


The International Journal on Advances in Internet Technology is published by IARIA.

ISSN: 1942-2652

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Internet Technology, issn 1942-2652

vol. 7, no. 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Internet Technology, issn 1942-2652

vol. 7, no. 1 & 2, year 2014, <start page>:<end page> , http://www.iariajournals.org/internet_technology/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2014 IARIA



International Journal on Advances in Internet Technology

Volume 7, Number 1 & 2, 2014

Editor-in-Chief

Alessandro Bogliolo, Universita di Urbino, Italy

Editorial Advisory Board

Lasse Berntzen, Vestfold University College - Tonsberg, Norway

Michel Diaz, LAAS, France

Evangelos Kranakis, Carleton University, Canada

Bertrand Mathieu, Orange-ftgroup, France

Editorial Board

Jemal Abawajy, Deakin University, Australia

Chang-Jun Ahn, School of Engineering, Chiba University, Japan

Sultan Aljahdali, Taif University, Saudi Arabia

Shadi Aljawarneh, Isra University, Jordan

Giner Alor Hernández, Instituto Tecnológico de Orizaba, Mexico

Onur Alparslan, Osaka University, Japan

Feda Alshahwan, The University of Surrey, UK

Ioannis Anagnostopoulos, University of Central Greece - Lamia, Greece

M.Ali Aydin, Istanbul University, Turkey

Gilbert Babin, HEC Montréal, Canada

Faouzi Bader, CTTC, Spain

Kambiz Badie, Research Institute for ICT & University of Tehran, Iran

Jasmina Baraković Husić, BH Telecom, Bosnia and Herzegovina

Ataul Bari, University of Western Ontario, Canada

Javier Barria, Imperial College London, UK

Shlomo Berkovsky, NICTA, Australia

Lasse Berntzen, Vestfold University College - Tønsberg, Norway

Nik Bessis, University of Derby, UK

Jun Bi, Tsinghua University, China

Marco Block-Berlitz, Freie Universität Berlin, Germany

Christophe Bobda, University of Arkansas, USA

Alessandro Bogliolo, DiSBeF-STI University of Urbino, Italy

Thomas Michael Bohnert, Zurich University of Applied Sciences, Switzerland

Eugen Borcoci, University "Politehnica"of Bucharest, Romania

Luis Borges Gouveia, University Fernando Pessoa, Portugal

Fernando Boronat Seguí, Universidad Politecnica de Valencia, Spain

Mahmoud Boufaida, Mentouri University - Constantine, Algeria

Christos Bouras, University of Patras, Greece



Agnieszka Brachman, Institute of Informatics, Silesian University of Technology, Gliwice, Poland

Thierry Brouard, Université François Rabelais de Tours, France

Dumitru Dan Burdescu, University of Craiova, Romania

Carlos T. Calafate, Universitat Politècnica de València, Spain

Christian Callegari, University of Pisa, Italy

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Miriam A. M. Capretz, The University of Western Ontario, Canada

Ajay Chakravarthy, University of Southampton IT Innovation Centre, UK

Chin-Chen Chang, Feng Chia University, Taiwan

Ruay-Shiung Chang, National Dong Hwa University, Taiwan

Tzung-Shi Chen, National University of Tainan, Taiwan

Xi Chen, University of Washington, USA

Dickson Chiu, Dickson Computer Systems, Hong Kong

IlKwon Cho, National Information Society Agency, South Korea

Andrzej Chydzinski, Silesian University of Technology, Poland

Noël Crespi, Telecom SudParis, France

Antonio Cuadra-Sanchez, Indra, Spain

Javier Cubo, University of Malaga, Spain

Alfredo Cuzzocrea, University of Calabria, Italy

Jan de Meer, smartspace®lab.eu GmbH, Germany

Sagarmay Deb, Central Queensland University, Australia

Javier Del Ser, Tecnalia Research & Innovation, Spain

Philipe Devienne, LIFL - Université Lille 1 - CNRS, France

Kamil Dimililer, Near East Universiy, Cyprus

Martin Dobler, Vorarlberg University of Applied Sciences, Austria

Eugeni Dodonov, Intel Corporation- Brazil, Brazil

Jean-Michel Dricot, Université Libre de Bruxelles, Belgium

Matthias Ehmann, Universität Bayreuth, Germany

Tarek El-Bawab, Jackson State University, USA

Nashwa Mamdouh El-Bendary, Arab Academy for Science, Technology, and Maritime Transport, Egypt

Mohamed Dafir El Kettani, ENSIAS - Université Mohammed V-Souissi, Morocco

Marc Fabri, Leeds Metropolitan University, UK

Armando Ferro, University of the Basque Country (UPV/EHU), Spain

Anders Fongen, Norwegian Defence Research Establishment, Norway

Giancarlo Fortino, University of Calabria, Italy

Kary Främling, Aalto University, Finland

Steffen Fries, Siemens AG, Corporate Technology - Munich, Germany

Ivan Ganchev, University of Limerick, Ireland

Shang Gao, Zhongnan University of Economics and Law, China

Kamini Garg, University of Applied Sciences Southern Switzerland, Lugano, Switzerland

Rosario Giuseppe Garroppo, Dipartimento Ingegneria dell'informazione - Università di Pisa, Italy

Thierry Gayraud, LAAS-CNRS / Université de Toulouse / Université Paul Sabatier, France

Christos K. Georgiadis, University of Macedonia, Greece

Katja Gilly, Universidad Miguel Hernandez, Spain

Feliz Gouveia, Universidade Fernando Pessoa - Porto, Portugal

Kannan Govindan, Crash Avoidance Metrics Partnership (CAMP), USA



Bill Grosky, University of Michigan-Dearborn, USA

Vic Grout, Glyndŵr University, UK

Jason Gu, Singapore University of Technology and Design, Singapore

Christophe Guéret, Vrije Universiteit Amsterdam, Nederlands

Frederic Guidec, IRISA-UBS, Université de Bretagne-Sud, France

Bin Guo, Northwestern Polytechnical University, China

Gerhard Hancke, Royal Holloway / University of London, UK

Arthur Herzog, Technische Universität Darmstadt, Germany

Rattikorn Hewett, Whitacre College of Engineering, Texas Tech University, USA

Nicolas Hidalgo, Yahoo! Research Latin America, France

Quang Hieu Vu, EBTIC, Khalifa University, Arab Emirates

Hiroaki Higaki, Tokyo Denki University, Japan

Eva Hladká, Masaryk University, Czech Republic

Dong Ho Cho, Korea Advanced Institute of Science and Technology (KAIST), Korea

Anna Hristoskova, Ghent University - IBBT, Belgium

Ching-Hsien (Robert) Hsu, Chung Hua University, Taiwan

Christian Hübsch, Institute of Telematics, Karlsruhe Institute of Technology (KIT), Germany

Chi Hung, Tsinghua University, China

Edward Hung, Hong Kong Polytechnic University, Hong Kong

Linda A. Jackson, Michigan State University, USA

Raj Jain, Washington University in St. Louis , USA

Edward Jaser, Princess Sumaya University for Technology - Amman, Jordan

Terje Jensen, Telenor Group Industrial Development / Norwegian University of Science and Technology, Norway

Yasushi Kambayashi, Nippon Institute of Technology, Japan

Georgios Kambourakis, University of the Aegean, Greece

Atsushi Kanai, Hosei University, Japan

Henrik Karstoft , Aarhus University, Denmark

Dimitrios Katsaros, University of Thessaly, Greece

Ayad ali Keshlaf, Newcastle University, UK

Reinhard Klemm, Avaya Labs Research, USA

Samad Kolahi, Unitec Institute Of Technology, New Zealand

Dmitry Korzun, Petrozavodsk State University, Russia / Aalto University, Finland

Evangelos Kranakis, Carleton University - Ottawa, Canada

Slawomir Kuklinski, Warsaw University of Technology, Poland

Andrew Kusiak, The University of Iowa, USA

Mikel Larrea, University of the Basque Country UPV/EHU, Spain

Frédéric Le Mouël, University of Lyon, INSA Lyon / INRIA, France

Nicolas Le Sommer, Université Européenne de Bretagne, France

Juong-Sik Lee, Nokia Research Center, USA

Wolfgang Leister, Norsk Regnesentral ( Norwegian Computing Center ), Norway

Clement Leung, Hong Kong Baptist University, Hong Kong

Man-Sze Li , IC Focus, UK

Longzhuang Li, Texas A&M University-Corpus Christi, USA

Yaohang Li, Old Dominion University, USA

Jong Chern Lim, University College Dublin, Ireland

Lu Liu, University of Derby, UK



Damon Shing-Min Liu, National Chung Cheng University, Taiwan

Michael D. Logothetis, University of Patras, Greece

Malamati Louta, University of Western Macedonia, Greece

Maode Ma, Nanyang Technological University, Singapore

Elsa María Macías López, University of Las Palmas de Gran Canaria, Spain

Olaf Maennel, Loughborough University, UK

Zoubir Mammeri, IRIT - Paul Sabatier University - Toulouse, France

Yong Man, KAIST (Korea advanced Institute of Science and Technology), South Korea

Sathiamoorthy Manoharan, University of Auckland, New Zealand

Chengying Mao, Jiangxi University of Finance and Economics, China

Brandeis H. Marshall, Purdue University, USA

Sergio Martín Gutiérrez, UNED-Spanish University for Distance Education, Spain

Constandinos Mavromoustakis, University of Nicosia, Cyprus

Hamid Mcheick, Université du Québec à Chicoutimi, Canada

Shawn McKee, University of Michigan, USA

Stephanie Meerkamm, Siemens AG in Erlangen, Germany

Kalogiannakis Michail, University of Crete, Greece

Peter Mikulecky, University of Hradec Kralove, Czech Republic

Moeiz Miraoui, Université du Québec/École de Technologie Supérieure - Montréal, Canada

Shahab Mokarizadeh, Royal Institute of Technology (KTH) - Stockholm, Sweden

Mario Montagud Climent, Polytechnic University of Valencia (UPV), Spain

Stefano Montanelli, Università degli Studi di Milano, Italy

Julius Müller, TU- Berlin, Germany

Juan Pedro Muñoz-Gea, Universidad Politécnica de Cartagena, Spain

Krishna Murthy, Global IT Solutions at Quintiles - Raleigh, USA

Alex Ng, University of Ballarat, Australia

Christopher Nguyen, Intel Corp, USA

Vlad Nicolicin Georgescu, SP2 Solutions, France

Petros Nicopolitidis, Aristotle University of Thessaloniki, Greece

Carlo Nocentini, Università degli Studi di Firenze, Italy

Federica Paganelli, CNIT - Unit of Research at the University of Florence, Italy

Carlos E. Palau, Universidad Politecnica de Valencia, Spain

Matteo Palmonari, University of Milan-Bicocca, Italy

Ignazio Passero, University of Salerno, Italy

Serena Pastore, INAF - Astronomical Observatory of Padova, Italy

Fredrik Paulsson, Umeå University, Sweden

Rubem Pereira, Liverpool John Moores University, UK

Mark Perry, University of Western Ontario/Faculty of Law/ Faculty of Science - London, Canada

Yulia Ponomarchuk, Far Eastern State Transport University, Russia

Jari Porras, Lappeenranta University of Technology, Finland

Neeli R. Prasad, Aalborg University, Denmark

Drogkaris Prokopios, University of the Aegean, Greece

Emanuel Puschita, Technical University of Cluj-Napoca, Romania

Lucia Rapanotti, The Open University, UK

Gianluca Reali, Università degli Studi di Perugia, Italy

Jelena Revzina, Transport and Telecommunication Institute, Latvia



Karim Mohammed Rezaul, Glyndwr University, UK

Leon Reznik, Rochester Institute of Technology, USA

Joel Rodrigues, Instituto de Telecomunicações / University of Beira Interior, Portugal

Simon Pietro Romano, University of Napoli Federico II, Italy

Michele Ruta, Politecnico di Bari, Italy

Jorge Sá Silva, University of Coimbra, Portugal

Farzad Salim, Queensland University of Technology, Australia

Sébastien Salva, University of Auvergne, France

Ahmad Tajuddin Samsudin, Telekom Malaysia Research & Development, Malaysia

Josemaria Malgosa Sanahuja, Polytechnic University of Cartagena, Spain

Luis Enrique Sánchez Crespo, Sicaman Nuevas Tecnologías / University of Castilla-La Mancha, Spain

Paul Sant, University of Bedfordshire, UK

Brahmananda Sapkota, University of Twente, The Netherlands

Alberto Schaeffer-Filho, Lancaster University, UK

Peter Schartner, Klagenfurt University, System Security Group, Austria

Rainer Schmidt, Aalen University, Germany

Thomas C. Schmidt, HAW Hamburg, Germany

Didier Sebastien, University of Reunion Island, France

Zary Segall, Chair Professor, Royal Institute of Technology, Sweden

Dimitrios Serpanos, University of Patras and ISI/RC ATHENA, Greece

Jawwad A. Shamsi, FAST-National University of Computer and Emerging Sciences, Karachi, Pakistan

Michael Sheng, The University of Adelaide, Australia

Kazuhiko Shibuya, The Institute of Statistical Mathematics, Japan

Roman Y. Shtykh, Rakuten, Inc., Japan

Patrick Siarry, Université Paris 12 (LiSSi), France

Jose-Luis Sierra-Rodriguez, Complutense University of Madrid, Spain

Simone Silvestri, Sapienza University of Rome, Italy

Åsa Smedberg, Stockholm University, Sweden

Vasco N. G. J. Soares, Instituto de Telecomunicações / University of Beira Interior / Polytechnic Institute of Castelo

Branco, Portugal

Radosveta Sokullu, Ege University, Turkey

José Soler, Technical University of Denmark, Denmark

Victor J. Sosa-Sosa, CINVESTAV-Tamaulipas, Mexico

Dora Souliou, National Technical University of Athens, Greece

João Paulo Sousa, Instituto Politécnico de Bragança, Portugal

Kostas Stamos, Computer Technology Institute & Press "Diophantus" / Technological Educational Institute of

Patras, Greece

Vladimir Stantchev, SRH University Berlin, Germany

Tim Strayer, Raytheon BBN Technologies, USA

Masashi Sugano, School of Knowledge and Information Systems, Osaka Prefecture University, Japan

Tae-Eung Sung, Korea Institute of Science and Technology Information (KISTI), Korea

Sayed Gholam Hassan Tabatabaei, Isfahan University of Technology, Iran

Yutaka Takahashi, Kyoto University, Japan

Yoshiaki Taniguchi, Osaka University, Japan

Nazif Cihan Tas, Siemens Corporation, Corporate Research and Technology, USA

Alessandro Testa, University of Naples "Federico II" / Institute of High Performance Computing and Networking



(ICAR) of National Research Council (CNR), Italy

Stephanie Teufel, University of Fribourg, Switzerland

Parimala Thulasiraman, University of Manitoba, Canada

Pierre Tiako, Langston University, USA

Ioan Toma, STI Innsbruck/University Innsbruck, Austria

Orazio Tomarchio, Universita' di Catania, Italy

Kurt Tutschku, University Blekinge Institute of Technology, Karlskrona, Sweden

Dominique Vaufreydaz, INRIA and Pierre Mendès-France University, France

Massimo Villari, University of Messina, Italy

Krzysztof Walkowiak, Wroclaw University of Technology, Poland

MingXue Wang, Ericsson Ireland Research Lab, Ireland

Wenjing Wang, Blue Coat Systems, Inc., USA

Zhi-Hui Wang, School of Softeware, Dalian University of Technology, China

Matthias Wieland, Universität Stuttgart, Institute of Architecture of Application Systems (IAAS),Germany

Bernd E. Wolfinger, University of Hamburg, Germany

Chai Kiat Yeo, Nanyang Technological University, Singapore

Mark Yampolskiy, Vanderbilt University, USA

Abdulrahman Yarali, Murray State University, USA

Mehmet Erkan Yüksel, Istanbul University, Turkey



International Journal on Advances in Internet Technology

Volume 7, Numbers 1 & 2, 2014

CONTENTS

pages: 1 - 16
A Comprehensive Evaluation of a Bitmapped XML Update Handler
Mohammed Al-Badawi, Sultan Qaboos University, Oman
Abdallah Al-Hamdani, Sultan Qaboos University, Oman
Youcef Baghdadi, Sultan Qaboos University, Oman

pages: 17 - 28
Internet of Threads: Processes as Internet Nodes
Renzo Davoli, Department of Computer Science and Engineering - University of Bologna, Italy

pages: 29 - 38
A Robust Approach to Large Size Files Compression using the MapReduce Web Computing Framework
Sergio De Agostino, Sapienza University of Rome, Italy

pages: 39 - 51
Correlation and Consolidation of Distributed Logging Data in Enterprise Clouds
Sven Reissmann, University of Applied Sciences Fulda, Germany
Dustin Frisch, University of Applied Sciences Fulda, Germany
Christian Pape, University of Applied Sciences Fulda, Germany
Sebastian Rieger, University of Applied Sciences Fulda, Germany

pages: 52 - 62
Chord-Cube: Music Visualization and Navigation System with an Emotion-Aware Metric Space for Temporal
Chord Progression
Shuichi Kurabayashi, Keio University, Japan
Tatsuki Imai, Keio University, Japan

pages: 63 - 74
Rethinking Traditional Web Interaction: Theory and Implementation
Vincent Balat, Univ Paris Diderot - Sorbonne Paris Cité - PPS, CNRS - Inria, France

pages: 75 - 85
Enabling Data Collections for Open-Loop Applications in the Internet of Things
Alexander Kröner, Georg Simon Ohm University of Applied Sciences, Germany
Jens Haupert, German Research Center for Artificial Intelligence (DFKI GmbH), Germany
Matthieu Deru, German Research Center for Artificial Intelligence (DFKI GmbH), Germany
Simon Bergweiler, German Research Center for Artificial Intelligence (DFKI GmbH), Germany
Christian Hauck, German Research Center for Artificial Intelligence (DFKI GmbH), Germany

pages: 86 - 96
Virtualization as a Driver for the Evolution of the Internet of Things: Remaining Challenges and Opportunities
Towards Smart Cities
Andreas Merentitis, AGT International, Germany
Vangelis Gazis, AGT International, Germany
Eleni Patouni, University of Athens, Greece



Florian Zeiger, AGT International, Germany
Marco Huber, AGT International, Germany
Nick Frangiadakis, AGT International, Germany
Kostas Mathioudakis, AGT International, Germany

pages: 97 - 113
A Lightweight Distributed Software Agent for Automatic Demand---Supply Calculation in Smart Grids
Eric MSP Veith, Wilhelm Büchner Hochschule, Germany
Bernd Steinbach, Freiberg University of Mining and Technology, Germany
Johannes Windeln, Wilhelm Büchner Hochschule, Germany

pages: 114 - 123
Redundancy Method for Highly Available OpenFlow Controller
Keisuke Kuroki, KDDI R&D Laboratories, Inc., Japan
Masaki Fukushima, KDDI R&D Laboratories, Inc., Japan
Michiaki Hayashi, KDDI R&D Laboratories, Inc., Japan
Nobutaka Matsumoto, KDDI Corporation, Japan

pages: 124 - 135
A Mobile Mashup for Accessing Distributed Recycling Knowledge
Sönke Knoch, German Research Center for Artificial Intelligence, Germany
Alexander Kröner, Georg Simon Ohm University of Applied Sciences, Germany

pages: 136 - 147
Query-Based Static Analysis of Web Services in Service-Oriented Architectures
Michael Gebhart, Gebhart Quality Analysis (QA) 82 GmbH, Germany

pages: 148 - 160
Multicast Source Mobility Support for Regenerative Satellite Networks
Esua Kinyuy Jaff, University of Bradford, United Kingdom
Prashant Pillai, University of Bradford, United Kingdom
Yim Fun Hu, University of Bradford, United Kingdom



A Comprehensive Evaluation of a Bitmapped XML Update Handler  

 

Mohammed Al-Badawi, Abdallah Al-Hamdani, and Youcef Baghdadi  

Department of Computer Science 

Sultan Qaboos University 

Muscat, Oman 

{mbadawi, abd, ybaghdadi}@squ.edu.om 

 

 
Abstract—XML (eXtensible Markup Language) update is 

problematic for many XML databases. The main issue tackled 

by the existing (and new) XML storages and indexing 

techniques is the cost reduction of updating the XML’s 

hierarchal structure inside these storages. PACD (an acronym 

for Parent-Ancestor/Child-Descendent), as bitmapped XML 

processing technique introduced earlier, is an attempt in this 

direction. The technique brings the cost of updating the XML 

structure to the data representation level by introducing the 

‘next’ and ‘previous’ axes as a mechanism to preserve the 

document order, and then using well-established matrix-based 

operations to manipulate the database transactions. This paper 

mainly provides a complexity analysis of the PACD update 

framework and presents a novel experimental evaluation 

method (in terms of comprehensiveness and completeness) for 

its update primitives. The outcomes of this evaluation have 

shown that the cost of eight update primitives (out of nine 

provided by PACD) locates under an acceptable range of a 

constant ‘c’, where ‘c’ is an extremely small number 

comparing to the number of nodes ‘n’ in the XML tree. Such 

good performance is lacked in the comparable techniques.  

Keywords-XML Databases; XML/RDBMS Mapping; XML 

Update; XML Indexing;  Complexity Analysis; Experimental 

Design. 

I.  INTRODUCTION 

Data stored in the extensible markup language (XML) 
containers (databases) is subject to update when 
circumstances change [1]. Unfortunately, handling XML 
updates is a common problem in the existing XML storages 
and optimization techniques. Relational approaches using 
node labeling techniques [2][3][4][5][6][7][8][9][10][11] 
[12][13] require a large number of renumbering operations in 
order to keep the node labels updated whenever a node is 
inserted, deleted or moved from one location to another in 
the XML tree. For the approaches that use path summaries to 
encode the XML hierarchical structure [14][15][16][17][18], 
an additional cost results from updating these summaries. In 
native XML approaches such as sequence based 
[19][20][21][22][23] and feature based techniques 
[24][25][26], the update problem is even worse. In the first 
case, the consequences of a single update operation (for 
example deleting a node) can affect thousands locations in 
the corresponding sequence depending on the node location 
in the XML tree. A similar problem occurs in the case of 
feature based techniques, which rely on encoding the 
relationship between the nodes and the different ePaths of 

the XML tree inside what is called feature-based matrices 
[24]. 

PACD  is XML processing technique introduced in [28] 
[29] that brings the cost of updating the XML hierarchal 
structure to the data representation level by encoding these 
structures into a set of structure-based matrices each of 
which encodes a specific XPath [27] axis, plus two more 
axes specifically introduced by PACD to preserve the 
document order. Thus, PACD architecture combines some 
matrix-based operations along with the bit-wise operations to 
reduce the cost of querying and updating the structure of 
underlying XML file. This paper extends our previous work 
[1] by providing a detailed complexity analysis of the PACD 
Updates Query Handler (UQH). Unlike many existing 
studies, this paper presents a comprehensive evaluation 
process, which provides 1) a full algorithmic listing of all 
XML update primitives so that they can be re-used, 2) a 
detailed cost-analytical procedure of the XML update 
primitives, and 3) a supportive comprehensive experimental 
procedure that considers several testable aspects of the XML 
databases. Such evaluation method could be adopted by the 
XML research and development community to evaluate 
XML database processing techniques. 

  The paper starts by revisiting the PACD‟s framework in 
Section II. Then it introduces the UQH framework in Section 
III, while Section IV puts forward assumptions to facilitate 
the discussion of complexity analysis in the subsequent 
sections. Sections V to VII provide a detailed discussion of 
three types of update primitives: the insertion, deletion and 
change primitives, respectively. The overall complexity 
analysis and a supportive experimental evaluation are given 
in Sections VIII and IX, respectively. Section X concludes 
the paper. 

 

II. BACKGROUND: PACD‟S XML PROCESSING MODEL 

PACD, introduced in [28][29], is a bitmap XML 
processing technique consisting of three main components: 
the Index Builder (IB; operations I.1-I.4), the Query 
Processor (QP) and the Update Query Handler (UQH). The 
IB (see Figure 1) shreds the XML hierarchal structure 
(derived by the XPath‟s thirteen axes and their extension; the 
Next and Previous axes [28]) into a set of binary relations 
each of which is physically stored as an n×n bitmap matrix. 
An entry in any matrix is „1‟ if there is  a corresponding 
relationship between the coupled nodes or „0‟ otherwise 
[30][25]. The IB operations I.2-I.4 are responsible to reduce 

1

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the size of storing the XML structure by applying three 
levels of compression: the matrix-transformation level, the 
matrix-coupling level and the sparse-matrix compression 
level. More details about the data compression mechanism in 
particular and the IB in general can be found in [28][29].  

On the other hand, the QP performs all operations related 
to the search-query execution. The full architecture of the QP 
was described in [29] but in brief, the process starts by 
analyzing the search-query statement to identify the affected 
nodes based on the twig structure. The process also identifies 
the query base matrices and draws an execution plan for the 
entire query, which eventually returns the results into a 
tabular-format (i.e., sub-matrices) and then converted to an 
XML data layout.  

The next section describes the PACD‟s third component, 
that is the UQH, the core subject discussed in this paper. 

III. THE UPDATE HANDLER 

The PACD‟s UQH is responsible for all update 
operations, which includes the translation of the update 
query, the identification of update primitive(s), and the 
primitive execution. 

Once the query is translated (e.g., from XQuery syntax to 
an SQL statement), the UQH starts identifying the node(s) 
that are affected by the update command/query. It navigates 
through the finite-state-machine (FSM) version of the update 

query in order to identify the affected node-set. Once the 
target node-set is known, the UQH determines and calls the 
appropriate update primitive (see Table I). PACD supports 
update primitives for single node insertion and deletion, twig 
insertion and deletion, and textual and structural contents 
changes.  

The update primitive acts on all PACD‟s components 
including the NodeSet container and the structure based 
matrices (i.e., childOf, descOf and nextOf). Each update 
primitive executes certain instructions over each component 
such as adding new columns and rows and changing the 
bitmapped entries within the matrices. The cost of the update 
query execution will be the lump sum of the costs of 
executing all derived update primitives over each PACD‟s 
component.  For example, an „insert‟ primitive will involve 
adding one or more rows and columns to the bitmapped 
matrices, as well as adding one or more entries to the 
NodeSet container. Thus, the cost of the „insert‟ operation 
becomes the cost of inserting the node information inside the 
NodeSet container plus the cost of inserting one row and 
column inside the childOf, descOf and nextOf matrices. 
More examples on using update primitives will be given later 
during the discussion of the update primitives. 

The above steps are summarized in the algorithm 
provided in Figure 2, whereas Table I lists out the update 
primitives that are currently supported by PACD‟s UQH. 

 
Figure 1. PACD Framework 

2

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

1 
2 

3 

4 
5 

6 

7 
8 

9 

10 
11 

INPUT: update-query 
OUTPUT: none 

Construct the FSM execution plan of the corresponding twig  

node-set = the returned node-set from the FSM execution 
Using the update-query syntax, determine the update-primitive(s) 

Call the update-primitive(s) with the obtained node-set: 

 Alter the NodeSet container; 
 Alter the childOf matrix; 

 Alter the descOf matrix; 

 Alter nextOf matrix; 
End; 

Figure 2. PACD Update Handler Algorithm 

TABLE I: PACD UPDATE HANDLER PRIMITIVES 

Insertion 

insertLeaf adds a leaf node 

insertNonLeaf adds an internal node  

insertTwig  adds a single-rooted, connected sub-tree  

Deletion 

deleteLeaf removes a leaf node 

deleteTwig 
removes a single-rooted, connected sub-

tree 

Updating 

changeName renames an element or attribute name 

changeValue 
edits the value (text) of an attribute 
(element) 

shiftNode moves a node from one place to another 

shiftTwig 
moves a single-rooted, connect sub-tree 

from one place to another 

IV. ASSUMPTIONS AND AN ANALYTICAL PROCEDURE 

This section lists some assumptions that are considered 
during the complexity and experimental results analysis. The 
analytical procedure of the experimental results is also 
described here. 

A. Assumptions During the Analysis 

During the analysis of the above XML update primitives, 
the cost of any update primitive counts the number of work-
units done by the underlying system in order to update every 
PACD‟s component. So, each of the following operation is 
counted as a single work-unit: 

 Operations on the NodeSet container: 

 Insert new record/row 

 Delete a record/row 

 Change one (or more) attributes/fields within the 

record/row  

 Operations on a matrix-based component (e.g., 

childOf): 

 Insert a complete row or column  

 Delete an entire row or column  

 Change an entry of a matrix (i.e., change the status 

from „0‟ to „1‟ or vice versa)  
As for illustration, inserting a leaf-node requires the 

insertion of a new record inside the NodeSet container (1 
unit), the addition of one row and column to the childOf, 
descOf and nextOf matrices (6 units), and may change at 
most one entry in the nextOf matrix (1 unit). So the leaf-node 
insertion process costs 8 work-units (or hits).  

In addition, the analyses provided in this paper were done 
based on the following assumptions: 

 When a row or column is inserted into a matrix, its 

entries are set to zero by default with no extra cost. 

 The cost of „search‟ operations (locating the records) 

inside the PACD storage components; for example, 

fetching the node ID among the NodeSet container, is 

set to zero assuming that a very efficient lookup 

algorithm is used. 

 The number of children at any arbitrary node in the 

XML tree is „‟, where  is a small number comparing 

to the number of nodes „n‟ for very large XML 

databases 

 The number of descendants at any arbitrary node in the 

XML tree can be estimated by multiplying the number 

of nodes „n‟ by a fraction „f‟, where 0f1. The value 

of „f‟ decreases exponentially as the context node goes 

from the root (where f=1) towards the leaf nodes 

(where f=0) [31]. 

 The given algorithms and their analyses are based on 

using the uncompressed PACD storage. Updating 

compressed PACD storage (which discussion is outside 

the scope of this paper) may involve additional steps 

and extra cost depending on the compression technique 

used. 
Generally speaking, the above assumptions were made in 

order to simplify the analyses provided in the subsequent 
sections (Section V, VI and VII). The same assumptions also 
applied during the experimental result discussion in Section 
IX.  

B. An Anlytical Procedure 

During the discussion of each update primitive in the 
following sections, the usage of the primitive (including the 
function prototype), its pseudo-code, the complexity 
discussion, and one or two examples will be provided in 
separate subsections. Furthermore, all examples are based on 
the XML tree illustrated in Figure 3. 

 
Figure 3. An XML Tree Example 

V. INSERTION PRIMITIVES 

This section discusses the three insertion primitives 
shown in Table I.  

A. Leaf Node Insertion 

1) Usage: 

Syntax: insertLeaf(node_info, parentID [,precID]) 

Description: Inserts a node at the bottom-most level of the tree under 

3

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the parentID node and next to precID node. Both the 

parentID and precID are identified by the UQH 

Argument(s):  node_info: all necessary information to fill the 

NodeSet record including the nodeID, tag/attribute 

name, node_type, and the value/textual content 

 parentID: the ID of the parent node where the new 

node to be inserted  

 precID: the ID of the preceding node. Must be 

specified in case of the order-preserving storage 

2) Algorithm: 

1 PROGRAM insertLeaf(node_info: nodeType, parentID: 
nodeIDType, precID: nodeIDType) 

2  Get the next nodeID; 
3  Insert the node information into NodeSet; 
4  *-- update the childOf matrix: 
5  Add a row and column to the ‘childOf’; 
6  Set: 
7   childOf[nodeID,parenID] = ‘1’,  
8   *--update the descOf matrix: 
9  Add a row and column to the ‘descOf’; 
10  Let: anceSet = {node(i), where descOf[parentID,i] 

= ‘1’}  parentID; 

11  For each i  anceSet: 
12   Set: descOf[nodeID,i] = ‘1’; 
13   *--update the nextOf matrix: 
14  Add a row and column to the ‘nextOf’; 
15  If precID  null: 
16   Let: temp = node(i), where nextOf[i,precID] = 

‘1’; 
17   Set: nextOf[nodeID,precID] = ‘1’; 
18   If temp  null: 
19    Set: nextOf[temp,precID] = ‘1’; 
20 PROGRAM_END. 
 

3) Complexity Analysis: 

Based on the assumption given above, inserting the 
node‟s information into the NodeSet container requires one 
hit (line 3), whereas updating the childOf matrix requires 
three hits: two to add a row and column (line 5) and one to 
set the child/parent relationship between the new node and 
the parentID (line 7). Similarly, updating the descOf matrix 
requires 2+h hits: two to add a row and column (line 9) and a 
maximum of „h‟ hits (where ‘h’ is the maximum height of the 
XML tree) to set the descendant/ancestor relationship 
between the new node and its ancestor list, which is 
calculated in Line 10 (see Lines 11-12). In terms of the 
nextOf matrix, besides the two hits that are required to insert 
a row and column to the matrix (line 14), the program makes 
two additional hits to update the previous/next relationship 
(lines 17 and 19). So the total work-units required to insert a 
leaf node in an XML tree of height „h‟ is 10+h. This is a very 
small number „c‟ comparing to the number of nodes „n‟; thus 
the complexity is of order O(c).  

4) Example: Using the database in Figure 3, insert the 

„year‟ information (e.g., 2003) to the book identified by the 

key „book/110‟, where the „year‟ information must precede 

the „author‟ information (result given in Figure 4). 
The cost breakdown is:  
NodeSet childOf descOf nextOf Total 

1 3 4 4 12 hits 

 

 
Figure 4. A Leaf Node Insertion Example 

B. Non-Leaf Node Insertion 

1) Usage: 

Syntax: insertNonLeaf(node_info, parentID [,precID]) 

Description: Inserts a node at any level of the tree except the lowest 
level. The parentID and the precID are identified by the 
UQH prior calling the primitive. At this stage, this 
primitive is only used to add additional level between a 
parent and the complete set of its children. Subdividing 
the parentID‟s children between the existing parent and 
the new node is left to further investigation.  

