

depending on whether there is only one USB in operation or
many of them plugged in. In the latter case, it requires a
special reset known as mass storage reset. This is in addition
to the operations as shown in Fig. 17.

A mass storage requires a sequence of USB operations test
unit ready, read data, write data, clear feature, and sense data.
The single USB task will go through each device and perform
read or write operations as needed by an application. This task
will stay in the loop until it is terminated by the user.

C. Task Structure

The task structure shown in Fig. 19 illustrates the
integration of the mass storage system with the bare PC Web
server application, which requires HTTP tasks. A Web server

also requires resource files that are sent to clients. It may also
use the SQLite database to provide dynamic content to clients.
A USB task provides all USB interfaces to the user (it could
be “n” tasks for “n” ports). A SQLite task manages all SQLite
operations including user interfaces.

We did not address the integration of the USB file system
or SQLite database files with the bare PC Webserver.
However, the architecture of the mass storage system provides
all the functionality needed for integration. The “Main task”
is the main task that continually runs in the bare PC. When a
network packet arrives, a “RCV task” runs to process the
request. Similarly, when HTTP data has to be sent to a client,
the “HTTP task” runs. Each task type has its own task pool
created during the initialization process and kept in a stack.
When a task is needed, it is popped from its appropriate task
pool and placed in a circular list. The circular list tasks are
processed on a first-come-first-serve basis. When a running
task is complete, it will be pushed back on to its appropriate
stack. When a task is waiting for an event, it is suspended and
placed back in the circular list. This simple approach to
managing tasks is used in the BMC paradigm. It is scalable as
other types of task pools can be added in the same way.

Figure 16. C to C++ bridge.

71

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Class Flow Diagram

The mass storage system consists of three key class objects
as shown in Fig. 20. The “fileobj” class provides a lean and
efficient file API [1] [31] for bare PC applications.
“USBFObj” consists of USB plug-play functions and
interfaces to “fileobj”. This object is managed by the USB file
task. The file system API and all other interfaces can call
“USBObj” interfaces for low-level USB commands such as
test unit ready, read, write, sense, reset, clear feature, etc.

Figure 17. USB operation flow diagram.

The “USBObj”, which is the USB device driver,
communicates with USB controllers and devices. Each device
has its own file system that is managed by the mass storage
system. In the BMC paradigm, all the code needed for a given
application suite is a single monolithic executable that runs by
itself without the need for any external software or a kernel.
Thus, a bare PC programmer has to manage all the intricacies
of a given application suite. The application suite itself is
independent of any external software and includes its own
application and execution environment. A given bare PC
application only carries the interfaces and code it needs (it
avoids implementing unnecessary OS or kernel functionality).

E. Memory Map

In bare PC applications, the physical memory is managed
by the application/system programmer. For a given physical

memory, there is a need to organize a memory map at design
time. Fig. 21 shows a typical memory map for the mass
storage prototype. The first 1GB of memory is used for the
Web server and other bare PC code including stack memory.
The second 2GB of memory is used for USB file storage
including SQLite database files.

Figure 18. USB task diagram.

Figure 19. Task structure.

72

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Two more GBs of memory can also be used for mass
storage as needed. For four USBs, 256 MB storage is used for
each USB (consisting of a total of 1 GB). 12 USBs can be
mapped into a 4GB physical memory. When large memory is
needed, the mass storage has to be swapped in and out of the
USB devices.

 Figure 20. Class flow diagram.

F. Inter-process Communication

It is necessary to communicate between the SQLite and
USB file tasks to invoke file operations such as flush, read and
write. As shown in Fig. 19, the communication block is the
inter-process communication element in the system. When
SQLite is ready to flush, read, or write, it issues a command
to the USB file task and waits synchronously until the
command is complete. We use shared memory in real memory
(< 1 MB) to communicate between these two processes. A
single lock is used to implement this mechanism.

G. Implementation

The mass storage system was implemented in C/C++ with
a small amount of assembly code for the direct hardware
interfaces. The existing implementations of the bare FAT32
file system [1] [31], bare SQLite code transformation [26],
and the bare Web server [2] [3] were used in building the mass
storage system. The bare PC design is modular and extensible
and allows new features and new applications to be added
easily. The bare PC design methodology is described in [34].

VI. FUNCTIONAL OPERATION AND MEASUREMENTS

The mass storage system was tested on a Dell Optiplex
960 desktop with 2 GB Verbatim USBs. Four USBs were
plugged in to the first controller and file operations were
performed sequentially on the port numbers 3, 4, 5, and 6. File

Figure 21. Memory map for each USB.

flush, read, write, and other file operations were tested to
validate the mass storage system. SQLite database files were
also stored on the above four USBs using four different
database files. The read and write operations for regular files
and the database files are same as they use the same file
system. We varied USB file sizes from 1 MB to 30 MB to
measure write and read timings. Fig. 22 shows write times
using the file system and also using raw files.

Figure 22. Write raw data/file.

73

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A 30 MB file was written in 4.698 seconds. A 30 MB raw file
(not using any file system) was written in 4.185 seconds.
Thus, raw file writes can provide an approximately 12%
performance improvement. This implies that bare PC
applications should use raw files instead of a conventional file
system to improve performance.

Figure 23. Read raw data/file.

In a Windows desktop, the same 30 MB file took 8.2

seconds to complete a write on the USB. This indicates that
the bare PC file system has better performance than a
Windows file system. In the bare PC, a 30 MB file was read
in 2.351 seconds. The same file was read as a raw file in 1.762
seconds as shown in Fig. 23. This is a 33% improvement in
raw read versus a file system read. The bare PC systems are
efficient and lean, and the footprint for executable files is
small. The executable file size for this mass storage system is
about 252 KB including the Web server and other bare PC
code.

VII. CONCLUSION

We presented the architecture, design, and implementation
of a mass storage system for bare PC applications. Large files
and SQLite database files were used to demonstrate and test
the feasibility of the system. Four USB flash drives were used
to validate the design and measure basic performance.
Timings for USB file write and read operations with large files
were measured. Also, large raw file write and read timings
were compared with the file operations. The results show that
raw write and reads yield performance gains for bare PC
systems. The mass storage system described in this paper is
lean, simple, and scalable. It also has no OS-related
vulnerabilities. As the code is simple and lean, it is easier to
analyze for security flaws. The system is user-centric and runs
on any x86-based architecture in bare mode.

We also presented a file API for bare PC applications. The
bare PC file system enables a programmer to build and control
an entire application from the top down to its USB data
storage level without the need for an OS or intermediary
system. This implementation can be used as a basis for
extending bare PC file system capabilities in the future. The
file system and mass storage system can be integrated with
bare PC applications such as Web servers, Webmail/email
servers, SIP servers, and VoIP clients. Future research could
investigate the use of these systems for big data applications
and cloud storage.

REFERENCES

[1] W. Thompson, R. K. Karne, S. Liang, A. L. Wijesinha, H.

Alabsi, and H. Chang, “Implementing a USB File System for

Bare PC Applications,” 12th Advanced International

Conference on Telecommunication, 2016, pp. 58-63.

[2] L. He, R. K. Karne, and A. L. Wijesinha, “The design and

performance of a bare PC Web server,” International Journal

of Computers and Their Applications, IJCA, Vol. 15, No. 2,

June 2008, pp. 100-112.

[3] L. He, R. K. Karne, A. L. Wijesinha, and A. Emdadi, “A. A

Study of Bare PC Web Server Performance for Workloads with

Dynamic and Static Content,” 11th IEEE International

Conference on High Performance Computing and

Communications (HPCC), 2009, pp. 494-499.

[4] P. Appiah-Kubi, R. K. Karne, and A. L. Wijesinha, “The

Design and Performance of a Bare PC Webmail Server,” 12th

IEEE International Conference on High Performance

Computing and Communications, (HPCC) 2010, pp. 521-526.

[5] G. H. Ford, R. K. Karne, A. L. Wijesinha, and P. Appiah-Kubi,

“The design and implementation of a bare PC email server,”

33rd Annual IEEE International Computer Software and

Applications Conference (COMPSAC), 2009, pp. 480-485.

[6] B. Rawal, R. Karne, and A. L. Wijesinha, “Splitting HTTP

requests on two servers,” 3rd Conference on Communication

Systems and Networks (COMSNETS), 2011, pp. 1-8.

[7] B. Rawal, R. K. Karne, and A. L. Wijesinha. “Mini Web server

clusters for HTTP request splitting,” IEEE Conference on High

Performance, Computing and Communications (HPCC), 2011,

pp. 94-100.

[8] R. Yasinovskyy, A. Alexander, A. L. Wijesinha, and R. K.

Karne, “Bare PC SIP user agent implementation and

performance for secure VoIP,” International Journal on

Advances in Telecommunications, vol 5 no 3 & 4, 2012, pp.

111-119.

[9] G. Khaksari, A. Wijesinha, R. Karne, L. He, and S. Girumala,

“A peer-to-peer bare PC VoIP application,” IEEE Consumer

Communications and Networking Conference (CCNC) 2007,

pp. 803-807.

[10] D. R. Engler and M.F. Kaashoek, “Exterminate all operating

system abstractions,” Fifth Workshop on Hot Topics in

Operating Systems,USENIX, 1995, p. 78.

[11] V. S. Pai, P. Druschel, and W. Zwaenepoel, “IO-Lite: A unified

i/o buffering and caching system,” ACM Transactions on

Computer Systems, Vol.18 (1), Feb. 2000, pp. 37-66.

74

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] “The OS Kit Project,” School of Computing, University of

Utah, SaltnLake ,UT, June 2002,

http://www.cs.utah.edu/flux/oskit.

[13] J. Lange et al, “Palacios and Kitten: New high performance

operating systems for scalable virtualized and native

supercomputing.” 24th IEEEInternational Parallel and

Distributed Processing Symposium (IPDPS), 2010, pp. 1-12.

[14] R. K. Karne, K. V. Jaganathan, N. Rosa, and T. Ahmed,

“DOSC: dispersed operating system computing,” 20th Annual

ACM Conference on Object Oriented Programming, Systems,

Languages, and Applications (OOPSLA), 2005, pp. 55-61.

[15] S. Soumya, R. Guerin and K. Hosanagar, “Functionality-rich

vs. Minimalist Platforms: A Two-sided Market Analysis,”

ACM Computer Communication Review, vol. 41, no. 5, pp.

36-43, Sept. 2011.

[16] R. K. Karne, K. V. Jaganathan, and T. Ahmed, “How to run

C++ applications on a bare PC,”6th ACIS Conference on

Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD) 2005, pp. 50-55.

[17] Microsoft Corp, “FAT32 file system specification,”

http://microsoft.com/whdc/system/platform/firmware/fatgn.rn

spx, 2000. [retrieved: April 8, 2016]

[18] R. Russon and Y. Fledel, “NTFS Documentation,”

http://dubeyko.com/development/FileSystems/NTFS/ntfsdoc.

pdf. [retrieved: April 8, 2016]

[19] R. Shullich, “Reverse Engineering the Microsoft ExFAT File

System,”https://www.sans.org/readingroom/whitepapers/fore

nsics/reverse-engineering-microsoft-exfat-file-system-33274.

[retrieved: April 8, 2016]

[20] M. Choi, H. Park, and J. Jeon, “Design and implementation of

a FAT file system for reduced cluster switching overhead,”

International Conference on Multimedia and Ubiquitous

Engineering, 2008, pp. 355-360.

[21] J. A. Garrison and A. L. N. Reddy, “Umbrella file system:

Storage management across heterogeneous devices,” ACM

Transactions on Storage (TOS), Vol. 5, No. 1, Article 3, March

2009.

[22] Y. H. Chang, P. Y. Hsu, Y. F. Lu, and T. W. Kuo “A driver-

layer caching policy for removable storage devices,” ACM

Transactions on Storage, Vol. 7, No. 1, Article 1, June 2011,

p1:1-1:23.

[23] J. Larimer, “Beyond Autorun,” Exploiting vulnerabilities with

removable storage,” 1–66, Jan. 2011.

https://media.blackhat.com/bh-dc-

11/Larimer/BlackHat_DC_2011_Larimer_Vulnerabiliters_w-

removeable_storage-wp.pdf. [retrieved: April 8, 2016]

[24] R. K. Karne, S. Liang, A. L. Wijesinha, and P. Appiah-Kubi,

“A bare PC mass storage USB device driver,” International

Journal of Computers and Their Applications, Vol 20, No. 1,

March 2013, pp. 32-45.

[25] SQLite, http://www.sqlite.org/download.html. [retrieved:

April 8, 2016]

[26] U. Okafor, R. K. Karne, A. L. Wijesinha and B. Rawal

Transforming SQLITE to Run on a Bare PC,” 7th International

Conference on Software Paradigm Trends, 2012, pp. 311-314.

[27] Perisoft Corp, Universal serial bus specification 2.0,

http://www.perisoft.net/engineer/usb_20.pdf. [retrieved: April

8, 2016]

[28] Universal serial bus mass storage class, bulk only transport,

revision 1.0, 1999, http://www.usb.org [retrieved: April 8,

2016]

[29] Intel Corporation, Enhanced host controller interface

specification for universal serial bus, March 2002, Rev 1,

http://www.intel.com/technology/usb/download/ehci-r10.pdf

[retrieved: April 8, 2016]

[30] SCSI2.0 Specifications, http://ldkelley.com/SCSI2/index.html.

[retrieved: April 8, 2016]

[31] S. Liang, R. Karne, and A. L. Wijesinha, “A lean USB file

system for bare machine applications,” 21st Conference on

Software Engineering and Data Engineering (SEDE), 2012, pp.

191-196.

[32] Total Phase Inc., USB analyzers, Beagle,

http://www.totalphase.com. [retrieved: April 8, 2016]

[33] “How to mix C and C++,” The C Programming Language,

https://isocpp.org/wiki/faq/mixing-c-and-cpp. [retrieved: April

8, 2016]

[34] G. H. Khaksari, R. K. Karne and A. L. Wijesinha. “A Bare

Machine Application Development Methodology,”

International Journal of Computers and Their Applications

(IJCA), Vol. 19, No.1, March 2012, pp. 10-25.

75

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Semantic Service Management and Orchestration for Adaptive and Evolving Processes

Johannes Fähndrich, Tobias Küster, and Nils Masuch

DAI-Labor, Technische Universität Berlin
Ernst-Reuter-Platz 7, 10587 Berlin, Germany

e-mail: {johannes.faehndrich, tobias.kuester, nils.masuch}@dai-labor.de

Abstract—Introducing adaptiveness into service compositions al-
lows for a next generation of services, which adapt to their context
of use and posses self-* properties like self-healing and self-
configuring. However, the development of adaptive and flexible
services is challenging and lacks tool support. For this next step
in service development there are a multitude of requirements to
be met: a service discovery needs to keep the available services
up-to-date, a semantic layer needs special development resources
to introduce interoperability, ontologies need to be managed
and merged, a service selection mechanism has to find the
fitting service for a context out of a vast amount of service
advertisements, and runtime components need to surveil the
execution of such a service composition. In this paper, we review
multiple projects, in which those components have been subject to
research, and we present our own approach of a semi-automatic
development methodology for adaptive service compositions and
finally discuss future challenges.

Keywords–Semantic Service Matching; Automated Service Com-
position; BPMN Processes; OWL-S.

I. INTRODUCTION

In recent years, the increasing digitalization of our societies
has led to a vast amount of new possibilities. Many companies,
administrations, and devices share their data or functionalities
with others via application programming interfaces (APIs),
or services, respectively. Examples are the smart home, or
the transportation domain: In the first case, many different
devices, such as smart meters and household appliances, are
addressable and can be regulated remotely. In the second case,
new services are provided digitally, such as car-sharing offers,
where the user can find, reserve and unlock a nearby car via
an API, and many of the actual cars or charging stations are
accessible via services, as well. Those are just two examples
of new services, leading towards a sophisticated Internet of
Things (IoT), which is often eagerly anticipated to connect
services across domain borders.

By introducing adaptiveness into service compositions,
those services can be dynamically combined and orchestrated,
allowing for a next generation of services, which adapt to their
context of use and posses self-* properties like self-healing
and self-configuring. However, there are some significant chal-
lenges that have to be overcome in order to exploit their
potential. To begin with, there is the requirement of finding
an appropriate service in the first place. Different approaches
like Universal Description, Discovery and Integration (UDDI)
have been proposed, but none really has made it into the
market. Second, there is the need for interoperability. Since a
homogeneous data environment in open, extensible platforms
is unrealistic, automated mapping solutions between models or
ontologies respectively are one potential approach. And finally,

due to the increasing amount of services, there is a strong
requirement for automatic understanding of services and their
composition to value-added functionalities.

Especially for the last challenge, semantic technologies
are an appropriate approach by providing structured data to
machines. However, this does not come without a price.
The management overhead can be immense, especially for
developers not familiar with semantic technologies.

In this article, which is an updated and extended version
of a paper previously presented at The Eleventh International
Conference on Internet and Web Applications and Services
(ICIW 2016) [1], it is our goal to develop a semantic-based
service management methodology that considers the whole
life-cycle of semantic services including more sophisticated
algorithms for automation. More concretely, we provide de-
velopment tools for model transformation, for the semantic
description of services, and their deployment in order to
set up a service. Furthermore, we propose how to find and
match services at design-time and how to easily integrate them
either to Java code or into an editor for the Business Process
Model and Notation (BPMN). Based upon that we developed
comprehensive matching and service composition techniques
that can be used both at design-time and at runtime.

The remainder of this paper is structured as follows: At
first, we motivate our case in Section II. In the following
sections, we introduce the core components used for matching
and planning (Section III), as well as development tools
(Section IV) and a runtime environment (Section V), in which
those are used. In each of those sections, we will also contrast
our approach and contribution to the respective state-of-the-
art. Then, in Section VI, we combine the core components,
tools, and runtime to a comprehensive development method
for semantic service engineering, and show how it was applied
in research projects (Section VII), before we finally wrap up
and conclude in Section VIII.

II. MOTIVATION

Proper service management is highly important to build
reliable and reusable software systems. Service management
can be divided into several phases, whereas each of them
contains requirements that are not fully met so far. As il-
lustrated in Figure 1, the service management starts with the
most fundamental part, the service engineering. Under the term
service engineering we subsume the concrete specification of
a service, which also contains the embedment of existing
services into a new process. At this point, the challenge of
finding such a service comes into play for the first time. When
we think about platforms containing hundreds or thousands of

76

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

services, a comprehensive search, matching, and even planning
mechanism is necessary. In our case, we try to address this
challenge by providing a semantic-based service matching
mechanism, which will be described in Section III. Further-
more, this feature has to be embedded into a development
environment. Many approaches that provide service matching
and planning stick to very specific planning languages for the
whole process definition, which makes it hard to use them
for daily problems. Therefore, in this paper it is a clear focus
to provide an approach that relies on a specification language
that is commonly used and expressive enough. After having
specified the process of the service its proper declaration has
to be processed. Currently, this step is neglected since most of
the service management approaches do not rely on a service
declaration that can be analysed and interpreted by machines.
In future scenarios however, each service, even a value-added
one that is already using other services, should be made
available to other instances in order to enable efficient service
composition. In Section IV we will provide an approach how
to semantically enhance services based on a semi-automatic
process. After the declaration the service has to be tested and
where required the service engineering has to be launched
again in order to adapt the service process. There are already
lots of interpreter components that enable the step-through and
validation of a process. However, an interpreter component that
is integrating service matching, planning and service selection
features during testing is – to the best of our knowledge
– not available so far. We will present our approach for
this in Section IV, as well. After a successful testing phase
the developer has to deploy the service in order to make
it available. Here the important issue is to transform the
specified process from the Service Engineering phase into an
executable language. The more transformations the tool chain
supports the more flexible the service can be launched. In our
case we provide different target languages as well as direct
interpretation, which we describe in Section V.