Argument(s):  node_info: all necessary information to fill the 
NodeSet record including the nodeID, tag/attribute 

name, node_type, and the value/textual content 

 parentID: the ID of the parent node where the new 
node to be inserted  

 precID: the ID of the preceding node. Must be 
specified in case of the order-preserving storage  

2) Algorithm: 

1 PROGRAM insertNonLeaf(node_info:nodeType, 
parentID:nodeIDType,precID: nodeIDType) 

2  Get the next nodeID; 
3  Insert the node information into NodeSet; 
4  *-- update the childOf matrix: 
5  Add a row and column to the ‘childOf’; 
6  Let: childSet = {node(i), where chilOf[i,parentID] 

= ‘1’}  
7  For each i  childSet: 
8   Set: chilOf[i,nodeID] = ‘1’; 
9  Set: childOf[nodeID,parentID] = ‘1’; 
10  *--update the descOf matrix: 
11  Add a row and column to the ‘descOf’; 
12  Let: anceSet = {node(i), where descOf[parentID,i] 

= ‘1’}  parentID; 
13  Let: descSet = {node(j), where descOf[j,parentID] 

= ‘1’}; 
14  For each i  anceSet: 
15   Set: descOf[nodeID,i] = ‘1’; 
16  For each j  descSet: 
17   Set: descOf[j,nodeID] = ‘1’; 
18  *--update the nextOf matrix: 
19  Add a row and column to the ‘nextOf’; 
20  If precID  null: 
21   Let: temp = {node(i), where nextOf[i,precID] = 

‘1’}; 
22   Set: nextOf[nodeID,precID] = ‘1’; 
23   If temp  null: 
24    Set: nextOf[temp,precID] = ‘1’; 
25 PROGRAM_END. 
 
 
 

4

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



3) Complexity Analysis: 

This primitive also requires one hit to insert inside the 
NodeSet container (line 3). However, more work is required 
to update the childOf matrix because the children of the 
parental node „parentID‟ have to be assigned to the new 
node. So the number of hits required to update the childOf 

matrix is „1+‟, where „‟ is the number of children of the 
context node at an arbitrary level in the XML tree. 

To update the descOf matrix, the primitive has to assign 
the ancestors of the „parentID‟ to the new node „nodeID‟ 
(lines 14-15) and the descendants of the „parentID‟ as 
descendant from the new node (lines 16-17). The first 
process requires no more than „h‟ hits, while the cost of the 
second process may extend to „n‟ hits; but in reality it only 
requires a factor of „n‟ hits depending on the insertion level 
(see Section IV). Finally, the cost of updating the nextOf 
matrix is the same for updating the nextOf matrix in the 
previous primitive (lines 22 and 24). 

4) Example: Using the database in Figure 3, assign the 

current author of the book titled „Indexing XML‟ to be the 

first author of the book so that other authors can be added 

later. This requires adding a parent node called „au_det‟ for 

the „first‟ and „last‟ nodes under the original „author‟ node 

(result given in Figure 5). 
The cost breakdown is:  
NodeSet childOf descOf nextOf Total 

1 5 6 0 12 hits 

 

 
Figure 5. An Non-leaf Node Insertion Example 

C. Twig Insertion 

1) Usage: 

Syntax: insertTwig(twig_info, parentID [,precID]) 

Description: Inserts a sub-tree of „m‟ nodes under the parentID and 
after the precID. Both the parentID and the precID are 

determined by the UQH, and the twig is only inserted at 

bottom-most nodes  

Argument(s):  twig_info: all necessary information to fill the 

NodeSet record including the nodeID, tag/attribute 
names, node types, and the value/textual contents 

 parentID: the ID of the parent node where the new 

twig to be inserted  

 precID: the ID of the preceding node. Must be 

specified in case of the order-preserving storage  

2) Algorithm: 

The twig insertion can be modeled as inserting multiple-
connected nodes. In other words, inserting a twig of „m‟ 
nodes requires „m‟ times the cost of inserting a single leaf-

node and can be performed by the same algorithm in Section 
V(C) starting at the twig root node. 

3) Complexity Analysis: 

The cost of this primitive is „m‟ times the cost of 
inserting a single leaf-node, where „m‟ is the number of 
nodes inside the inserted twig. 

4) Example: Using the database in Figure 3, add second 

author information (i.e., including the „first‟ and „last‟ name) 

to the book titled „Indexing XML‟ (result given in Figure 6) 
The cost breakdown is:  

NodeSet childOf descOf nextOf Total 

3 9 14 8 34 hits 

 

 
Figure 6. A Twig Insertion Example 

D. Insertion Primitives Summary 

Table II summarizes the number of work-units required 
to conduct the insertion primitives.  

VI. DELETE PRIMITIVES 

PACD currently supports the „deleteLeaf‟ and 
„deleteTwig‟ primitives. These are discussed below.  

A. Leaf Node Deletion 

1) Usage: 

Syntax: deleteLeaf(nodeID) 

Description: Deletes a node from the lowest level of the tree labeled 

with nodeID that is returned by the UQH  

Argument(s):  nodeID: the unique node ID of the deleted node 

2) Algorithm: 

1 PROGRAM deleteLeaf(nodeID: nodeIDType) 
2  *-- update the childOf matrix: 
3  Locates the corresponding row and column of the 

nodeID inside the ‘childOf’; 
4  Remove the row and column from the ‘childOf’;  
5   *--update the descOf matrix: 
6  Locates the corresponding row and column of the 

nodeID inside the ‘descOf’; 
7  Remove the row and column from the ‘descOf’;  
8   *--update the nextOf matrix: 
9  Let:  
10   next = {node(i), where nextOf[i,nodeID] = ‘1’}; 
11   prev = {node(j), where nextOf[nodeID,j] = ‘1’}; 
12  Locates the corresponding row and column of the 

nodeID inside the ‘nextOf’; 
13  Remove the row and column from the ‘nextOf’;  
14  If next  null AND prev  null: 

5

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



15   Set: nextOf[next,prev] = ‘1’; 
16  *--update the NodeSet container: 
17  Locate the corresponding record of the nodeID 

inside the ‘NodeSet’; 
18  Delete the nodeID; 
19 PROGRAM_END. 
 

3) Complexity Analysis: 

Deleting a leaf node is simple and straightforward. In the 
childOf and descOf matrices, after locating the row and 
column IDs of the target node, the update process simply 
removes that row and column. Thus, the process involves 
two work units for each matrix. Regarding the deletion from 
the nextOf matrix, a special consideration is required when 
the target node has previous (line 11) and next (line 10) 
siblings. In this case, an extra hit is required to assign the 
next node of the target node to be the next node of the 
previous node of the target node. Finally, to remove the node 
from the NodeSet container, the system performs one work 
unit after locating the record of the target node (line 15). So 
the „deleteLeaf‟ primitive does not do more than eight work 
units to remove a node from the PACD‟s storage. 

4) Example: Using the database in Figure 3, remove the 

author‟s last-name from the book identified by the key 

„book/110‟ (result given in Figure 7). 
The cost breakdown is: (Note: the node ID &10 will be 

recycled) 
childOf descOf nextOf NodeSet Total 

2 2 2 1 7 hits 

 

 
Figure 7. A Leaf Node Deletion Example 

B. Twig Deletion 

1) Usage: 

Syntax: deleteTwig(twigRootNodeID) 

Description: Deletes a connected sub-tree rooted at 

„twigNRootNodeID‟ from the XML tree. The 

twigRootNodeID is returned by the UQH process 

Argument(s):  twigRootNodeID: the node ID of twig‟s root node  

2) Algorithm: 

 
1 PROGRAM deleteTwig(twigRootNodeID: nodeIDType) 
2   *-- reconnect the next_of list of the nextOf 

matrix: 
3  Let:  
4   next = {node(i), where nextOf[i,twigRootNodeID] 

= ‘1’}; 
5   prev = {node(j), where nextOf[twigRootNodeID,j] 

= ‘1’}; 
6  If next  null AND prev  null: 
7   Set: nextOf[next,prev] = ‘1’; 

8  *--identify all the node inside the deleted twig: 
9  Let: descSet = {node(i), where descOf[i, 

twigRootNodeID] = ‘1’}  twigRootNodeID; 
10  *--remove row and columns from all matrices, and 

the node_info from the NodeSet : 
11  For each i  descSet: 
12   Locates the corresponding row and column of the 

nodeID inside the ‘childOf’; 
13   Remove the row and column from the ‘childOf’;  
14   Locates the corresponding row and column of the 

nodeID inside the ‘descOf’; 
15   Remove the row and column from the ‘descOf’;  
16   Locates the corresponding row and column of the 

nodeID inside the ‘nextOf’; 
17   Remove the row and column from the ‘nextOf’;  
18   Locate the corresponding record of the nodeID 

inside the ‘NodeSet’; 
19   Delete the nodeID; 
20 PROGRAM_END. 

3) Complexity Analysis: 

Deleting a twig of „m‟ nodes is very similar to deleting a 
leaf-node except that the cost is multiplied by „m‟. 
Furthermore, deleting a twig will involve only one 
reconnection process over the previous/next relationship. 
This process is performed to rearrange the previous/next 
relationship of the previous and the next nodes of the root 
node of the target twig (lines 3-7). So the maximum cost of 

the „deleteTwig‟ primitive is „1+[m(2+2+2+1)]‟ work units, 
where „m‟ is the number of nodes inside the deleted twig. 

4) Example: Using the database in Figure 3, remove the 

complete author‟s information from the book identified by 

the key „book/110‟ (result given in Figure 8). Note: this will 

remove the nodes „&8‟ and „&9‟. 

The cost breakdown is:  
childOf descOf nextOf NodeSet Total 

4 4 4 2 14 hits 

 

 
Figure 8. A Twig Deletion Example 

C. Deletion Primitives Summary 

Table III summarizes the number of work-units required 
to conduct the deletion primitives.  

VII. CHANGE PRIMITIVES 

Table I introduced four change primitives that can be 
used to rename node description (i.e., element and attribute 
names), change the value of a node, and move a node or a 
twig from one place to another inside the XML tree.  

6

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A. Node Description Change 

1) Usage: 

Syntax: changeName(nodeID|oldName,newName) 

Description: Renames a node (identified by the nodeID) or a set of 
nodes (that have the same name identified by oldName) 

to the new name newName 

Argument(s):  nodeID: the node ID of a particular node 

 oldName: the element or attribute name of a set of 

nodes 

 newName: the new name to be assigned to the 

changed nodes 

2) Algorithm: 

1 *-----Case1: changing particular node’s name: 
2 PROGRAM changeName(nodeID: nodeIDType, newName: 

string) 
3  *-- update the NodeSet container: 
4  Locates the corresponding record of the nodeID in 

the ‘NodeSet’; 
5  Replace the ‘name’ attribute by the ‘newName’;  
6 PROGRAM_END; 
7 
8 *-----Case2: changing a set of  nodes’ name: 
9 PROGRAM changeName(oldName: string, newName: string) 
10  *-- update the NodeSet container: 
11  Let: updateSet = {node(i), where NodeSet.Name = 

oldName}; 
12  For each node  updateSet: 
13   Replace the ‘name’ attribute by the ‘newName’;  
14 PROGRAM_END; 

3) Complexity Analysis: 

PACD separates the XML textual content representation 
from the structural content representation and manage them 
in a different storage component. The former (which 
includes the node ID, tag/attribute name, type and value) are 
arranged in the NodeSet container that stores the node 
information in a separate record. This arrangement makes it 
easier for the textual-based change operations such as the 
„changeName‟ to alter node‟s record regardless the 
complexity of the XML‟s hierarchal structure. So, to change 
the name of a particular node, it will be sufficient to allocate 
that node in the NodeSet container and change the „Name‟ 
attribute (lines 4-5). In the case of changing multiple node 
names such as changing an attribute or element name, the 
whole nodes labelled with that name class have to be 
changed. So, the „changeName‟ primitive initially identifies 
all the nodes that share the same name (line 11) and then 
alters the „Name‟ attribute of all identified nodes (lines 12-
13). The complexity of this process depends on the 
distribution of the tag/attribute name in the XML tree, which 
might be estimated or obtained from the XML schema. 

4) Example1: Using the database in Figure 3, change the 

name of the node „thesis‟ to be „phdthesis‟. 
This query changes the tag name of the node &11 from 

„thesis‟ to „phdthesis‟ with the cost of one work-unit. 

B. Node Value Change 

1) Usage: 

Syntax: changeValue(nodeID|oldName,newValue) 

Description: change the textual contents of a node (identified by the 
nodeID) or a set of nodes (that have the same name 

identified by oldName) to the new value newValue 

Argument(s):  nodeID: the node ID of a particular node 

 oldName: the element or attribute name of a set of 

nodes 

 newValue: the new textual content to be assigned to 

the nodes 

2) Algorithm: 

The algorithm of this primitive is identical to the one in 
Section VII-A(2). 

3) Complexity Analysis: 

The cost of this primitive is similar to the „changeName‟ 
primitive, see Section VII-A(3). 

4) Example: Using the database shown in Figure 3, 

change the publication year for the book labelled with 

„Book/101‟ to be „2000‟ instead of „2001‟. 

This query changes the value of the node &2 from „2001‟ 
to „2000‟ with the cost of one work-unit. 

5) Example: Using the database in Figure 3, change the 

„title‟ of all publications to the uppercase. 

In this query, the „oldName‟ parameter is „title‟ and the 
„newValue‟ parameter is a function that converts its 
argument to the uppercase. The query will perform three 
work units in total. 

C. Single Node Shifting 

In the context of XML tree, single node shifting is only 
meaningful when the node is a leaf node. This can be used to 
transfer information from one block to another, for example 
to swap the first and second books‟ ID as in Figure 3. The 
NodeSet information is not affected by this primitive. 

1) Usage: 

Syntax: shiftNode(nodeID,newParentID[,leftID]) 

Description: Moves the node labeled with nodeID to under the node 
newParentID. If the exact location is required, the 

preceding node at the new location (i.e., ‘leftID’) must 

be specified  

Argument(s):  nodeID: the node to be moved 

 newParentID: the parent node at the new location 

 leftID: the preceding node at the new location 

2) Algorithm: 

1 PROGRAM shiftNode(nodeID: nodeIDType, newParentID: 
nodeIDType, leftID: nodeIDType) 

2  *-- update the childOf matrix: 
3  Let: oldParentID = {node(i), where 

childOf[nodeID,i] = ‘1’}; 
4  Set: 
5   childOf[nodeID,newParentID] = ‘1’; 
6   childOf[nodeID,oldParentID] = ‘0’; 
7  *--update the descOf matrix: 
8  Let:  
9   oldAnceSet = {node(i), where descOf[nodeID,i] 

= ‘1’}; 
10   newAnceSet = {node(j), where 

descOf[newParentID,j] = ‘1’}  newParentID; 
11  For each node i  newAnceSet: 
12   Set: descOf[nodeID,i] = ‘1’; 
13  For each node i  oldAnceSet: 
14   Set: descOf[nodeID,i] = ‘0’; 
15  *--update the nextOf matrix: 
16  Let:  
17   next_of_nodeID = {node(i), where 

7

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



nextOf[i,nodeID] = ‘1’}; 
18   prev_of_nodeID = {node(j), where 

nextOf[nodeID,j] = ‘1’}; 
19   next_of_leftID = {node(i), where 

nextOf[i,leftID] = ‘1’}; 
20   prev_of_leftID = {node(j), where 

nextOf[leftID,j] = ‘1’}; 
21  Set (if any combination is not null):  
22   nextOf[next_of_nodeID,prev_of_nodeID] = ‘1’; 
23   nextOf[nodeID,prev_of_nodeID] = ‘0’; 
24   nextOf[nodeID,leftID] = ‘1’; 
25   nextOf[next_of_leftID,nodeID] = ‘1’; 
26   nextOf[leftID,prev_of_leftID] = ‘0’; 
27   nextOf[next_of_leftID,leftID] = ‘0’; 
28 PROGRAM_END. 

3) Complexity Analysis: 

Moving a leaf node from one place to another releases 
the child/parent relationship between the node and its 
original parent and creates a new child/parent relationship 
between the node and the new parent. This requires two hits 
(lines 5 and 6). Similarly, in the descOf matrix, the shifting 
process releases the descendant/ancestor relationship 
between the node and its original ancestor list, and creates a 
new set of descendant/ancestor relationships between the 
node and the ancestors of the new parent. This requires no 

more than „2h‟ hits, where „h‟ is the maximum height of the 
XML tree (lines 11-14).  

Updating the previous/next relationship for the 
„shiftNode‟ is a bit complicated but it requires no more than 
six hits to release the old previous/next relationships and to 
set up the new ones (lines 22-27). 

4) Example: Using the database in Figure 3, move the 

publication year of book „book/101‟ to be the publication 

year for the book „Book/110‟ (see Figure 9). 

The cost breakdown is:  
childOf descOf nextOf Total 

2 4 4 10 hits 

 

 
Figure 9. A Leaf Node Shifting Example 

D. Twig Shifting 

Twig shifting operations are useful when a sub-tree is 
moved from one parent to another without deleting the sub-
tree and creating it again under the new parent.   

1) Usage: 

Syntax: shiftTwig(twigRootID,newParentID[,leftID]) 

Description: Moves a sub-tree (twig) rooted at the twigRootID to be 

a sub-tree under the node newParentID. If the exact 
location is required, the preceding node at the new 

location (i.e., leftID’) must be specified  

Argument(s):  twigRootID: the root of the twig to be moved 

 newParentID: the parent node at the new location 

 leftID: the preceding node of twig‟s root node at the 
new location 

2) Algorithm: 

1 PROGRAM shiftTwig(twigRootID: nodeIDType, 
newParentID: nodeIDType, leftID: nodeIDType) 

2  *-- update the childOf matrix: 
3  Let: oldParentID = {node(i), where 

childOf[twigRootID,i] = ‘1’}; 
4  Set: 
5   childOf[twigRootID,newParentID] = ‘1’; 
6   childOf[twigRootID,oldParentID] = ‘0’; 
7  *--update the descOf matrix: 
8  Let:  
9   twigNodeSet = {node(1..m), where node(i)  

twig}; 
10   oldAnceSet = {node(i), where 

descOf[twigRootID,i] = ‘1’}; 
11   newAnceSet = {node(j), where 

descOf[newParentID,j] = ‘1’}  newParentID; 

12  For each node i  newAnceSet: 

13   For each node j  twigNodeSet: 
14    Set: descOf[j,i] = ‘1’; 
15  For each node i  oldAnceSet: 

16   For each node j  twigNodeSet: 
17    Set: descOf[j,i] = ‘0’; 
18  *--update the nextOf matrix: 
19  Let:  
20   next_of_ twigRootID = {node(i), where 

nextOf[i, twigRootID] = ‘1’}; 
21   prev_of_ twigRootID = {node(j), where 

nextOf[twigRootID,j] = ‘1’}; 
22   next_of_leftID = {node(i), where 

nextOf[i,leftID] = ‘1’}; 
23   prev_of_leftID = {node(j), where 

nextOf[leftID,j] = ‘1’}; 
24  Set (if any combination is not null):  
25   nextOf[next_of_twigRootID,prev_of_twigRootID] 

= ‘1’; 
26   nextOf[twigRootID,prev_of_twigRootID] = ‘0’; 
27   nextOf[twigRootID,leftID] = ‘1’; 
28   nextOf[next_of_leftID, twigRootID] = ‘1’; 
29   nextOf[leftID,prev_of_leftID] = ‘0’; 
30   nextOf[next_of_leftID,leftID] = ‘0’; 
31 PROGRAM_END. 

3) Complexity Analysis: 

Similar to the „nodeShift‟ primitive, the „twigShift‟ 
primitive makes two amendments to the structure of the 
childOf matrix: one to release the child/parent relationship 
between the twig‟s old parent and its root, and another to set 
up the child/parent relationship between the twig‟s new 
parent and its root (lines 5-6). When updating the descOf 
matrix, the cost is multiplied by „m‟ during the „twigShift‟ 
operation because the primitive has to deal with „m‟ nodes 
rather than a single node as in „nodeShift‟ primitive (lines 
12-17). The cost of updating the nextOf matrix is same for 
both the „nodeShift‟ and „twigShift‟ primitives (lines 24-30).   

8

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



4) Example: Using the database in Figure 3, move the 

author information of book „book/110‟ to be the author for 

the book „Book/101‟ (see Figure 10). 

The cost breakdown is:  
childOf descOf nextOf Total 

2 12 2 16 hits 

 

 
Figure 10. A Twig Shift Example 

 

E. Change Primitives Summary 

Table IV summarizes the number of work-units required 
to conduct each change primitives.  

VIII. OVERALL COMPLEXITY DISCUSSION 

The analysis provided in Sections V, VI and VII shows 
that the cost of all update-primitives over the PACD‟s 
uncompressed data representation locates in acceptable limits 
in general. Of the update primitives discussed, the highest 
update complexity is only a fraction of the number of nodes 
(i.e., „n‟) and this only happens during the rarely-used 
operation „insertNonLeaf‟. The cost of other update 
operations ranges between a very small constant „c‟ and 

„mc‟ in the case of manipulating a twig of size „m‟ nodes.  
 From the technical point of view, the bitmapped XML 

structure (see Section II) and the introduction of the 
previous/next axes has played a major role in such cost 
reduction. Unlike node-labeling based techniques 
[32][33][34][8][12][13], the use of the nextOf matrix (to 
encode the document order) has narrowed the spread of label 

TABLE II: COST SUMMARY OF THE INSERTION PRIMITIVES  

Operation 
Growth in  # of Work-Units (Hits) 

NodeSet Matrix NodeSet childOf descOf nextOf 
Max.  

Complexity 

insertLeaf 1 rec. more 
1 row more 

1 col more 
1 2+1 2+h 2+2 O(c) 

insertNonLeaf 1 rec. more 
1 row more 

1 col more 
1 2+ 2+fn 2+2 O(fn) 

insertTwig  

(m nodes) 
m rec. more 

m row more 

m col more 
m m.(2+1) m.(2+h) m.(2+2) O(m.c) 

n= total number of nodes in the XML tree 

h= the maximum height of the XML tree (# of levels) 

= the maximum breadth-degree (i.e., number of children) of any XML node 

f= a number between 0 and 1, where „fn‟ is the number of descendants at an arbitrary node   

c= is very small number comparing to „n‟ such that, for large XML databases,       
 

 
   

TABLE III: COST SUMMARY OF THE DELETION PRIMITIVES  

Operation 
Growth in  # of Work-Units (Hits) 

NodeSet Matrix NodeSet childOf descOf nextOf 
Max.  

Complexity 

deleteLeaf 1 rec. less 
1 row less 

1 col less 
1 2 2 2+1 O(c) 

deleteTwig  

(m nodes) 
m rec. less 

m rows less 

m cols less 
m m2 m2 m(2+1) O(m.c) 

n= total number of nodes in the XML tree 

c= is very small number comparing to „n‟ such that , for large XML databases,       
 

 
   

TABLE IV: COST SUMMERY OF THE CHANGE PRIMITIVES 

Operation 
Growth in  # of Work-Units (Hits) 

NodeSet Matrix NodeSet childOf descOf nextOf Max. Complexity 

chnageName none none 1 or k 0 0 0 O(k) 

changeValue none none 1 or k 0 0 0 O(k) 

nodeShift none none 0 2 2h 6 O(c+2.h) 

twigShift 

(m nodes) 
none none 0 m2 m2h 6 O(c+m2[h+1]) 

n= total number of nodes in the XML tree 

k= the number of nodes per tag/attribute name (usually much smaller than „n‟) 

h= the height of the XML tree (# of levels) 

c= is very small number comparing to „n‟ such that , for large XML databases,       
 

 
   

 

9

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



changes to consider only the adjacent nodes of the targeted 
node. Also encoding the basic XML structures (i.e., the 
child/parent and descendant/ancestor relationships) using the 
bitmapped node-pairs (i.e., the childOf and descOf matrices) 
has reduced the high cost and complexity that result from 
using: (1) path-summaries [35][36][37][16][17][18], and (2) 
sequences [20][19][22] to encode such structures. The 
analysis has shown that the number of changes in the childOf 
structure is bounded by a small constant „c‟ (where „c‟ is a 
very small number comparing to „n‟, the total number of 
nodes in the XML tree) in most cases except the 

„insertNonLeaf‟ primitive, which requires „‟ number of hits 
depending on the node‟s breadth degree. On the other hand, 
the same primitive may perform up to „n‟ hits over the 
descOf matrix, however in real situations that number is 
fractioned by small number „f‟, which ranges between „0‟ 

and „1‟ (usually 0  f  ½ for real, well designed XML 
databases). 

Another source of cost reduction in the PACD‟s update 
transactions is the separation between the textual content 
representation and the XML hierarchal structure 
representation. The content-based primitives only affect the 
NodeSet container while the structure-based update 
primitives affect the bitmapped matrices. This is not valid in 
the case of path-summary and sequence-based techniques, 
where the underlying path-summary or sequence has to be 
changed. In general, the number of hits over the NodeSet 
container is limited by the number of targeted nodes except 
when amending a tag/attribute name or a node value for a set 
of nodes that share the same tag/attribute name. In this case, 
the cost is limited by the number of nodes that share the 
same tag/attribute name, which is also considered small 
comparing to the entire XML tree. 

IX. A COMPARATIVE STUDY 

To evaluate and support the analysis provided above, this 
section presents an experimental study conducted to compare 
the PACD‟s performance (in terms of the update handling) 
against two representative mapping techniques. The section 
initially provides the experiment setup, including the list of 
the used update queries, the structure of the compared 
techniques, and the underlying test databases. Then it 
presents the experimental results and their discussion for 
each query in a separate section counting the number of 
work-units done by the query over the test databases. Finally, 
the section lists out the main finding from the experiment.  

A. The Experiment Setup 

A comparative experiment between the performance 
PACD technique and two representative XML techniques 
from the literature is conducted to support the above 
complexity analyses. The experiment executes 6 update 
queries –as a representation of the above update primitives- 
translated over 3 XML databases for the 3 selected XML 
techniques. The 6 update queries are listed in Table V while 
the characteristics of the 3 XML databases are given in Table 
VI. Table VII shows the XML/RDBMS mapping schema of 
the three compared techniques, PACD, XParent [36] and 

Edge [38], while other specifications of these techniques can 
be found in [29], [36] and [38], respectively. 

The experiment (see the result summary in Table VIII) 
counts the number of changes (hits) done over the technique 
data storage (2

nd
 column of Table VIII), and lists them per 

query ID in separate columns over each XML database. The 
number of hits, over all components, is summed up in the 
last 3 rows of Table VIII. 

Finally, the experiment was conducted using a stand-
alone Intel Pentium-IV machine with 3.6GHz dual processor 
and 1GB of RAM. The machine was operated by MS 
Windows XP SP3, and the translation of all XML queries to 
the corresponding RDBMS queries was executed using MS 
FoxPro database engine. Furthermore, data indices were  
used whenever applicable over the three techniques to 
leverage their performance with the power of RDBMS. Such 
HW/SW setup was counted to have no influence on the 
generated results.    

TABLE V. THE EXPERIMENT‟S UPDATE QUERIES 

Query ID Query Description 

U1 Insert an Atomic Value, i.e., leave node 

U2 Insert a Non-atomic Value, i.e., non-leave or internal 
node 

U3 Delete an Atomic Value , i.e., leave node 

U4 Delete a Non-atomic Value , i.e., non-leave or internal 
node 

U5 Change an Atomic Value, i.e., the textual content of a 
node 

U6 Change a Non-atomic Value, i.e., tag-name 

TABLE VI. FEATURES OF THE USED XML DATABASES 

 DBLP [39] XMark [40] Treebank [41] 

Size (#of nodes)  2,439,294 2,437,669 2,437,667 

Depth(#of levels) 6 10 36 

Min Breadth† 2 2 2 

Max Breadth 222,381 34,041 56,385 

Avg Breadth† 11 6 3 

#of Elements 2,176,587 1,927,185 2,437,666 

#of Attributes 262,707 510,484 1 

TABLE VII. THE EXPERIMENTAL COMPARABLE XML TECHNIQUES 

Technique Components (XML/RDBMS Mapping Schema) 

PACD 

XMLNodes(nodeID, type, tagID) 

XMLSym(tagID, desc) 

XMLValues(nodeID, value) 
nextOf(nextID, prevID) 

childOf(childID, parented) 

descOf(descID, anceID) 
* childOF+descOf= OIMatrix(Source, Target, relType) 

Edge Edge(source, target, ordinal, label, flag, value) 

XParent 

labelPath(pathID, length ,PathDesc) 

element(pathID, ordinal, nodeID) 

data(pathID, ordinal, nodeID, value) 

dataPath(nodeID, parented) 

ancestors(nodeID, anceID, level) 

10

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



B. Result Discussion 

This section discusses the experimental results. Each 
subsection discusses the results of a particular XML update 
query including the syntax of the executed query, a graphical 
representation of the results, and a brief analysis of each 
technique performance. The final remarks about these 
analyses are given in Section IX.C.  

1) Inserting an Atomic Value 
The three queries in Figure 11 insert a new leaf-node at 

levels 3, 5 and 10 of the DBLP, XMark and TreeBank 
databases, respectively. The queries were designed to act at a 
distance of 30% from the root-node. 

The graph shows that PACD required six, seven and 
thirteen amendments to the underlying relational schema in 

order to execute this query. The number of amendments is 
mainly controlled by the level number where the insertion 
was applied. For example, the 6 operations required by 
PACD over DBLP are distributed as follows: 1 insertion to 
the „XMLNodes‟ table and another insertion to the 
„XMLValues‟ table because the node contains a textual 
value. Three operations were also required to update the 
„OIMatrix‟ table while the last operation was required to link 
the new node to its next node at the „nextOf‟ table. As 
discussed earlier, PACD requires at most two operations to 
update the „nextOf‟ table for any leaf-node insertion, and at 
most „h‟ to update the „OIMatrix‟ table for the same process, 
where „h‟ is the maximum number of levels in the XML tree. 

Query: U1_DBLP 

Insert a new author called “New Author” of the inproceedings publication identified by the key 

“conf/ecai/BeeringerAHMW94”. The new author must be the first in the author list of that publication. 

Query: U1_XMark 

Insert a new location called “New Location” for the item identified by “item38683” from South America. 

Query: U1_TreeBank 

Insert a new „CC‟ element (textual-value is “New CC”) under the „NP‟ element which has a child called „CC‟ that stores 

“IQXQwyLNRrdOEoHUpfWNbB==” and the existing „CC‟ element can be reached by the path 

„/FILE/EMPTY/S/S/VP/NP/VP/PP/NP/CC‟. The new „CC‟ element must precede the existing „CC‟ element. 

 
 

Figure 11. Performance of the "Insert an Atomic Value" Query 

 

Query: U2_DBLP 

Insert a new root element called “nRoot” to the DBLP100 database. 

Query: U2_XMark 

Insert a new root element called “nRoot” to the XMark100 database. 

Query: U2_TreeBank 

Insert a new root element called “nRoot” to the TREE100 database. 

 
 

Figure 12. Performance of "Insert a Non-Atomic Value" Query 

11

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Compared to other techniques, PACD is always better 
than XParent because the later required one more insertion to 
the „data‟ table and more change operations to keep the 
document order updated at the „ordinal‟ attributes of the 
„elem‟ and „data‟ tables. On the other hand, Edge 
performance is either same as PACD or better. This 
superiority is determined by the fact that Edge encodes are 
far less of XML structure, which in turn affects its query 
performance. In summary, when linked with the queries-
range coverage, PACD appears to have the best update 
performance for this type of query among the three 
techniques. 

2) Inserting Non-Atomic Value 
These queries (Figure 12) insert virtual root-nodes to the 

three XML databases, respectively. The virtual new root 

insertion is used here for three reasons. Firstly, the operation 
was chosen to represent the process of inserting non-leaf 
nodes, which may occur at any level in the XML tree. 
Secondly, inserting at the top most level can give a logical 
comparison between the number of operations required by 
the operation rather than inserting at lower locations in 
different XML databases. Finally, it will be easier to observe 
the XML updater behavior and judge its performance with 
relation to the database size and other XML features. 

 For this particular query, PACD required „2+n‟ 
amendments to the underlying relational schema, where „n‟ 
is the number of nodes in the XML tree. The „n‟ operations 
were required to insert the parent/child and 
descendant/ancestor relationships of the new node, whereas 
the other two operations were used to insert the 

Query: U3_DBLP 

Delete the author named “Antje Beeringer” from the inproceedings record that is identified by the key “conf/ecai/BeeringerAHMW94”. 

Query: U3_XMark 

Delete the location for the item identified by “item38683” from South America. The deleted element is storing the content “United 

States”. 

Query: U3_TreeBank 

Delete the „CC‟ element (textual-value is “IQXQwyLNRrdOEoHUpfWNbB==”) which can be reached by the path 

„/FILE/EMPTY/S/S/VP/NP/VP/PP/NP/CC‟. 

 
 

Figure 13. Performance of "Delete an Atomic Value” Query 

 

Query: U4_DBLP 

Delete the entire record of an article labeled with the KEY “tr/gte/TM-0332-11-90-165”. 