Furthermore, deployed processes currently are not very
flexible in practice. In our approach we aim to support the dy-
namic integration of services or even service chains at runtime.
This leads to a highly adaptive service that can select services
according to functionality and Quality-of-Service parameters.
The approach of adaptive service selection at runtime is also
discussed in Section III.

The described adaptability is also important for the last
phase of the service management lifecycle: the service mon-
itoring. While executing the service, another component has
to surveil the status of the service. Think about a situation
when a street network routing service that is being used for
a multimodal routing service is immediately out of order and
not usable any more. Usually, some error message might occur,
that will be sent to a maintenance person that has to check why
the service can not be invoked any more and has to decide
how to proceed next. It is our goal to simplify this by using
the before described adaptive service approach. In our concept
the service composition itself is searching for an alternative
service within the platform based on the semantic description
of the missing service.

In summary it can be stated that in each of the service
management phases there are still open challenges to fulfil in
order to provide an adaptable service management methodol-
ogy, that can be used for actual problems. In the following

Figure 1. Basic service management lifecycle.

we will describe our concept of adaptive service selection and
planning.

III. CORE COMPONENTS

In this section, we will have a look at the core compo-
nents used for matching semantic services and for planning
with those services. While those components are used in the
development tools and in the runtime environment that we will
introduce in the next sections, they are self-contained and can
be used independently from the rest, e.g., in a different context.

A. Semantic Service Matcher
Since the beginning of research in semantic service match-

ing, matchmakers have matured in precision and recall [2].
Thus, the focus of service matching has shifted to the inte-
gration of non-functional parameters and formal modelling of
system properties. The development on the Service Matcher
that had the best Normalised Discounted Cumulative Gain
(NDCG) value in the last Semantic Service Selection contest
(S3) in 2012 [2], called SeMa2, has been focused on formal-
ising and distributing the architecture of SeMa2 and enabling
a learning mechanism to customise the matching results to a
given domain. In the following we first describe the approach
of SeMa2 and then discuss the current state-of-the art for
service matchmaking.

1) Approach: Within this section we describe how we mod-
elled the architecture, the matching probability, its aggregation
and which parameters for the learning can be extracted. For an
even more detailed discussion about SeMa2, we refer to [3].

a) Architecture of a modern Service Matcher: The
service matching task can be broken down into subtasks like
matching the inputs of the request and the advertisement, or
comparing their textual descriptions. In the SeMa2 architec-
ture each of these subtasks has been explicitly encapsulated
in a so-called expert, which can be distributed following the
agent paradigm.

As shown in Figure 2, the SeMa2 consists of 33 different
experts, which are dependent from each other (edges of the
graph). The “Matching Result” represents the overall result
of a matching request. It is also defined as an expert as it
aggregates the results from the opinions of six types of experts:
the text similarity expert, comparing the textual descriptions
of a service; the in- and output parameter expert looking at
the parameters and results of the services; the effect structure
expert, evaluating the similarity of effects; the rule reasoning
expert, which evaluates whether the precondition and effect
rules are satisfied with the same parameters; as well as the
rule structure expert, and the marker passing expert, which
connects the describing ontologies through ontology matching.

77

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Expert System of the SeMa2. High-level experts are composed of
low-level experts, all contributing to the Matching Result.

Each expert creates an opinion about the matching of two
services. These opinions are aggregated by experts which use
other experts to create their opinion. Six types of experts
form the top level of the aggregation. Five of those experts
analyse structural and logical relatedness of the two services.
The sixth expert is a semantic expert. It analyses the semantic
similarity between the different aspects of the two services.
For its opinion it created a semantic graph through lexical
decomposition and passes markers along the edges of this
graph to measure the semantic distance from, e.g., the input
of one service to another. The interested reader is referred to
[4] for more details. Each of those experts uses other experts
to help forming its opinion, expressing the matching score of
one aspect of a service. Thus, each expert encapsulates such
a scoring method, which can be reused by multiple experts
or extended with new scoring as the architecture evolves. The
opinions of the experts are weighted due to their performance
in an offline learning phase. For more details please find [3].

b) Probabilistic model of opinion: The different opin-
ions of the experts are formalised by utilising the results of
Morris [5], as probabilities pi(R,A). As an expert i observes
aspects of a request R and advertisement A and calculates
their distance. We can abstract this opinion as pi(Θ|d) where
Θ is the subject of interest and d are the observations. pi(Θ|d)
could be interpreted as a degree of belief of Θ observing data
d. For more details see [3].

To aggregate the opinions of the different experts, an
Opinion Pool is used. Here, a weighted mean of the opinions
is created, for which we chose a weighted arithmetic mean
called linear opinion pool [6] in a previous work [3]. This
arithmetic mean has been generalised by Genest [7] to be able
to use weights in the interval [−1, 1] in a more general class
of linear opinion pools. With this formalisation, the quality of
the different aspects can be weighted during the aggregation.
Choosing those weights is done during the learning phase. This
selection of weights for the experts enable the matcher to adapt
to the specifics of the semantic service descriptions of a special
domain.

c) Learning Semantic Service Matcher: Selecting
weights for each experts instances (SeMa2 for now has 133
experts instances), we do not only assess the performance of

the expert, but also the quality of the description of the service,
the ontologies of the domain and if present specific description
aspects of a domain. These interdependencies are the reason
why we are unable to learn the performance of an expert in
general and reuse the weights for other matching domains.

For the learning, SeMa2 implements different standard
learning mechanisms, reaching from genetic algorithms im-
plemented with the Watchmaker Framework [8] to simulated
annealing [9]. For the statistical evaluation the Semantic
Web Service Matchmaker Evaluation Environment (SME2)
tool [10] is used, calculating the NDCG of each expert and
adapting its weight according to the optimisation strategy used
during the learning. As a drawback, this ability to adapt to the
domain makes an offline learning phase necessary, where a test
collection of example services needs to be defined, including
a relevance rating for the training set of service to be used by
the SME2 tool.

2) State-of-the-Art: In order to optimise the result of the
service matching a learning phase can be introduced to adjust
the parameters of a service matchmaker to the properties of
the domain. The parameters to learn depend on the service
matchmaker and thus its flexibility depends on the parameters
that can be observed.

In Klusch et al. [11] the authors introduced a formal
model of defining weights for the aggregation of different
similarity measures with the names ww − similarity and
ws − structural similarity measure. The aggregation method
has been learned using a Support Vector Machine (SVM)
approach based on training data. The matchmaker component
that invokes this approach is designed to match SA-WSDL
services (Semantic Annotations for Web Service Description
Language).

Klusch and Kapahnke [12] introduce another learning
service matchmaker by extending the approach of a prior
work [13] for OWL-S service descriptions (Web Ontology
Language for Web-services). Here, matching results of dif-
ferent matching types are aggregated using a weighted mean.
The authors introduce different types of matching results that
are weighted. Firstly, approximated logical matching, which
is divided into approximated logical plug-in and subsumed-
by matching. Secondly, non-logic-based approximated match-
ing, which are text and structural semantic similarity-based
signature matching. The weights of this aggregation are also
learned using a SVM. This supervised learning approach is
replicated in our work, but with a different learning algorithm.
The relevance set that is used to rank the matching results are
reused with a genetic algorithm and a hill-climbing search.

Gmati et al. [14] use an architecture similar to ours, which
uses parameters as weights to combine the results of the
different matching components. This idea was published earlier
in [3] with an additional learning component for the introduced
weights.

To the best of our knowledge there exist only these
approaches that utilise machine-learning techniques in order to
cope with the challenge of aggregating service matchmaking
techniques. For future research, service matchers will also
have to be extended with the capability of comparing QoS
parameters and Service Level Agreements of services.

78

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Semantic Services Planner
During the creation of a service composition, automation

might help the developer to save time. The capability of general
purpose planners to create solutions for complex problems is
sometimes seen with conflicting opinions: The creation of a
plan is resource intense and can produce use case specific
plans, which are rarely reusable. On the other hand, they can
find solution humans are not capable of finding. This is due the
the fact that a human is insufficiently effective when scanning
through the vast amount of available services and comprehend
their contextual usage.

This leads to the question when to use a general pur-
pose planner during the creation of service compositions.
The answer is flexible as it is unspecific: The planner can
be used to the extend the developer needs its help. If the
developer wants to prove feasibility before creating a hand-
made service composition, then the whole service composition
can be planned to get an idea of the available services. If the
overall service composition is already designed, the inclusion
of new services might entail other services, which can be
found through planning. This can help a developer to chose
between the fit of a service into its compositions. At the end
the suggestion of single services in a context of a service
composition (between a service layer i− 1 and another i+ 1)
can be based on QoS parameters as well.

This allows a specification of the adaptive parts of a service
composition, since the parts that are provided by a planner
can be changed during runtime. By removing the grounding
of a service, the so-created service template needs to be filled
with a service instance available at runtime, which enforces
adaptation. In this way, a compromise between development
time and adaptiveness can be found.

1) Approach: The ability to automatically compose ser-
vices to reach a given goal is called service planning [3].
The service planner based on the SeMa2 utilises the service
matcher for three tasks: first, to reason about effects and
preconditions to find applicable service. Second, to reason on
parameter selection for grounding the services, and third, to
apply the execution of a service to reach a new state.

The algorithm in Figure 3 describes a standard planning
approach applied to service planning. Here, the contribution is
a planning in the service world without translating the service
to the Planning Domain Description Language (PDDL) or
similar to solve the planning problem.

The search used is defined in the function State-
Search.next(Open). Depending on the implementation of the
state search, the next state to be extended is selected. Here
an A∗ or equivalent algorithm can be used. In each state
s that will be extended next, the selection of the services
and their grounding is formalised in the function Service-
Search.UsefulServices(s). Here a set of grounded services is
selected, which define the transition to the following open
states. The state transition function is given by execute(s, g),
where the output and the effect of a service are integrated
into the given state s. This is a theoretical execution, since
the execution at runtime includes backtracking and a context
sensing mechanism to sense the effect of a service. After
extending a multitude of nodes during the search of the state
space, the function reconstructPath(path) reduces the path
from the goal to the start state to a minimal call of services.

Name: ServicePlan
Input: Sstart , Sgoal , Services Output: Service Composition

1: path ← []
2: Closed ← ∅
3: Open ← {Sstart}
4: while s← StateSearch.next(Open) do
5: if s 6∈ Closed then
6: if s = Sgoal then
7: return reconstructPath(path + [s])
8: end if
9: grounded ← ServiceSearch.UsefulServices(s)

10: if grounded 6= ∅ then
11: succ ← {execute(s, g) | g ∈ grounded}
12: Open ← Open ∪ succ \ Closed
13: path ← path + [s]
14: end if
15: Closed ← Closed ∪ {s}
16: end if
17: end while
18: return failure

Figure 3. Service Planner algorithm.

The complexity of the algorithm depends on the imple-
mentation of the state search and state pruning mechanism,
being the heuristic that selects useful services, including the
complexity of the service matcher used. In general, the worst
case complexity of such an algorithm is exponential [15, p.72].

By planning on services we accept a number of challenges:

• Service Grounding checks all parameters of services to
be executed next and creates all combinations of indi-
viduals that fit those parameters. These combinations
lead to multiple (possibly infinite) grounded services
out of one service description. Here the challenge lies
in the selection of continuous parameters.

• Output Integration into the state poses a challenge
since it is not clear how a service without effect
can influence the state. One example of such services
are information providing services, which are not
world altering services [16]. Thus, here we create an
assertion of the class of the output, creating an appro-
priate individual, equivalent to the “AgentKnows” of
Doherty et al. [17].

• Semantic Web Rule Language built-ins (SWRLb) are
mathematical extensions like “greater than”, string
manipulations or description of time. Additionally,
lists are modelled in SWRLb but are not supported
by reasoners like Pellet [18].

• Semantic Web Rule Language XML Concrete Syntax
(SWRLx) is an extension to the Semantic Web Rule
Language (SWRL) allowing to model individual cre-
ation, creation of classes and properties. This is vital to
the service planning, because service execution might
create individuals or classes that can not be modelled
without SWRLx built-ins.

2) State-of-the-Art: There is a multitude of related work in
using planning techniques for service composition. Rodriguez
et al. [19] analyse three parts of Service-Oriented Architecture
(SOA) in connection to artificial intelligence planning: i)
service discovery techniques, ii) service composition systems,

79

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and iii) service development tools. Even though Rodriguez et
al. noticed that the use of QoS parameters for the selection of
a service in a service composition is ”a significant research
problem” [19] their analysis of the state of the art does
not reflect QoS parameters. Markou and Refanidis focus on
non-deterministic planning approaches for automated service
composition where the approaches are analysed for their
heuristics but only in the sense of using them or not [20].
Zou et al. [21], [22], [23] focus more on efficiency of the
planning techniques for the automated service composition but
neglect to see the importance of semantic information given by
semantic web service descriptions. This leads them to look at
approaches translating the service composition problem into a
PDDL planning domain and with that they lose every semantic
description available before. Transforming facts described in
OWL (Web Ontology Language) and, e.g., SWRL into a PDDL
domain leaves with no basis for ontology matching if the same
fact is formulated in different ways.

We argue that the performance of a general purpose planner
depends on the heuristic used during the search for a path from
start to goal state. This leads us to the conclusion to analyse
the state of the art for factors neglected by other surveys, e.g.,
how a service description is used to create heuristics for the
used planning technique.

We start out with Rodriguez-Mier et al. [24] who neglect
non-functional parameters as well, but they describe a general
heuristic that is used in an A∗ algorithm. This heuristic com-
bines the amount of already executed services in a backward
search: h(n) = distance(Sn, Sgoal), where Sn is the current
state and Sgoal is the goal state. In addition the cost of a state
Sn is the number of services still needed to reach the start state.
This is denoted with c(n). This is combined to the heuristic
function f(n) = h(n) + c(n). This heuristic has the drawback
that it only is applicable after a solution has been found. Thus
it can be used to select the best path, from start to goal state,
but it can not be used during the planning itself.

Meyer and Weske [25] as well count the number of service
executions as a heuristic for their planning mechanism. They
restrict this heuristic further, arguing that it is only an upper
limit since the plan could include parallel executions and thus
the amount of service execution steps can be further reduced.

Hoffman and Nebel [26] use a relaxed plan heuristic by
removing the deletions out of the effect of a service. This can
be done in PDDL since there are only additions and deletions
of facts. Such a heuristic becomes research worthy if the
semantics of the problem looked at comply to the open world
assumption. This is because we can not decide if a left-out
fact is true or not. Further effects could conflict each other
because they are coming from different conceptualisations,
e.g., different ontologies describing the same or opposite fact.

Klusch et al. [27] use the heuristic of Hoffman and
Nebel [26] where a breadth first search is used if services
have the same heuristic value.

Bonet and Geffner [28] build a heuristic by evaluating each
fact of the goal. Here a fact fg of the goal has an estimated
cost of the length of a minimal path through the planning state
space from the initial state. This leads to a heuristic:

h(s) =
∑

fg∈Sgoal

gs(fg) (1)

where

gs(fg) =

{
0 if fg ∈ S

max
s∈Services

[1 + gs(s.pre)] else (2)

Here Services is the set of all available services and s.pre
is the set of preconditions of the service s. The maximum
in Equation (2) is chosen because it forms an admissible
heuristic [28].

Mediratta and Srivastrava [29] introduce the heuristic of
Hoffman and Nebel [26] to an AND-OR graph as a plan. Here
the cost of each OR path through the graph is selected with
a minimum. For AND-connected nodes in the Graph the cost
function is summed up.

Fanjiang and Syu [30] use genetic algorithms for the
service composition, which does not contain any heuristics at
all. This is the same with Lécué et al. [31] who use reasoning
in OWL-DL (Web Ontology Language Description Logic) for
the selection of fitting services but no heuristics.

Regarding this state of the art we suggest that heuristics are
part of the future work in this domain [32]. This is based on
the performance issues described in the evaluation of the here
analysed papers. Furthermore, the heuristic can be used during
design time, to suggest services to the developer as part of a
semi-automatic service composition framework. During design
time, the actual execution and parametrisation of the service is
left to the developer. Thus, a heuristic does not need to select
purely executable services for a given state.

IV. DEVELOPMENT COMPONENTS

The method for semantic service management and devel-
opment makes use of two development tools, which are both
implemented as Eclipse plugins [33] and thus can seamlessly
be integrated into the developer’s usual workflow.

The overall architecture of the proposed development com-
ponents is shown in Figure 4. We differentiate between the
runtime, in which a service can be grounded to its real
parameters and execution environment, and the design time,
in which there are fewer resource constrains for the planning
and an expert is able to fine-tune the service composition in a
BPMN editor.

Here, black arrows describe the information flow, e.g., the
service matcher gets the service descriptions out of a service
repository and supplies the state-space-planner with fitting
services for a current state.

a) Design Time: At design time, the developer is sup-
ported by a BPMN editor to create service compositions.
This BPMN editor uses semantic annotations to describe
the functional and non-functional aspects of a service. These
descriptions are used by a planning component to build service
compositions (a sequence of services) to suggest to the user
while he is searching for reusable service for his composition.
This state space planner uses a service matcher to identify
useful services out of a service repository.

The result of this process is a BPMN description of a
service composition that can be deployed into a runtime.
This description can be quite abstract as we will describe in
Section IV-B. This abstraction allows for flexibility and thus
for an adaptation of the composition at runtime.

80

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Design TimeRuntime

Services

State-Space-
Planner

Service
Matching

QoS-Monitor Description
Blackboard

Ontology
Repository

Service Composer

HTN-Planner

QoS Service
Selector

Execution
Engine

BPMN Editor

Semantic
Annotation

BPMN Service Composition

Deployment

Grounded Service
Composition

SeMa 2

SSM

VSDT

Figure 4. Architecture of the development components.

b) Runtime: At runtime, the given service composition
is concretised. This is done since the resource consumption of
the general purpose planning is too high to be used at runtime.
To keep the introduced flexibility, the service composer uses a
HTN-planner (Hierarchical Task Network) to select between
alternative sub-plans. This is thought as a first principle planner
where plans are selected from a plan library [34]. As a one-step
plan, a service call is the atomic entity that can be replaced.
This service composer can replace unavailable services, or use
a QoS service selector to optimise the service composition to
some criteria. With ever more service compositions available
and thus more alternatives of sub-plans to search from, this
service composer becomes a fast planner with domain specific,
optimised service composition.

Another task of the service composer is the selection of
unknown parameters. Those are called the service grounding.
This might be, e.g., the resolution of a display device or the
rendered models, which are unknown during design time. Fur-
thermore, if a template of a service is part of the composition,
the concrete service instance needs to be chosen, before the
composition can be executed. Again this selection can be based
on the QoS parameters of the services.

The resulting grounded service composition is passed to
an execution engine. This execution engine reports QoS
parameters back to the QoS-Monitoring, which in parts then
ranks the services used to learn their quality parameters for
future references.

The service blackboard describes the available services
and their QoS behaviour. The service blackboard thus does
restrict the accessibility of services theoretically available
during design time and practically executable during runtime
– there might be political, organisational, or financial reasons
as to by whom services can be accessed – and lets the service
composer choose from alternatives.

All in all, this separation of runtime and design-time is
a trade-off between complexity and adaptability. Since the
automated creation of a service composition from scratch is
too expensive, the adaptation of existing plans might lose

on adaptiveness, but renders the system profitable through
reusability of plans.

In the following we describe the two involved develop-
ment components, namely the Semantic Service and Ontology
Manager (SSM) and the Visual Service Design Tool (VSDT)
in more detail.