Query: U4_XMark 

Delete the entire record of an item labelled with the ID “item7” from Africa. 

Query: U4_TreeBank 

Delete the entire record of the element „PP‟ that is reachable by the path „/FILE/EMPTY/S/VP/S/VP/NP/VP/NP/PP‟ and its child 
element „TO‟ has the value “6fc25UxSwWg9Pz+yyR6wi8==”. 

 
 

Figure 14. Performance of “Delete a Non-Atomic Value" Query 

12

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



corresponding record in the „XMLNodes‟ and „XMLSym‟ 
tables because the new node was assumed to have distinct 
tag name from the existing tag/attribute list. 

Due to its restricted XML mapping algorithm, Edge had 
only one amendment to execute this update operation. This 
amendment was required to insert the new node‟s record into 
the underlying mapping schema without affecting the 
„ordinal‟ attribute because the root node logically has no 
siblings. XParent workload on the other hand was slightly 
higher than PACD. XParent required extra “s” operations to 
update the „labelPath‟ table where “s” is the number of 
records in that table, which stores the corresponding XML 
schema summary. In general, XParent‟s number of 
operations exceeds PACD ones by the number of the records 

affected inside the underlying XPath summary, and also the 
relative position of the inserted node amongst its siblings.  

3) Delete an Atomic Value 
These queries (Figure 13) delete a single leaf node from 

each XML database. The deleted nodes were located at 
levels 3, 5 and 10 of the DBLP, XMark and TreeBank 
databases, respectively; and they were 30% away from the 
root node each database. In addition, the deleted nodes were 
chosen to have at least one sibling node of the same tag-
name so that the impact of the deletion process on the 
document order can be calculated. 

PACD performed „2+p+2‟ amendments to the underlying 
mapping schema of all XML database types where „p‟ is the 
level number of the node deleted. The first 2 operations were 
required to remove the corresponding records from the 

Query: U5_DBLP 

Change the book title identified by the key “phd/Mumick91” from “Query Optimization in Deductive and Relational Databases” to be 
“Query Optimization in Deductive and Relational Databases: Modified”. 

Query: U5_XMark 

Change the street name of a person‟s address by the key “person0” from “85 Geniet St” to be “85 Geniet St: Modified”. 

Query: U5_TreeBank 

Change the value stored in „IN‟ element which is reachable by the path 

“/FILE/S/VP/SBAR/S/NP/SBAR/S/VP/S/VP/VP/NP/PP/NP/PP/NP/VP/PP/IN” from “CrtsNRQX7cNqOsWbpvPMgO==” to 
“CrtsNRQX7cNqOsWbpvPMgO==:Modified”. 

 
 

Figure 15. Performance of "Edit an Atomic Value" Query 
 

Query: U6_DBLP 

Change the description of the element/attribute name „key‟ records to „ID_NUM‟. 

Query: U6_XMark 

Change the description of the element/attribute name „id‟ records to „ID_NUM‟. 

Query: U6_TreeBank 

Change the description of the element/attribute name „PP‟ records to „PPPP‟. 

 
 

Figure 16. Performance of "Edit a Non-Atomic Value" Query 

13

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



„XMLNodes‟ and „XMLValues‟, respectively, and last 2 
operations were required to update the „nextOf‟ table while 
the „p‟ operations were conducted on the „OIMatrix‟ table to 
remove the node‟s corresponding records. In general, the 
number of operations for this type of update is determined by 
the level number of the target node in the XML tree with a 
maximum cost of „2+h+2‟ where „h‟ is the maximum 
number of levels in the XML tree. 

The performance of Edge and XParent in update was 
close to PACD‟s. In XParent, the update handler requires 

„2rs‟ more operations (where „rs‟ is the number of the right-
hand side siblings of the node) to update the document-order 
inside the „elem‟ and „data‟ tables, while Edge‟s processor 

required „1+2rs‟ operations to remove the node from the list 
and amend the siblings‟ ordinal attribute.  

In summary, PACD appears more efficient for this type 
of queries due the document order preserving mechanism. 

4) Delete a Non-Atomic Value 
The action of these queries (Figure 14) was conducted at 

levels two, five and ten of the DBLP, XMark and TreeBank 
databases, respectively. These queries were included to test 
the performance of deleting a sub-tree from the master XML 
tree. The number of nodes in the target sub-trees was 
selected to be very small compared to the master XML tree 
so that identifying the number of records affected became 
easy. The DBLP‟s sub-tree consisted of 13 nodes distributed 
over 2 levels, and the XMark‟s sub-tree had 48 nodes 
distributed over 7 levels while the number of nodes and 
levels in the TreeBank‟s sub-tree were 8 and 4, respectively. 
All sub-tree nodes were combinations of atomic and non-
atomic nodes. 

PACD required 13 and 12 operations to remove the 
DBLP‟s sub-tree from the nodes and values lists, 
respectively, 26 operations to update the parent/child and 
descendant/ancestor relationships, and 11 operations to 
update the „nextOf‟ container. These figures were 
determined by three factors. Firstly, the sub-tree size 

determined the number of „delete‟ operations from both the 
„XMLNodes‟ and „XMLValues‟ tables. Secondly, the 
breadth and the depth as well as the level of the sub-tree‟s 
root node all controlled the number of update operations of 
the „OIMatrix‟ table. Finally, the number of update 
operations at the „nextOf‟ table was mainly controlled by the 
breadth of the sub-tree including, at most, 2 operations to re-
link the left and right hand side nodes for the previous/next 
relationship. In general, PACD generates a manageable 
number of changes for this type of queries especially when 
the update happens at the low levels of the XML tree. 

On the other hand, Edge and XParent performed 1270 
times more operations compared to PACD for the DBLP‟s 
query, and the three techniques were close to each other for 
the XMark‟s query while PACD and XParent were 22 times 
higher than Edge for the TreeBank‟s query. These figures 
support the above conclusion that the number of operations 
is determined by the size of the deleted sub-tree and its 
location in the master XML tree. In general, PACD‟s 
document-order encoding mechanism had a clear impact in 
reducing the number of changes that are required to conduct 
sub-tree deletion operations.  

5) Edit an Atomic Value 
This is the cheapest update query (Figure 15) that can be 

ever conducted by any technique tested. All techniques over 
all database types have made exactly one amendment to their 
relational schema storage. In this case, PACD needs to 
update the „XMLValues‟ table, Edge also updates the 
corresponding record in its orphan table while XParent needs 
to change the record inside the „data‟ table. 

6) Edit a Non-Atomic Value 
These queries (Figure 16) can be used to alter the tags 

and attributes names without affecting the document‟s 
hierarchal structure. The experiment has chosen to alter the 
name of some elements/attributes, which were widely 
repeated in each XML database to show the importance of 
minimizing the cost of such update queries. The DBLP‟s 

TABLE VIII. THE EXPERIMENTAL RESULTS 

 
 

14

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



query was designed to change all „KEY‟ attributes, and the 
XMark‟s query was designed to change all „ID‟ attributes, 
while the TreeBank‟s query was deigned to change the name 
of the recursive element „PP‟. The „KEY‟, „ID‟ and „PP‟ 
tokens were repeated 213¸634, 80¸316 and 136¸545 times, 
respectively inside the corresponding XML databases. 

In general, the statistics show that the number of 
amendments conducted by PACD was always 1 because 
PACD stores all database tokens only once. On the other 
hand, the number of amendments in Edge‟s table was 
determined by the number of elements/attributes that hold 
the same name, while the number of amendments in XParent 
environment was determined by the number of XPath 
expressions that contain the element/attribute name. So, for 
Edge, the number of changes was 213¸634, 80¸316 and 
136¸545 over the DBLP, XMark and TreeBank databases 
respectively, while XParent performed 8, 9 and 248¸480 
changes over the same set of XML databases. The high 
number of changes produced by XParent over the TreeBank 
database was due the recursive properties of the element „PP‟ 
inside the XML schema. 

C. Main Findings 

The experiment discussed here has evaluated the 
PACD‟s update primitives by executing six XML update 
queries over three different XML databases. The evaluation 
process examined the performance of PACD over each XML 
database and compared it with Edge‟s and XParent‟s 
performance over the same database set. 

Comparing to other techniques, and taking into account 
the queries-range coverage, PACD appeared having the best 
performance for most of the queries in all situations. The 
experiment has also shown that the performance of XParent 
and Edge was delayed by the cost of the document order 
persevering mechanism. PACD eliminates this cost by 
encoding the previous/next relationship that requires at most 
2 changes for any type of query/operation that concerns 
about document-order. 

X. CONCLUSION 

This paper has discussed the PACD‟s updating 
framework, which is managed by a set of low cost update 
primitives. Once an update query is issued, the Update Query 
Handler (UQH) process identifies the target node-set and the 
necessary update primitive(s). The translation of an update 
query may generate one or more update primitives each of 
which may alter one or more XML nodes. The UQH 
currently can generate nine update primitives divided into 
three categories; the insert, delete, and change primitives. 

This paper has provided a comprehensive complexity 
analysis of the PACD‟s update primitives supported by 
illustrative examples for each update primitive. The paper 
also presented an experimental evaluation process to support 
the analysis and generalize conclusions based on the 
generated results.  

Both analysis and experimental results provided in this 
paper have shown that the computation cost of the XML 
updates can be improved using the PACD‟s update 
primitives, which specifically act on its data-storage. The 

summary of the complexity discussion is given in Tables II, 
III and IV, while the full experimental result summary is 
depicted in Table VIII. 

Besides, the paper has supplied a full algorithmic listing 
of the XML update primitives under the PACD environment, 
along with a comprehensive evaluation method (and the 
results), which can be recycled by the XML research 
community to test and evaluate the XML database 
developments. Such level of details is rarely found in the 
existing  literature. 

REFERENCES 

[1] M. Al-Badawi and A. Al-Hamadani, “A Complexity analysis 

of an XML update framework,” in Proceedings of ICIW 

2013, Rome, Italy, 2013, pp. 106-113, ISSN: 2308-3972, 

ISBN: 978-1-61208-280-6. 

[2] T. Härder, M. Haustein, C. Mathis, and M. Wagner, “Node 

labelling schemes for dynamic XML documents 

reconsidered,”  International Journal of Data Knowledge 

Engineering, vol. 60, issue 1, 2007, pp. 126-149. 

[3] P. O‟Neil, E. O‟Neil, S. Pal, I. Cseri, G. Schaller, and N. 

Westbury, “ORD-PATHs: insert-friendly XML node labels,” 

In proceeding of ACM/SIGMOD international conference on 

Management of Data, 2004, pp. 903-908. 

[4] W. Shui, F. Lam, D. Fisher, and R. Wong, “Querying and 

marinating ordered XML data using relational databases,” in 

Proceedings of the 16th Australasian database conference - 

vol. 39, Newcastle, Australia, 2005, pp. 85-94.  

[5] I. Tatarrinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. 

Shekita, and C. Zhang, “Storing and querying ordered XML 

using a relational database system,” ACM/SIGMOD Record, 

Madison, Wisconsin, 2002, pp. 204-215.  

[6] H. Wang, H. He, J. Yang, P. Yu, and J. Yu, “Dual labeling: 

Answering graph reachability queries in constant time,” in 

Proceedings of the International conference of Data 

Engineering, 2006, pp. 75-86.  

[7] C. Zhang, J. Nsughton, D. DeWitt, Q. Luo, and G. Lohman, 

“On supporting contaiment queries in relational database 

management systems,” in Proceedings of the 2001 ACM 

SIGMOD international conference on Management of Data, 

California, USA, 2001, pp. 425-436. 

[8] J. K. Min, J. Lee, and C. W. Chung, “An efficient XML 

encoding and labeling method for query processing and 

updating on dynamic XML data,”  Advance in Databases: 

Concepts, Systems and Applications, LNCS, vol. 4443, 

2009, pp. 715-726. 

[9] S. Sakr, “A prime number labeling scheme for dynamic 

ordered XML trees,” in Proceedings of the Intelligent Data 

Engineering nd Automated Learning, LNCS, vol. 5326, 

2008, pp. 378-386. 

[10] J. Lu, X. Meng, and T. W. Ling, “Indexing and querying 

XML using extended Dewey labeling scheme,”  Journal of 

Data & Knowledge Engineering, vol. 70, issue 1, 2011, pp. 

35-59. 

[11] L. Xu, T. Wang Ling, and H. Wu, “Labeling dynamic XML 

documents: an order-centric approach,” IEEE Transactions 

on Knowledge and Data Engineering, vol. 24, issue 1, 2012, 

pp. 100-113. 

[12] J. Liu, Z. M. Ma, and L. Yan, “Efficient labeling scheme for 

dynamic XM trees,” Information Sciences, vol. 221, 2013, 

pp. 338-354. 

15

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[13] R. Lin, Y. Chang, and K. Chao, “A compact and efficient 

labeling scheme for XML documents,” Database Systems for 

Advanced Applications, LNCS, vol. 7825, 2013, pp. 269-

283. 

[14] Q. Chen, A. Lim, and K. Ong, “D(K)-Index: An adaptive 

structural summary for graph-structured data,” in 

Proceedings of the 2003 ACM SIGMOD international 

conference on Management of data, CA, USA, 2003, pp. 

134-144.  

[15] C. Chung, J. Min, and K. Shim, “APEX: An adaptive path 

index for XML data,” in Proceedings of the 2002 ACM 

SIGMOD international conference on Management of data, 

Madison, Wisconsin, 2002, pp. 121-132. 

[16] S. Haw and C. Lee, “Extending path summary and region 

encoding for efficient structural query processing in native 

XML databases,” Journal of Systems and Software, vol. 82, 

issue 6, 2009, pp. 1025-1035. 

[17] A. Arion, A. Bonifati, I. Manolescu, and A. Pugliese, “Path 

summaries and path partioning in modern XML databases,”  

World Wide Web, vol. 11, issue 1, 2008, pp. 117-151. 

[18] M. Sadoghi, I. Burcea, and H. A. Jacobsen “A gneric 

boolean predicated XPath expression matcher,” in 

Proceedings of the 14th Int. Conf. on Extending Database 

Technology,  2011, pp. 45-56. 

[19] J. Kwon, P. Rao, B. Moon, and S. Lee, “Fast XML document 

filtering by sequencing twig patterns,” ACM Transactions on 

Internet Technology (TOIT), vol. 9, issue 4, Article 13, 2009, 

pp. 13.1-13.51. 

[20] H. Wang and X. Meng, “On sequencing of tree structures for 

XML indexing,” in Proceedings of the 21st international 

conference on Data Engineering, 2005, pp. 372-383.  

[21] H. Wang, X. Wang, and W. Zeng, “A research on 

automaticity optimization of KeyX index in native XML 

database,” in Proceedings of the 2008 international 

conference on Computer Science and Software Engineering, 

2008, pp. 700-703.  

[22] W. Li, J. Jang, G. Sun, and S. Yue “A new Sequence-Based 

approach for XML data query,” in Proceedings of the 2013 

Chinese Intelligent Automation Conf., LNEE, vol. 256, 

2013, pp. 661-670. 

[23] H. Al-Jmimi,A. Barradah, and S. Mohammed “Sibiling 

labeling scheme for updating XML dynamically,” in 

Proceedings of the 4th Int. Conf. on Computer Engineering 

and Technology, vol. 40, 2012, pp. 21-25. 

[24] J. Yoon, S. Kim, G. Kim, and V. Chakilam, “Bitmap-based 

indexing for multi-dimensional multimedia XML 

document,” in Proceedings of the 5th International 

Conference on Asian Digital Libraries-ICADL2002,  

Singapore, 2002, pp. 165-176. 

[25] N. Zhang, M. Özsu, I. Ilyas, and A. Aboulnaga, “FIX: 

feature-based indexing technique for XML documents,” in 

Proceedings of the 22nd international conference on VLDB, 

vol. 32, Seoul, Korea, 2006, pp. 259-270. 

[26] R. Senthilkumar and A. Kannan, “Query and update support 

for indexing and compressed XML (QUICX),” Recent 

Trends in wireless and Mobile Networks Communication in 

computer and Information Science, vol. 162, 2011, pp. 414-

428. 

[27] J. Clark and S. DeRose, XML Path Language (XPath)-

Version 1.0, [Online] Available online: 

http://www.w3.org/TR/xpath/, [Accessed on: 25/05/2014]. 

[28] M. Al-Badawi, H. Ramadhan, S. North, and B. Eaglestone, 

“A performance evaluation of a new bitmap-based XML 

processing approach over RDBMS,” Int. J. of Web 

Engineering and Technology, vol. 7, no. 2 , 2012, pp. 143 – 

172. 

[29] M. Al-Badawi, B. Eaglestone, and S. North, "PACD: A 

bitmap-based approach for processing XML data," 

WebIST‟09, Lisbon, Portugal, 2009, pp. 66-71. 

[30] H. He, H. Wang, J. Yang, and P. Yu, “Compact reachability 

labeling for graph-structured data,” in Proceedings of the 

14th ACM international conference on Information and 

knowledge management, Bremen, Germany, 2005, pp. 594-

601. 

[31] T. Bray, J. Paoli, C. Sperbeg-McQueen, E. Maler, and F. 

Yergeau, Extensible Markup Language (XML) 1.0 (Fourth 

Edition), [Online] Available online: 

http://www.w3.org/TR/REC-xml/, [Last accessed on: 

25/05/2014]. 

[32] J. Yun and C. Chung, “Dynamic interval-based labelling 

scheme for efficient XML query and update processing,” 

Journal of Systems and Software, vol. 81, issue 1, 2008, pp. 

56-70. 

[33] J. Lu, T. Ling, C. Chan, and T. Chen, “From region encoding 

to extended dewey: on efficient processing of XML twig 

pattern matching,” in Proceedings of the 31st International 

Conference on VLDB, Trondheim, Norway, 2005, pp. 193-

204. 

[34] X. Wu, M. Lee, and W. Hsu, “A prime number labeling 

scheme for dynamic ordered XML trees,” in Proceedings of 

the 20th international conference on Data Engineering, 2004, 

pp. 66-78. 

[35] R. Goldman and J. Widom, “DataGuides: enabling query 

formulation and optimaization in semistructured database,” 

in Proceedings of the 23rd  international conference on 

VLDB, 1997, pp. 436-445. 

[36] H. Jiang, H. Lu, W. Wang, and J. Yu,  “XParent: an efficient 

RDBMS-based XML database system,” International 

conference on Data Engineering, CA, USA, 2002, p. 2.  

[37] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura, 

“XRel: a path-based approach to storage and retrieval of 

XML documents using relational databases,” ACM/IT., vol. 

1, issue 1, NY, USA, 2001, pp. 110-141.  

[38] D. Florescu and D. Kossmann “A Performance Evaluation of 

alternative Mapping Schemas for Storing XML Data in a 

Relational Database,” TR:3680, May 1999, INRIA, 

Rocquencourt, France, pp. 1-24. 

[39] DBLP, The DBLP Computer Science Biblography, [Online] 

Available at http://dblp.uni-trier.de/, [Last accessed on 

24/05/2014]. 

[40] A. Schmidt, F. Waas, M. Kersten, D. Carey, I. Manolescu, 

and R. Busse. “XMark: a benchmark for XML data 

management,” International conference on Very Large Data 

Bases, Hong Kong, China, 2002, pp. 974-985. 

[41] PennProj, The Penn Treebank Project, [Online] Available 

online at http://www.cis.upenn.edu/~treebank/, [Last 

accessed on: 25/05/2014]. 

 

 

16

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Internet of Threads:
Processes as Internet Nodes

Renzo Davoli
Computer Science and Engineering Department

University of Bologna
Bologna, Italy

Email: renzo@cs.unibo.it

Abstract—In the beginning, Internet and TCP/IP protocols
were based on the idea of connecting computers, so the address-
able entities were networking adapters. Due to the evolution of
networking and Internet services, physical computers no longer
have a central role. Addressing networking adapters as if they
were the true ends of communication has become obsolete. Within
Internet of Threads, processes can be autonomous nodes of the
Internet, i.e., can have their own IP addresses, routing and QoS
policies, etc. In other words, the Internet of Threads definition
enables networked software appliances to be implemented. These
appliances are processes able to autonomously interoperate on the
network, i.e., the software counterpart of the Internet of Things’
objects. This paper will examine some usage cases of Internet of
Threads, discussing the specific improvements provided by the
new networking support. The implementation of the Internet of
Threads used in the experiments is based on Virtual Distributed
Ethernet (VDE), Contiki and View-OS. All the software presented
in this paper has been released under free software licenses and
is available for independent testing and evaluation.

Keywords-Internet; IP networks; Virtual Machine Monitors

I. INTRODUCTION

The design of the Internet is dated back to the beginning
of the 1960s. The main goal and role of the Internet was to
interconnect computers. It was natural, though, to consider the
network controller of computers as the addressable entities.
The endpoints of any communication, those having an Internet
Protocol (IP) address were the hardware controllers [2]. This
ancient definition is still used in the modern Internet. Processes
and threads are identified by their ports, a sub-structure of the
addressing scheme, as they are considered dependent on the
hardware (or virtual) computer they are running on.

In the common scenario when a client application wants
to connect to a remote internet service, it first gets the IP
address of the server providing the service, and then the client
application opens a connection to a specific well-known (or
pre-defined) port at that address.

Thus, the DNS maps a logical name (e.g.,
www.whitehouse.gov or ftp.ai.mit.edu) to the IP address
of a network controller of a computer that provides the
service. This emphasis on the hardware infrastructure
providing the service is obsolete: the main focus of the
Internet nowadays is on services and applications. The whole
addressing scheme of the Internet should change to address
this change of perspective.

By Internet of Threads (IoTh) we mean the ability of
processes to be addressable as nodes of the Internet, i.e., in
IoTh processes play the same role as computers, being IP
endpoints. They can have their own IP addresses, routing and
QoS policies, etc.

On IPv4, IoTh usage can be limited by the small number
of available IP addresses overall, but IoTh can reveal all its
potential in IPv6, whose 128-bit long addresses are enough to
give each process running on a computer its own address.

This change of perspective reflects the current common
perception of the Internet itself. Originally, Internet was de-
signed to connect remote computers using services like remote
shells or file transfers. Today users are mainly interested in
specific networking services, no matter which computer is
providing them. So, in the early days of the Internet, assigning
IP addresses to the networking controllers of computers was
the norm, while today the addressable entity of the Internet
should be the process which provides the requested service.

For a better explanation, let us compare the Internet to a
telephone system. The original design of the Internet in this
metaphor corresponds to a fixed line service. When portable
phones were not available, the only way to reach a friend
was to guess where he/she could be and try to call the
nearest line. Telephone numbers were assigned to places,
not to people. Today, using portable phones, it is simpler to
contact somebody, as the phone number has been assigned to
a portable device, which generally corresponds to a specific
person.

In the architecture of modern Internet services, there are
already exceptions to the rule of assigning IP addresses to
physical network controllers.

• Virtual Machines (VM) have virtual network controllers,
and each virtual controller has its own IP address (or
addresses). This extension is, from some perspectives,
similar to IoTh. In fact, it is possible to run a specific VM
for each networking service. This approach, although pos-
sible, would clearly be ineffective. It is highly resource
demanding in terms of: main memory to emulate the
RAM of the VM; disk space for the virtual secondary
memory of the VM; time since the VM has to run
an entire Operating System Kernel providing processor
scheduling, memory managing, etc.

• Each interface can be assigned several IP service ori-

17

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 1. Different perspectives on the networking support: the standard OS support is on the left side, IoTh is on the right side

ented addresses. Thus, it is possible to define different
addresses, each one corresponding to a specific service.
For example, if a DNS maps www.mynet.org to 1.2.3.4,
and ftp.mynet.org to 1.2.3.5, it is possible to assign
both addresses to the same controller. Addresses can be
assigned to a specific process using the bind system call.
This approach is commonly used in High Availability
(HA) servers, where there is the need to migrate services
from one host to another in case of faulty hardware or
software [3]. This approach:

– requires a complex daemon configuration (each
socket must be bound to the right address) and
network filtering (e.g., using iptables [4]) to prevent
services from being reached using the wrong logical
address (e.g., http://ftp.mynet.org);

– provides the way to migrate service daemons in a
transparent manner for clients, but it does require a
non trivial procedure to delete addresses and network
filtering rules on one server and then define the same
addresses and filtering rules on the other, prior to
starting the new daemon process.

• Linux Containers (LXC), as well as Solaris Zones [5],
[6], allow system administrators to create different op-
erating environments for processes running on the same
operating system kernel. Among the other configurable
entities for containers, it is possible to define a specific
network support, and to create virtual interfaces of each
container (flag CLONE NEWNET of clone(2)). The def-
inition and configuration of network containers, or zones,
are privileged operations for system administrators only.
This feature appears very close to the intents of IoTh.
However, in LXC the creation of a networking virtual
interface, thus the setting of a new IP address, is a
system administration operation. In fact, it requires the
process to own the CAP NET ADMIN capability, the
same required to modify the configuration of the physical
controller of the hosting computer. In IoTh, the creation
of a networking environment for a process is as simple
as a library function call. In this way, a process defines
its IP address(es) as an ordinary user operation. IoTh
provides Network Access Control to prevent abuses of

networking services at the virtual Data-Link layer (in
general a Virtual Ethernet). A process can define its
interfaces and its IP addresses as the owner of a Personal
Computer (PC) can assign any IP address to the interfaces
of their PC connected to a Local Area Network (LAN). If
the IP address is wrong, or inconsistent with the addresses
running on the LAN, that PC cannot communicate. And
even if the address is correct, it is possible to set up
firewalls to define what that PC can do and what cannot
be done. In IoTh each process can play the role of the
PC in the example. In the same way, virtual firewalls can
be set up to define which are the permitted networking
services.

The paper will develop as follows: Section II introduces the
design and implementation of Ioth, followed by a discussion in
Section III. Related work is described in Section IV. Section
V is about usage cases. Section VI introduces an innovative
way to assign IP addresses and Section VII is about practical
examples. Section VIII discusses the security issues related to
IoTh and Section IX provides some performance figures of a
proof-of-concept implementation. The paper ends with some
final considerations about future work.

II. DESIGN AND IMPLEMENTATION OF IOTH

The role and the operating system support of the Data-
Link networking layer must be redesigned for IoTh. Processes
cannot be plugged to physical networking hubs or switches
as they do not have hardware controllers (in the following
the term switch will be used to reference either a switch or
a hub, as the difference is not relevant to the discussion).
On the other hand, it is possible to provide processes with
virtual networking controllers and to connect these controllers
to virtual switches. Figure 1 depicts the different perspectives
on the networking support. The focus of Fig. 1 is to show
how IoTh changes the Operating System (OS) support for
networking: what is provided by the hardware vs. what is
implemented in software, what is shared throughout the system
vs what is process specific and what is implemented as kernel
code vs. what runs in user-mode.

The typical networking support is represented on the left
side of Fig. 1. Each process uses a networking Application
Program Interface (API), usually the Berkeley sockets API [7],

18

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Process

Kernel

Hardware
Network Controller

Switch

User-mode

Process Process

TCP-IP
STACK

TCP-IP
STACK

Virtual SWITCH
TCP-IP
STACK

Process

Fig. 2. A more complex scenario of IoTh usage

to access the services provided by a single shared stack, or by
one of the available stacks for zones or LXC (see Section I).
The TCP-IP stack is implemented in the kernel and directly
communicates with the data-link layer to exchange packets
using the physical LAN controllers.

In IoTh, represented on the right side of the figure, un-
privileged processes can send data-link packets using virtual
switches, able to dispatch data-link packets from process to
process and between processes and virtual interfaces (e.g.,
tuntap interfaces) of the hosting OS. Virtual switches can
also be interfaced to physical networking controllers, but this
latter operation is privileged and requires specific capabilities
(CAP NET ADMIN).

So, the hardware-software boundary has been moved down-
wards in the IoTh design. In fact, the data-link networking
(commonly the Ethernet) includes software components in
IoTh, i.e., virtual switches, for unprivileged user processes. In
IoTh the virtual switches are shared components between user
processes, while the TCP-IP stacks (or, in general, the upper
part of the networking stacks, from the networking layer up)
are process specific. It is also possible for a group of processes
to share one TCP-IP stack, but in the IoTh design this is just
an implementation choice and no longer an OS design issue
or system administration choice.

The kernel/user-mode code boundary is flexible in IoTh:
both the virtual ethernet switches and the TCP-IP stacks can
be implemented in the kernel or not. A virtual switch can be a
standard user-mode process or a kernel service, while a TCP-
IP stack is a library that can be implemented in the kernel to
increase its performance.

Figure 2 shows a more complex scenario that is more
consistent with a real usage case of IoTh. In fact, the traditional
support for networking and the IoTh approach co-exist in
a system. Following the telephony systems example of the
introduction (see Section I), fixed line services and portable
phones interoperate.

The OS running on a computer still needs a computer
specific TCP-IP stack and IP addresses to be used when
a system administrator needs to configure some systemwide
service. In the telephone service metaphor we use fixed lines
when we want to be sure to call a specific place. Internet
services (like ftp, web, MTA, etc.) can be reached using their

own IP addresses. These services are the portable phones of
the metaphor.

IoTh can be used for networking clients, too. Several virtual
switches running on the same hosting system can be connected
to different networks and can provide different services, e.g.,
can have different bandwidths or routing. Additionally, several
virtual switches can be active on the laptop of a professor
attending a conference, one connected by an encrypted Virtual
Private Network (VPN) to his/her University’s remote pro-
tected intranet and another directly connected to the physical,
maybe wi-fi, LAN of the conference center.

Users of IoTh enabled OS, like the professor in the example,
will be able to choose between the available networking
services in their applications (browser, voip clients, etc.) just
as they currently choose the printer.

III. DISCUSSION

All the concepts currently used in Local Area Neworking
can be applied to IoTh networking.

Virtual switches define virtual Ethernets. Virtual Ethernets
can be bridged with Physical Ethernets, so that workstations,
personal computers or processes running as IoTh nodes are
indistinguishable as endnodes of Internet communication. Vir-
tual Ethernets can be interconnected by Virtual Routers. It is
possible to use DHCP [8] to assign IP addresses to processes,
to use IPv6 stateless autoconfiguration, [9], to route packets
using NAT [10], to implement packet filtering gateways,
etc. This is a non-exaustive list of protocols and services
running on a real Ethernet that work on a virtual Ethernet,
too. It is also possible to create complex virtual networking
infrastructures composed by several virtual Ethernets such as
virtual application level firewalls with De Militarized Zone
(DMZ) networks and virtual bastion hosts.

IoTh can support the idea of network structure consolidation
in the same way that the Virtual Machines provided the idea
of Server consolidation. Complex networking topologies can
be virtualized, thus reducing the costs and failure rates of a
hardware infrastructure. Today it is common for large compa-
nies to substitute their servers with virtual machines, creating,
in this way, their internal cloud, or moving their servers to an
external system-as-a-service (SaaS) cloud. This choice permits
a more flexible and economically effective management of the
servers and, at the same time, all the investments in terms of
software can be preserved, as it is possible to move each server
to a virtual counterpart, while mantaining the same software
architecture: operating system type and version, libraries, etc.
IoTh adds one more dimension to this consolidation process:
it is possible by IoTh to virtualize not only each server as
such, but also the pre-existing networking infrastructure.

Network consolidation is just an example of IoTh as a tool
for compatibility with the past. In this example each process
joining the virtual networks is just a virtual machine or a
virtual router or firewall. The granularity of an Internet node is
flexible in IoTh. A virtual machine can be an Internet node, but
each browser, bit-torrent tracker, web server or mail transport
agent (MTA) can be an Internet node, too.

19

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Through IoTh, there is no difference between local and
remote Inter Process Communication (IPC) services. A process
can have its own IP address(es) and can interoperate with
other processes using standard protocols and standard ports.
Several processes running on the same host can use the
same port, since each one uses different IP addresses. The
same IPC protocols can be used regardless of the host on
which the process is running: nothing changes, whether the
communicating processes are running on the same host or on
different, perhaps remote, computers. This allows a simpler
migration of services from one machine to another.

Each process in IoTh can have its user interface imple-
mented as an Internet service. This means, for example, that it
is possible to create programs which register their IP addresses
in a dynamic DNS, and where their web user interface is
accessible through a standard browser.

IoTh is, from this perspective, the software counterpart
of Internet of Things (IoT [11]). In IoT hardware gadgets
are directly connected to the network. IoT objects interact
between themselves and with users through standard Internet
protocols. IoTh applies the same concept to processes, i.e.,
to software objects as if they were virtual IoT gadgets. These
IoTh-enabled processes using internet protocols to interoperate
can be called networked virtual appliances. If they were
implemented on specific dedicated hardware objects, they
would become things, according to the definition of IoT.

IV. RELATED WORK

IoTh uses and integrates several concepts and tools already
available in the literature and in free software repositories.

A. Virtual Ethernet Services

IoTh is based on the availability of virtual data-link layer
networking services, usually virtual Ethernet services, as Eth-
ernet is the most common data-link standard used. Virtual Eth-
ernet networking was first introduced as a networking support
for virtual machines. Originally, each virtual machine monitor
program was provided with its specific virtual networking
service. Some of them were merely an interface to a virtual
networking interface (tuntap [12]). The kernel of the hosting
operating system had to manage the bridging/switching or
routing between virtual machines and real networks. User-
mode Linux (UM-L [13]) introduced the idea of network
switch as a user process interconnecting several UM-L VMs.

Virtual Distributed Ethernet (VDE [14]) extended the virtual
switch idea in many ways:

• VDE created a virtual plug library to interconnect differ-
ent types of VMs to the same virtual switch. Currently,
User-Mode Linux, qemu [15], kvm [16], virtualbox [17]
natively support VDE in their mainstream code. Virtual-
lyi, any VM that supports tuntap can also be connected
to VDE using the virtual tuntap library.

• VDE switches running on different hosts can be con-
nected by virtual cables to form an extended virtual
Ethernet LAN. All the VM connected to one of the

interconnected switches regard the others as if they all
were on the same LAN.

• VDE provides support for VLANs, Fast spanning tree for
link fault tolerance, remote management of switches, etc.

• VDE is a service for users: the activation of a VDE
switch, the connection of a VM to a switch, or the
interconnection of remote switches, are all unprivileged
operations.

VDE switches were first implemented using user-level pro-
cesses, but there is an experimental version of faster VDE
switches running as kernel code (kvde switch). Although this
implementation runs as kernel code, kernel switches can be
started and managed by unprivileged users and processes.
kvde switch is based on Inter Process Networking (IPN [18])
sockets, a general purpose support for broadcast/multicast IPC
between processes.

The idea of a general purpose virtual Ethernet switch
for virtual machines has been implemented by some other
projects, too:

• OpenVswitch [19] is a virtual Ethernet switch for VMs
implemented at kernel level. OpenVswitch has VLAN
and QoS support. It has been designed to be a fast,
flexible support for virtual machines running on the same
host. It does not support distributed virtual networks, and
requires root access for its configuration.

• Vale [20] is a very fast support for virtual networking,
based on the netmap [21] API. It uses shared memory
techniques to speed-up the communication between the
VMs. Vale, like OpenVswitch, does not directly support
distributed networks and must be managed by system
administrators.

B. TCP-IP stacks

As described in the introduction, the TCP-IP networking
stack is generally unique in a system and it is considered
as a shared systemwide service provided by the kernel. The
implementation of the TCP-IP stack can be found in the kernel
source code of all the free software kernels. In Linux, the
IPv4 stack is in the directory /net/ipv4 and the IPv6 stack
is in /net/ipv6. Alpine [22] is an early approach to network
virtualization for protocol development. In fact, Alpine used a
customized BSD kernel running as a user process to serve as
a partial virtual machine monitor to virtualize the system calls
for networking. TCP-IP stack implementations as libraries
are common as software tools for embedded system design.
Many manufacturers of embedded system platforms provide
their own TCP-IP libraries as part of their development kits.
Some of these libraries have been released as free software.
Unfortunately, many of these libraries provide minimal or
partial implementation of the networking stacks to be used for
specific purposes only and are tailored or optimized for a spe-
cific embedded system hardware architecture. Adam Dunkels
wrote two general purpose and free licensed TCP-IP stacks for
embedded systems: uIP [23] and LWIP (Light Weight IP) [24].
uIP is a very compact stack for microcontrollers having limited
resources, while LWIP is a more complete implementation for

20

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



powerful embedded machines. LWIP was initially designed for
IPv4, but a basic support for IPv6 has recently been added. In
2005, when LWIP did not support IPv6 yet, VirtualSquare labs
created a fork of LWIP, named LWIPv6 [25]. LWIPv6 then
evolved independently and is now a library supporting both
IPv4 and IPv6 as a single hybrid stack, i.e., differently from
the dual-stack approach, LWIPv6 manages IPv4 packets as a
subcase of IPv6 packets. When LWIPv6 dispatches an IPv4
packet it creates a temporary IPv6 header, used by the stack,
which is deleted when the packet is later delivered. LWIPv6 is
also able to support several concurrent TCP-IP stacks. It has
features like packet filtering, NAT (both NATv4 and NATv6),
slirp (for IPv4 and IPv6) [26].

C. Process/OS interface

In this work, we use two different approaches to interface
user processes with virtual stacks and virtual networks. A
way to create networked software appliances is to run entire
operating systems for embedded computers as processes on a
server. Contiki [27], or similar OSs, can be used to implement
new software appliances from scratch. This approach cannot
be used to interface existing programs (e.g., an existing web
server like Apache) to a virtual network, unless the software
interface for networking is completely rewritten to support
virtual networking.

ViewOS [28] is a partial virtualization project. View-OS
virtualizes the system calls generated by the programs, so
unmodified binary programs can run in the virtualized envi-
ronment. ViewOS supports the re-definition of the networking
services at user level. Processes running in a View-OS partial
virtual machine, where the networking has been virtualized,
will use a user-mode stack instead of the kernel provided one.
Server, client and peer-to-peer programs can run transparently
on a View-OS machine as if they were running just on the
OS, but using a virtualized stack instead of the kernel stack.

Another project provides network virtualization in the
NetBSD environment: Rump Anykernel [29]. The idea of
Rump is to provide user-mode environments where kernel
drivers and services can run. Rump provides a very useful
structure for kernel code implementation and debugging, as
entire sections of the kernel can run unmodified at user level.
In this way, it is possible to test unstable code without the risk
of kernel panic.

At the same time, Rump provides a way to run kernel
services, like the TCP-IP stack, at user level. It is possible
to reuse the kernel code of the stack as a networking library,
or as a networking deaemon at user level. Antti Kantee, the
author of Rump, named this idea Anykernel. In Rump, it is
possible to run each device driver or system service in three
different ways: as kernel code, as user-mode code embedded in
the application process, or as a user-mode server. These three
operational modes respectively correspond to three kernel
architectures, when applied to all the drivers and services:
monolithic kernels, exokernels and microkernels. Then an
Anykernel is a kernel where the kernel architecture is flexible
and can be independently decided on each driver or server.

D. Multiple Stack support

Some IoTh applications require the ability for one process
to be connected to several TCP-IP stacks at the same time.
The Berkeley sockets API has been designed to support only
a single implementation for each protocol family.

ViewOS and LWIPv6 use an extension of the Berkeley
sockets API, msocket [30], providing the support for multiple
protocol stacks for the same protocol family. A new system
call msocket is an extended version of the socket system
call: msocket has one more (leading) argument, the pathname
of a special file which defines the stack to use. msocket is
back compatible with the standard Berkeley sockets API: it
is possible to define and modify the current default stack of
a process. The socket system call will use the current default
stack. The default stack is part of the process status, and it
is inherited in the case of fork or execve. Existing programs
using only socket can work on any available stack, one at a
time.

V. USAGE CASES

This section describes some general usage cases of IoTh.
A complete description of the experiments, including all the
details to test the results, can be found in Section VII.

A. Client Side usage cases

• Co-existence of multiple networking environments. This
feature can be used in many ways. For example, it is
possible to have a secure VPN connected to the internal
protected network of an institution or a company (an
intranet) on which it is safe to send sensitive data and
personal information, and a second networking environ-
ment to browse the Internet.
As a second example, technicians who need to track
networking problems may find it useful to have some
processes connected to the faulty service, while a second
networking environment can be used to look for informa-
tion on the Internet, or to test the faulty network by trying
to reach the malfunctioning link from the other end.

• Creation of networking environments for IPC. Many
programs have web user interfaces for their configuration
(e.g., CUPS or xmbc). Web interfaces are highly portable
and do not require specific graphics libraries to run.
Using IoTh it is possible to create several Local Host
Networks (LHN), i.e., virtual networks for IPC only, to
access the web interfaces of the running processes. LHN
can have access protection, e.g., an LHN to access the
configuration interface of critical system daemons can be
accessible only by root owned processes. All daemons
can have their own IP address, logical name and run their
web based configuration interface using port 80.
Let us take the CUPS example. The web interface of
CUPS is available at the port 631 on localhost, and
allows users to read the status of the printers. System
administrators can add or reconfigure printers, CUPS asks
for a password authentication for these operations. Using
IoTh it is possible to define the FQDN cups.localhost

21

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



to be a static IP address in the file /etc/hosts. An IoTh
version of CUPS could join two LHN using msockets
and use the same IP address on both. One virtual net-
work is for system administrators, the other for users.
User browsers can be connected to the LHN for system
administrators if they are enabled, otherwise they can
use the other LHN. All the configuration options will be
disabled by CUPS for all accesses from the user LHN.
The same approach as CUPS could be used for many
system daemons providing a web interface. In this way,
the LHN for system administration works as a single-
sign-on channel for all the daemons. In fact, system
administrators will not be required to be authenticated
by a password, as only processes owned by a privileged
account can join that LHN.

• Per user IP addresses. It is possible to use IoTh to assign
an IP address to each user working on the same server.
This is useful, for example, in critical environments,
where tracking the responsibility of all the activities on
the network is required. In multiuser and multitasking
operating systems using a shared TCP-IP stack it is not
generally possible, unless the configuration forces the
system to log the mapping between each TCP connec-
tion or UDP datagram, and the owner of the process
which requested the networking operation. It would be
clearly a very expensive procedure in terms of processing
power and storage requirements. This problem has been
described in detail in User Level Networking (ULN)
[31]. Through IoTh, each user can be given their own
VDE, where their TCP-IP stacks or their processes can
be connected. The router of user VDEs can assign IP
addresses, or a range of IP addresses, to each user. In
this way, there will be a direct mapping between each
IP address and the user responsible for it. Likewise, it is
possible to track the personal computers connected to a
public network. Because of the distributed nature of VDE,
the IP addresses of a user can be assigned to processes
running on different hosting computers.
IP addresses assigned per user allows for the implemen-
tation of differentiated services. Users or classes of users
can be assigned different QoS and access constraints.

B. Server side usage cases

• Virtual hosting is a well-known feature of several net-
working servers: the same server provides the same kind
of service for multiple domains. Apache web server is one
of the most common examples of daemons supporting
virtual hosting. The same Apache process can work as a
web server for many domains. The target IP address used
by the client, or the address specified in the GET request
of the html protocol, can be used by Apache to assign
each request to a domain.
IoTh generalizes this idea. It is possible to run several
instances of the same networking daemon, giving each
one its IP address. It is possible to run several pop,
imap, DNS, web, MTA, etc., daemons, each one using

its own stack. All the daemons will use their standard
port numbers.
It may be objected that it is already possible to obtain
a similar result by assigning all the IP addresses to the
networking controller of the server (or to a controller)
and configuring each daemon to bind its specific IP
address. In this way, one shared TCP-IP stack manages
all the addresses, and each daemon selects the one to
use. Unfortunately, this makes this approach complex and
prone to error for system administrators.
For example, the difference between this approach and
the IoTh method is clear when the IP address of a daemon
must be modified. Several configuration files must be
edited in a consistent manner, using one shared stack to
complete the required operation: /etc/network/interfaces,
the daemon’s configuration files and, in well configured
systems, the iptables directives of the firewalling rules.
Using IoTh it is sufficient to change the daemon’s ad-
dress.
It is possible to envisage daemons designed for IoTh
that run several concurrent networking stacks and provide
specific services, depending on the stack they receive the
requests from.

• Service migration in IoTh is as simple as stopping the
daemon process on one host and starting it on another
one. In fact, a daemon process can have its embedded
networking stack, so its IP address and its routing rules
are just configuration parameters of the daemon process
itself. A VDE can provide a virtual Ethernet for all the
processes running on several hosts. Stopping the daemon
process on one server and activating it later on a second
server providing the same VDE is, in the virtual world,
like unplugging the Ethernet cable of a computer from a
switch and plugging it into a port of another switch of
the same LAN (the ports of both switches should belong
to the same VLAN).

• With IoTh it is possible to design network daemons which
change their IP addresses in a dynamic way. One Time
IP address (OTIP) [32] applies to IP addresses the same
technique used for passwords in One Time Password
(OTP) services [33]. In OTP, the password to access a
service changes over time, and the client must compute
the current password to be used to access the service.
This is common for protecting on-line operations on bank
accounts. When a customer wants to use his/her account,
the current password must be copied from the display of
a small key-holder device. OTIP uses the same concept
to protect private services accessible on the Internet. A
daemon process changes its IP address dynamically over
time and all its legitimate users can compute its current IP
address using a specific tool, and connect. Port scan traces
and network dumps cannot provide useful information
for malicious attacks, because all the addresses change
rapidly.
This method has mainly been designed for IPv6 networks.
In fact, the current server address can be picked up as one

22

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



of the valid host addresses available on the local network,
most of the time among 264 possible addresses. Clearly, a
264 address space is too large for attackers to try a brute
force enumeration attack on all the available addresses,
and even if they eventually succeeded, the retrieved
addresses would have to be exploited before their validity
expires and the servers move to new addresses.

C. Other usage cases

IoTh allows us to use several networking stacks. These
stacks can be several instances of the same stack, or different
stacks. In fact, it is possible to have different implementations
of TCP-IP stacks or stacks configured in different ways,
available at the same time. Processes can choose which one
is best suited to their activities.

This feature can be used in different ways:
• Using an experimental stack as the single, shared stack

of a remote computer can partition the remote machine in
cases of a malfunctioning of the stack itself. IoTh enables
the coexistence of the stack under examination with a
reliable production stack, which can be used as a safe
communication channel.

• Processes can have different networking requirements.
For example, communicating peers on a high latency link
need larger buffers for the TCP sliding window protocol.
It is possible to configure each stack and fine tune its
parameters for the requirements of each process, as each
process can have its own stack.

VI. HASH-BASED ADDRESSES

The deployment of IoTh based services requires the defini-
tion of several IP addresses. In fact, the number of IP addresses
used by IoTh can be orders of magnitude higher than the
number of IP addresses currently assigned only to hardware
or virtual controllers.

Although each (numerical) IP address could be defined
by some form of autoconfiguration (stateful or stateless [8],
[9]), the real problem is to provide the mapping between
each Fully Qualified Domain Name (FQDN) of a service and
the corresponding IPv6 address of the process providing the
requested service. In other words, the management of a high
number of IoTh addresses by the standard Domain Name
Service (DNS) procedures can be complex, error prone and
time consuming for system administrators.

In [35], we propose a novel IP address self-configuration
scheme based on a 64-bit hash encoding of the FQDN to be
used as the host part of the IPv6 address. The complete IPv6
address will then be composed by the network prefix of the
(virtual) LAN followed by the hash encoding of the FQDN.

The above referenced paper shows how the name resolution
of hash-based addresses can be managed automatically, requir-
ing system administrators the provide solely a unique FQDN
for each service. The hash-based IP addressing self assigning
method is completely consistent with the name resolution
protocols in use on the Internet [34]. So, existing networking
clients and DNS implementations can seamlessly interoperate

with DNS providing addresses using the hash-based name
resolution.

It is worth noting that hash encoding might generate col-
lisions. Thus, multiple FQDNs can correspond to the same
hash-based IP address. The same problem can arise in OTIP
generated addresses (see Section V) where two processes
could temporarily acquire the same address. In both [35] and
[32] there is a discussion about the statistical relevance of
the problem. Being an instance of the well-known birthday
paradox problem, the probability of hash collision can be
estimated as follows:

Pr[(n,m)] ≈ 1− e−
m2

2n (1)

where m is the number of elements choosing the same random
key amongst n possible keys.

Figure 3 shows the probability function (1) plotted for up to
1Mi (i.e., 220 ) computers. The probability of two addresses
colliding is less than one in 30 million for a LAN connecting
more than 1 million hosts. In more realistic cases, network
connecting less than one thousand nodes, the probability has
the order of magnitude of one in 3 · 1014.

Although very unfrequent, collisions of hash-defined ad-
dresses may happen, but such collisions can be detected by
DNS servers and reported to system administrators who can
change some of the FQDNs of the services to solve the
problem. On the contrary, for OTIP it is not possible to
completely avoid the collision problem, which, however, could
only cause extremely unlikely temporary unreachability state
of the services involved in the collision.

VII. PRACTICAL EXAMPLES

This section presents some practical experiments on IoTh.
These experiments are based on several tools which have been
designed or extended to provide a working proof-of-concept
of IoTh. For an independent testing of the results published
in this paper, the source code of all the software is available
under free software licenses on public repositories.

The tools used for the experiments include
• Virtual Distributed Ethernet: vde switch, vde plug;
• LWIPv6: the stack and sliprv6;
• Contiki: including the VDE interface;
• View-OS: umview or kmview, umnet (network virtualiza-

tion), umnetlwipv6 (interface to lwipv6), umfuse (virtual
file system support), umfusefile (single file virtualization).

A. Example 1: client side IoTh

.
This example shows how to use IoTh to run a browser on

its own network.
First of all, start a VDE switch, a ViewOS VM and connect

the VDE to a remote network. It is sufficient to have an
unprivileged user account on far.computer.org, slirpvde6 is
able to route the entire subnet.

$ vde_switch -daemon -sock /tmp/vde1
$ umview xterm &
$ dpipe vde_plug /tmp/vde1 = \

23

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 3. Probability of address collision in a 64 bits hash

> ssh far.computer.org slirpvde6 -D -N -

The new xterm is running in the View-OS VM. In that xterm
type:

$ um_add_service umnet umfuse
$ mount -t umnetlwipv6 none /dev/net/default
$ mount -t umfuseramfile -o ghost \
> /etc/resolv.conf /etc/resolv.conf
$ ip link set vd0 up
$ /sbin/udhcpc -i vd0 -q \
> -s ˜/etc/udhcpc/default.script
$ firefox new

The first command loads the View-OS modules for network
and file system virtualization. View-OS uses the mount oper-
ation to load a new network stack. It becomes the default
stack for the VM because the target of the mount operation
is /dev/net/default. umfuseramfile is used to vir-
tualize /etc/resolv.conf: in this way, the virtual file is
writable in this View-OS VM, and it is possible to define the
DNS server to be used by the VM.

Then the following commands activate the virtual controller
vd0, start a DHCP client to request a dynamic address for vd0,
and start a browser.

All the connections of the browser will be seen from the
Internet as if they were generated by far.computer.org

Figure 4 shows an example in which one browser is con-
nected to the local networking service (the one in Bologna),
while a second browser uses IoTh and is connected to an
American network (the one in Kansas City).

B. Example 2: server side virtual network appliance

This example shows how to start virtual networked appli-
ances. More specifically, the programs used in this example
are a simple web server, based on Contiki, and a simple virtual
network-attached storage (NAS), based on LWIPv6.

The source code for the Contiki example is included in the
subversion (svn) repository of VDE on sourceforge [36] as a
patch to the Contiki source tree. From the patched version of
Contiki it is possible to generate the test program named
webserver-example.minimal-net-vde.

As a first step, launch a VDE switch connected to a tap
interface and assign an IP address to it.

$ sudo vde_switch -d -s /tmp/vde2 -tap tap0
$ sudo ip link set tap0 up
$ sudo ip addr add 192.168.100.1/24 dev tap0

Then start the Contiki web server:

export CONTIKIIP=192.168.100.2
export CONTIKIMASK=255.255.255.0
export CONTIKIVDE=/dev/vde2
webserver-example.minimal-net-vde

From a browser it is now possible to reach the Contiki web
server at its own IP address, as shown in Figure 5.

The next step shows how to migrate the Contiki web server
to another hosting machine. Then compile the Contiki web
server on the other host, or copy the executable file, if the
architecture of the remote machine is compatible with the local
one. Open a new terminal window and create a VDE cable to
the remote machine (far.machine).

$ dpipe -d vde_plug /tmp/vde2 = \
> ssh far.machine vde_plug /tmp/vde2[]

Open an ssh connection on the remote machine and start
the Contiki web server using the same sequence of commands
described here above. Now reload the web page on your
browser. Nothing seems to change. The page is overwritten
by an identical one, but that page is now provided by the
Contiki server running on the remote machine.

The NAS example uses LWIPv6. The source code for this
example is available from the wiki site of VirtualSquare [37].

24

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 4. Client side example of IoTh: the browsers are using two different stacks. The one in Kansas City uses a user-mode TCP-IP stack and a virtual
networking switch.

Fig. 5. A server side example of IoTh usage: the web page of the browser in foreground is provided by the contiki based virtual networked appliance started
in the terminal window in background.

On a computer where the LWIPv6 library has already been
installed (it can be generated from the sources available on
the svn repository or simply installed as a packet for Debian
Sid users), compile the webnas4 example.

Change your current directory to a subtree of the file system
which does not contain private data, as its contents will be
exported, and start webnas4 as follows:

$ /path/to/webnas4 \
> 192.168.100.3/24+02:01:02:03:04:05 /dev/vde2

All the contents of the current directory are now exported
to the VDE network and accessible via web by loading the
page http://192.168.100.3 on the browser.

It is possible to use static global IP addresses for the Contiki
address and for the NAS example, and to define a default
router for both as follows:

$export CONTIKIDR=192.168.100.1

for Contiki and the option route:192.168.100.1 for
webnas4, using a convenient global IP prefix instead of

192.168.100. In this way, both virtual network appliances can
be reached by any Internet user. These examples use IPv4 to
shorten the address in the commands and to make them more
readable, although they can be modified to use IPv6 instead.

VIII. SECURITY CONSIDERATIONS

Several aspects of security must be taken into consideration
in IoTh.

It is possible to limit the network access possibilities of
an IoTh process and restrict the network services it can use.
In fact, each IoTh process must be connected to a virtual
local network to communicate, and virtual local networks have
access control features. In VDE, for example, the permission to
access a network is defined using the standard access control
mechanisms of the file system. Each VDE network can be
restricted to specific users, groups using the file permissions
or Access Control Lists (ACL). The interaction between pro-
cesses connected to a VDE and the other networks (or the
entire Internet) can be regulated by specific configurations of

25

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I
COMPARISON IN BANDWIDTH (MB/S) BETWEEN A KERNEL STACK AND IOTH

10MB kernel 10MB IoTh 20MB kernel 20MB IoTh 40MB kernel 40MB IoTh
localhost 116 29.9 118 35.9 136 37.4
network 1Gb/s 104 41.9 112 49.0 112 51.7
network 100Mb/s 11.2 11.0 11.1 11.0 11.1 11.0

the virtual routers used to interconnect that VDE.
Limiting the IoTh process access to networking is just one

aspect of IoTh security. It protects the environment from the
effects of faulty, buggy or malicious processes.

It is also possible to consider the positive effects of IoTh
with respect to protection from external attacks. Port scanning
[38] is a method used by intruders to get information about a
remote server, planned to be a target for an attack. A port scan
can reveal which daemons are currently active on that server,
then which security related bugs can be exploited.

This attack method is based on the assumption that all
the daemons are sharing the same IP stack and the same IP
addresses. This assumption is exactly the one negated by IoTh.
Port scanning is almost useless in IoTh, since an IP address
is daemon specific, so it would reveal nothing more than the
standard ports used for that service. When IoTh is applied to
IPv6, the process IP address on a VDE network can have a
64-bit prefix and 64 bits for the node address. A 64-bit address
space is too large for a brute force address scan to be effective.

There are also other aspects of security to be considered re-
garding the effects of IoTh on the reliability of the hosting sys-
tem. Daemon processes run as unprivileged user processes in
IoTh. They do not even require specific capabilities to provide
services on privileged ports (CAP NET BIND SERVICE to
bind a port number less than 1024). The less privileged a
daemon process is, the smaller the damage it may cause in
cases when the daemon is compromised (e.g., by a buffer
overflow attack).

In some cases, IoTh can limit the effects of Denial of
Service (DoS) attacks. In fact, DoS attacks may succeed by
overloading not only the communication channels, but also
the TCP-IP stacks of the target machine. In this latter case,
in IoTh, a maximum load boundary for the daemon process
can confine the effects of the attack to the target service,
which is overloaded by the high rate of requests, while the
other daemons running on the same host would be much less
affected.

IX. PERFORMANCE OF IOTH

IoTh provides a new viewpoint on networking. As this paper
has shown in the previous sections, IoTh allows a wide range
of new applications. IoTh flexibility obviously costs in terms
of performance. A fair analysis of IoTh performance has to
consider the balance between the costs of using this new
feature and the benefits it gives. In the same way, processes run
faster on an Operating System not supporting Virtual Memory,
but, for many applications, the cost of Virtual Memory is
worthwhile because you can run a greater number of processes.
The IoTh approach can co-exist with the standard management

Fig. 6. A graphical view of Table I data

of IP addresses and services. System administrators can decide
which approach is more suitable for each service.

Table I shows the comparison of the bandwidth of a TCP
connection between the Linux Kernel TCP-IP stack imple-
mentation and a IoTh implementation based on VDE and
LWIPv6. The program used for the test is the NAS example
of the previous section. The test set includes the measure
of the bandwidth for file transfers of 10MB, 20MB and
40MB between processes running on the same host, on hosts
connected by a 100Mb/s LAN and by a 1Gb/s LAN. The
test environment consists of two GNU-Linux boxes (Debian
SID distribution), Linux 3.2 kernel, NetXtreme BCM5752
controller, dual core Core2Duo processor running at 2Ghz,
HP ProCurve Switches 1700 and 1810G. The files have been
transferred using wget.

From the table and from the graph (Fig. 6) it is possible to
see that IoTh can reach a sustained load of about 50MB/s, so
the overhead added by the new approach is appreciable only
on very fast communication lines. On a 100Mb/s LAN the
difference is minimal. The improved performance for larger
file transfers is caused by the constant startup cost (socket
opening, http protocol, etc.), which is distributed on a longer
operation. On localhost or on fast networks, the bandwidth of
IoTh is about a quarter to a half of the bandwidth reached by
the kernel.

It is worth considering that, in this test, both VDE and
LWIPv6 run at user level. These are the performance values
of the less efficient implementation structure of IoTh. Kernel
level implementations of the TCP-IP stack library, and of the
virtual networking switch engine, will increase the perfor-
mance of IoTh.

X. CONCLUSION AND FUTURE WORK

IoTh opens up a range of new perspectives and applications
in the field of Internet Networking.

26

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



IoTh unifies the role of networking and IPC, so it can
play an important role in the design of future applications:
distributed applications and interoperating processes can use
the same protocols to communicate.

The research on IoTh is currently working in two differ-
ent directions: the design of new IoTh applications and the
evolution of the infrastructures to support IoTh.

The challenge of supporting new IoTh based services creates
a need to analyze the TCP-IP protocols, in order to evaluate if
and how these protocols, designed for physical networks, need
to be modified or updated to be effective in IoTh. An example
of a question that needs to be evaluated is whether the DNS
protocol can have specific queries or features for IoTh.

On the other hand, IoTh requires an efficient infrastructure,
able to provide a virtual networking (Ethernet) service to
processes. This support must be optimized by integrating the
positive results of currently available projects and then extend-
ing them to provide new services. For example, the speed of
Vale [20] should be interfaced with the flexibility of VDE.
There are several features in use on real networks that could
be ported on virtual networks, e.g., port trunking. The research
should also consider new efficient ways of interconnecting the
local virtual networks to provide a better usage of virtual links,
both for efficiency and for fault tolerance.

All the software presented in this paper has been released
under free software licenses and has been included in the
Virtual Square tutorial disk image [39]. This disk image can
be used to boot a Debian SID GNU-Linux virtual machine.
All the software tools and libraries used in this paper have
already been installed and the source code of everything not
included in the standard Debian distribution is also available
in the disk image itself.

ACKNOWLEDGMENTS

I would like to express my gratitude to all the software
designers and developers of the VirtualSquare Lab who have
shared my daydreaming about the virtualization of everything,
patiently following all my brainstorming. This paper is an ex-
tended version of [1], published by IARIA in the proceedings
of The Eighth International Conference on Internet and Web
Applications and Services (ICIW 2013). I wish to thank all the
anonymous reviewers of IARIA for their detailed comments
and suggestions.

REFERENCES

[1] R. Davoli, “Internet of threads,” in ICIW 2013, The Eighth International
Conference on Internet and Web Applications and Services. IARIA,
2013, pp. 100–105.

[2] J. Postel, “DoD standard Internet Protocol,” RFC 760, Internet
Engineering Task Force, Jan. 1980, obsoleted by RFC 791, updated
by RFC 777. [Online]. Available: http://www.ietf.org/rfc/rfc760.txt
02.25.2014

[3] F. Piedad and M. Hawkins, High Availability: Design, Techniques and
Processes, ser. Harris Kern’s Enterprise Computing Institute Series.
Prentice Hall, 2000.

[4] P. McHardy et al., “Netfilter,” http://www.netfilter.org.
[5] D. Price and A. Tucker, “Solaris zones: Operating system support

for consolidating commercial workloads,” in Proceedings of the 18th
USENIX conference on System administration, ser. LISA ’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 241–254.

[6] LXC team, “lxc linux containers,” http://lxc.sourceforge.net/ 02.25.2014.
[7] IEEE and The Open Group, “Posix.1 2008,”

http://pubs.opengroup.org/onlinepubs/9699919799/ 02.25.2014.
[8] S. Alexander and R. Droms, “DHCP Options and BOOTP Vendor

Extensions,” RFC 2132 (Draft Standard), Internet Engineering Task
Force, Mar. 1997, updated by RFCs 3442, 3942, 4361, 4833, 5494.
[Online]. Available: http://www.ietf.org/rfc/rfc2132.txt

[9] S. Thomson and T. Narten, “IPv6 Stateless Address Autoconfiguration,”
RFC 2462 (Draft Standard), Internet Engineering Task Force,
Dec. 1998, obsoleted by RFC 4862. [Online]. Available:
http://www.ietf.org/rfc/rfc2462.txt

[10] P. Srisuresh and K. Egevang, “Traditional IP Network
Address Translator (Traditional NAT),” RFC 3022 (Informational),
Internet Engineering Task Force, Jan. 2001. [Online]. Available:
http://www.ietf.org/rfc/rfc3022.txt

[11] K. Ashton, “That ‘Internet of Things’ thing,” RFID Journal, vol. 22, pp.
97–114, 2009.

[12] M. Krasnyansky, “Universal tun/tap device driver,” 1999, linux Kernel
Documentation: Documentation/networking/tuntap.txt.

[13] J. D. Dike, “User-mode linux,” in Proc. of 2001 Ottawa Linux Symp.
(OLS), Ottawa, 2001.

[14] R. Davoli, “Vde: Virtual distributed ethernet,” in Proceedings of the First
International Conference on Testbeds and Research Infrastructures for
the DEvelopment of NeTworks and COMmunities, ser. TRIDENTCOM
’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 213–
220.

[15] F. Bellard, “Qemu project,” http://fabrice.bellard.free.fr/qemu/.
[16] A. Kivity, “kvm: the Linux virtual machine monitor,” in OLS ’07: The

2007 Ottawa Linux Symposium, Jul. 2007, pp. 225–230.
[17] Oracle inc., “Oracle vm virtualbox,” https://www.virtualbox.org/.
[18] R. Davoli, “Inter process networking (ipn),”

http://wiki.virtualsquare.org/wiki/index.php/IPN, 2007.
[19] Open vSwitch team, “Open vswitch,” http://openvswitch.org/

02.15.2014.
[20] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual machines,”

University of Pisa, Italy, Tech. Rep., 2012. [Online]. Available:
http://info.iet.unipi.it/∼luigi/papers/20120608-vale.pdf 02.25.2014

[21] L. Rizzo, “Revisiting network i/o apis: the netmap framework,” Com-
mun. ACM, vol. 55, no. 3, pp. 45–51, 2012.

[22] D. Ely, S. Savage, and D. Wetherall, “Alpine: A user-level infrastructure
for network protocol development,” in Proc. of 3rd USENIX Symp.
on Internet Technologies and Systems (USITS01), March 2001, san
Francisco.

[23] A. Dunkels, “Full tcp/ip for 8-bit architectures,” in Proceedings of the 1st
international conference on Mobile systems, applications and services,
ser. MobiSys ’03. New York, NY, USA: ACM, 2003, pp. 85–98.

[24] A. Dunkels, L. Woestenberg, K. Mansley, and J. Monoses, “Lwip,”
http://savannah.nongnu.org/projects/lwip 02.25.2014.

[25] R. Davoli, “Lwipv6,” http://wiki.virtualsquare.org/wiki/index.php/LWIPV6
02.25.2014, 2007.

[26] K. Price, “Slirp, the ppp/slip-on-terminal emulator,”
http://slirp.sourceforge.net 02.25.2014.

[27] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in Proceedings
of the 29th Annual IEEE International Conference on Local Computer
Networks, ser. LCN ’04. Washington, DC, USA: IEEE Computer
Society, 2004, pp. 455–462.

[28] L. Gardenghi, M. Goldweber, and R. Davoli, “View-os: A new unifying
approach against the global view assumption,” in Proceedings of the 8th
international conference on Computational Science, Part I, ser. ICCS
’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 287–296.

[29] A. Kantee, “Flexible operating system internals: The design and imple-
mentation of the anykernel and rump kernels,” 2012, doctoral Disserta-
tion, Aalto Univerisity, Finland.

[30] R. Davoli and M. Goldweber, “msocket: multiple stack support for the
berkeley socket api,” in SAC ’12: Proceedings of the 27th Annual ACM
Symposium on Applied Computing. New York, NY, USA: ACM, 2012,
pp. 588–593.

[31] A. Pira, E. Tassi, and R. Davoli, “Managing User Level Networking-
Personal IP networks,” in Proc. of ICN 04 - International Conference
on Networking, April 2004.

[32] R. Davoli, “Otip: One time ip address,” in ICSNC 2013, The Eighth
International Conference on Systems and Networks Communications.
IARIA, 2013, pp. 154–158.

27

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[33] D. M’Raihi, S. Machani, M. Pei, and J. Rydell, “TOTP: Time-
Based One-Time Password Algorithm,” RFC 6238 (Informational),
Internet Engineering Task Force, May 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6238.txt

[34] P. Mockapetris, “Domain names - implementation and specification,”
RFC 1035 (Standard), Internet Engineering Task Force, Nov.
1987, updated by RFCs 1101, 1183, 1348, 1876, 1982, 1995,
1996, 2065, 2136, 2181, 2137, 2308, 2535, 2845, 3425, 3658,
4033, 4034, 4035, 4343, 5936, 5966, 6604. [Online]. Available:
http://www.ietf.org/rfc/rfc1035.txt

[35] R. Davoli, “Ipv6 hash-based addresses for simple network deployment,”
in AFIN 2013, The Fifth International Conference on Advances in Future
Internet. IARIA, 2013, pp. 15–20.