A. Semantic Service and Ontology Manager

The description of the Semantic Service and Ontology
Manager is divided into an approach section and a short state-
of-the art section related to the semantic annotation of services.

1) Approach: In order to be able to integrate intelligent
planning algorithms, the environment has to come up with
the necessary infrastructure. One essential requirement in
this respect is the semantic description of functionalities or
services. Since current standards such as OWL-S [35] are not
easy to describe from scratch, we developed a plug-in called
Semantic Service Manager (SSM) [36], providing a set of fea-
tures supporting a semi-automatic description of services. The
core of SSM is an Ontology Manager (see Figure 5), which
enables the developer to include and utilize OWL ontologies
for the application in semantic service descriptions. However,
since many development approaches use other languages to
specify the domain of concern, such as the Eclipse Modeling
Framework (EMF), the Ontology Manager also provides a
transformation process from EMF to OWL.

SSM Environment
View

Service
Search View

Service
Description View

SSM JIAC
Agent Rule Editor Ontology

Management

Transformation

OWL-S <-> JIAC

Ecore -> OWL

WSDL -> OWL-S

JIAC-
File

Ecore
-File

WSD
L-File

OWL-
S-File

OWL-
File

BPMN Editor

Service
Matching

Description
Blackboard

Figure 5. Components of the Semantic Service Manager.

Based on the Ontology Manager the developer is then
able to describe the service according to name, description,
input and output parameters and finally preconditions and
effects. The latter ones can be described via SWRL, and for
this purpose SSM comes with a syntax highlighting editor
and structure parser. The description can then be utilized in
different ways. Either it can be deployed to a semantic service
repository (see Section V), it can be sent to a BPMN process
(see the next paragraph), or it can be linked to a service
of the multi-agent framework JIAC V (Java-based Intelligent
Agent Componentware, version 5) [37]. With these options at
hand, the developer can easily connect semantic descriptions
to services and is able to deploy them immediately.

81

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The second purpose of the SSM is the search and utilization
of existing and running services within a distributed environ-
ment. Therefore, the SSM provides a Service Discovery View
where the developer can define (incomplete) parameters of a
service and search the platform directory using the SeMa2

matcher. The developer can also adapt the weightings of the
different matching techniques used. After selecting one of the
services they can either be pushed to the Visual Service Design
Tool (VSDT) to use it within a BPMN process (see Figure 7),
or a code inclusion function can be triggered that inserts the
service call code into the open Java window.

The different ways how the SSM can be used for describing
or searching services or service templates and for importing
them into a complex process are shown in Figure 6.

Figure 6. Different ways of creating or searching services with the SSM and
using them in complex processes.

2) State-of-the-Art: Many of the works in the context of
semantic service management merely focus on service match-
making, but forget the design process, although being just
as important. However, some focus on the semantic markup.
The OWL-S editor [38] is a plug-in for Protégé, an open
source ontology editor. With it a complete creation and editing
of OWL-S descriptions is possible. Furthermore, the service
behind the description can be tested via a graphical user
interface. Drawbacks of the OWL-S editor are that it cannot
handle multiple ontologies, because of limitations of Protégé.
There is no connection to a framework, meaning that the editor
lacks usability. The authors also do not see the benefits of a
Java-to-OWL transformation. They argue that most commonly
the service is developed before the implementation in code.
Another editor for OWL-S is the OWL-S IDE [39]. It is a plug-
in for Eclipse and, contrary to the OWL-S editor, supports the
generation of OWL-S skeletons out of Java code. However, this
generation is limited to basic types due to the missing support
of ontologies. Furthermore, it does not support preconditions
nor effects.

B. Visual Service Design Tool

This section starts with a detailed description of the Visual
Service Design Tool followed by a state-of-the-art paragraph
related to process modelling.

1) Approach: While basic services are usually imple-
mented in the form of Java classes or equivalent, for ser-
vice compositions the Business Process Model and Notation
(BPMN) [40] has proven useful. Using the VSDT, existing

semantic services can be imported from the SSM and or-
chestrated to complex processes using the BPMN notation
(Figure 7).

Figure 7. Semantic service development tools with example usecase. Top:
VSDT editor showing process diagram; bottom: SSM view.

The VSDT is based on the Eclipse Graphical Modelling
Framework (GMF) and provides a rich visual editor for BPMN
processes [41]. It also provides means for process validation,
simulation/debugging, and export features to different exe-
cutable languages.

The BPMN editor integrates with the Semantic Service
Manager view in the way that services from the SSM can be
imported into the VSDT. Via a function in the User Interface
(UI), an accordant service description is added to the currently
opened VSDT process, together with data types representing
the different ontology concepts. That service can then be used
in a service task and combined with control flow, short scripts,
and other services to a complex process. Instead of an actual
service, the same approach can also be used for importing a
service template into the VSDT process, which will then be
matched to an actual service at runtime.

Accordingly, the BPMN service model used in the VSDT
had to be extended to allow for semantic information. While
the BPMN specification only accounts for Web service imple-
mentations – both for service- and for send- and receive-tasks
– we extended the model to allow for the implementation to
be either a Service or a Message Channel, according to the
more diverse means of interaction in JIAC, and in multi-agent
systems in general. Also, while the service description can
still be used for Web services, it supports additional attributes
for the service’s preconditions and effects, e.g., in the form of
SWRL expressions, and whether the service refers to an actual
service or a service template (Figure 8).

Figure 8. Extended Message- and Service-model used in VSDT BPMN
editor.

Next, those processes can be exported to executable lan-
guages such as BPEL (Business Process Execution Language)

82

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

processes [41] or JIAC agent behaviours [42], [43], the latter
being the execution environment used in this approach, which
will be discussed in detail in Section V. In the case of
JIAC agents, VSDT processes can either be compiled to
JIAC beans, encapsulating an accordant behaviour, or they
can be interpreted directly. In this work, we will focus on
the interpreting approach.

2) State-of-the-Art: BPMN [40] can be used for describing
services and service orchestrations in particular on a high level
of abstraction. BPMN provides a rich syntax for modelling
both the internal processes as well as the interactions of the
system, and can thus be seen as a combination of Activity
Diagrams and Sequence Diagrams of the Unified Modelling
Language (UML). Further, while the process diagrams are eas-
ily understandable, the underlying formal model provides the
attributes necessary to describe readily-executable programs.

BPMN is being used for modelling and generating service-
oriented systems in a number of other works and can be seen
as a de-facto standard for this task. Besides the mapping from
BPMN to BPEL that is included in the specification itself [40,
Chapter 14], alternative mappings have been proposed, e.g.,
by Ouyang et al. [44] and Mendling et al. [45]. Today, many
process management systems can also execute the BPMN
diagrams directly.

Besides those well-established paths, there are also ap-
proaches using BPMN for modelling agents and multi-agent
systems. For instance, in GPMN, Jander et al. [46] com-
bine BPMN processes with goal-hierarchies for Jadex agents
equipped with BPMN interpreters. In WADE [47], on the other
hand, a proprietary notation similar to BPMN is used, and the
processes are transformed to executable code for JADE (Java
Agent Development Framework).

Concerning the integration of semantics into BPMN, Bar-
nickel et al. extended the Oryx BPMN editor with ontology
matching capabilities, using OWL-DL [48], but to the best
of the authors’ knowledge there are no approaches towards
integrating semantic service matching into BPMN or accordant
process engines.

V. RUNTIME COMPONENTS

In this section we will discuss the different components
of the runtime environment. The services are executed as
part of a JIAC multi-agent system. This way, each service is
running on an individual agent, providing an adequate level of
modularity and encapsulation. The environment also provides
interfaces to other types of (web) services, such as WSDL
(Web Service Description Language), SOAP (Simple Object
Access Protocol), and REST (Representational State Transfer),
which can be integrated transparently with JIAC.

A. Multi-agent Framework
The execution environment is based on JIAC V (www.jiac.

de), a multi-agent framework also incorporating many aspects
of service-oriented architectures [37]. The agents are situated
on agent nodes (runtime containers).

Complementary to message-based communication, one of
the core mechanics of JIAC agents is to expose actions.
Depending on its scope, an action can be found and used
by other components of the same agent, by other agents on
the same node, by any agent on the network, or exposed as

a webservice to be used by different applications. Each JIAC
agent node has a directory of known agents and actions, both
on the same node as well as on other nodes, that can be used
for querying and finding specific agents and actions according
to templates. Given just the name, or the inputs and outputs
of an action, the directory will find and return an action that
matches that template (if such an action exists), which can
then be used for creating an accordant intention.

Each agent’s behaviours and capabilities are defined in sev-
eral agent beans, providing different general and application-
specific functions (see Figure 9).

Figure 9. Components of a JIAC multi-agent system and individual agents
(adapted from [49]).

Besides providing actions for others to use, agent beans
can also implement periodic behaviour, or behaviours to be
executed when the state of the agent changes (e.g., when it
is starting or stopping). Also, they can attach observers to
the agent’s memory to react, e.g., to incoming messages or
to changes in the environment. Finally, several application-
independent beans can be added to the agent or the agent
node as a whole, to provide certain functionalities, such as
communication, persistence, migration, or reactive behaviour.

Integrating the semantic service matcher into JIAC was
very natural and straightforward. The SeMa2 itself has been
wrapped into a JIAC agent node bean, i.e., there is one instance
of the matcher for each individual node, shared by all agents
on that node, hooking into the directory running on that node.
Whenever a semantic service template (as opposed to a plain
JIAC action template) is passed to the directory for service
lookup, the directory will delegate it to the semantic service
matcher bean, which will return the best matching service. To
the agent invoking the service, it is fully transparent whether
the found capability is a standard JIAC action or a semantic
service.

In order to utilise the service matching and planning
functionalities within the JIAC environment it was necessary
to extend the existing action model for agents by means of
a semantic service description model. The model is oriented
towards the OWL-S standard dividing information into Profile,
Process and Grounding parts. The latter can either reference
JIAC action information or it can define WSDL or REST
attributes.