[36] ——, “Vde sourceforge home page,” http://vde.sourceforge.net.
[37] R. Davoli et al., “Virtual square wiki,” http://wiki.virtualsquare.org/.
[38] Fyodor Vaskovich (Gordon Lyon), “The art of port scanning,” Phrack,

vol. 7, no. 51, 1997.
[39] R. Davoli, “Virtual square tutorial disk image,”

http://wiki.virtualsquare.org/wiki/index.php/
Virtual Square Tutorial Disk Image 02.25.2014.

28

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A Robust Approach to Large Size Files Compression
using the MapReduce Web Computing Framework

Sergio De Agostino
Computer Science Department

Sapienza University
Rome, Italy

Email: deagostino@di.uniroma1.it

Abstract—Lempel-Ziv (LZ) techniques are the most widely
used for lossless file compression. LZ compression basicly
comprises two methods, called LZ1 and LZ2. The LZ1 method
is the one employed by the family of Zip compressors, while
the LZW compressor implements the LZ2 method, which is
slightly less effective but twice faster. When the file size is
large, both methods can be implemented on a distributed sys-
tem guaranteeing linear speed-up, scalability and robustness.
With Web computing, the MapReduce model of distributed
processing is emerging as the most widely used. In this
framework, we present and make a comparative analysis of
different implementations of LZ compression. An alternative
to standard versions of the Lempel-Ziv method is proposed as
the most efficient one for large size files compression on the
basis of a theoretical worst case analysis, which evidentiates its
robustness.

Keywords-web computing; mapreduce framework; lossless
compression; string factorization; worst case analysis

I. INTRODUCTION

Lempel-Ziv (LZ) techniques are the most widely used
for lossless file compression and preliminary results on
the distributed implementation, shown in this paper, were
presented in [1], [2], [3]. LZ compression [4], [5], [6] is
based on string factorization. Two different factorization
processes exist with no memory constraints. With the first
one (LZ1) [5], each factor is independent from the others
since it extends by one character the longest match with
a substring to its left in the input string. With the second
one (LZ2) [6], each factor is instead the extension by one
character of the longest match with one of the previous
factors. This computational difference implies that while
sliding window compression has efficient parallel algorithms
[7], [8], [9], [10], LZ2 compression is hard to parallelize
[11] and less effective in terms of compression. On the
other hand, LZ2 is more efficient computationally than
sliding window compression from a sequential point of
view. This difference is maintained when the most effective
bounded memory versions of Lempel-Ziv compression are
considered [9], [12]. While the bounded memory version
of LZ1 compression is quite straightforward, there are
several heuristics for limiting the work-space of the LZ2
compression procedure in the literature. The ”least recently
used” strategy (LRU) is the most effective one. Hardness

results inside Steve Cook’s class (SC) have been proved
for this approach [12], implying the likeliness of the non-
inclusion of the LZ2-LRU compression method in Nick
Pippenger’s class (NC). Completeness results in SC have
also been obtained for a relaxed version of the LRU strategy
(RLRU) [12]. RLRU was shown to be as effective as LRU
in [13] and, consequently, it is the most efficient one among
the Lempel-Ziv techniques.

Bounding memory is very relevant with distributed pro-
cessing and it is an important requirement of the MapReduce
model of computation for Web computing. A formalization
of this model was provided in [14], where further con-
straints are formulated for the number of processors, the
number of iterations and the running time. However, such
constraints are a necessary but not sufficient condition to
guarantee a robust linear speed-up. In fact, interprocessor
communication is allowed during the computational phase
and experiments are needed to verify an actual speed-
up. Distributed algorithms for the LZ1 and LZ2 methods
approximating in practice their compression effectiveness
have been realized in [9], [15], [16], where the stronger
requirement of no interprocessor communication during the
computational phase is satisfied. In fact, the approach to a
distributed implementation in this context consists of apply-
ing the sequential procedure to blocks of data independently.

In Sections II and III, we describe the Lempel-Ziv com-
pression techniques and their bounded memory versions
respectively. Section IV sketches past work on the study
of the parallel complexity of Lempel-Ziv methods leading
to the idea of relaxing the least recently used strategy. In
Section V, we present the MapReduce model of computation
and introduce further constraints for a robust approach to
a distributed implementation of LZ compression on the
Web. Section VI makes a comparative analysis of different
implementations of LZ compression in this framework. A
worst case analysis of standard LZ2 compression is given
in Section VII and an alternative to the standard versions
is proposed as the most efficient one for large size files
compression. Conclusions and future work are given in
Section VIII.

29

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



II. LEMPEL-ZIV DATA COMPRESSION

Lempel-Ziv compression is a dictionary-based technique.
In fact, the factors of the string are substituted by pointers
to copies stored in a dictionary which are called targets.
LZ1 (LZ2) compression is also called the sliding (dynamic)
dictionary method.

A. LZ1 Compression

Given an alphabet A and a string S in A∗, the LZ1
factorization of S is S = f1f2 · · · fi · · · fk, where fi is the
shortest substring which does not occur previously in the
prefix f1f2 · · · fi, for 1 ≤ i ≤ k. With such factorization, the
encoding of each factor leaves one character uncompressed.
To avoid this, a different factorization was introduced (LZSS
factorization) where fi is the longest match with a substring
occurring in the prefix f1f2 · · · fi if fi ̸= λ, otherwise
fi is the alphabet character next to f1f2 · · · fi−1 [17]. fi
is encoded by the pointer qi = (di, ℓi), where di is the
displacement back to the copy of the factor and ℓi is the
length of the factor (LZSS compression). If di = 0, li is the
alphabet character. In other words the dictionary is defined
by a window sliding its right end over the input string,
that is, it comprises all the substrings of the prefix read
so far in the computation. It follows that the dictionary is
both prefix and suffix since all the prefixes and suffixes of
a dictionary element are dictionary elements. The position
of the longest match in the prefix with the current position
can be computed in real time by means of a suffix tree data
structure [18], [19].

B. LZ2 Compression

The LZ2 factorization of a string S is S =
f1f2 · · · fi · · · fk, where fi is the shortest substring which
is different from every previous factor. As for LZ1 the
encoding of each factor leaves one character uncompressed.
To avoid this a different factorization was introduced (LZW
factorization) where each factor fi is the longest match with
the concatenation of a previous factor and the next character
[20]. fi is encoded by a pointer qi to such concatenation
(LZW compression). LZ2 and LZW compression can be
implemented in real time by storing the dictionary with
a trie data structure. Differently from LZ1 and LZSS, the
dictionary is only prefix.

C. Greedy versus Optimal Factorization

The pointer encoding the factor fi has a size increasing
with the index i. This means that the lower is the number
of factors for a string of a given length the better is the
compression. The factorizations described in the previous
subsections are produced by greedy algorithms. The question
is whether the greedy approach is always optimal, that is, if
we relax the assumption that each factor is the longest match
can we do better than greedy? The answer is negative with
suffix dictionaries as for LZ1 or LZSS compression. On the

other hand, the greedy approach is not optimal for LZ2 or
LZW compression. However, the optimal approach is NP-
complete [21] and the greedy algorithm approximates with
an O(n

1
4 ) multiplicative factor the optimal solution [22].

III. BOUNDED SIZE DICTIONARY COMPRESSION

The factorization processes described in the previous
section are such that the number of different factors (that is,
the dictionary size) grows with the string length. In practical
implementations instead the dictionary size is bounded by a
constant and the pointers have equal size. While for LZSS
(or LZ1) compression this can be simply obtained by sliding
a fixed length window and by bounding the match length, for
LZW (or LZ2) compression dictionary elements are removed
by using a deletion heuristic. The deletion heuristics we
describe in this section are FREEZE, RESTART, SWAP,
LRU [23] and RLRU [12]. Then, we give more details on
sliding window compression.

A. The Deletion Heuristics

Let d + α be the cardinality of the fixed size dictionary,
where α is the cardinality of the alphabet. With the FREEZE
deletion heuristic, there is a first phase of the factorization
process where the dictionary is filled up and “frozen”.
Afterwards, the factorization continues in a “static” way
using the factors of the frozen dictionary. In other words,
the LZW factorization of a string S using the FREEZE
deletion heuristic is S = f1f2 · · · fi · · · fk where fi is the
longest match with the concatenation of a previous factor
fj , with j ≤ d, and the next character. The shortcoming
of this heuristic is that after processing the string for a
while the dictionary often becomes obsolete. A more so-
phisticated deletion heuristic is RESTART, which monitors
the compression ratio achieved on the portion of the imput
string read so far and, when it starst deteriorating, restarts
the factorization process. Let f1f2 · · · fj · · · fi · · · fk be such
factorization with j the highest index less than i where the
restart operation happens. Then, fj is an alphabet character
and fi is the longest match with the concatenation of a
previous factor fh, with h ≥ j, and the next character
(the restart operation removes all the elements from the
dictionary but the alphabet characters). This heuristic is
used by the Unix command Compress since it has a good
compression effectiveness and it is easy to implement.
Usually, the dictionary performs well in a static way on a
block long enough to learn another dictionary of the same
size. This is what is done by the SWAP heuristic. When
the other dictionary is filled, they swap their roles on the
successive block.

The best deletion heuristic is LRU (last recently used
strategy). The LRU deletion heuristic removes elements from
the dictionary in a continuous way by deleting at each step
of the factorization the least recently used factor that is not
a proper prefix of another one. In [12], a relaxed version

30

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



(RLRU) was introduced. RLRU partitions the dictionary in
p equivalence classes, so that all the elements in each class
are considered to have the same “age” for the LRU strategy.
RLRU turns out to be as good as LRU even when p is
equal to 2 [13]. Since RLRU removes an arbitrary element
from the equivalence class with the “older” elements, the
two classes (when p is equal to 2) can be implemented with
a couple of stacks, which makes RLRU slightly easier to
implement than LRU in addition to be more space efficient.
SWAP is the best heuristic among the “discrete” ones.

B. Compression with Finite Windows

As mentioned at the beginning of this section, LZSS (or
LZ1) bounded size dictionary compression is obtained by
sliding a fixed length window and by bounding the match
length. A real time implementation of compression with
finite window is possible using a suffix tree data structure
[24]. Much simpler real time implementations are realized
by means of hashing techniques providing a specific position
in the window where a good appriximation of the longest
match is found on realistic data. In [25], the three current
characters are hashed to yield a pointer into the already
compressed text. In [26], hashing of strings of all lengths
is used to find a match. In both methods, collisions are
resolved by overwriting. In [27], the two current characters
are hashed and collisions are chained via an offset array.
Also the Unix gzip compressor chains collisions but hashes
three characters [28].

C. Greedy versus Optimal Factorization

Greedy factorization is optimal for compression with finite
windows since the dictionary is suffix. With LZW compres-
sion, after we fill up the dictionary using the FREEZE or
RESTART heuristic, the greedy factorization we compute
with such dictionary is not optimal since the dictionary is
not suffix. However, there is an optimal semi-greedy factor-
ization which is computed by the procedure of Figure 1 [29],
[30]. At each step, we select a factor such that the longest
match in the next position with a dictionary element ends to
the rightest. Since the dictionary is prefix, the factorization
is optimal. The algorithm can even be implemented in real
time with an augmented trie data structure [29].

j:=0; i:=0
repeat forever

for k = j + 1 to i + 1 compute

h(k): xk...xh(k) is the longest match in the kth position
let k′ be such that h(k′) is maximum

xj ...xk′−1 is a factor of the parsing; j := k′; i := h(k′)

Figure 1. The semi-greedy factorization procedure.

IV. LZ COMPRESSION ON A PARALLEL SYSTEM

LZSS (or LZ1) compression can be efficiently parallelized
on a PRAM EREW [7], [8], that is, a parallel machine
where processors access a shared memory without reading
and writing conflicts. On the other hand, LZW (or LZ2)
compression is P-complete [11] and, therefore, hard to
parallelize. Decompression, instead, is parallelizable for both
methods [31]. The asymmetry of the pair encoder/decoder
between LZ1 and LZ2 follows from the fact that the hardness
results of the LZ2/LZW encoder depend on the factorization
process rather than on the coding itself.

As far as bounded size dictionary compression is con-
cerned, the “parallel computation thesis” claims that sequen-
tial work space and parallel running time have the same
order of magnitude giving theoretical underpinning to the re-
alization of parallel algorithms for LZW compression using
a deletion heuristic. However, the thesis concerns unbounded
parallelism and a practical requirement for the design of
a parallel algorithm is a limited number of processors. A
stronger statement is that sequential logarithmic work space
corresponds to parallel logarithmic running time with a
polynomial number of processors. Therefore, a fixed size
dictionary implies a parallel algorithm for LZW compression
satisfying these constraints. Realistically, the satisfaction
of these requirements is a necessary but not a sufficient
condition for a practical parallel algorithm since the number
of processors should be linear. The SCk-hardness and SCk-
completeness of LZ2 compression using, respectively, the
LRU and RLRU deletion heuristics and a dictionary of
polylogarithmic size show that it is unlikely to have a paral-
lel complexity involving reasonable multiplicative constants
[12]. In conclusion, the only practical LZW compression
algorithm for a shared memory parallel system is the one
using the FREEZE, RESTART or SWAP deletion heuristics.
Unfortunately, the SWAP heuristic does not seem to have a
parallel decoder. Since the FREEZE heuristic is not very
effective in terms of compression, RESTART is a good
candidate for an efficient parallel implementation of the pair
encoder/decoder on a shared memory parallel system and
even on a system with distributed memory. However, in
the context of distributed processing of massive data with
no interprocessor communication the LZW-RLRU technique
turns out to be the most efficient one. We will see these
arguments more in detail in the next two sections.

V. THE MAPREDUCE MODEL OF COMPUTATION

The MapReduce programming paradigm is a sequence
P = µ1ρ1 · · ·µRρR, where µi is a mapper and ρi is a
reducer for 1 ≤ i ≤ R. First, we describe such paradigm and
then discuss how to implement it on a distributed system.
Distributed systems have two types of complexity, the inter-
processor communication and the input-output mechanism.
The input/output issue is inherent to any parallel algorithm
and has standard solutions. In fact, in [14] the sequence P

31

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



does not include the I/O phases and the input to µ1 is a
multiset U0 where each element is a (key, value) pair. The
input to each mapper µi is a multiset Ui−1 output by the
reducer ρi−1, for 1 < i ≤ R. Mapper µi is run on each pair
(k, v) in Ui−1, mapping (k, v) to a set of new (key, value)
pairs. The input to reducer ρi is U ′

i , the union of the sets
output by µi. For each key k, ρi reduces the subset of pairs
of U ′

i with the key component equal to k to a new set of
pairs with key component still equal to k. Ui is the union
of these new sets.

In a distributed system implementation, a key is associated
with a processor (a node in the Web). All the pairs with
a given key are processed by the same node but more
keys can be associated to it in order to lower the scale
of the system involved. Mappers are in charge of the data
distribution since they can generate new key values. On
the other hand, reducers just process the data stored in the
distributed memory since they output for a set of pairs with
a given key another set of pairs with the same given key.

To add the I/O phases to P , we extend the sequence
to µ0µ1ρ1 · · ·µRρRµR+1ρR+1, where (λ, x) is the unique
(key, value) pair input to µ0 with λ the default initial (and
final) key and x the input data. µ0 distributes such data
generating the multiset U0 (µ1 is the identity function or
can be seen as a second step of the input phase). Finally,
µR+1 maps UR to a multiset where all the pair elements
have the same key λ and ρR+1 reduces such multiset to the
pair (λ, y) with y output data.

The following complexity requirements are stated as
necessary for a practical interest in [14]:

• R is polylogarithmic in the input size n;

• the number of processors (or nodes in the Web)
involved is O(n1−ϵ) with 0 < ϵ < 1;

• the amount of memory for each node is O(n1−ϵ);

• mappers and reducers take polynomial time in n.
As mentioned in the introduction, such requirements are

necessary but not sufficient to guarantee a speed-up of the
computation. Obviously, the total running time of mappers
and reducers cannot be higher than the sequential one and
this is trivially implicit in what is stated in [14]. The
non-trivial bottleneck is the communication cost of the
computational phase after the distribution of the original
input data among the processors and before the output
of the final result. This is obviously algorithm-dependent
and needs to be checked experimentally since R can be
polylogarithmic in the input size. The only way to guarantee
with absolute robustness a speed-up with the increasing of
the number of nodes is to design distributed algorithms
implementable in MapReduce with R = 1. Moreover, if
we want the speed-up to be linear then the total running

time of mappers and reducers must be O(t(n)/n1−ϵ) where
t(n) is the sequential time. These stronger requirements are
satisfied by the distributed implementations of the several
versions of LZ compression discussed in the next section,
except for one of them, which requires R = 2.

VI. LZ COMPRESSION ON THE WEB IN MAPREDUCE

We can factorize blocks of length ℓ of an input string
in O(ℓ) time with O(n/ℓ) processors, using any of the
bounded memory compression techniques. Such distributed
algorithms are suitable for a small scale system but due to
their adaptiveness, they work on a large scale parallel system
only when the file size is large.

A. Sliding Window Compression in MapReduce

With the sliding window method, ℓ is equal to kw where
k is a positive integer and w is the window length [9],
[15], [16]. The window length is usually several thousands
kilobytes. The compression tools of the Zip family, as the
Unix command “gzip” for example, use a window size of at
least 32K bytes. From a practical point of view, we can apply
something like the gzip procedure to a small number of input
data blocks, achieving a satisfying degree of compression
effectiveness and obtaining the expected speed-up on a real
parallel machine. Making the order of magnitude of the
block length greater than the one of the window length
guarantees robustness on realistic data. It follows that the
block length in our parallel implementation should be about
300 kB and the file size should be about one third of the
number of processors in megabytes.

In the MapReduce framework, we implement the dis-
tributed procedure above with a sequence µ0µ1ρ1µ2ρ2
where µ0 and µ2ρ2 are the input and output phases, re-
spectively. Let X = X1 · · ·Xm be the input string where
Xi is a substring that has the same length ℓ ≥ 300 kB
for 1 ≤ i ≤ m. The complexity requirements of the
MapReduce model are satisfied by the fact that ℓ is allowed
to be strictly greater than 300 kB. The input to µ0 is the
pair (0, X) mapping this element to the set U0 of pairs
(1, X1) · · · (m,Xm). U0 is mapped to itself by µ1 and ρ1
reduces (i,Xi) to (i, Yi) where Yi is the LZSS coding
of Xi for 1 ≤ i ≤ m. Finally, µ2 maps each element
(i, Yi) of its input U1 = {(1, Y1) · · · (m,Ym)} to (0, Yi)
and ρ2 outputs (0, Y ), where Y = Y1 · · ·Ym. Obviously,
the stronger requirements for a linear speed-up, stated in
the previous section, are satisfied by this program.

Decompression in MapReduce is simmetrical. To decode
the compressed files on a distributed system, it is enough
to use a special mark occurring in the sequence of pointers
where the coding of a block ends. The input phase distributes
among the processors the subsequences of pointers coding
each block.

32

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



B. LZW Compression Distributed Algorithms

As far as LZW compression is concerned, it was originally
presented with a dictionary of size 212, clearing out the
dictionary as soon as it is filled up [20]. The Unix command
”compress” employs a dictionary of size 216 and works with
the RESTART deletion heuristic. The block length needed
to fill up a dictionary of this size is approximately 300 kB.
As previously mentioned, the SWAP heuristic is the best
deletion heuristic among the discrete ones. After a dictionary
is filled up on a block of 300 kB, the SWAP heuristic shows
that we can use it efficiently on a successive block of about
the same dimension, where a second dictionary is learned.
A distributed compression algorithm employing the SWAP
heuristic learns a different dictionary on every block of 300
kB of a partitioned string (the first block is compressed
while the dictionary is learned). For the other blocks, block
i is compressed statically in a second phase using the
dictionary learned during the first phase on block i − 1.
But, unfortunately, the decoder is not parallelizable since the
dictionary to decompress block i is not available until the
previous blocks have been decompressed. On the other hand,
with RESTART we can work on a block of 600 kB where the
second half of it is compressed statically. We wish to speed
up this second phase though, since LZW compression must
be kept more efficient than sliding window compression.
In fact, it is well-known that sliding window compression
is more effective but slower. If both methods are applied
to a block of 300 kB and LZW has a second static phase
to execute on a block of about the same length, it would
no longer have the advantage of being faster. We showed
how to speed up in a scalable way this second phase on an
extended star network (a tree of height 2) in time O(km)
with O(n/km) processors, where k is a positive integer and
m is the maximum factor length [2], [15].

In [15], during the input phase the central node of the
extended star (that is, the root of the tree) broadcasts a
block of length 600 kB to each adjacent processor. Then,
for each block the corresponding processor broadcasts to
the adjacent leaves a sub-block of length m(k + 2) in the
suffix of length 300 kB, except for the first one and the last
one which are m(k+1) long. Each sub-block overlaps on m
characters with the adjacent sub-block to the left and to the
right, respectively (obviously, the first one overlaps only to
the right and the last one only to the left). Every processor
stores a dictionary initially set to comprise only the alphabet
characters. The first phase of the computation is executed by
processors adjacent to the central node. The prefix of length
300 kB of each block is compressed while learning the
dictionary. At each step of the LZW factorization process,
each of these processors sends the current factor to the
adjacent leaves. They all adds such factor to their own
dictionary. After compressing the prefix of length 300 kB
of each block, all the leaves have a dictionary stored which

has been learned by their parents during such compression
phase.

Let us call a boundary match a factor covering positions
of two adjacent sub-blocks stored by leaf processors. Then,
the leaf processors execute the following algorithm to
compress the suffix of length 300 kB of each block:

• for each block, every corresponding leaf processor but
the one associated with the last sub-block computes
the boundary match between its sub-block and the
next one ending furthest to the right, if any;

• each leaf processor computes the optimal factorization
from the beginning of its sub-block to the beginning
of the boundary match on the right boundary of its
sub-block (or the end of its sub-block if there is no
boundary match).

++(++++++)
———————/——————————–

xxxxxxxxxxx
..................

Figure 2. The making of a surplus factor.

Stopping the factorization of each sub-block at the begin-
ning of the right boundary match might cause the making of
a surplus factor, which determines the approximation factor
(k + 1)/k with respect to any factorization. Indeed, as it is
shown in Figure 2, the factor in front of the right boundary
match (sequence of x’s) might be extended to be a boundary
match itself (sequence of plus signs) and to cover the first
position of the factor after the boundary (dotted line).

In [32], it is shown experimentally that for k = 10 the
compression ratio achieved by such factorizarion is about
the same as the sequential one. Results were presented
for static prefix dictionary compression but they are valid
for dynamic compression using the LZW technique with
the RESTART deletion heuristic. Indeed, experiments were
realised compressing similar files in a collection using a
dictionary learned from one of them. This is true even if
the second step is greedy, since greedy is very close to
optimal in practice. Moreover, with the greedy approach it is
enough to use a simple trie data structure for the dictionary
rather than the augmented suffix trie data structure of [29]
needed to implement the semi-greedy factorization in real
time. Therefore, in [2] after computing the boundary matches
the second part of the parallel approximation scheme was
substituted by the following procedure:

• each leaf processor computes the static greedy factor-
ization from the end of the boundary match on the

33

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



left boundary of its sub-block to the beginning of the
boundary match on the right boundary.

Considering that typically the average match length is 10,
one processor can compress down to 100 bytes indepen-
dently. Then, compressing 300 kB involves a number of
processors up to 3000 for each block. It follows that with
a file size of several megabytes or more, the system scale
has a greater order of magnitude than the standard large
scale parameter, making the implementation suitable for an
extreme distributed system. We wish to point out that the
computation of the boundary matches is very relevant for
the compression effectiveness when an extreme distributed
system is employed since the sub-block length becomes
much less than 1 kB.

With standard large scale systems the sub-block length is
several kilobytes with just a few megabytes to compress and
the approach using boundary matches is too conservative for
the static phase. In fact, a partition of the second half of the
block does not effect on the compression effectiveness unless
the sub-blocks are very small since the process is static. In
conclusion, we proposed in [2] a further simplification of
the algorithm for standard small, medium and large scale
distributed systems.

Let p0 · · · pn be the processors of a distributed system
with an extended star topology. p0 is the central node of
the extended star network and p1 · · · pm are its neighbors.
For 1 ≤ i ≤ m and t = (n − m)/m let the processors
pm+(i−1)t+1 · · · pm+it be the neighbors of processor i.
B1 · · ·Bm is the sequence of blocks of length 600 kB

partitioning the input file. Denote with B1
i and B2

i the two
halves of Bi for 1 ≤ i ≤ m. Divide B2

i into t sub-blocks
of equal length. The input phase of this simpler algorithm
distributes for each block the first half and the sub-blocks
of the second half in the following way:

• broadcast B1
i to processor pi for 1 ≤ i ≤ m

• broadcast the j-th sub-block of B2
i to processor

pm+(i−1)t+j for 1 ≤ i ≤ m and 1 ≤ j ≤ t

Then, the computational phase is:

in parallel for 1 ≤ i ≤ m

• processor pi applies LZW compression to its block,
sending the current factor to its neigbors at each step
of the factorization

• the neighbors of processor pi compress their blocks
statically using the dictionary received from pi with a
greedy factorization

As for the sliding window method, decoding the com-
pressed file on a distributed system requires the presence of
a special mark occurring in the sequence of pointers each

time the coding of a block ends. The input phase distributes
the subsequences of pointers coding each block among the
processors. If the file is encoded by an LZW compressor
implemented with one of the two procedures described in
this subsection, a second special mark indicates for each
block the end of the coding of a sub-block. The coding of
the first half of each block is stored in one of the neighbors
of the central node while the coding of the sub-blocks are
stored into the corresponding leaves. The first half of each
block is decoded by one processor to learn the corresponding
dictionary. Each decoded factor is sent to the corresponding
leaves during the process, so that the leaves can rebuild the
dictionary themselves. Then, the dictionary is used by the
leaves to decode the sub-blocks of the second half.

C. LZW Compression in MapReduce

In the MapReduce framework, the program sequence
could be µ0µ1ρ1µ2ρ2µ3ρ3 where µ0µ1 and µ3ρ3 are
the input and output phases, respectively. Let X =
X1Y1 · · ·XmYm be the input string where Xi and Yi are
substrings having the same length ℓ ≥ 300 kB for 1 ≤ i ≤ m
and Yi = Bi,1 · · ·Bi,r such that Bi,j is a substring that has
the same length ℓ′ ≥ 1000 for 1 ≤ j ≤ r. The complexity
requirements of the MapReduce model will be satisfied by
the fact that ℓ is allowed to be strictly greater than 300 kB
and ℓ′ strictly greater than 1000 bytes. Keys are pairs of
positive integers. The input to µ0 is the pair ((0, 0), X),
which is mapped to the set U0 of pairs ((0, 1), X1Y1), · · ·,
((0,m), XmYm)), as input to µ1. Then, µ1 maps U0 to the
set U ′

0 of pairs ((0, 1), X1), ((1, 1), B1,1), · · ·, ((1, r), B1,r),
· · ·, ((0,m), Xm)), ((m, 1), Bm,1), · · ·, ((m, r), Bm,r). ρ1
reduces ((0, i), Xi) to a set of two (key, value) pairs, that
is, {((0, i), Zi), ((0, i), Di)}, where Zi and Di are respec-
tively the LZW coding of Xi and the dictionary learned
during the coding process. On the other hand, ((i, j), Bi,j)
are reduced to themselves by ρ1 for 1 ≤ i ≤ m and
1 ≤ j ≤ r. The second iteration step µ2ρ2 works as the
identity function when applied to ((0, i), Zi). µ2 works as
the identity function when applied to ((i, j), Bi,j) as well.
Instead, ((0, i), Di) is mapped by µ2 to ((i, j), Di) for 1 ≤
j ≤ r. Then, ρ2 reduces the set {((i, j), Bi,j), ((i, j), Di)}
to ((i, j), Zi,j) where Zi,j) is the coding produced by the
second phase of LZW compression with the static dictionary
Di. Finally, µ3 maps (i, Zi) to ((0, 0), Zi) and ((i, j), Zi,j)
to ((0, 0), Zi,j). Then, ρ3 outputs ((0, 0), Z) where Z =
Z1Z1,1 · · ·Z1,r · · ·ZmZm,1 · · ·Zm,r.

The program described does not compute boundary
matches since we assumed the length of the sub-blocks to be
at least 1000 bytes. When the length is between a hundred
and a thousand bytes, the mapper µ1 distributes overlapping
sublocks and the reducer ρ2 computes the boundary matches
before completing the factorization process.

The communication cost during the computational phase
of the MapReduce program above is determined by µ2. The

34

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



dictionary Di is sent from the node associated with the key
(0, i) to the node associated with the key (i, j), in parallel
for 1 ≤ i ≤ m and 1 ≤ j ≤ r. Each factor f in Di can
be represented as pc where p is the pointer to the longest
proper prefix of f (an element of Di) and c is the last
character of f . Since the standard sizes for the dictionary
and the alphabet are respectively 216 and 256, three bytes
can represent a dictionary element. Conservatively, at least
ten nanoseconds are spent to send a byte between nodes.
Therefore, the communication cost to send a dictionary is at
least 30 (216) nanoseconds, which is about two milliseconds.
Considering the fact that 300 kB are compressed usually in
about 30 milliseconds by a Zip compressor and in about
15 milliseconds by an LZW compressor, the communication
cost is acceptable. This is also true for decompression, since
the decoder is symmetrical as explained in the previous
subsection.

D. A Comparative Analysis

We have described four different implementations of
Lempel-Ziv data compression with the MapReduce frame-
work. One implementation uses the sliding window tech-
nique while the other three are variants of the LZW compres-
sor. The distributed implementations have irrelevant com-
munication cost during the computational phase and keep
the same characteristics of the sequential one on a single
block of the distributed data. Therefore, LZW compression
is less effective but faster than sliding window compression.
In order to improve the effectiveness of LZW compression,
the length of a single block of the distributed data is twice
the one of the sliding window implementation. This can
be done since the higher speed of the LZW compressor is
kept in virtue of the fact that the compression of the second
half of the block is not adaptive. Therefore, the distributed
system can be arbitrarily scaled up when the second half is
processed and there is no relevant slow-down. The first of
the three distributed implementations proposed for the LZW
compressor has a preprocessing phase and a nearly-optimal
approach to the compression of the second half of the block.
However, we observe with the second implementation that
we can relax on the quasi-optimality of the approach since
a left to right greedy algorithm performs well in practice.
Finally, we notice that the preprocessing phase is needed
only if the size of the distributed system is beyond standard
large scale and a third implementation for standard large
scale systems is presented, which is almost as simple as the
one for the sliding window technique.

VII. LZW COMPRESSION AND WORST CASE ANALYSIS

The approaches to LZW compression described above
are not robust when the data are highly disseminated [3].
However, when compressing large size files even on a large
scale system the size of the blocks distributed among the
nodes is larger than 600 kB. In order to increase robustness

when the data are highly disseminated, the most appropriate
approach is to apply a procedure where no static phase
is involved. Therefore, new dictionary elements should be
learned at every step while bounding the dictionary size.
We show worst case analyses proving this fact, concluding
that LZW-RLRU compression is the most suitable in this
context since it is the most efficient one.

A. Worst Case for the Standard Distributed Implementation

In [2], the notions of bounded memory on-line decodable
optimal LZW compression for the FREEZE and RESTART
heuristics were introduced.

A feasible d-frozen LZW factorization S = f1 · · · fk is a
feasible LZW factorization, where the number of different
concatenations of a factor with the next character is ≤ d. We
define optimal d-frozen LZW factorization to be the feasible
d-frozen LZW factorization with the snallest number of
factors. Computing the optimal solution in polynomial time
is quite straightforward if the degree of the polynomial time
function is the dictionary size but it is obviously unpractical
and a better algorithm is not known.

A feasible d-restarted LZW factorization
S = f1 · · · fj · · · fi · · · fk is a feasible LZW factorization
such that if j and i are consecutive indices where the
restart operation happens, then the number of different
concatenations of a factor with the next character is ≤ d
between fj and fi. We define optimal d-restarted LZW
factorization to be the feasible d-restarted LZW factorization
with the smallest number of factors. A practical algorithm
to compute the optimal solution is obviously not known as
for the optimal d-frozen LZW factorization.

The compression models just introduced employ dictio-
naries with size bounded by the FREEZE and RESTART
heuristics, respectively. The on-line greedy factorizations are
obviously feasible. Moreover, feasible factorizations are the
ones produced by the distributed algorithms described in
the previous section. In this section, we give upper bounds
to the approximation multiplicative factor. A trivial upper
bound to the approximation multiplicative factor of every
feasible factorization with respect to the optimal one is the
maximum factor length of the optimal string factorization,
that is, the height of the trie storing the dictionary. Such
upper bound is Θ(d), where d is the dictionary size (O(d)
follows from the feasibility of the factorization and Ω(d)
from the factorization of the unary string). There are strings
for which the on-line greedy d-frozen LZW factorization is a
Θ(d) approximation of the optimal one. Indeed, if we bound
the dictionary size to d + 2 and consider the input binary
string (

∏d/2−1
i=0 abibai)(

∏d
i=1 a

d/2) then the on-line greedy
d-frozen LZW factorization is a, b, ab, ba, abb, baa, · · · abi,
bai, · · · abd/2−1, bad/2−1, a, a, · · ·, a while the optimal d-
frozen LZW factorization is a, b, ab, b, a, abb, b, aa, · · ·
abi, b, ai, · · · abd/2−1, b, ad/2−1, ad/2, ad/2, · · · ad/2. It

35

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



follows that the cost of the greedy factorization is d+ d2/2
while the cost of the optimal one is 5d/2− 1.

The feasible d-restarted LZW factorizations output by the
distributed algorithms of the previous section can be as bad
as the greedy solution using the frozen dictionary in the
worst case. Indeed, if we apply any of such distributed
algorithms to the input block of length d2

bd
2/4−d/2(

d/2−1∏
i=0

abibai)(
d∏

i=1

ad/2)

the dictionary is filled up by the greedy factorization
process applied to the first half of the block, that is,
bd

2/4−d/2(
∏d/2−1

i=0 abibai). Such factorization is: b, bb, · · ·,
bℓ, bℓ

′
, a, b, ab, ba, abb, baa, · · · abi, bai, · · · abd/2−1,

bad/2−1 where ℓ′ ≤ ℓ+1 and the dictionary size is d+ℓ+3.
The static factorization of the second half is a, a, · · · a, a
and the total cost of the factorization of the block is
ℓ+1+d+d2/2 which is Θ(d2). On the other hand, the cost
of the optimal solution on the block is ℓ + 5d/2, which is
Θ(d). Observe that the O(d) approximation multiplicative
factor depends on the static phase and this happens when
the dictionary learned on the first half of the block performs
badly on the second half, that is in practice, when the data
are highly disseminated. We will show in the next subsec-
tion that the on-line greedy d-restarted LZW factorization
performs much better in the worst case, suggesting a more
robust approach to distributed computing.

B. Worst Case Analysis of the Sequential Implementation

During the learning process before freezing and eventually
restarting the dictionary, the on-line greedy factorization
is the only feasible factorization producing factors which
are all different from each other, that is, the number of
factors equals the number of dictionary elements. This is
the property we use to prove our result.

Theorem. The on-line greedy d-restarted LZW factorization
is an O(

√
d) approximation of the optimal one, where d is

the dictionary size.

Proof. Without loss of generality, we can assume the
restart operation happens as soon as the dictionary is filled
up during the greedy factorization process, since the static
phase monitors the performance of the procedure. Let S be
a string of length n and T be the trie storing the dictionary
of factors of the optimal d-restarted LZW factorization
Φ of S between two consecutive positions, where the
restart operation happens. Each dictionary element (but
the alphabet characters) corresponds to the concatenation
of a factor f of the optimal factorization with the first
character of the next factor, that we call an occurrence
of the dictionary element (node of the trie) in Φ. We call
an element of the dictionary, built by the greedy process,

internal if its occurrence is contained in the occurrence of
a node of T and denote with MT the number of internal
occurences. The number of non-internal occurences is less
than the number of factors of Φ. Therefore, we can consider
only the internal ones. An occurrence f ′ of the greedy
factorization internal to a factor f of Φ is represented by
a subpath of the path representing f in T . Let u be the
endpoint at the lower level in T of this subpath (which,
obviously, represents a prefix of f ). Let d(u) be the number
of subpaths representing internal phrases with endpoint
u and let c(u) be the total sum of their lengths. All the
occurences of the greedy factorization are different from
each other between two consecutive positions, where the
restart operation of the greedy procedure happens. Since
two subpaths with the same endpoint and equal length
represent the same factor, we have c(u) ≥ d(u)(d(u)+1)/2.
Therefore

1/2
∑
u∈T

d(u)(d(u) + 1) ≤
∑
u∈T

c(u) ≤ 2|Φ|HT

where HT is the height of T , |Φ| is the number of phrases
of Φ and the multiplicative factor 2 is due to the fact that
occurrences of dictionary elements may overlap. We denote
with |T | the number of nodes in T ; since MT =

∑
u∈T d(u),

we have

M2
T ≤ |T |

∑
u∈T

d(u)2 ≤ |T |
∑
u∈T

d(u)(d(u)+1) ≤ 4|T ||Φ|HT

where the first inequality follows from the fact that the
arithmetic mean is less than the quadratic mean. Then

MT ≤
√
4|T ||Φ|HT = |Φ|

√
4|T |HT

|Φ|
≤ 2|Φ|

√
HT

The statement of the theorem follows from the fact that the
height of the trie is Θ(d) in the worst case. q. e. d.

The theorem suggests an approach restarting the dicionary
as soon as it is filled up, which is more robust but in some
cases (when the data are quite homegeneous) a little less
effective in terms of compression effectiveness. Therefore,
on a distributed system each processor stores a block of data
and applies the on-line greedy LZW factorization adding
a new element to the dictionary at each step. Obviously,
blocks are short enough to observe the dictionary size bound
d. From the the statement of the theorem in the previous
section, such approach outputs an O(

√
d) approximation of

the optimal solution since it computes the on-line greedy
d-restarted factorization. If the file size is very large and the
bound to the dictionary size is reached by one processor
before the end of its block, a ”least recently used” strategy
can be applied to remove dictionary elements to preserve

36

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



robustness. The relaxed version of LZW-LRU compression
using only two eqivalence classes is the one we propose as
the most suitable and efficient for large size files lossless
compression.

C. LZW-RLRU2 Compression: A Robust Approach

The relaxed version of the LRU heuristic using p equiv-
alence classes is:

RLRUp: When the dictionary is not full, label the
ith element added to the dictionary with the
integer ⌈i · p/k⌉, where k is the dictionary
size minus the alphabet size and p < k is the
number of labels. When the dictionary is full,
label the i− th element with p if ⌈i · p/k⌉ =
⌈(i − 1)p/k⌉. If ⌈i · p/k⌉ > ⌈(i − 1)p/k⌉,
decrease by 1 all the labels greater or equal to
2. Then, label the i−th element with p. Finally,
remove one of the elements represented by a
leaf with the smallest label.

In other words, RLRU works with a partition of the dictio-
nary in p classes, sorted somehow in a fashion according to
the order of insertion of the elements in the dictionary, and
an arbitrary element from the oldest class with removable el-
ements is deleted when a new element is added. Each class is
implemented with a stack. Therefore, the newest element in
the class of least recently used elements is removed. Observe
that if RLRU worked with only one class, after the dictionary
is filled up the next element added would be immediately
deleted. Therefore, RLRU would work like FREEZE. But
for p = 2, RLRU is already more sophisticated than SWAP
since it removes elements in a continuous way and its
compression effectiveness compares to the original LRU.
Therefore, LZW-RLRU2 is the most efficient approach to
compress on the Web or any other distributed system when
the size of the input file is very large. In the MapReduce
framework, a program sequence µ0µ1ρ1µ2ρ2 implements it
as the one for the LZSS compressor explained in Section
VI. A sequence of the same length works symmetrically for
decompression.

VIII. CONCLUSION

We showed how to implement Lempel-Ziv data com-
pression in the MapReduce framework for Web comput-
ing. An alternative to standard versions of the Lempel-
Ziv method is proposed as the most efficient one for large
size files compression. The robustness of the approach is
evidentiated by a theoretical worst case analysis of the
standard techniques. Moreover, scalability is preserved since
no interprocessor communication is required. It follows that
a linear speed-up is guaranteed during the computational
phase. With arbitrary size files, scaling up the system is
necessary to preserve the efficiency of LZW compression but
with very low communication cost if the data are not highly
disseminated. The MapReduce framework allows in theory

a higher degree of communication than the one employed
in the procedures presented in this paper. In [14], it has
been shown how the PRAM model of computation can
be simulated in MapReduce under specific constraints with
the theoretical framework. These constraints are satisfied by
several PRAM Lempel-Ziv compression and decompression
algorithms designed in the past [8], which are suitable for
arbitrary size highly disseminated files. As future work, it
is worth investigating experimentally if any of these PRAM
algorithms (which are completely different from the ones
presented in this paper) can be realized with MapReduce in
practice on specific files.

REFERENCES

[1] S. De Agostino, ”Compressing Large Size Files on the Web
in MapReduce,” Proceedings International Conference on
Internet and Web Applications and Services (ICIW), 2013,
pp. 135-140.

[2] S. De Agostino, ”LZW Data Compression on Large Scale and
Extreme Distributed Systems,” Proceedings Prague Stringol-
ogy Conference, 2012, pp. 18-27.

[3] S. De Agostino, ”Bounded Memory LZW Compression and
Distributed Computing: A Worst Case Analysis,” Proceedings
Festschrift for Borivoj Melichar, 2012, pp. 1-9.

[4] A. Lempel and J. Ziv, ”On the Complexity of Finite Se-
quences,” IEEE Transactions on Information Theory, vol. 22,
1976, pp. 75-81.

[5] A. Lempel and J. Ziv, ”A Universal Algorithm for Sequen-
tial Data Compression,” IEEE Transactions on Information
Theory, vol. 23, 1977, pp. 337-343.

[6] J. Ziv and A. Lempel, ”Compression of Individual Sequences
via Variable-Rate Coding,” IEEE Transactions on Information
Theory, vol. 24, 1978, pp. 530-536.

[7] M. Crochemore and W. Rytter, ”Efficient Parallel Algorithms
to Test Square-freeness and Factorize Strings,” Information
Processing Letters, vol. 38, 1991, pp. 57-60.

[8] S. De Agostino, ”Parallelism and Dictionary-Based Data
Compression,” Information Sciences, vol. 135, 2001, pp. 43-
56.

[9] L. Cinque, S. De Agostino, and L. Lombardi, ”Scalability
and Communication in Parallel Low-Complexity Lossless
Compression,” Mathematics in Computer Science, vol. 3,
2010, pp. 391-406.

[10] S. De Agostino, ”Lempel-Ziv Data Compression on Parallel
and Distributed Systems,” Algorithms, vol. 4, 2011, pp. 183-
199.

[11] S. De Agostino, ”P-complete Problems in Data Compression,”
Theoretical Computer Science, vol. 127, 1994, pp. 181-186.

[12] S. De Agostino and R. Silvestri, ”Bounded Size Dictionary
Compression: SCk-Completeness and NC Algorithms,” Infor-
mation and Computation, vol. 180, 2003, pp. 101-112.

37

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[13] S. De Agostino, ”Bounded Size Dictionary Compression:
Relaxing the LRU Deletion Heuristic,” International Journal
of Foundations of Computer Science, vol. 17, 2006, pp. 1273-
1280.

[14] H. J. Karloff, S. Suri, and S. Vassilvitskii, ”A Model of Com-
putation for MapReduce,” Proc. SIAM-ACM Symposium on
Discrete Algorithms (SODA 10), SIAM Press, 2010, pp. 938-
948.

[15] S. De Agostino, ”LZW versus Sliding Window Compression
on a Distributed System: Robustness and Communication,”
Proc. INFOCOMP, IARIA, 2011, pp. 125-130.

[16] S. De Agostino, ”Low-Complexity Lossless Compression on
High Speed Networks,” Proc. ICSNC, IARIA, 2012, pp. 130-
135.

[17] J. A. Storer and T. G. Szimansky, ”Data Compression via
Textual Substitution,” Journal of ACM, vol. 24, 1982, pp.
928-951.

[18] M. Rodeh, V. R. Pratt, and S. Even, ”Linear Algorithms for
Compression via String Matching,” Journal of ACM, vol. 28,
1980, pp.16-24.

[19] E. M. Mc Creight, A Space-Economical Suffix Tree Construc-
tion Algorithm, Journal of ACM, vol. 23, 1976, pp. 262-272.

[20] T. A. Welch, ”A Technique for High-Performance Data Com-
pression,” IEEE Computer, vol. 17, 1984, pp. 8-19.

[21] S. De Agostino and J. A. Storer, ”On-Line versus Off-line
Computation for Dynamic Text Compression,” Information
Processing Letters, vol. 59, 1996, pp. 169-174.

[22] S. De Agostino and R. Silvestri, ”A Worst Case Analisys of
the LZ2 Compression Algorithm,” Information and Compu-
tation, vol. 139, 1997, pp. 258-268.

[23] J. A. Storer, Data Compression: Methods and Theory, Com-
puter Science Press, 1988.

[24] E. R. Fiala and D. H. Green, ”Data Compression with Finite
Windows,” Communications of ACM, vol. 32, 1988, pp. 490-
505.

[25] J. R. Waterworth, ”Data Compression System,” US Patent 4
701 745, 1987.

[26] R. P. Brent, ”A Linear Algorithm for Data Compression,”
Australian Computer Journal, vol. 19, 1987, pp. 64-68.

[27] D. A. Whiting, G. A. George, and G. E. Ivey, ”Data Com-
pression Apparatus and Method,” US Patent 5016009, 1991.

[28] J. Gailly and M. Adler, http://www.gzip.org, 1991.

[29] A. Hartman and M. Rodeh, ”Optimal Parsing of Strings,” In:
Apostolico, A., Galil, Z. (eds.) Combinatorial Algorithms on
Words, Springer, 1985, pp. 155-167.

[30] M. Crochemore and W. Rytter, Jewels of Stringology, World
Scientific, 2003.

[31] S. De Agostino, ”Almost Work-Optimal PRAM EREW De-
coders of LZ-Compressed Text,” Parallel Processing Letters,
vol. 14, 2004, pp. 351-359.

[32] D. Belinskaya, S. De Agostino, and J. A. Storer, ”Near
Optimal Compression with respect to a Static Dictionary on a
Practical Massively Parallel Architecture,” Proceedings IEEE
Data Compression Conference, 1995, pp. 172-181.

38

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Correlation and Consolidation of
Distributed Logging Data in Enterprise Clouds

Sven Reissmann, Dustin Frisch, Christian Pape, and Sebastian Rieger
University of Applied Sciences Fulda

Department of Applied Computer Science
Fulda, Germany

{sven.reissmann, dustin.frisch, christian.pape, sebastian.rieger}@cs.hs-fulda.de

Abstract—Due to the availability of virtualization technolo-
gies and related cloud infrastructures, the amount and also
the complexity of logging data of systems and services grow
steadily. Automated correlation and aggregation techniques are
required to support a contemporary processing and interpre-
tation of relevant logging data. In the past, this was achieved
using highly centralized logging systems. Based on this fact,
the paper introduces a prototype for an automated semantical
correlation, aggregation and condensation of logging information.
The prototype relies on a NoSQL storage back-end that is
used to persist consolidated messages of distributed logging
sources in a highly performant manner. This step of consolidation
includes strategies for minimizing long-term storage, and by
using correlation techniques also offers possibilities to detect
anomalies in the stream of processed messages. In this context,
we will present the special requirements of handling scalable
logging systems in highly dynamic infrastructures like enterprise
cloud environments, which provide dynamic systems, services and
applications.

Keywords—Syslog Correlation; Log Analysis; Anomaly Detec-
tion; Monitoring; Enterprise Cloud.

I. INTRODUCTION

The vast rise of virtualization technologies and the related
wide availability of virtual machines (VM) has increased the
amount of logging data over the past years [1]. In addition to
virtual machines themselves, cloud infrastructures, in which
they are deployed, also deliver new services and applications
in a fast and highly dynamic manner, producing logging data
that is needed to monitor their state and service quality.
This leads to a growth of logging sources and the demand
for logging systems to dynamically handle new sources and
collect the corresponding data. Each new source provides
detailed logging information and increases the overall amount
of logging data. Typically, logging data will be compressed and
also anonymized at short intervals if personally identifiable
information is included. Also, outdated log entries can be
removed, but the number of logging sources (e.g., the number
of virtual machines) themselves often cannot be reduced. For
instance, in a virtualized cloud infrastructure where servers,
storage and also the network are virtualized, each system,
service and application should at least provide a minimal set
of logging data to allow an effective analysis of its status and
relevant events during service operation.

To support this analysis and evaluation across logging
information originating from a large number of different dis-
tributed source systems, correlation techniques offer a way to

group similar systems and applications. Furthermore, correla-
tion can be used for the aggregation of logging data, hence
providing a condensation based on its relevance. In [1], we
introduced a solution to persist logging data that originated
from syslog sources into a NoSQL-based (Not only SQL)
database by enhancing existing solutions. For correlation and
consolidation purposes, this data was also enriched with meta
information before providing the data for distributed analysis
and evaluation. This article elaborates on the implementation
and concepts outlined in [1] and presents extensions to use
different, e.g., structured logging sources and increase the
efficiency of our correlation engine. Furthermore, an evaluation
test-bed to enhance the scalability of our implementation
in OpenStack-based enterprise cloud environments is given.
Additionally, we present possibilities to use information from
external network and system management solutions to enrich
the events being correlated.

The article is laid out as follows. In the next section, the
state-of-the-art of distributed logging in cloud environments
is described. Section III gives examples of related work and
research projects that also focus on improving the management
and analysis of logging data in distributed cloud environments.
Requirements for the correlation and consolidation of logging
data in enterprise clouds are defined in Section IV. In Section
V, the implementation of a prototype for log correlation and
consolidation in cloud environments is presented. It provides
aggregation and condensation of logging data in cloud en-
vironments by correlating individual events from distributed
sources. At the end of the section, an example of the usage
of our prototype for the log analysis in cloud environments is
given. Section VI describes the deployment of our prototype
in an OpenStack test-bed. The performance of our prototypical
implementation is evaluated in Section VII using multiple test
cases. In the last section of this article, a conclusion is drawn
and aspects for future research are outlined.

II. STATE-OF-THE-ART

The following sections give an overview on the evolution of
logging methods in distributed environments using aggregation
and consolidation techniques for standard logging mechanisms
like syslog. Also, the advantages of evolving NoSQL databases
in this area are outlined.

A. Distributed Logging in Cloud Environments

Current cloud service providers offer a variety of monitor-
ing mechanisms. For example, Amazon Web Services (AWS)

39

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and RackSpace both provide monitoring and alarms for their
virtual machines. In the basic version, these services moni-
tor several performance metrics, like central processing unit
(CPU), input/output (I/O), and network utilization. Advanced
versions (e.g., Amazon CloudWatch [2]) allow the customers
to check the current status of services running in the virtual
machines and to define custom metrics and alarms that can be
monitored using individual application programming interfaces
(API) of the cloud service provider. While these APIs could
be used to send particular events and alarms, there is no
specific service to handle the aggregation, correlation and
management of logging data generated and provided by the
operating systems and services running in the virtual machines.
Furthermore, the individual APIs currently vary from provider
to provider. Hence, it is not possible to use a unified monitoring
implementation across different cloud service providers. This
also hinders the establishment of enterprise clouds that should
allow the integration of private or hybrid cloud services oper-
ated by public cloud service customers, as these solutions again
use individual monitoring techniques. An appropriate standard
to address the issue of cloud service provider-independent
logging, is currently in the works at the Internet Engineering
Task Force (IETF) [3].

Until such open standards are available, distributed logging
in cloud environments could be carried out by developing
specific logging mechanisms for the infrastructures, platforms
or applications (IaaS, PaaS, SaaS) used in the cloud. The
drawback of this approach would be the required software
development and maintenance effort. Moreover, the individual
APIs developed by the customers are likely to need a migration
to upcoming cloud logging standards in the near future. The
more appropriate approach, therefore, could be to extend
existing and established logging services to support distributed
cloud scenarios. The de-facto standard logging service offered
in every predefined Linux-based virtual machine image by
existing cloud providers is syslog, which is described in the
next section. In fact, syslog is also the basis for the upcoming
Internet-Draft [3] focusing on cloud-based logging services.
Logging data can be stored and structured in NoSQL-based
databases as described in Section II-C.

B. Log Aggregation and Consolidation with syslog

Syslog defines a distributed logging solution for generating,
processing and persisting host- and network-related events.
As a key feature, it allows one to separate the software
that generates events from the system that is responsible
for processing, storing and analyzing those events. Since its
introduction, the syslog protocol has evolved into the de-
facto standard for processing and forwarding logging events
on UNIX-based systems and network devices (i.e., routers,
firewalls). However, there has not been any standardization of
the protocol characteristics for quite a long time, which has led
to incompatibilities across vendor-specific implementations.

The state of the protocol (Berkeley Software Distribution
(BSD) Syslog Protocol), including the most commonly used
message structure and data types, has been documented by
the IETF in RFC 3164 [4]. Each syslog packet starts with a
so-called PRI (priority) part representing the severity of the
message as well as the facility that generated the message.
Severity and facility are together numerically coded using

decimal values; the priority value, which is placed between
angle brackets at the very beginning of the message, is
calculated by first multiplying the facility value by 8 and
then adding the severity value. RFC 3164 specifies eight
possible values for the severity of a message, as well as 24
facility values, which are assigned to some of the operating
systems’ daemons (i.e., the mail subsystem). The second part
of a syslog packet, following immediately after the trailing
bracket of the PRI part, is called HEADER and includes a
TIMESTAMP and HOSTNAME field, each followed by one
single space character. TIMESTAMP represents the local
time when a message was generated using the format ”Mmm
dd hh:mm:ss”, while HOSTNAME may only contain the
hostname [5], IPv4 address [6], or IPv6 address [7] of the
producer of the message. Finally, the MSG part of a syslog
packet consists of two fields, known as TAG and CONTENT,
where CONTENT contains the actual message, while TAG is
the name of the program that generated it. The TAG value
can be distinguished from the message or other optional
information by a colon or left square bracket depending on
the presence of an optional (but commonly used) combination
of the program name with its process ID. Listing 1 shows an
example of an RFC 3164 compliant syslog message.

<34>Oct 11 2 2 : 1 4 : 1 5 mymachine su : ’ su r o o t ’
f a i l e d f o r l o n v i c k on / dev / p t s / 8

Listing 1. Example of an RFC 3164 compliant syslog message.

While syslog messages are typically stored in files on the
generating host’s local filesystem, we outlined above that the
impact of virtualization technologies and the corresponding
growth of logging sources indicate that a centralized collection
and analysis of syslog events is of essential importance. Other-
wise, an overall rating of nearly identical messages originating
from different sources (i.e., from a cloud service that spreads
over multiple hosts) would be a difficult task. As a matter
of fact, centralized logging infrastructures and the utilization
of relays to cascade syslog servers in large environments were
considerations in the early development of syslog. Historically,
the BSD Syslog Protocol [4] uses the User Datagram Protocol
(UDP) to transport messages over the network, which may
lead to the imperceptible loss of important events. To address
this issue, the use of a reliable delivery mechanism for syslog
has been proposed shortly after the documentation of the
protocol characteristics [8]. Additionally, security features like
Transport Layer Security (TLS) and cryptographic signatures
have been proposed to assure the integrity and authenticity of
the data during transport of the messages from the sending
hosts [9][10][11]. Figure 1 shows an example of a centralized
logging environment, where a number of physical or virtual
servers send their messages to a central syslog server, which
then stores these messages appropriately.

A major drawback of the previously described syslog
protocol regarding correlation and analysis capabilities is
the unstructured nature of the messages’ format. In 2009, a
standard for a syslog protocol was proposed in RFC 5424
[12], which obsoletes the previously described but still widely
used BSD Syslog Protocol. The new protocol specifies the
PRI part of a syslog packet in the same way as its predecessor,
but includes it into the HEADER part of the packet together

40

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



VMVMVM

VMVMVM

internal 
systems & services

centralized 
logging server

storage

monitoring/
reporting & 
log analysis

external
systems & services

lo
gg

in
g 

da
ta

(S
ys

lo
g)

Fig. 1. Centralized logging of distributed systems and services.

with additional information such as the name and process
ID of the generating application and a message ID. Another
feature of the new HEADER format is the use of a formalized
TIMESTAMP value as standardized in RFC 3339 [13]. Most
important, however, is the possibility to add structured data
into a syslog packet, allowing to express information in a well
defined and easily machine-parsable format. An example of a
syslog message containing both structured data and a regular
free text message is expressed in Listing 2.

<165>1 2003−10−11T22 : 1 4 : 1 5 . 0 0 3 Z
mymachine . example . com

e v n t s l o g − ID47 [ exampleSDID@32473 i u t =”3”
e v e n t S o u r c e =” A p p l i c a t i o n ” even t ID =”1011”]
BOMAn a p p l i c a t i o n e v e n t l o g e n t r y . . .

Listing 2. Example of an RFC 5424 compliant syslog message.

Among the wide range of available syslog servers capable
of processing the previously delineated protocols, syslog-ng
[14] and rsyslog [15] are some of the most widely used solu-
tions on UNIX-based operating systems. Both implement RFC
3164 as well as RFC 5424 message transport, various security
features such as cryptographic signatures, message encryption,
and the ability to convert messages from one format to another.
The rsyslog server, which provides an open-source implemen-
tation of the syslog protocol, was selected for our research as
it provides interesting features like a large number of input and
output modules to support a wide range of logging sources and
novel storage back-ends like MongoDB, Hadoop Distributed
File System (HDFS), and Elasticsearch. Furthermore, message
normalization and modification techniques make it possible
to parse incoming messages and add structured information
to them, which enables post-processing applications to apply
correlation techniques and filtering rules. In our test-bed, which
we describe in detail in later sections of this article, we
make use of rsyslog’s input filters, message normalization
provided by liblognorm, and message forwarding capabilities
using various output modules.

C. Log Management utilizing NoSQL Databases

Regarding the persistence of logging data, important as-
pects are performance and scalability of the storage system,
especially as in many cases there is a tremendous amount of
data to be stored. Further, the flexibility to add new logging
sources that may introduce new data structures (i.e., when
providing individual structured data as described in the pre-
vious section) is a crucial requirement. While various storage
back-ends are available for centralized logging environments,
we would argue that only a certain type of these systems
qualifies by offering reasonable write performance and, even
more important, allowing complex analysis on the stored
data. That class of storage systems is called NoSQL, which
refers to a type of data storage that became an interesting
alternative to Structured Query Language (SQL) databases
over the past couple of years, especially for storing huge
amounts of information such as logging data.

Relational databases demand the structure of the data to
be specified at the time the database is created. This means
that creating a relational database for data that does not easily
map into a fixed table-layout (e.g., different log formats from
distributed sources) is not a simple task. NoSQL datastores,
in contrast, provide little or no pre-defined schema, allowing
the structure of the data to be modified or extended at any
time. This property qualifies NoSQL for persisting structured
syslog information, where on the one hand, the data is well
formatted, but at the same time, the structured key-value pairs
of the individual syslog sources may vary depending on the
type of service or system that generated the message.

While the name NoSQL makes it appear that the lack of
SQL is the most important difference, there are a number of
other characteristics that distinguish this type of storage system
from the well-known SQL database management systems
(DBMS). In almost all cases, a simple query interface is used
for storing, retrieving or modifying data, rather than an SQL
processor. While the query language of an SQL DBMS itself
does not necessarily have negative effects on performance, it
can be quite difficult to write efficient queries when trying to
do complex operations on the data, e.g., joining a large number
of tables. Another important difference of NoSQL compared to
SQL DBMS is the scalability over hundreds of hosts, which
is achieved in exchange for giving up 100% ACID (Atom-
icity, Consistency, Isolation, Durability) semantics. Instead,
NoSQL guarantees consistency only within certain boundaries
or within a specific record. At the same time, scalability leads
to high availability by doing transparent failover and recovery
using mirror copies. Of course, not all copies are guaranteed
to be up to date, because of the previously mentioned lack of
the ACID compliance.

Although there are different implementations of NoSQL
datastores that fit completely different needs, all are designed
to fit new requirements, like storing unstructured data or
performing full-text search queries. In [16], Cattell presents
an overview of the available types of NoSQL technologies
and names some of the actual implementations of the various
technologies. Looking at the distinct approaches of NoSQL,
three main types can be identified. Key-value stores allow
one to store unstructured data in a single distributed key-
value index for all the data. The data is typically stored as
binary large object (BLOB) without being interpreted and

41

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



can be accessed by a client interface, which provides basic
operations like insert, delete and index lookups. Key-value
stores achieve high performance when querying for keys, but
are not very well suited to perform searches on the stored
objects themselves. Going one step further, extensible record
stores, also referred to as column-oriented datastores, allow
the storage of closely related data in an extendable row-
and-column layout. Scalability is achieved by splitting both
rows, through shards on the primary key, and columns, by
using pre-defined column groups. Besides using a row and
column model, extensible record stores are not bound to the
restrictions of the highly structured table layout SQL uses, as
new attributes can easily be added at any time. Still, they allow
one to store data in a more detailed structure compared to the
previously mentioned key-value stores. A third type of NoSQL
is referred to as document-based datastores or document stores.
Here, document is not to be confused with an actual document
in the traditional sense. Instead, these types of databases are
able to store collections of objects, each of which may have a
completely independent number of attributes of various types.
The structure of new documents can be extended at any time,
meaning that documents may consist of any number of key-
value pairs of any length. Like the previous, document stores
can partition the data over multiple machines for scalability
and replication of the data. Document stores provide a high
degree of flexibility and interoperability, but like other NoSQL
systems, they do not provide ACID transactional conformance.

Looking at the requirements for storing logging data and
being able to do complex analysis of the data later on, not
all of the previously named NoSQL technologies are suitable.
Key-value stores as well as column-oriented databases allow
highly efficient queries for the data using their keys, while
not being applicable for doing full-text search queries and
correlation on the stored data. Document stores, in contrast,
allow highly efficient search queries on the stored data objects
as well as the documents’ keys. Further, the flexibility to add
any newly formatted document at any time is an important
feature when storing individually structured syslog messages.
For the implementation of our prototype, we use Elasticsearch
[17], a document store that offers a high-performance, full-
featured text search engine based on Apache Lucene [18].

III. RELATED WORK

The challenge of persisting and evaluating decentralized
logging data has been in the focus of many research pub-
lications. For instance, the evaluation of decentralized log-
ging information in IaaS, PaaS and SaaS cloud environments
was described in [19] and [20]. Also, an Internet-Draft is
in development [3] covering processing of syslog messages
from distributed cloud applications. Besides the requirements
by these new highly distributed applications, there is also a
challenge for analysis and structuring of logging information.
Existing solutions for automated log analyzers comply with
only some of these requirements [21]. Therefore, Jayathilake
[21] recommends structuring logging data and extracting the
contained information. In this context, NoSQL databases are
best suited for handling these variable fields. These databases
provide an adaptive approach of persisting data and allow
the use of different table schemata or, e.g., a document-
based approach to storing key-value pairs. As outlined in [22]
and [23], the evaluation and rating itself can be automated

by event correlation and event detection techniques. Both
publications also describe the usage of the correlation solution
Drools, which we use for our research. Correlation techniques
help to reduce and consolidate the logging data so that only
a condensed representation including relevant information,
required for analysis and evaluation, will be persisted. As
described in [23], a reduction of syslog data by up to 99%
is possible. A solution based on the NoSQL database Mon-
goDB using MapReduce to correlate and aggregate logging
data in distributed cloud analysis farms is described in [24].
This solution, however, lacks event correlation and detection
techniques.

IV. REQUIREMENTS FOR CORRELATION OF LOGGING
DATA IN ENTERPRISE CLOUDS

In the introduction of this article, we described that cen-
tralized logging environments tend to produce a tremendous
number of logging events at the central logging server. To
manage the storage of all these events and provide a way to
perform a fast analysis on the stored data, the use of the previ-
ously mentioned NoSQL datastores seems obvious. However,
looking at the amount of data that has to be manually analyzed
and evaluated, the question arises whether it is possible to
automate the process of evaluating the relevance of certain
syslog events or even reduce the amount of data that will be
stored. The latter is only reasonable if it can be guaranteed
that no valuable information will be lost after the reduction
of messages. In the next sections, we are going to describe in
detail our approach for automatic evaluation and reduction of
syslog events. Also, a method for identifying interesting types
of events for which a correlation or consolidation is possible
is proposed at the end of this section.

A. Correlating Distributed Logs in Enterprise Clouds

The core objective of our previous work was the processing
of data provided via syslog and the identification of important
events in the network or on individual hosts. For instance, the
sequence of messages of an ongoing Secure Shell (SSH) brute-
force attack illustrates the demand for an automated rating
of messages. During a brute-force attack, the SSH daemon
generates a log entry for each invalid login attempt. These mes-
sages are delivered to a centralized syslog server, indicating
individual failed login attempts. However, the relatively small
number of such specific events might become lost in the large
total number of syslog messages received from all distributed
sources. At the same time, a single message indicating that an
SSH login attempt was successful will definitely be hard to
identify among the huge number of syslog messages denoting
failed login attempts while the brute-force attack is running.
Figure 2 shows a visualization of authentication messages
collected by a central syslog server used to monitor servers,
network devices and storage systems for students’ web servers
at the University of Applied Sciences Fulda.

The resulting graph gives an overview of the general
behavior and basic noise of these logging messages. The
Holt-Winters [25] algorithm was used to compute and adapt
a confidence band over time, which represents the normal
behavior of the time-series data. If specific values are violating
this confidence band for a number of periods in a given
time window, these values are marked as failures or aberrant

42

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 2. Holt-Winters based vertical bands representing high occurrences of
SSH login attempts resulting in ”Failed password” messages.

behavior. This is also visualized in the graphical output by
yellow vertical areas (vertical bands in the graph). In this
example, the peaks were results of distributed brute-force
attacks with common user account names, such as root, admin
or test.