B. WSDL and REST Web Service Integration

For interfacing with other services, the WSDL- and REST-
services integration beans can be used. Those two components
do both have the following two effects:

• all the JIAC actions accessible via the directory that
have the ‘webservice’ scope will be exposed to the
outside world as accordant WSDL or REST services,
respectively,

83

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• additional JIAC actions will be created and exposed,
representing each of the WSDL and REST services
known to those beans.

The respective input and output data types (e.g., XML schemas
in the case of WSDL web services) are mapped to correspond-
ing Java classes, and vice versa. The created web services
are hosted by the same agent node using an integrated Jetty
server. Thus, JIAC agents can seamlessly and transparently be
integrated with both, REST and WSDL services.

C. Semantic Service Repository
Each of the semantic services is associated with a URI

resource, holding their actual semantic descriptions in the form
of an OWL-S document. While in theory each of the agents (or
corresponding entities in a different runtime) could host their
respective service descriptions themselves, this approach is not
optimal, as the URI might change depending on where the
agent is running. Instead, a central Semantic Service Repository
is used for hosting the different service descriptions and their
relevant ontologies, each being identified by a unique and
invariant URI.

The service repository has been realised as a JIAC agent
node, encapsulating a Jetty web server and providing a number
of actions for deploying, searching, and fetching service de-
scriptions. It also supports multiple filters, e.g., for only show-
ing services that are currently running. Service descriptions
can be deployed to the repository either statically, using the
SSM tool, or dynamically whenever an agent providing the
respective service starts. The service repository automatically
parses the service descriptions and adapts all the internal URI
references, e.g., to the descriptions of the services’ inputs and
outputs within the same document, to its current server address,
where those resources are stored.

Each JIAC service, that is backed by a semantic service
description, has an attribute semanticURI referring to the
corresponding OWL-S resources. When the SeMa2 matcher
is invoked from within JIAC, the runtime will fetch the service
descriptions, pass those to the matcher, receive the result, and
finally return the action whose semanticURI corresponds to
that matching result.

Currently, we are working towards distributing the service
repository, to improve scalability for large numbers of services
and service requests, as well as the ability to automatically
assess the Quality-of-Service (QoS) of the invoked services,
e.g., latency and time-to-complete.

D. JIAC based BPMN Interpreter
One of several application-independent components for

JIAC agents is the process interpreter bean, enabling the agent
to interpret and execute BPMN processes created with the
VSDT [42].

The process interpreter bean is composed of three layers
(Figure 10): First, the process interpreter bean itself provides
actions for adding processes to be interpreted and for managing
already running processes. Also, it acts as an interface to
the agents, providing functionality for sending and receiving
messages and invoking other actions from within the BPMN
processes. Finally, it exposes all the processes (that have an
accordant start event) as actions so they can be used by other
agents.

Figure 10. Layered architecture of BPMN Interpreter Bean. [42]

Whenever a BPMN diagram is added to the process engine
bean for interpretation, an interpreter runtime is created, which
is responsible for each process spawned from this diagram. It
keeps track of start events and creates a new instance of that
process whenever an event corresponding to the respective pro-
cess start events occurs. Several volatile process instances are
responsible for running the individual processes spawned by
the runtime, evaluating conditions and assignments, executing
the different activities, and keeping track of the current state
of the process, i.e., which activities are ready for execution, as
well as the values of the different process variables. Depending
on the type of the activities, different actions are taken, e.g.,
sending or receiving a message, invoking another service,
executing some short script, or interacting with the user.

After one or more processes have been deployed to the
interpreter – either at start-up or using the above-mentioned
actions – in each step of the interpreter bean’s execution cycle,
each interpreter runtime will advance each of its associated
interpreter runtimes by one step, which in turn each execute
each activity that is currently in a ready or active state.

Employing JIAC’s communication and service infrastruc-
ture, the interpreted processes can discover and make use
of other JIAC actions, and – if the respective proxy beans
are present – of WSDL and REST services. If the semantic
service matcher is installed in the node, it is automatically
used for finding services according to the templates used in
the processes. The current state of the interpreter bean – the
active runtimes, their respective process instances, and their
internal states – can be monitored using a simple UI, also
providing an interface for manually starting processes and for
the processes to interact with the user, e.g., for BPMN user
tasks, or for querying missing service parameters.

While this UI is intended for developers, a similar generic
UI can also be used for invoking the services and interacting
with the user in a more end-user friendly way, as we will show
in the following.

E. Smart Personal Assistant and UI Renderer

The Smart Personal Assistant (SPA) is a UI framework for
quickly developing adaptive, multimodal user interfaces for
services [50], and is used in a number of research projects.
While the usual SPA UI is manually created for the service
at hand and styled to fit the design of the respective project,
a special Renderer UI has been created, allowing to start
any service, and also providing callbacks for user interaction
triggered by the invoked service. Similar to the interpreter
monitoring UI, input fields for querying the service parameters
and for displaying the output are automatically derived from
the respective classes, using the Java Reflection API.

While those generic, automatically generated UIs do not
look as polished as the manually crafted ones, they allow

84

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for quickly prototyping new complex services with rich user
interaction and for integrating them into the user’s workflow.

All of the here described components are open source and
available for download from www.jiac.de.

VI. METHODOLOGY

In the following, we will sketch a process of how the
different components introduced in the last three sections are
used together to form a methodology of semantic service en-
gineering. At its base, the method is similar to other software-
and service engineering methodologies, but combines those
with requirements for and contributions of semantic services.
An overview of the methodology is shown in Figure 11,
using the BPMN notation, and highlighting how the different
components are used in the stages of the process. In the
following, we will describe the different steps in more detail.

A. Ontology Engineering
The first step in creating semantic services is to model the

ontology that will be used for describing the service’s inputs,
outputs, precondition and effect, if any. This is particularly
important, since one of the main motivations for semantic
services is for those services to be easily findable, reusable,
and composable with other services; thus, whenever possible
it should be the aim to reuse, or, if necessary, extend existing
ontologies, instead of creating new ones. This step is also
concerned with mapping the ontological concepts, for example
described in OWL, to a representation that is closer to the ser-
vice implementation, e.g., Java classes (or vice versa, starting
with Java classes and generating according OWL ontologies).

The new or modified ontologies are then uploaded to a
server hosting a repository of known ontologies, so they can
be used in the next step, as well as in other services. There
is no specific tool for this step in our method. Ontologies can
be created, e.g., with Protégé [51], or generated from existing
Java classes or EMF models [52].

B. Creating Semantic Service Description
Next is the creation of the semantic service description

itself, defining the “contract” of the service. Of course, this
step is not particular for semantic services, but is a common
practice for all of service- and software engineering. The major
difference is that besides name, textual description, input and
output parameter, also the preconditions and effects of a service
can be defined. Especially the latter, which in our approach can
be described with the semantic rule language SWRL, extend
the attributes of a service in a way that matching or planning
processes can deduce its purpose and its formal prerequisites.
However, as describing semantic terms can be challenging, we
paid attention to provide a user-friendly editor with syntax-
highlighting, auto-completion and validation parser. Currently
missing, but contemplated is the integration of several QoS
attributes, making the selection of services also sensitive to
non-functional aspects.

The new service description is uploaded to a service
repository, adding it to the list of services usable by the
semantic service matcher and planner. In our method, the SSM
tool is used for creating the service descriptions using OWL-
S. Existing ontologies can be browsed (but not edited) for
selecting concepts for input and output, while preconditions
and effects are specified using SWRL. The finalized service

description can then be deployed to the repository and an ac-
cordant stub for the service implementation can be generated.

C. Service- and Process Engineering
The bulk of the service development process is occu-

pied with engineering the service’s implementation. While
the service’s method declaration can be generated from the
semantic service description, its body has to be implemented
by a developer. Here, we can differentiate two main activities:
Identifying and integrating existing services, and developing
the logic that combines those services to a new service, or
process, with added value.

There are three ways how services can be searched, identi-
fied, and imported into the currently developed process, using
the SSM tool:

• The service can be searched for, using a semantic
service template, and the service best matching the
template is integrated into the current service.

• In case no single service satisfies the template, the
semantic service planner can be used to automatically
find a service composition that, as a whole, matches
the template; the individual services of that composi-
tion are then integrated into the current service in the
appropriate sequence.

• Instead of searching services at design time, the tem-
plate that would be used for matching the service can
itself be integrated into the current service, deferring
the search and matching process to runtime.

Of course, there is also a fourth case: That no service or
service composition can be found that fulfils the template. In
this case, a new service has to be created, thus starting a new
instance of the service development process.

The service logic can be created in two ways: Either in
the form of a Java method, or, using the VSDT, as a BPMN
process, which is later either mapped to Java (JIAC agent
beans) or interpreted directly. Which one to choose mainly
depends on the ratio of service reuse to “original” service logic:
In case the new service is mainly a composition of existing
basic services, they can very well be modelled visually as
business processes, but if they contain complex calculations
or make extensive use of third-party libraries (that are not
available as services), then implementing the services in plain
Java is the better choice. As a middle way, it is also possible
to integrate short snippets of Java code into a BPMN process,
using script tasks.

D. Testing the Implementation against the Specification
The last step before deployment is testing, to ensure that

the services’ implementations comply with their semantic
descriptions. Of course, testing plays a well-established role
in software engineering and is not particular to semantic ser-
vice development. However, the presence of formal semantic
descriptions impose both an obligation and an opportunity for
(automated) unit testing.

On the one hand, while even a regular function or service
that does not comply with its documentation is always a
nuisance, a semantic service that violates its stated effect could
threaten the functionality of the entire system it is embedded
in, as automated planners will rely on that information. On

85

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Semantic Service Management and Development Process, as a BPMN process, and associated components: Green: Semantic Service Core; Blue:
Development Tools; Red: Execution Environment. The central activity is an ad-hoc subprocess, executing the embedded tasks as needed, in no fixed order.

the other hand, since the intended behaviour of the service has
already been specified in its precondition and effect, writing
the actual tests becomes very straightforward.

While this is currently not implemented in our approach, it
would also be possible to automatically generate unit tests from
the semantic service description, particularly the service’s pre-
conditions and according effects. For this, the input parameters
can be generated, setting all attributes that are not specified in
the precondition randomly; then, the expected output can be
inferred from the service’s effect, thus testing the actual result
of the service invocation against the expected value.

In case the service does not comply with the tests (i.e.,
with its stated preconditions and effects), the usual course
of action is, of course, to fix the service. However, in some
cases this may also expose flaws in the service’s input, output,
precondition and effect (IOPE) descriptions. In this case, the
process has to backtrack and update the semantic service
description and adapt or extend the service’s implementation
accordingly.

E. Deployment and Runtime Monitoring
The final step is to deploy the new service to the runtime

environment. Depending on whether the service has been
implemented directly as a Java class (e.g., a JIAC agent bean
exposing an accordant action), or in the form of a BPMN
process diagram orchestrating different existing services, the
deployment process is slightly different.

• In case the service has been implemented directly in
Java and is meant to be a basic service to be used as
a building block for other services, it is best to create
a new agent exclusively for that service and to deploy
it to the runtime server.

• In case of a service composition created as a BPMN
process, the process diagram can be deployed to an
already running process interpreter agent. This way,
deployment and undeployment is very dynamic, and
the interpreter also provides basic capabilities for
runtime monitoring and user interaction. Alternatively,
the process can also be automatically translated to Java
code and deployed as in the above mentioned case.

In both cases, the services are deployed to the JIAC runtime
environment and can be invoked as actions, and searched for

using the semantic service matcher. Using the WSDL and
REST integration beans, the services will also be exposed as
WSDL or REST services, respectively, and can transparently
use other services available in those formats.

VII. SEMANTIC SERVICE MANAGEMENT IN PRACTICE

In this section, we will explore how the semantic service
engineering method discussed in this paper can be applied in
practice. For this, we will have a look at two scenarios: First,
we describe how the service matcher and the development tools
have been used in a recently completed research project in the
e-mobility domain. Then, we continue to describe one of our
current projects, in which we are extending our approach for
the augmented reality domain.

A. Semantic Services for E-Mobility
In the project EMD (Extendable and adaptive E-Mobility

Services), a use case within the transportation domain was
constructed to demonstrate the use of the developed tools,
the methodology, and the basic services, as seen in Figure 7.
The process was created using the VSDT editor, orchestrating
services from the SSM. The finished process is deployed to
the JIAC BPMN interpreter for execution and the SeMa2 is
used for service matching at runtime.

Our first scenario combines different basic services for
searching for charging stations, reserving parking spaces and
charging slots, as well as access control to the same. First, the
process queries the user’s information, particularly w.r.t. her
current location, and available subscriptions for car sharing
and parking space providers. It then uses the location to find
charging stations that are close by using services from charging
station provides for whom the user has a subscription. Those
charging stations are then presented in a list for the user to
choose from, using the UI renderer, and the user is asked for
the time of reservation. The corresponding charging station
reservation service is matched and the booking is made, if
that time slot is not already taken, or the user is asked again.
Finally, as soon as the user signals that she arrived at the
location, another service is matched and invoked to handle the
access control, if any.

In this example, the SeMa2 can be used for finding relevant
services for searching and reserving charging stations, depend-
ing on the user’s subscriptions. For this, the User object is

86

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Service orchestration in the e-mobility use-case.

passed as an input parameter or as a context object to the ser-
vice matcher, and the different services, having a precondition
like hasSubscription(?user, "Provider X"), can
then be selected by the semantic service matcher. This match-
ing can be either be done a-priori, at design time, using the
SSM for finding a set of matching services for one specific
provider, or it can be deferred to runtime, making the selected
services depending on the current user.

Of course, this required the relevant services not only to
be semantically annotated, but to be so using the same domain
model, or ontology, as used in the rest of the system. Since this
is usually not the case, particularly when dealing with service
provided by third parties (such as e-mobility providers) some
of those services have to be wrapped accordingly.

B. Semantic Service Management for Augmented Reality
Another technical domain where semantic service manage-

ment has the potential to lead to a boost of development is
the area of augmented reality (AR) services. In the project
AcRoSS (Augmented-Reality-based Product-Service Systems,
more information available at: www.across-ar.de) we aim to
set up a library for AR-services that can be used together
with the software components presented in this paper in order
to develop problem tailored solutions for small and medium-
sized enterprises, for whom it is currently extremely hard and
expensive to develop such specific solutions.

However, services for AR-glasses do have very strict re-
quirements that have to be met. For instance, the hardware
on the devices is currently still limited. Therefore, there has
to be a very efficient concept for adaptive service processes.
Furthermore, in many scenarios the glasses that will be used
will be offline, meaning that the matching procedure and the
services have to be located on the device itself. These issues
as well as service specific aspects, like the quality of object
recognition services, lead to the need for a service management
concept that takes Quality-of-Service aspects into account.

One scenario within the AcRoSS project is about mainte-
nance and repair of exposure machines, which are used for
the creation of printing plates for the newspaper industry.
The maintenance task includes the cleaning of exposure rolls,
which means that they have to be taken out of the machine,
maintained and correctly set into place again afterwards.
Although this task sounds simple in first place, it is quite
error-prone, since the rolls can also be set into place with the
wrong direction or at the wrong place within the machine. The
same challenge holds for even more complicated repair tasks.
Currently, very experienced employees have to do these tasks
at the client side, which is expensive. Using AR, the employee
will be supported by services that recognize each part of the

machine, search for related manuals in the backend, guide the
employee what to do with the component and also check and
display the machine’s status. In order not to redevelop each
process again and again for every machine, the process will be
designed in an adaptive way, meaning that specific services like
the retrieval of manuals will be selected dynamically as well
as the request for the machine’s status. Furthermore, at design
time the developer will be able to select object recognition
services via given Quality-of-Service parameters.

At the time this paper has been written the project was in
the specification phase. A thorough evaluation will be done
and published at a later point in time.

VIII. CONCLUSION

In this article, we presented an approach for semanti-
cally matching services and for combining those services
to complex plans, both at design-time and at runtime, as
well as a set of development tools and an accordant runtime
environment for generating adaptive and flexible systems in
service-oriented environments. Those planning components,
development tools and runtime have been integrated into a
methodology for semantic service management and engineer-
ing, covering all phases from semantic service description and
service development up to testing and runtime monitoring. In
this approach, semantic services are orchestrated in adaptive
business processes, based on BPMN, where service templates
can be specified within the process and dynamically matched
to concrete services at runtime. This method has successfully
been applied, among others, in a research project in the e-
mobility sector. Currently, the same approach is adapted and
extended for services in the augmented reality domain.

In the future, we plan to address a number of challenges
related to automated service composition and planning [32].
Among others, we want to extend service matching and plan-
ning by taking quality-of-service aspects into account. Also,
we want to investigate the use of heuristics for more efficient
planning, to foster the usefulness of service planning in real-
world applications.

ACKNOWLEDGEMENTS

This work is based on projects funded by the German
Federal Ministry of Economic Affairs and Energy under the
funding reference numbers 16SBB007A and 01MD16016F.

REFERENCES
[1] J. Fähndrich, T. Küster, and N. Masuch, “Semantic service management

for enabling adaptive and evolving processes,” in Proc. of 11th Int. Conf.
on Internet and Web Applications and Services (ICIW 2016), Valencia,
Spain, May 22–26 2016, pp. 46–53.

[2] M. Klusch, U. Küster, A. Leger, D. Martin, and M. Paolucci,
“5th International Semantic Service Selection Contest - Performance
Evaluation of Semantic Service Matchmakers,” Nov. 2012, last
access: 2016/11/28. [Online]. Available: http://www-ags.dfki.uni-sb.de/
∼klusch/s3/s3c-2012-summary-report.pdf

[3] J. Fähndrich, N. Masuch, H. Yildirim, and S. Albayrak, “Towards auto-
mated service matchmaking and planning for multi-agent systems with
OWL-S – approach and challenges,” in Service-Oriented Computing
- ICSOC 2013 Workshops, ser. Lecture Notes in Computer Science,
A. Lomuscio, S. Nepal, F. Patrizi, B. Benatallah, and I. Brandi, Eds.
Springer International Publishing, 2014, vol. 8377, pp. 240–247.

[4] J. Fähndrich, S. Weber, and S. Ahrndt, “Design and Use of a Semantic
Similarity Measure for Interoperability Among Agents,” in Multiagent
System Technologies. Springer International Publishing, 2016, pp.
41–57.

87

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] P. A. Morris, “Combining expert judgments: A Bayesian approach,”
Management Science, vol. 23, no. 7, 1977, pp. 679–693.

[6] M. Stone, “The opinion pool,” The Annals of Mathematical Statistics,
vol. 32, no. 4, 1961, pp. 1339–1342.

[7] C. Genest, “Pooling operators with the marginalization property,” The
Canadian Journal of Statistics/La Revue Canadienne de Statistique,
vol. 12, no. 2, 1984, pp. 153–163.

[8] D. Dyer. Watchmaker Framework. Last access: 2016/05/11. [Online].
Available: http://watchmaker.uncommons.org/ (2006)

[9] W. L. Goffe, G. D. Ferrier, and J. Rogers, “Global optimization of
statistical functions with simulated annealing,” Journal of Econometrics,
vol. 60, no. 1-2, Jan. 1994, pp. 65–99.

[10] M. Klusch and P. Kapahnke. The Semantic Web Service Matchmaker
Evaluation Environment (SME2). Last access: 2016/11/28. [Online].
Available: http://projects.semwebcentral.org/projects/sme2/ (2008)

[11] M. Klusch, P. Kapahnke, and I. Zinnikus, “SAWSDL-MX2: A machine-
learning approach for integrating semantic web service matchmaking
variants,” in 2009 IEEE International Conference on Web Services
(ICWS), IEEE Computer Society. IEEE, 2009, pp. 335–342.