An IT operator analyzing the logging data, however, is
not interested in displaying each individual login attempt, but
rather wants to know whether the brute-force attack led to
a successful login into one of his systems. To answer this
kind of question, the syslog messages must be filtered for
data of corresponding SSH daemons and searched for failed
login attempts that are followed by a successful login. Thus, a
system registering a large number of failed login attempts, and
finally a successful login, might experience a successful brute-
force attack, while the possibility of an attack rises along with
the number of failed login attempts. The time-consuming and
costly search for attack patterns like this can be simplified by
an automated rating of syslog messages. To identify individual
messages describing similar events from different operating
systems and platforms, it is required to normalize syslog data
before correlating and persisting them. For the lookup of SSH
login attempts, it is sufficient to examine single individual
syslog messages. In order to identify a completed attack, a
sequence of these matching messages must be investigated. If
the conditions for a successful attack are met, it is possible
to generate a new prioritized syslog message to support the
immediate detection of these security threats in the network.
By using the flexibility of structured data in syslog messages
we described earlier, it is possible to add certain tags to
the parsed or newly generated messages. These tags may be
used later on, in order to support analysis by allowing the
application of filters, e.g., to separate newly injected messages
from the normal syslog messages after they are persisted all
together into the Elasticsearch cluster.

B. Consolidating Logging Data from Distributed Services

A second goal of our work was to reduce the number
of messages that actually get persisted into the Elasticsearch
cluster. This may seem subordinate against the backdrop of
increasing computing performance and concepts like BigData.
Reducing the actual amount of data that gets persisted, how-
ever, still results in faster and easier analysis, even when using
the novel NoSQL techniques. In practice, we actually observe
the reduction of stored messages in long-term storage as a

requirement for many companies. Such reduction techniques
basically delete messages of a certain age or do not persist
messages below a certain severity. However, this results in
a loss of valuable contextual information, which is why we
would argue that such simple consolidation mechanisms are
not practicable for logging data. Our novel approach first
provides a grouping mechanism, where identical or recurring
events are summarized. Based on those groups we are able
to generate new syslog messages containing a dense represen-
tation of all the valuable information of the initial messages,
thus allowing us to actually drop those messages without losing
any contextual information. Using our solution, it is possible
to reduce the number of messages that need to be stored at the
central database server, and therefore we are able to improve
the performance of this system without losing information.
Furthermore, it is possible to manipulate the severity of the
newly generated messages, in order to increase their value for
later analysis.

An example application of such modification of syslog
messages might be the detection of the previously mentioned
brute-force attack, which results in a flood of low-priority
security event messages. By generating a single message of
high priority — telling an administrator what the actual attack
looked like, judging from the number of login attempts, the
duration of the attack and the actual result — we produce
information that supports estimating the situation and the next
steps to be taken. In addition, regardless of waiving all the
failed login attempts at the central database server, further
investigation is still possible by performing an exact analysis
of the attack using the logfiles stored at the individual server
that was under attack. A second example of consolidating
messages would be the correlation of application access logs.
For instance, in a cloud environment new machines will be
spawned on demand, so several systems provide a single
service in a cooperative way. An example could be a number
of dynamically started Hypertext Transfer Protocol (HTTP)
servers receiving requests via a load balancer. The requests on
the individual servers will be logged to the centralized syslog
server, but these individual events must be aggregated, e.g.,
to support the decision process of starting or stopping virtual
machines running the HTTP servers. The access log messages
can be correlated to an access count per timeslot and it is
also possible to count active HTTP servers by differentiating
distinct logging sources. As already illustrated in the previous
example, it is again not necessary to persist the original access
messages. The correlated logging information is useful to
evaluate the load on all servers and can also be used to
determine whether running machines have to be stopped or
new ones need to be started.

Taking the logging information into account, a confident
decision can be made that goes beyond the possibilities of
network-based load balancing and failover techniques. A more
generic approach would be to use correlation engines like
Drools to count messages matching a set of rules for specific
timeslots and to generate diagrams for these kinds of messages.
This approach allows one to compare different timeslots and
to answer questions like “Were the same number of cron
jobs executed on Monday and Tuesday?”. Also, a visual
representation of these results, e.g., as presented in [26], could
be possible with the benefit of easily identifying anomalies at
first sight.

43

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



C. Identifying logging events of interest

When trying to automatically process syslog messages with
the objective of evaluating their importance by using corre-
lation techniques, one has to start by identifying sequences
of messages that point to certain events. We did a manual
analysis of such events by using large amounts of syslog in-
formation provided by the General Students’ Committee of the
University of Applied Sciences Fulda and a number of virtual
servers we previously set up to collect and simulate specific
attacks. To analyze the dataset, we implemented a small Java-
based application that counts similar messages in five-minute
intervals based on regular expressions. The results of these
calculations are stored in a round-robin archive using RRDtool
[27], which is able to generate a graphical representation of the
data. This simplified approach to represent logging data in a
diagram allows us to use algorithms applicable for time series
data, e.g., forecasting or anomaly-detection algorithms. The
RRDtool utility itself implements an exponential smoothing
algorithm for forecasting and anomaly detection also known as
Holt-Winters Aberrant Behavior Detection [28]. We used this
algorithm to identify aberrant behavior in the syslog data of
specific applications we monitored. An example of this method
based on counting warning messages from the postfix/smtpd
process on mail servers is shown in Figure 3. Investigating
the logging data to find the cause of the peaks indicated in
the graph led back not only to temporary name resolution
problems, but also to authentication issues on this host.

Fig. 3. Holt-Winters based vertical bands representing high occurrences of
postfix/smtpd warning messages.

On one hand, the visualization of logging data, as shown
in Figure 3, can be used to support network operators trying
to find and investigate problems in the monitored network.
On the other hand, it is a convenient approach to identify
interesting logging data in order to construct suitable rules for
aggregation, correlation, and of course anomaly detection. It is
also imaginable that this use of time-series algorithms provides
a way to realize an automated generation of rulesets for
detecting aberrant behavior in logging data. One prerequisite,
however, is the feasibility of such algorithms to work on
highly-structured data, which allows them to unambiguously
identify certain events, as a similar method shows [29].

V. IMPLEMENTATION OF LOG CORRELATION AND
CONSOLIDATION IN CLOUD ENVIRONMENTS

To facilitate the analysis of security event messages in
distributed cloud environments and to reduce the amount of

logging data that needs to be permanently stored, we presented
a log correlation and consolidation prototype in [1]. In this
section we will give an overview of the functional principle of
the prototype and an example application of our solution by
showing the correlation of logging data being generated during
an SSH brute-force attack as described in Section IV-A.

A. Mode of Operation

As we already mentioned, our prototypical implementation
uses rsyslog [15] as the central syslog server, which receives
and normalizes syslog messages originating from distributed
sources. Since the majority of the compute cloud providers
offer syslog-based logging in their VMs, our entire approach
using rsyslog can be used to correlate the logging data across
multiple and heterogeneous cloud environments (e.g., cloud
federations or hybrid clouds). The Complex Event Processing
(CEP) Engine Drools Fusion [30] is used as a basis for a cor-
relation and consolidation prototype, which was implemented
in Java. Finally, we use the Elasticsearch [17] document store
for permanent persistence of all the received and correlated
syslog messages.

As pictured in Figure 4, syslog messages are sent from the
distributed clients — either virtual machines or physical hosts
— to the rsyslog server using a TLS connection over TCP.
While this will slightly increase the overhead for processing
and transmitting the messages, it guarantees reliable delivery
as well as authenticity and privacy of the received messages.

VMVMVM

VMVMVM

monitoring/
reporting & log 

analysis

storage

log correlation 
& aggregation

(Drools Fusion)

NoSQL storage
(ElasticSearch)

JSON JSON

central logging server
(rsyslog + liblognorm)

S
ys

lo
g d

at
a

(T
LS

)

Syslog correlation 
prototype

Fig. 4. Correlation and aggregation of logging data at a central syslog server.

Normalization of the received messages is performed at
the central syslog server using liblognorm [31], a high-
performance log normalization library for rsyslog. The use
of this library enables us to parse incoming messages from
different sources by specifying normalization rules in a syntax
similar to regular expressions before relaying the messages
to the designated output module. From the parsed messages,
we then extract and process valuable information and add
it back to the original syslog message using an RFC 5424
[12] compliant structured log format. It is obvious that this
normalization step is needed to assure that messages originat-
ing from different clients, which may use a slightly different
message format for the same type of event, can be handled
in a unified way. More important, the identification of diverse

44

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



messages having the same meaning in terms of correlation
can be identified and denoted by adding unique tags to the
structured information of the original messages, which can
easily be interpreted by our correlation prototype.

Listing 3 shows an example of rules that can be used with
liblognorm to normalize syslog messages indicating successful
or failed SSH password login attempts. During normalization,
the values for username, source IP address and TCP port
number as well as the SSH protocol version used in the
authentication attempt are identified and provided as structured
data in the processed syslog messages. Most important, a list
of tags (labels) can be added to the message, indicating the
type of event that was denoted by the parsed message. In our
example, the tags SSHSUCCESS or SSHFAILURE are added
to messages depending on the type of event, whereas these
tags may be assigned to multiple various messages pointing
to the same security event. We illustrate this by the two latter
rules, which both get assigned the tag SSHFAILURE. For
performance reasons, the complete rule base gets merged into
an optimized parser tree by liblognorm, allowing effective
analysis of the received messages.

r u l e =SSHSUCCESS : Accep ted password f o r %u s e r :
word% from %i p : ipv4% p o r t %p o r t : number% %
p r o t o c o l : word%

r u l e =SSHFAILURE : F a i l e d password f o r %u s e r :
word% from %i p : ipv4% p o r t %p o r t : number% %
p r o t o c o l : word%

r u l e =SSHFAILURE : F a i l e d password f o r i n v a l i d
u s e r %u s e r : word% from %i p : ipv4% p o r t %p o r t :
number% %p r o t o c o l : word%

Listing 3. Example normalization rules for matching SSH password
authentication attempts.

The normalization step still has a heavy impact on per-
formance due to the string matching operations that must be
performed on all incoming syslog messages. For this reason,
we make use of the ruleset feature in rsyslog, which allows
us to have multiple input queues for message submission. In
each queue we apply only a subset of specific normalization
rules based on the type of the incoming messages. On the
one hand, this minimizes the number of rules that need to be
matched against the incoming messages; on the other hand,
it allows us to distribute our whole prototype over multiple
cloud instances as described in more detail in Section VI.
The decision to use rulesets would also allow us to forward
messages directly to the storage back-end in case they are
not affected by correlation. However, an evaluation study we
present in Section VII shows that in case of an Elasticsearch
back-end this has a negative impact on performance.

After normalizing, the logging information is serialized
using JavaScript Object Notation (JSON) and forwarded
to an appropriate rsyslog output module, which connects
to our correlation prototype. Listing 4 depicts an example
of a structured syslog message, providing the most useful
information from the originating syslog message through a
data substructure and the type of event through its list of
tags. The prototype embodies a correlation engine, which
analyzes the messages and also instantly transfers them into

an Elasticsearch cluster for permanent persistence. Therefore,
our prototype utilizes the Elasticsearch Java API to become
part of the cluster as a transparent node not storing data itself,
but forwarding it to an appropriate data nodes.

{
” d a t a ” : {

” p r o t o c o l ” : ” s sh2 ” ,
” p o r t ” : ”54548” ,
” i p ” : ” 1 0 . 0 . 2 3 . 4 ” ,
” u s e r ” : ” r o o t ”

} ,
” t ime ” : ”2014−01−29T16 : 0 6 : 0 0 . 0 0 0 ” ,
” h o s t ” : ” t e s t . example . com ” ,
” f a c i l i t y ” : ” a u t h ” ,
” s e v e r i t y ” : ” i n f o ” ,
” program ” : ” s shd ” ,
” message ” : ” F a i l e d password f o r r o o t from

1 0 . 0 . 2 3 . 4 p o r t 54548 ssh2 ” ,
” t a g s ” : [ ”SSHFAILURE” ]

}

Listing 4. Structured syslog message of a failed SSH password authentication
attempt.

Our implementation of the correlation prototype is based
on the Complex Event Processing (CEP) Engine Drools Fu-
sion [30], which supports temporal reasoning on a stream of
data, allowing us to extend events with a property containing
the time of occurrence provided by the syslog message’s
timestamp value. This enables us to define rules that may
consider a number of similar messages in a specific time
interval when evaluating the importance of incidents at the
monitored systems. The rules can easily be extended to provide
arbitrarily complex correlation and consolidation techniques. A
more detailed example of possible rules used in the correlation
engine is shown in Section V-B.

Drools automatically keeps track of all events that any of
the rules may apply to, using an in-memory cache. Messages
that do not match any of the rules, in contrast, will be removed
from the in-memory cache. However, messages matching at
least one rule are correlated, and the result is stored with a flag
representing the successful correlation and a reference to orig-
inal messages (that have been correlated) in the Elasticsearch
cluster. By periodically searching for successful correlation
flags in the Elasticsearch cluster and pruning the original
messages they refer to, we can achieve a consolidation.

B. Example Application

As an example application of our prototype we are showing
the correlation of logging data being generated during an SSH
brute-force attack as described in Section IV-A. The aim is
to generate a new syslog message of high priority in the case
of a successful SSH login, which follows immediately after
a certain number of failed logins, hence pointing to an SSH
brute-force attack, which possibly succeeded. The detection of
this scenario should be carried out completely autonomously
by our prototype. In order to detect such a scenario, first we
need to match the corresponding syslog messages of failed and
successful SSH logins. These messages need to be isolated and
filtered from the stream of logging data originating from the
syslog server to trigger certain operations on them. Since we

45

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



already normalized incoming syslog messages at the central
syslog server using liblognorm, we can easily recognize all
interesting events by their list of tags, which we previously
added to the structured data values of the messages. An ex-
ample of an unsuccessful SSH authentication attempt message
including its additional tag was already shown in Listing 4.

To accomplish the detection of a successful SSH brute-
force attack we utilize the temporal reasoning features of
Drools Fusion [30], which allow us to construct rules that
describe particular events by a sequence of specific syslog
messages within a certain time. First, we need to detect an
ongoing SSH brute-force attack, before we can then search
for subsequent successful logins. Therefore, we specify a
rule entitled ”SSH brute-force attempt” as shown in Listing
5, which will match syslog messages containing the value
SSHFAILURE in the list of their tags. Furthermore, by
evaluating the values of the producing host and the username
used to authenticate, we build up multiple in-memory queues
of various authentication attempts. If we can match a series
of ten failed messages within a one minute time window
concerning a specific user account at one specific system, we
assume a certain chance of an ongoing brute-force attack.
Our current implementation shown in Listing 5 then retracts
all messages from the time frame and generates a new syslog
message with the facility ”security” and severity ”warning”,
containing the message ”SSH brute-force attack” together
with further additional information. Beyond that, the new
value BRUTEFORCE is added to the list of message tags,
allowing us to easily identify the message in a second rule
described below.

r u l e ”SSH b r u t e−f o r c e a t t e m p t ”
no−l oop
when

Message ( $ h o s t : hos t ,
$ u s e r : d a t a [ ” u s e r ” ] )

$ a t t s : CopyOnWri teAr rayLis t ( s i z e >= 10)
from c o l l e c t (

Message ( t a g s c o n t a i n s ”SSHFAILURE” ,
h o s t == $hos t ,
d a t a [ ” u s e r ” ] == $ u s e r )

ove r window : t ime (1m) )
t h e n

Message l a s t = ( Message ) $ a t t s . g e t ( $ a t t s .
s i z e ( ) − 1) ;

f o r ( O b j e c t f : $ a t t s ) {
r e t r a c t ( f ) ;

}

i n s e r t ( m e s s a g e F a c t o r y ( l a s t )
. s e tT ime ( l a s t . ge tTime ( ) )
. s e t S e v e r i t y ( Message . S e v e r i t y .WARNING)
. s e t F a c i l i t y ( Message . F a c i l i t y . SECURITY)
. s e t M e s s a g e ( ” SSH b r u t e−f o r c e a t t a c k ” +

” f o r @{ d a t a . u s e r } from @{ d a t a . i p }” )
. addTag ( ”BRUTEFORCE” )
. message ( ) ) ;

end

Listing 5. Drools fusion rule to detect running SSH brute-force attacks.

It would also be possible to postpone the persistence of
the logging data until the correlation is finished, to store all

messages related to the attack with a higher priority (e.g.,
emergency) in the Elasticsearch cluster. Another possibility
would be to persist the generated messages in addition to
the existing ones instead of retracting the original messages.
As described earlier, messages still needed for correlation are
automatically kept in the in-memory cache by Drools Fusion
according to the rules we defined, whereas messages that no
longer match any of the rules get removed from the cache,
self-controlled by Drools.

A second rule ”Successful SSH brute-force attack”, which
we illustrate in Listing 6 matches successful SSH logins
after a brute-force attempt was recognized. This is done by
detecting a successful authentication message with the tag
SSHSUCCESS within a ten-second window after a message
containing the tags SSHFAILURE and BRUTEFORCE was
recognized, containing the same username respectively. In that
case, the message indicating the successful login is altered
by increasing the severity to ”emergency” and adding another
value ”INCIDENT” to the list of tags, to ease traceability of
the security event message. Additionally, a short description
is appended to the textual message to make it more meaningful.

r u l e ” S u c c e s s f u l SSH b r u t e−f o r c e a t t a c k ”
no−l oop
when

$ a t t : Message ( t a g s c o n t a i n s ”SSHFAILURE” ,
t a g s c o n t a i n s ”BRUTEFORCE” ,
$ h o s t : hos t ,
$ u s e r : d a t a [ ” u s e r ” ] )

$suc : Message ( h o s t == $hos t ,
d a t a [ ” u s e r ” ] == $use r ,
t a g s c o n t a i n s ”SSHSUCCESS” ,
t h i s f i n i s h e s [10 s ] $ a t t )

t h e n
$ a t t . addTag ( ” INCIDENT ” ) ;
$ a t t . s e t S e v e r i t y ( S e v e r i t y .EMERGENCY) ;
$ a t t . s e t M e s s a g e ( $ a t t . ge tMessage ( )

+ ” [ b r u t e f o r c e ] ” ) ;

u p d a t e ( $ a t t ) ;
end

Listing 6. Drools fusion rule to detect successful SSH brute-force attacks.

Figure 5 illustrates how the detection of a successful
SSH brute-force attack is displayed in the user interface of
our prototype. In the example shown, the correlated message
has been logged in addition to the individual login attempt
messages. Obviously, the increased severity of the security
event is more likely to be recognized by an operator inspecting
the syslog messages than events with the regular severity info.

Fig. 5. Extract of our prototype’s user interface showing the detection of a
successful SSH brute-force attack.

46

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Instead of altering the matching syslog message, it would
also be reasonable to generate a completely new one as shown
in Listing 5. An even more interesting approach that we briefly
discuss in Section VIII is to trigger an event in an existing
network management system like OpenNMS [32].

VI. USING THE PROTOTYPE TO ENABLE LOG
CORRELATION IN AN OPENSTACK CLOUD ENVIRONMENT

The in-memory cache of Drools Fusion limits the number
of events our engine is able to correlate. Also, a single engine
instance limits the scalability, which is a major drawback in
cloud environments that should rather scale elastically both
up and down with respect to performance. To overcome
these limitations and also to test our implementation in a
cloud environment, we integrated our correlation engine in a
Rackspace Private Cloud [33] test-bed based on OpenStack
Havana [34]. Our syslog correlation prototype shown in Figure
4 was set up as an OpenStack Nova VM instance using an
Ubuntu 12.04.3 LTS Cloud Image. Subsequently, Java 1.7 and
the code for our prototype (named jCorrelat) were installed.

A. Scalability of our prototype in an OpenStack environment

While the CPU performance and memory capacity of
the VM instance could be resized using OpenStack Nova,
or respectively the hypervisor beneath it, a comprehensive
scale-out solution in the cloud demands the ability to scale
over multiple instances. Hence, multiple instances running our
prototype should be launched. To balance the load across these
VM instances, an additional implementation that distributes the
log messages across the instances was evaluated. Furthermore,
we considered as an option using the load-balancing facility of
OpenStack’s networking component Neutron. While both so-
lutions are feasible, the practicability to enhance the scalability
of our prototype using these approaches is rather limited. This
is due to the fact that, if the correlation were carried out across
multiple VM instances, these instances would need some sort
of shared or distributed memory. While there are solutions for
Java-based, distributed, in-memory data stores, e.g., Terracotta
BigMemory [35] or Hazelcast [36], these solutions are rather
expensive and also increase the complexity of the management
of our solution.

Therefore, we chose a simpler approach that forwards
logging information to the corresponding VM instance based
on the application it was received from. To accomplish this
distribution, multiple output modules were defined in the
centralized rsyslog logging server. Figure 6 depicts the us-
age of multiple VM instances of our correlation engine in
an OpenStack test-bed. Each instance receives logging data
for a specific application. If the correlation of logging data
originating from different applications is required, logging
information from multiple applications could be sent to a
single VM instance as shown in Figure 6. If the correlation
needs more memory, e.g., due to complex rulesets that need
to store the logging data for a long period in the in-memory
database, distributed memory techniques as described above,
e.g., using [35] or [36] could be added. This way, the in-
memory cache for the correlation engine stores the logging
data across multiple VM instances. Using queries to external
data stores for the correlation, e.g., searching in the persisted
messages in Elasticsearch, did not prove successful in our tests,

as the latency added to each incoming log message is too
high to handle bursts of logging information coming from the
applications.

Fig. 6. Scale-out solution for our correlation engine using OpenStack.

As described in Section V, our correlation engine is based
on Drools Fusion. Though discussions about a distributed setup
can be found in the Drools forums (e.g., the discontinued
Drools Grid), Drools is currently using an extended Rete algo-
rithm [37] for its rule engine that relies on shared memory and
is therefore limited to a single machine. Hence, our solution
to use separate Drools VM instances in OpenStack Nova is
currently sufficient for our experiments. Another interesting
possibility could be the integration with the Storm distributed
and fault-tolerant realtime computation framework [38].

Since we presented our first research results in [1], the
OpenStack Havana release has brought two new components
that can be used for our distributed syslog correlation engine
shown in Figure 6. The first is Heat, which offers an OpenStack
orchestration API. Using this API, the setup we described in
Figure 6 can be implemented as a Heat template. This template
describes the entire environment and VM instance configura-
tion for our correlation engine prototype, hence allowing an
automatic deployment within an OpenStack environment. This
orchestration could also be combined with configuration man-
agement tools like Chef [39] that handle automatic preparation
of the operating system and our correlation engine within the
VM instance. Furthermore, Heat manages the lifecycle needs
of the instance, e.g., scaling instances up and down, but espe-
cially stopping and starting new ones. This way, Heat supports
an auto-scaling mechanism that enables us to automatically
start more VM instances of our correlation engine, e.g., in
case of an increasing logging volume.

The auto-scaling mechanism can also include the distribu-
tion of logging data originating from a specific application. For
example, it is possible to include the name of the application
in the name of the VM instance, which can then be used by the
central logging server to distribute the logging data to specific
correlation instances. As the auto-scaling could lead to high
resource usage, the maximum number of instances should be
limited. Also, an accounting mechanism for the VM instance
usage is necessary. Such an accounting mechanism is offered
by another component included in OpenStack Havana, named
Ceilometer, which is closely integrated with Heat. Ceilometer
offers a standardized interface to collect measurements and
accounting information within OpenStack. This opens up an
interesting approach to ensure the accounting of our instances.

47

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A promising concept is also proposed by the integration of an
Elasticsearch storage driver for Ceilometer in one of the forth-
coming OpenStack releases [40]. This way, a standardized way
to collect logging information in an OpenStack environment
could be combined with the advanced log analysis and long-
term storage capabilities offered by Elasticsearch as described
in Section II-C. In [40], syslog and logging information coming
from other applications within an OpenStack environment has
already been considered. If this project would find its way into
a new version of OpenStack, we could integrate our correlation
engine in between, thereby getting a standardized interface to
log data in an OpenStack environment, while also enabling the
correlation and consolidation of logging events.

B. Integration of non-syslog logging data

Regarding the OpenStack enterprise cloud test-bed we
described in the previous section, besides consuming syslog
based logging data, OpenStack also produces its own individ-
ual type of log files. OpenStack log files use a structured log
format that contains a timestamp, the process ID, the severity
and the log message in each line [41]. The log message often
spreads across multiple lines as the log is filled with Python
tracebacks. One way of using this log data in our correlation
engine would be to send it directly to our prototype. As the
structured log format used by OpenStack is not fundamentally
different from the syslog format described in Section II-B, the
adaptation of our prototype to consume OpenStack’s Python-
based logs is easy to implement. However, the most appropriate
way to integrate OpenStack logging in our correlation engine
is the configuration of OpenStack to use centralized logging
to our rsyslog server, as described in [41]. This can also be
implemented for a variety of other application-specific non-
syslog logging mechanisms, e.g., log4j, log4net [42]. Due to
syslog being the de-facto standard especially for logging in
Linux based environments, a large number of application-
specific log files and formats can be sent to or consumed
by current syslog server implementations. Another benefit
of converting application-specific logs to syslog messages,
beyond the centralization of the logging data, is normalization
as described in Section V and an overall decrease in complexity
due to the unified logging.

C. Correlation with information from external management
systems

While logging data that is used for the correlation in
our prototype should be converted to a syslog-based format
(as described in the previous section), information originating
from management systems like network management and mon-
itoring, system management, service management or facility
management could be valuable to correlate events in the log
with events from these external management systems. An
example could be the physical location of the node that runs the
service in a data center or context information like scheduled
downtimes for a service during which certain events should be
ignored. This sort of filtering also increases the performance of
the correlation as rules could be tailored to take such contextual
factors (e.g., downtimes) into account.

Since we use JSON to send the logging data to our
correlation prototype, as described in Section V, events coming
from external management systems could be injected using a

simple TCP or web-service interface. Such a service could be
used either to push events from the management system to our
correlation engine prototype or to periodically pull information
from the management systems. In our OpenStack cloud envi-
ronment, for example, we use OpenNMS [32] as a network
management system that collects monitoring information from
the systems and network equipment. By using the events from
external network, system and service management systems,
the output of the correlation engine could also in turn be
used as a feedback for these systems. One example could be
the automatic creation of a trouble ticket if a ruleset in our
prototype is positively evaluated. Normally, such an automatic
creation could lead to a large number of open tickets, but
due to the correlation and especially consolidation of events
offered by our prototype, the quality of the information and
integration with trouble ticket or service management systems
could instead be improved.

VII. PERFORMANCE EVALUATION

In this section, we present the results of our performance
evaluation study in which we monitored the number of pro-
cessed syslog packets considering various storage back-ends
for permanent data persistence.

A. Test-bed setup

For the performance evaluation we set up a test-bed using
the Rackspace Private Cloud as delineated in Section VI.
Our prototype runs on an Ubuntu 12.04.3 LTS Cloud Image,
which has been assigned four Intel i7 CPU cores at 2.80
GHz, a total of 8 GB memory and a solid-state drive (SSD)
storage device. On the same system we have set up rsyslog as
the central syslog server together with liblognorm, which we
utilize to apply the normalization rules described in Section
V. Permanent persistence of syslog messages is done using
various storage back-ends that are also set up on the same
virtual machine and available to our prototype and the rsyslog
server through a TCP socket.

The transport of syslog messages from distributed sources
is simulated using loggen [43], a syslog message generation
tool provided by the syslog-ng project for testing purposes,
which has been installed on a remote machine. The tool may
be configured to generate random syslog messages as well
as injecting real messages by doing loop-reads on a prepared
file. For message submission we provide a dedicated 1 Gbit/s
Ethernet connection to the generating machine, connecting
it over TCP. The use of any security features like TLS or
signatures was renounced in our test in favor of throughput
performance.

In order to compare the performance impact of our corre-
lation and consolidation prototype, we set up various storage
back-ends and ran the test explained below several times,
each time configuring an appropriate rsyslog output module.
The individually used storage back-ends and the corresponding
output modules are presented in Table I.

B. Evaluation of the test-beds’ peak performance

According to Gerhards [44], the rsyslog server is capable of
processing up to 250k messages per second over the network.
To prove the correctness of our test-bed setup, in a first

48

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I. UTILIZATION OF STORAGE BACK-ENDS AND RSYSLOG
OUTPUT MODULES

Backend type Output module Description

File omfile Persist messages to a single file on disk

MySQL ommysql Persist messages into MySQL using the cor-
responding TCP socket

Elasticsearch omelasticsearch Persist messages into Elasticsearch using the
corresponding REST API

jCorrelat (1) omtcp Forward messages to our prototype, which
persists them into Elasticsearch without ap-
plying any correlation rules

jCorrelat (2) omtcp Forward messages to our prototype, which
persists them into Elasticsearch after applying
the appropriate correlation rules

experiment we examined the actual peak performance without
any bottlenecks like normalization and correlation or disk I/O
latency. Therefore, we configured loggen to generate random
syslog messages of different sizes (256, 512 and 1024 byte)
and submit these to the central syslog server as fast as possible
using six concurrent TCP stream-sockets. The syslog server
immediately forwards the received messages to the /dev/null
device using the file output module and does not apply any
further processing like message normalization or correlation
techniques.

Figure 7 depicts our result, showing that the number of
messages processed by the central syslog server is dependent
on the message size. At an average message size of 512 byte,
we get rather close to the number that was stated in [44]. In
addition, the graph on the right side of Figure 7 illustrates
that we are able to saturate the 1 Gbit/s Ethernet link to about
85.5% of capacity in all of the test cases.

Fig. 7. Maximum syslog packet throughput (left) and bandwidth utilization
(right) without any normalization and correlation.

C. Evaluation of the correlation prototype performance

This time, our test setup uses liblognorm at the central
syslog server to apply normalization rules as described in
Section V. For message generation we again use loggen, which
we advised to do loop-reads on a prepared file containing
real syslog messages that were previously collected in our
test environment. The file contains a total of 20,000 messages
including a vast variety of different syslog facilities, one-third
of which are authentication related messages including various
SSH brute-force attempts.

Figure 8 summarizes the results of our tests. It clearly
shows that the best performance can be achieved when writing

to a single syslog file on disk, which is not surprising as it
does not involve the overhead of sending messages over a TCP
socket, like in the other test cases. However, the use of the file
storage back-end is included only for comparison, as it appears
obvious that its application is not practicable in a centralized
syslog environment due to the huge amount of messages
from different sources and the lack of any reasonable analysis
capabilities. Also, when persisting messages into MySQL, we
experienced good performance, but analyzing the logging data
afterwards is not easy as the read performance decreases with
the number of stored messages. A countermeasure would be
indexing, but this in turn creates a heavy burden on write
performance. Message persistence into Elasticsearch was done
using rsyslog’s corresponding output module, which uses the
Elasticsearch representational state transfer (REST) interface
to insert logging data. As shown in Figure 8, the write
performance of this method is poorer than writing to MySQL,
most likely because the REST interface involves the overhead
of using HTTP when submitting messages.

Fig. 8. Comparison of message throughput with different storage back-ends.
Our prototype appears twice showing its performance without any correlation
rules installed (jCorrelat (1)) and with the rules for SSH brute-force detection
applied (jCorrelat (2)).

In the case of sending messages to our prototype, we first
measured the message throughput without performing message
correlation by simply removing any rules, hence operating in
transparent mode. In contrast to using the Elasticsearch REST
interface directly via an appropriate rsyslog output module,
we get much better performance when using our prototype
without applying any correlation. The reason is the usage of
the Elasticsearch Java API in our prototype, which allows it
to join the Elasticsearch cluster, acting as a transparent node
by simply forwarding all messages to the actual data nodes.
This way, we are able to decrease the overhead of sending via
REST and consequently increase performance.

Finally, when activating message correlation in our pro-
totype as described in Section V-B, we achieve roughly the
same throughput we would get by sending messages using
the Elasticsearch REST interface or the MySQL back-end,
but with the benefit of increased significance of the persisted
security event messages. For this reason, we argue that the

49

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



application of our prototype is perfectly suitable for logging
environments that are already using one of the discussed SQL
or NoSQL back-end types. In addition, a feature we described
briefly in Section V-A but did not use in our performance
evaluation is rsyslog’s rulesets facility. It allows normalization
rules to be applied only to messages matching a certain
ruleset (i.e., matching the syslog facility auth), which would
reduce the application of normalization rules to only one-
third of the syslog messages we sent to our prototype. As
normalization uses string parsing operations, which are known
to be CPU intensive, using this method would allow us to
reduce normalization overhead and increase performance even
further.

VIII. CONCLUSION AND FUTURE WORK

In the previous sections, we presented a solution to auto-
matically correlate and consolidate syslog messages containing
logging data from distributed sources in cloud environments.
Besides evaluating the requirements for such implementations
and defining an appropriate concept, a prototype was devel-
oped. The prototype addresses the requirements for correlation
and consolidation of distributed logging sources in today’s
enterprise cloud environments. It supports the proper conden-
sation of log messages by grouping individual messages. The
achieved reduction improves the performance of processing
and analyzing logging data, especially in distributed environ-
ments with many systems (typically virtual machines) sending
similar logging information.

Existing monitoring solutions could be enhanced to use the
presented prototype as a filter, improving the quality and rele-
vance of the logging data (e.g., by using escalation techniques,
traps, or sending messages regarding detected events) as shown
in the example of an SSH brute-force attack in Sections
IV-A and V-B. The integration of the prototype with existing
network monitoring tools (e.g., OpenNMS, Splunk) is one of
the next steps for our research. An interesting starting point
could be their interfaces to correlate events, i.e., to perform a
root-cause analysis, that could be extended to consume relevant
events that were filtered from the distributed logging data by
our prototype.