[12] M. Klusch and P. Kapahnke, “The iSeM matchmaker: A flexible
approach for adaptive hybrid semantic service selection,” vol. 15, Sep.
2012, pp. 1–14.

[13] M. Klusch, B. Fries, and K. Sycara, “OWLS-MX: A hybrid semantic
web service matchmaker for OWL-S services,” Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, vol. 7, no. 2, Apr.
2009, pp. 121–133.

[14] F. E. Gmati, N. Y. Ayadi, A. Bahri, S. Chakhar, and A. Ishizaka, “A
framework for parameterized semantic matchmaking and ranking of
web services,” in Proc. of 12th Int. Conf. on Web Information Systems
and Technologies, 2016, pp. 54–65.

[15] M. Ghallab, D. S. Nau, and P. Traverso, Automated Planning: Theory
& Practice, D. E. M. Penrose, Ed. Morgan Kaufmann, 2008.

[16] H. Saboohi and S. A. Kareem, “A resemblance study of test collec-
tions for world-altering semantic web services,” in Int. MultiConf. of
Engineers and Computer Scientists (IMECS), vol. I, 2011, pp. 716–720.

[17] P. Doherty, W. Lukaszewicz, and A. Szalas, “Efficient reasoning using
the local closed-world assumption,” in Agents and Computational
Autonomy. Springer Berlin Heidelberg, Jan. 2003, pp. 49–58.

[18] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” Web Semant., vol. 5, no. 2, Jun. 2007,
pp. 51–53.

[19] G. Rodrı́guez, Á. Soria, and M. Campo, “Artificial intelligence in
service-oriented software design,” Engineering Applications of Artificial
Intelligence, vol. 53, no. C, Aug. 2016, pp. 86–104.

[20] G. Markou and I. Refanidis, “Non-deterministic planning methods for
automated web service composition,” Artif. Intell. Research, vol. 5,
no. 1, 2016, p. 14.

[21] G. Zou, Y. Gan, Y. Chen, and B. Zhang, “Dynamic composition of
Web services using efficient planners in large-scale service repository,”
Knowledge-Based Systems, vol. 62, May 2014, pp. 98–112.

[22] G. Zou et al., “QoS-aware dynamic composition of Web services using
numerical temporal planning,” 2012.

[23] G. Zou, Y. Chen, Y. Xu, R. Huang, and Y. Xiang, “Towards automated
choreographing of web services using planning,” AAAI, 2012.

[24] P. Rodriguez-Mier, M. Mucientes, and M. Lama, “Automatic web
service composition with a heuristic-based search algorithm,” in 2011
IEEE International Conference on Web Services (ICWS). IEEE, 2011,
pp. 81–88.

[25] H. Meyer and M. Weske, “Automated Service Composition Using
Heuristic Search,” in Agents and Computational Autonomy. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 81–96.

[26] J. Hoffmann and B. Nebel, “The FF Planning System: Fast Plan
Generation Through Heuristic Search,” Journal of Artificial Intelligence
Research, vol. 14, no. 1, 2001.

[27] M. Klusch and A. Gerber, “Fast Composition Planning of OWL-S
Services and Application,” in Proc. of European Conference on Web
Services (ECOWS ’06). IEEE, 2006, pp. 181–190.

[28] B. Bonet and H. Geffner, “Planning as heuristic search,” Artificial
Intelligence, vol. 129, no. 1-2, Jun. 2001, pp. 5–33.

[29] A. Mediratta and B. Srivastava, “Applying planning in composition of
web services with a user-driven contingent planner,” IBM Research,
2006.

[30] Y.-Y. FanJiang and Y. Syu, “Semantic-based automatic service compo-
sition with functional and non-functional requirements in design time:
A genetic algorithm approach,” Information and Software Technology,
vol. 56, no. 3, Mar. 2014, pp. 352–373.

[31] F. Lécué, A. Léger, and A. Delteil, “DL Reasoning and AI Planning
for Web Service Composition,” in 2008 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology.
IEEE, 2008, pp. 445–453.

[32] M. Lützenberger, T. Küster, N. Masuch, and J. Fähndrich, “Multi-agent
systems in practice – when research meets reality,” in Proc. of 15th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2016),
J. Thangarajah, K. Tuyls, C. Jonker, and S. Marsella, Eds. Singapore:
IFAAMAS, May 2016, pp. 796–805.

[33] Eclipse Foundation. Eclipse. Last access: 2016/11/28. [Online].
Available: http://www.eclipse.org/ (2016)

[34] L. de Silva, S. Sardiña, and L. Padgham, “First Principles Planning in
BDI Systems,” in Proccedings of the 8th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2009),
C. Sierra, K. S. Decker, and J. S. Sichman, Eds. Budapest, Hungary:
IFAAMAS, May 2009, pp. 1105–1112.

[35] D. Martin et al., “OWL-S: Semantic Markup for Web Services,”
Website, Tech. Rep., Nov. 2004. [Online]. Available: http://www.w3.
org/Submission/2004/SUBM-OWL-S-20041122/

[36] N. Masuch, C. Kuster, and S. Albayrak, “Semantic service manager–
enabling semantic web technologies in multi-agent systems,” in Pro-
ceedings of the Joint Workshops on Semantic Web and Big Data
Technologies, INFORMATIK 2014, Stuttgart, Germany, 2014, pp. 499–
510.

[37] M. Lützenberger, T. Konnerth, and T. Küster, “Programming of multi-
agent applications with JIAC,” in Industrial Agents – Emerging Appli-
cations of Software Agents in Industry, P. Leitão and S. Karnouskos,
Eds. Elsevier, 2015, pp. 381–400.

[38] D. Elenius et al., “The OWL-S editor – a development tool for semantic
web services,” in The Semantic Web: Research and Applications.
Springer, 2005, pp. 78–92.

[39] N. Srinivasan, M. Paolucci, and K. Sycara, “Semantic web service
discovery in the OWL-S IDE,” in Proceedings of the 39th Annual
Hawaii International Conference on System Sciences - Volume 06, ser.
HICSS ’06. Washington, DC, USA: IEEE Computer Society, 2006.

[40] OMG, “Business process model and notation (BPMN) version 2.0,”
Object Management Group, Specification formal/2011-01-03, 2011.

[41] T. Küster and A. Heßler, “Towards transformations from BPMN to
heterogeneous systems,” in Business Process Management Workshops,
ser. LNBIP, D. Ardagna, M. Mecella, and J. Yang, Eds. Springer Berlin
Heidelberg, 2009, vol. 17, pp. 200–211.

[42] T. Küster, A. Heßler, and S. Albayrak, “Process-oriented modelling, cre-
ation, and interpretation of multi-agent systems,” International Journal
of Agent-Oriented Software Engineering, 2016, to appear.

[43] T. Küster, M. Lützenberger, and S. Albayrak, “A formal description of
a mapping from business processes to agents,” in Engineering Multi-
Agent Systems, ser. LNAI, M. Baldoni, L. Baresi, and M. Dastani, Eds.
Springer International Publishing, 2015, vol. 9318, pp. 153–170.

[44] C. Ouyang, M. Dumas, W. M. P. van der Aalst, A. H. M. ter Hofstede,
and J. Mendling, “From business process models to process-oriented
software systems,” ACM Transactions on Software Engineering and
Methodology, vol. 19, no. 1, August 2009, pp. 1–37.

[45] J. Mendling, K. B. Lassen, and U. Zdun, “On the transformation of
control flow between block-oriented and graph-oriented process mod-
elling languages,” International Journal of Business Process Integration
and Management (IJBPIM), vol. 3, no. 2, 2008, pp. 96–108.

[46] K. Jander, L. Braubach, A. Pokahr, W. Lamersdorf, and K. Wack, “Goal-
oriented processes with GPMN,” International Journal on Artificial
Intelligence Tools, vol. 20, no. 6, 2011, pp. 1021–1041.

[47] F. Bergenti, G. Caire, and D. Gotta, “Interactive workflows with
WADE,” 2012 IEEE 21st International Workshop on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises, vol. 0, 2012, pp.
10–15.

88

International Journal on Advances in Internet Technology, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/internet_technology/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[48] N. Barnickel, J. Böttcher, and A. Paschke, “Semantic mediation of
information flow in cross-organizational business process modeling,” in
Proc. of 5th Int. Workshop on Semantic Business Process Management
SBPM 2010, held in conjunction with the European Semantic Web
Conference (ESWC 2010), Heraklion, Greece, May 2010, pp. 21–28.

[49] T. Küster, A. Heßler, and S. Albayrak, “Towards process-oriented
modelling and creation of multi-agent systems,” in Engineering Multi-
Agent Systems, ser. LNAI, F. Dalpiaz, J. Dix, and M. B. van Riemsdijk,
Eds. Springer International Publishing, 2014, vol. 8758, pp. 163–180.

[50] N. Braun, R. Cissée, and S. Albayrak, “An agent-based approach to

user-initiated semantic service interconnection,” in Service-Oriented
Computing: Agents, Semantics, and Engineering: AAMAS 2007 In-
ternational Workshop, SOCASE 2007, Honolulu, HI, USA, May 14,
2007. Proceedings, J. Huang et al., Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 49–62.

[51] Stanford. Protégé. Last access: 2016/11/28. [Online]. Available:
http://protege.stanford.edu/ (2016)

[52] Eclipse Foundation. Eclipse Modeling Framework (EMF). Last
access: 2016/11/28. [Online]. Available: https://eclipse.org/modeling/
emf/ (2016)

www.iariajournals.org

International Journal On Advances in Intelligent Systems

issn: 1942-2679

International Journal On Advances in Internet Technology

issn: 1942-2652

International Journal On Advances in Life Sciences

issn: 1942-2660

International Journal On Advances in Networks and Services

issn: 1942-2644

International Journal On Advances in Security

issn: 1942-2636

International Journal On Advances in Software

issn: 1942-2628

International Journal On Advances in Systems and Measurements

issn: 1942-261x

International Journal On Advances in Telecommunications

issn: 1942-2601