A current limitation regarding the amount of logging data
that can be correlated is the available memory. Theoretically,
the prototype could also use data that is already stored in the
NoSQL storage for the correlation to overcome this limitation.
While this approach has a negative impact on performance, it
could on the other hand dramatically increase the accuracy
of complex correlation over long-term data. The enhancement
could be easily implemented using Elasticsearch’s API not
only for the analysis but also while filtering and before
persisting the logged data in the NoSQL database. In the next
version of our prototype, we will implement this extension and
evaluate the performance impact (regarding latency to store a
log entry and overall throughput of the correlation engine). For
example, we could integrate this approach into the OpenStack-
based cloud environment presented in Section VI.

Our predefined ruleset outlined in this paper can easily be
generalized to fit the requirements of other use cases. In our
ongoing evaluation we will therefore contrast the results of
our prototype to comparative work being presented in [22],

[23] and [24]. Another possible topic for future research is
the integration of existing knowledge-based systems and auto-
mated reasoning as developed, e.g., for network anomaly and
intrusion detection systems (IDS) [45]. Even more interesting
could be the integration of existing work that has been pub-
lished regarding the detection of anomalies in syslog messages.
Makanju et. al. [46] describe a promising solution to detect
anomalies in logging data of high performance clusters (HPC).
Administrators can confirm the detected anomalies to correlate
them with error conditions and trigger a consolidation. These
techniques could also facilitate the definition of correlation
rules as patterns are detected without prior configuration.

Syslog-based event forecasting, as described in [29], could
be another promising option for our prototype. The prototype
could be used to enhance the information being evaluated
to generate the forecast, but can also consume the forecast-
ing data. This way, existing rulesets could be augmented.
Furthermore, the definition of rules could be simplified by
automatically deriving rules from the forecasts, which have
been submitted to our prototype. A starting point for further
research could be the use of confidence bands generated by
the Holt-Winters algorithm shown in Section IV-C. To detect
failures and error conditions in cloud environments this has
already been proposed in [47]. We will evaluate the extension
of this approach to allow for the correlation and aggregation
of logging data in enterprise cloud environments.

Since we published our first research results in [1], Amazon
Web Services released the Kinesis cloud service, which offers
real-time processing of streaming data at large scale [48].
While this solution seems to offer a promising alternative
for the correlation and consolidation of logging data within
the Amazon Cloud, moving large amounts of logging data
from enterprise clouds towards Amazon presents an obstacle.
Additionally, Kinesis is based on streaming, rather than tem-
poral reasoning or complex event processing as described in
Section V-B. The scalability of Kinesis, however, is paramount,
and we are evaluating integration of techniques like Twitter
Storm [38] in our solution. In this respect, Esper [49] also
presents an interesting alternative to Drools Fusion and offers
high scalability when used in combination with Storm. The
visualization and analysis of logging data in an Elasticsearch
cluster could also perhaps be improved by enabling time-based
comparisons and corresponding plots using Kibana [50], which
integrates seamlessly with Elasticsearch.

REFERENCES

[1] C. Pape, S. Reissmann, and S. Rieger, “RESTful Correlation and
Consolidation of Distributed Logging Data in Cloud Environments,” In
Proceedings of the Eighth International Conference on Internet and Web
Applications and Services (ICIW), 2013, pp. 194–199.

[2] Amazon Web Services Inc., “Amazon CloudWatch,” https://aws.amazon.
com/cloudwatch/ 2014.05.30.

[3] G. Golovinsky, D. Birk, and S. Johnston, “Syslog extension for cloud us-
ing syslog structured data - draft-golovinsky-cloud-services-log-format-
03,” Internet-Draft, IETF, 2012.

[4] C. Lonvick, “RFC 3164: The BSD syslog protocol,” Request for Com-
ments, IETF, 2001.

[5] P.V. Mockapetris, “RFC 1034: Domain names - concepts and facilities,”
Request for Comments, IETF, 1987.

[6] P.V. Mockapetris, “RFC 1035: Domain names - implementation and
specification,” Request for Comments, IETF, 1987.

50

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[7] R. Hinden and S. Deering, “RFC 2373: IP Version 6 Addressing
Architecture,” Request for Comments, IETF, 1998.

[8] C. Lonvick, “RFC 3195: Reliable Delivery for syslog,” Request for
Comments, IETF, 2001.

[9] F. Miao, Y. Ma, and J. Salowey, “RFC 5425: Transport Layer Security
(TLS) Transport Mapping for Syslog,” Request for Comments, IETF,
2009.

[10] K. E. Nawyn, “A security analysis of system event logging with syslog,”
As part of the Information Security Reading Room, SANS Institute,
2003.

[11] F. von Eye, D. Schmitz, and W. Hommel, “SLOPPI - A Framework for
Secure Logging with Privacy Protection and Integrity,” In Proceedings
of the Eighth International Conference on Internet Monitoring and
Protection (ICIMP), 2013, pp. 14–19.

[12] R. Gerhards, “RFC 5424: The syslog protocol,” Request for Comments,
IETF, 2009.

[13] G. Klyne and C. Newman, “RFC 3339: Date and Time on the Internet:
Timestamps,” Request for Comments, IETF, 2002.

[14] BalaBit IT-Security, “Multiplatform Syslog server and logging daemon,”
http://www.balabit.com/network-security/syslog-ng 2014.05.30.

[15] R. Gerhards, “The enhanced syslogd for linux and unix rsyslog,” http:
//www.rsyslog.com, 2014.05.30.

[16] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD
Record 39, no. 4, 2011, pp. 12–27.

[17] Elasticsearch Global BV, “Open Source Distributed Real Time Search
& Analytics,” http://www.elasticsearch.org, 2014.05.30.

[18] Apache Software Foundation, “Apache Lucene,” http://lucene.apache.
org, 2014.05.30.

[19] R. Marty, “Cloud application logging for forensics,” In Proceedings of
the 26th Symposium on Applied Computing, ACM, 2011, pp. 178–184.

[20] A. Rabkin and R. Katz, “Chukwa: A system for reliable large-scale
log collection,” In Proceedings of the 24th International Conference on
Large Installation System Administration, USENIX, 2010, pp. 1–15.

[21] D. Jayathilake, “Towards structured log analysis,” In Proceedings of
the International Joint Conference on Computer Science and Software
Engineering (JCSSE), 2012, pp. 259–264.

[22] A. Müller, C. Göldi, B. Tellenbach, B. Plattner, and S. Lampart,
“Event correlation engine,” Department of Information Technology and
Electrical Engineering - Master’s Thesis, Eidgenössische Technische
Hochschule Zürich, 2009.

[23] M. Grimaila, J. Myers, R. Mills, and G. Peterson, “Design and analysis
of a dynamically configured log-based distributed security event detection
methodology,” In the Journal of Defense Modeling and Simulation:
Applications, Methodology, Technology, vol. 9, no. 3, 2012, pp. 1–23.

[24] J. Wei, Y. Zhao, K. Jiang, R. Xie, and Y. Jin, “Analysis farm: A cloud-
based scalable aggregation and query platform for network log analysis,”
In Proceedings of the International Conference on Cloud and Service
Computing (CSC), 2011, pp. 354–359.

[25] J. D. Brutlag, “Aberrant Behavior Detection in Time Series for Net-
work Monitoring,” In Proceedings of the 14th Systems Administration
Conference (LISA), 2000, pp. 139–146.

[26] K. Fukuda, “On the use of weighted syslog time series for anomaly
detection,” In Proceedings of the International Symposium on Integrated
Network Management (IM), IFIP/IEEE, 2011, pp. 393–398.

[27] T. Oetiker, “RRDtool,” http://oss.oetiker.ch/rrdtool/, 2014.05.30.

[28] C. C. Holt, “Forecasting seasonals and trends by exponentially weighted
moving averages,” In International Journal of Forecasting, vol. 20, no. 1,
2004, pp. 5–10.

[29] A. Clemm and M. Hartwig, “NETradamus: A forecasting system for
system event messages,” In Proceedings of Network Operations and
Management Symposium (NOMS), IEEE, 2010, pp. 623–630.

[30] JBoss Community, “Drools - The Business Logic integration Platform,”
http://www.jboss.org/drools/, 2014.05.30.

[31] R. Gerhards, “A syslog normalization library,” http://www.liblognorm.
com, 2014.05.30.

[32] OpenNMS Group, “The OpenNMS project,” http://www.opennms.org
2014.05.30.

[33] Rackspace Inc., “Private Cloud Computing, Storage & Hosting
by Rackspace & Openstack,” http://www.rackspace.com/cloud/private/,
2014.05.30.

[34] OpenStack Foundation, “OpenStack Open Source Cloud Computing
Software,” http://www.openstack.org, 2014.05.30.

[35] Terracotta, Inc., “BigMemory Terracotta,” http://terracotta.org/products/
bigmemory/, 2014.05.30.

[36] Hazelcast, “Hazelcast: In-Memory Data Grid,” http://www.hazelcast.
com, 2014.05.30.

[37] R. B. Doorenbos, “Production matching for large learning systems,”
PhD Thesis, University of Southern California, 1995.

[38] Apache Software Foundation, “Storm, Distributed and fault-tolerant
realtime computation,” http://storm-project.net, 2014.05.30.

[39] Chef, “Chef, IT automation for speed and awesomeness,” http://www.
getchef.com/chef/, 2014.05.30.

[40] OpenStack LaunchPad, “OpenStack Telemetry (Ceilometer), Elas-
ticsearch Storage Driver Support,” https://blueprints.launchpad.net/
ceilometer/+spec/elasticsearch-driver/, 2014.05.30.

[41] OpenStack Foundation, “OpenStack Operations Guide - Chap-
ter 13. Logging and Monitoring,” http://docs.openstack.org/trunk/
openstack-ops/content/logging monitoring.html, 2014.05.30.

[42] Apache Software Foundation, “Apache logging services,” http://logging.
apache.org, 2014.05.30.

[43] BalaBit IT Security, “The syslog-ng Open Source Edition Guide,”
http://www.balabit.com/sites/default/files/documents/syslog-ng-ose-3.
3-guides/en/syslog-ng-ose-v3.3-guide-admin-en/html/loggen.1.html,
2014.05.30.

[44] R. Gerhards, “rsyslog: going up from 40K messages per second to
250K,” http://www.gerhards.net/download/LinuxKongress2010rsyslog.
pdf, 2014.05.30.

[45] M. Salem, S. Reissmann, and U. Buehler, “Persistent Dataset Gener-
ation using Real-Time Operative Framework,” IEEE International Con-
ference on Computing, Networking and Communications (ICNC), IEEE,
2014, pp. 1023–1027.

[46] A. Makanju, A. Nur Zincir-Heywood, and E. E. Milios, “Interactive
Learning of Alert Signatures in High Performance Cluster System Logs,”
In Proceedings of Network Operations and Management Symposium
(NOMS), IEEE, 2012, pp. 52–60.

[47] Y. Watanabe, H. Otsuka, M. Sonoda, S. Kikuchi, and Y. Matsumoto,
“Online failure prediction in cloud datacenters by real-time message
pattern learning,” In Proceedings of the 4th International Conference on
Cloud Computing Technology and Science (CloudCom), IEEE, 2012,
pp. 504–511.

[48] Amazon Web Services Inc., “Amazon Kinesis,” http://aws.amazon.com/
kinesis/, 2014.05.30.

[49] EsperTech Inc., “Esper - Complex Event Processing,” http://esper.
codehaus.org, 2014.05.30.

[50] Elasticsearch Global BV, “Kibana,” http://www.elasticsearch.org/
overview/kibana/, 2014.05.30.

51

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Chord-Cube: Music Visualization and Navigation System with an Emotion-Aware 
Metric Space for Temporal Chord Progression 

 

Shuichi Kurabayashi 
Faculty of Environment and Information Studies 

Keio University 
5322 Endo, Fujisawa, Kanagawa 252-0882, Japan 

kurabaya@sfc.keio.ac.jp 

Tatsuki Imai 
Faculty of Environment and Information Studies 

Keio University 
5322 Endo, Fujisawa, Kanagawa 252-0882, Japan 

t10109ti@sfc.keio.ac.jp
 
 

Abstract—In this paper, we propose an interactive music search-
and-navigation system, called Chord-Cube, which visualizes 
musical similarities on the basis of temporal chord progression. 
Our proposed system offers an interactive navigation mecha-
nism that allows users to find their desired music intuitively, by 
visualizing music items in a three-dimensional (3D) space. Each 
axis in this 3D space corresponds to three types of chord pro-
gression phases: Introductive-melody, Continued-melody, and 
Bridge, which are typical structures in pop and rock music. Us-
ers can utilize this 3D space to find their desired song by placing 
their favorite song at the point of origin and obtaining the se-
mantic distance between the input song and other songs. We 
have conducted two experimental studies, in which we com-
pared our proposed navigation system with the conventional 
manual trial-and-error manner, to evaluate the extent to which 
our visual navigation method improves music retrieval. The re-
sults of experiments show that our visual navigation method 
successfully increases the retrieval performance for pop and 
rock music. 

Keywords—Music, Visualization, Navigation, 3D, Database. 

I.  INTRODUCTION 
In this paper, we propose an interactive music search-and-

navigation system called the Chord-Cube system and its im-
plementation using modern Web technologies. The Chord-
Cube system was originally proposed in [1], and this paper is 
an extended version of the paper [1]. Our system utilizes tra-
ditional music theory including tonality and chord progression, 
which determines the impression of music, to interpret user’s 
feelings about the music. It employs chord progression in 
songs as a fundamental feature for calculating similarities 
among music items because we consider chord progression as 
one of the most important factors in determining the overall 
mood of a song. By leveraging this music theory knowledge, 
we develop an intuitive music navigation method to find the 
desired music by visualizing music-to-music relationships 
from the viewpoint of temporal similarities in chord progres-
sion. Our proposed system provides an interactive 3D cube 
that visualizes the relative distance among music items by cal-
culating their similarities.  

Music has traditionally been regarded as one of mankind’s 
most important forms of cultural heritage. Concomitant with 
the rapid advances in computing technologies, many songs are 
being digitized and stored in online libraries and on personal 
devices. The proliferation of portable and personal devices 

such as tablet computers and smartphones has resulted in them 
being frequently used to listen to music. This proliferation and 
diversity of digital media has increased the demand for effec-
tive music retrieval systems [2]. By enhancing the retrieval 
capability of music, we believe a wider scope can be provided 
for the sharing of human cultures. 

The change in emotion in a song over time is one of the 
most important factors in selecting music to be played on 
modern mobile music players and smartphones. Young people, 
in particular, select music in accordance with their location 
and mood. To support such intuitive and emotion-oriented 
music selection, a player that can utilize smart content analysis 
to extract the movements of musical elements that have pro-
found effects on human perception is needed. 

However, current music database systems implemented in 
online music stores such as the iTunes Music Store and Sony’s 
Music Unlimited do not support such perception-oriented re-
trieval methods. Consequently, because users often store thou-
sands of music files in the cloud, it is difficult for them to lo-
cate their desired songs intuitively, even if they know the de-
tails of the desired music. Owing to the temporal nature of 
music, developing an effective music search environment, in 
which users can retrieve specific music samples using intui-
tive queries, is difficult because in order to search a temporal 
structure, the system has to recognize the changing features of 
the contents in a context-dependent manner. 

Interactive and visual-oriented search mechanisms that do 
not use text-based search methods are promising because us-
ers often memorize music contents with a spatial metaphor. 
However, a music information retrieval (MIR) method that 
can reflect the emotions being felt by users as they listen to 
the music is needed. Such a retrieval environment must have 
an interactive and navigational user interface that can visual-
ize context-dependent relationships between songs dynami-
cally and in accordance with the user’s viewpoint. For this 
purpose, we have developed Chord-Cube, which visualizes 
musical similarities calculated by considering emotive move-
ments in temporal chord progression. Whereas traditional 
MIR systems [3] focus on finding the most relevant song or 
similar songs by computing similarities or relevance accord-
ing to extracted features, our proposed system focuses on 
providing an integrated toolkit for comparing songs in order 
to create a visualization of implicit interrelationships on the 
basis of emotional characteristics. 

52

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A unique feature of our proposed system is its “chord-vec-
tor space,” in which the distance between musical chords can 
be calculated by analyzing the impressive behaviors of chord 
progression. Our system uses distances, which are calculated 
in the chord-vector space, to represent the degree of similarity 
among songs. As shown in Figure 1, each dimension of this 
graphical space corresponds to a degree of similarity of chords 
within three respective sets of song section types: “introduc-
tive-melody,” “continued-melody,” and “bridge-melody.” In-
troductive-melody is a beginning of the musical piece. Con-
tinued-melody is an interlude between the introduction and 
bridge section. A bridge is a representative section that ex-
presses the salient feature, and it is one of the most impressive 
sections in a musical composition. 

This cube is a three-dimensional object inside which songs 
are displayed as points. Our cube accepts an initial song as a 
point of origin in the cube. Users can choose any song as their 
point of origin. The system then plots other songs inside the 
cube by reflecting the distance between each song and the 
song at the point of origin. 

We implemented a prototype of our system utilizing mod-
ern HTML5 technologies. The implemented prototype system 
assumes that it will be applied to the online music store as a 
front-end user interface. It utilizes WebGL, which is a stand-
ardized API for rendering interactive 3D graphics within web 
browsers without the use of any plug-ins. In the system, a dy-
namic distance calculation method that applies chord progres-
sion data is implemented in JavaScript. Thus, this system pro-
vides a fundamental framework for implementing the user in-
terface (UI) of an online music database system. 

The remainder of this paper is organized as follows. Sec-
tion II discusses related research. Section III presents several 
motivating examples that demonstrate how our system can be 
utilized to retrieve unknown songs. Section IV gives an archi-
tectural overview of the system, Section V demonstrates its 
fundamental data structures, Section VI defines its core func-
tions, and Section VII outlines its prototype implementation. 
Section VIII discusses our feasibility studies conducted. Fi-
nally, Section IX concludes this paper. 

II. RELATED WORK 
In this paper, we present a system architecture that aims to 

improve the effectiveness of music retrieval approaches by 
visualizing multi-aspect similarities among songs. Conven-
tional music database systems that are available on the Inter-
net utilize metadata, such as genre and artist name, as indexing 
keys. However, such fundamental metadata are not sufficient 
to retrieve music without detailed knowledge of the target data. 
Consequently, content-based retrieval and advanced query in-
terpretation methods have been developed to find music. In 
content-based music retrieval methods, a user inputs a raw 
music file as a query that the system analyzes and extracts sev-
eral significant features from in order to identify equivalent or 
highly similar music samples in a database. As an example of 
the content-based music retrieval method, there are several in-
put materials such as humming [4][5][6] and chords [7][8]. 
The content-based method has advantages in terms of ease of 
input and the ability to generate a large amount of information 
reflecting musical content. Because content-based technolo-
gies are very effective in retrieving musical equivalents to in-
put queries, they are widely used for copyright protection in 
online music sharing services. 

 
Figure 1. Overview of the Chord-Cube system for visualizing to-
nality-based distances of songs and navigating users to retrieve 
their desired song using a query song. 
 

 
Figure 2. Overview of Chord-Cube visualization. 
 

 
Figure 3. Example of Chord-Cube visualization. Each colored 
sphere represents a song. A user can operate this cube from any 
desired perspective. 
 

User

Section A

Section B

Section C

CVA

CVB

CVC

♪♪
CVA

CVB

CVC 

Analysis Process

Visualization Process

♪

d1

d1

d2

d2

d3

d3

♪music1(d1, d2, d3)

(0, 0, 0)

Calculate feature vector of  
a song by each sections

Calculate semantic distance
on the Cycle of Fifth

Songs are plotted based on 
semantic distance

music1
♪

Music
DB

53

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



However, ordinary users also want to be able to find new 
and unknown music more easily, and a method for retrieving 
music that is similar but not exactly equal to a query would be 
most helpful in attaining this goal. A wide variety of visuali-
zation techniques have been proposed in the context of con-
tent-based MIR [9]. For example, Pampalk et al. [10], pro-
posed an interface for discovering artists by using a ring-like 
structured visual UI, Knees et al. [11] developed a method for 
visually summarizing the contents of music repositories, and 
Stober et al. [12] proposed an interface that can conduct music 
searches on the basis of unclearly defined demands. 

Dittmar et al. [13] introduced “GlobalMusic2One,” a por-
tal site for visualizing songs by using two-dimensional simi-
larity maps for explorative browsing and target-oriented 
searches. To enhance the retrieval effectiveness of songs, a 
music recommendation filter [14] utilizing a user’s personal 
preferences and a method for managing songs in mobile envi-
ronments [15] has also been proposed. From the aspect of mu-
sical structure analysis, several music visualization systems 
have been developed [16][17][18]. These methods use the 
color sense of tonality to view the harmonic structure and re-
lationships between key regions in a musical composition. 
Imai et al. [19] also proposed tonality-based visualization as a 
means of enhancing the find-ability of music. 

The most significant difference between conventional ap-
proaches and our approach is that our system focuses on the 
development of a method for emotion-based music visualiza-
tion. Conventional visualization MIR methods automatically 
extract content information from audio signals by applying 
signal processing and machine learning techniques, whereas 
our system analyzes emotional transitions by capturing the 
progression of chords as a trajectory of “how the music 
sounds.” Our system can calculate the evolving distance be-
tween two chord vectors as a continuous comparison along a 
timeline. Another significant innovation delivered by our 
method is the use of an interactive 3D visualization space. 
This visualization method configures a 3D cube around an ex-
ample query serving as an origin vertex point, and displays 
each musical item according to its relevance score relative to 
the example query.  

III. MOTIVATING EXAMPLE 
Our Chord-Cube system is envisioned for use in scenarios 

such as the following. Imagine that a user has 1,000 songs in 
his/her smartphone and s/he desires to select songs that are 
similar in emotion to a specific song in the smartphone. In this 
case, the user could retrieve a desired song by inputting a sam-
ple song and browsing the visualized 3D cube where relevant 
songs are located close to the input song. As shown in Figure 
2, when the user inputs a song, the system positions the song 
at vertex (0, 0, 0) of the cube. Further, the other songs are plot-
ted within the 3D cube, as shown in Figure 3, indicating the 
distance between the query song at the vertex and the various 
points in the cube. Users can then compare songs from various 
perspectives as follows: similarity in “introductive-melody,” 
similarity in “continued-melody,” and similarity in “bridge-
melody.” Users can rotate this cube to find the most desirable 
song. 

Another scenario that exemplifies the objective of our sys-
tem relates to the user experience aspect. First, the user selects 
his/her favorite song in a smart device, such as an iPad or an 
Android tablet. Then, the system generates the cube showing 
the relevant songs around the selected song. The user then 
draws an oval from within which songs are selected and added 
to the playlist. Such a spatial approach to defining a playlist is 
effective because of the distance metrics in our cube visuali-
zation. Because our visualization mechanism shows dynami-
cally measured semantic distances between music items rather 
than relevance rankings, the visualized music space provides 
an intuitive interface for users to choose new music samples 
of interest. 
 

IV. SYSTEM ARCHITECTURE 

A. Architectural Overview 
Figure 4 gives an architectural overview of our Chord-

Cube system. Music navigation within the Chord-Cube sys-
tem is achieved through integration of music content analysis 
and relevance visualization. The overall system comprises a 

 
Figure 4. System architecture of Chord-Cube for visualizing tonality-based relevance among songs. 

 

User

Music
DB

Section A

Section B

Section C

Music

Song composed by 
some sections

time♬
♪♯

F#Gb D

C C C

Circle of Fifth

visualizing

Distance Calculation 
between chords

Composition 
sounds of chords

This system calculates a distance between musical chords by 
analyzing impressive behaviors in chord progression. 

Section Data Chord Analysis Distance Calculation Visualization & Retrieval

dA1dA2♪
music1

Axis of 
section A

Axis of 
section C

Axis of 
section B

54

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



distance calculation module and a visualization module. In or-
der to extract the chord features of a music sample, the dis-
tance calculation module inputs the music sample as a query 
for analysis. The module then computes the distances between 
the chord features extracted from the query and each music 
item within the database on the basis of a key distance calcu-
lation technology that can measure the distance between two 
chords according to their respective temporal contexts (i.e., 
chord progressions). To define the relationship between chord 
combinations and progressions, we have developed a matrix-
based data structure. 

B. Emotive Distance Calculation Using Circle of Fifth 
The system calculates the similarity of songs using the im-

pressive motion defined in Circle of Fifth [20]. The center of 
Figure 4 illustrates the distance metrics used by the Circle of 
Fifth [20]. This circle represents the relations of closeness or 
similarity and distance between tonal elements. In this circle, 
two adjacent tonalities have similar impressions, but opposite 
face tonalities have opposite impressions. By tracing a trajec-
tory of chords within the Circle of Fifth, the system can cal-
culate and represent the manner in which the music affects a 
listener’s emotional perceptions. Figure 11 shows a visualiza-
tion of tonality changing in a music item. The horizontal axis 
corresponds to timeline, whereas the vertical axis corresponds 
to the tonality relevance score. This chart shows 12 types of 
major tonalities and 12 types of minor tonalities. As shown in 
the chart, one musical composition contains continuous 
changes in tonality. To detect the emotional changes in music, 
it is important to trace this tonality behavior. To analyze the 
change in tonality, well-studied key-finding algorithms, such 
as the Krumhansl-Schmuckler algorithm [20] and the Tem-
perley algorithm [21][22], can be used. We implemented the 
Krumhansl-Schmuckler algorithm in the Chord-Cube system. 

In order to make selection of the desired music easy, the 
system displays the calculated distances between samples in a 
3D graphical user interface. The visualization module con-
structs a virtual cubic space consisting of axes corresponding 
to three music structures typically found in J-pop music: in-
troductive-melody, continued-melody, and bridge. The input 
query is placed at the origin, while target music items are lo-
cated within the space according to their respective relevance 
scores; thus, the most relevant music item is located the clos-
est to the origin, while irrelevant music items are scattered fur-
ther away. 

C. Visualization Process 
The system performs chord progression oriented music 

visualization using the following steps: 
Step-1. A user inputs a song as a criterion for finding new 

songs (Figure 5). 
Step-2. The system divides the song’s chord progression into 

component sounds (Figure 6). 
Step-3. Using a method based on the cycle of fifths, the se-

mantic distances between components are calculated and 
placed within a feature vector, called the chord vector 
(Figure 7). 

Step-4. The inner products between the chord vectors of each 
section are calculated to determine the similarities be-
tween each of the sections (Figure 8). 

Step-5. The relevance of each song is then plotted within a 
3D cube in order to present an intuitive visualization of 
the distance between the song at the vertex and the vari-
ous points in the cube (Figure 9). 

Step-6. Further retrieval can be done by translating another 
song within the cube to the vertex in order to create a 
new relevance comparison based on the selected song as 
the origin (Figure 10). 

These visualization mechanisms allow users to retrieve a de-
sired song from an intuitive visual space based on its similarity 
in chord progression to the reference query song at the vertex. 

V. DATA STRUCTURES 
Our system contains three fundamental components: A) 

musical instrument digital interface (MIDI) song data, B) 
chord progression, and C) component sounds distance matrix. 

A. MIDI Song Data 
This system uses standardized MIDI data format as the pri-

mary data format for storing music data in a file system. MIDI 
stores note-on signals and corresponding note-off signals se-
quentially because MIDI was developed in order to automate 
keyboard-type instruments. The system represents a MIDI file 
as F := {n1(t, p, d), n2, …, nk}, where ni represents the i-th note, 
whose attributes are t: the start time of the note, p: the pitch of 
the note, and d: the time duration of the note. F is a sequential 
set of k-tuple data. 

Our system provides a matrix structure that represents the 
continuous changing and distribution of pitch in the target mu-
sic data. We call the data structure a music pitch matrix.  The 
pitch matrix is a 128 by n matrix that is given as the data ma-
trix. MIDI specification defines the domain of the pitch value 
as zero to 127. A musical composition is expressed as a set of 
m timelines. Each timeline is characterized by a note on infor-
mation for zero to 127 pitch levels. When the 12-th note is on 
in an m-th section, c[12, m] is one. The pitch matrix P is defined 
as follows: 
 

𝑃𝑃 ≔ �
𝑐𝑐[0,0] ⋯ 𝑐𝑐[0,𝑛𝑛]
⋮ ⋱ ⋮

𝑐𝑐[𝑚𝑚,0] ⋯ 𝑐𝑐[𝑚𝑚,𝑛𝑛]

� (1) 

 
where c[i,j] denotes the status of the j-th pitch at the i-th time 
duration. We implemented the MIDI analysis modules for 
converting MIDI into a musical score-like data structure by 
using our MediaMatrix system [23], a stream-oriented data-
base management system. 

55

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



B. Chord Progression 
Chord progression refers to continuous chord changes 

over time. We adopt the concept of tonality, which is a musi-
cal system that is constructed by sound elements, such as har-
monies and melodies [20]. Different tonalities have different 
impressions. In one musical composition, tonality changes 
from section to section. It is important to support this change 

in tonality in a music database because changes in tonality 
causes changes in impression. 

A music item is modeled as a sequence that consists of 
chords. More specifically, we define an item Music (M) as a 
data structure consisting of a sequence of chords (c). Music Mi 
is defined by the following equation: 

 

 

 
Figure 5. Querying Step-1: A user chooses a song as an origin point. 
 

 
Figure 6.  Querying Step-2: System visualizes similarity calcula-
tion results 
 

 
Figure 7. Querying Step-3: User rotates the cube about the axis of 
the bridge-melody 

 
Figure 8. Querying Step-4: User can get information about songs 
with similar bridge-melody. 
 

 
Figure 9. Querying Step-5: User selects another song for new crite-
ria of visualization 
 

 
Figure 10. Querying Step-6: System re-creating similarity visuali-
zation space on the basis of the new criteria 
 

Similarity calculation result

Axes of Bridge-melody

These 3 songs are similar 
in Bridge-melody

Axes of Introductive-melody

System re-create music 
visualization space based 
on a new inputted song

56

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



𝑀𝑀𝑖𝑖 ∶=  〈𝑐𝑐0, 𝑐𝑐0, 𝑐𝑐1,⋯ , 𝑐𝑐𝑛𝑛〉 (2) 
 
where n is the number of chords. A chord is a 12-tuples rele-
vance score, where each tuple corresponds to a specific type 
of tonality such as C and C#. Therefore, we define a chord (c) 
as a data structure based on correlation of k-th tonality (vk). 
Chord cj is defined by the following equation: 
 

𝑐𝑐𝑗𝑗 ∶=  〈𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣12〉 (3) 
 
where vk corresponds to the k-th tonality; hence, there are 12 
values in this vector. 

C. Component Sounds Distance Matrix 
Chord progressions are composed of three or more over-

lapping sounds. We call these overlapping sounds “compo-
nent sounds.” We have developed a correlation matrix that de-
fines the movement distance for each combination of tonali-
ties. Figure 12 shows a component sounds distance matrix de-
signed using the Circle of Fifths. The component sounds dis-
tance matrix is a 12 × 12 matrix that is given as the data matrix. 
The size of the matrix corresponds to the number of tonality 
types defined in the Circle of Fifth. In this matrix, a larger 
value signifies a stronger correlation. Thus, C and C# (0.83) 
are more correlative than C and D# (0.50). The component 
sounds distance matrix T is defined as follows: 
 

T ≔ �
𝑑𝑑[1,1] ⋯ 𝑑𝑑[1,12]
⋮ ⋱ ⋮

𝑑𝑑[12,1] ⋯ 𝑑𝑑[12,12]

� (4) 

 
where di,j denotes a correlation value for the j-th and i-th to-
nalities. 

Our Chord-Cube system uses this matrix to calculate the 
similarity between songs, based on their component sounds, 
by multiplying the number of occurrences of each particular 
sound by its respective distance. As a result, we can obtain a 
vector representing the strength of the sounds in the song. We 
call this vector the “chord vector.” The system then constructs 
a chord-vector space consisting of the calculated 12-dimen-
sional values. The system calculates the relevance of two 
songs by measuring the distance of two chord vectors, which 
represent how the chords change in each song. In addition, the 
system can compare songs according to their sectional con-
tents, such as introductive-melody, continued-melody, and 
bridge-melody, by calculating a chord vector based on each 
section of a song. 

VI. CORE FUNCTIONS 
Our system contains four fundamental components: A) a 

chord detector for converting a pitch matrix into chord pro-
gression array, B) a chord-vector generation module for gen-
erating a vector data by analyzing the chord progression array, 
C) a distance calculation module applied to determine the se-
mantic distance of songs, and D) visualization module. 

A. Chord Detector 
The system provides a fundamental function to convert a 

pitch matrix into chord progression arrays. The function fmap 
extracts chords by detecting three or more overlapping sounds 
in the pitch matrix. We define fmap (Pi) that inputs a pitch ma-
trix Pi as follows: 
 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃𝑖𝑖) → 𝑀𝑀𝑖𝑖 (5) 
 
where Mi denotes a sequence of chords. The detailed defini-
tion of Mi is given in Section V-B, equations (2) and (3). 

B. Chord Vector Generation 
The system generates a chord vector by summing the ma-

trix consisting of the products of the semantic distance of each 
sound on the cycle of fifths with the number of occurrences of 
that sound, as defined by 
 

𝑓𝑓𝐶𝐶𝐶𝐶(𝑑𝑑, 𝑒𝑒) ≔ ��𝑑𝑑[𝑖𝑖,1] ∙ 𝑒𝑒[𝑖𝑖]

12

𝑖𝑖=1

,   ⋯ , �𝑑𝑑[𝑖𝑖,12] ∙ 𝑒𝑒[𝑖𝑖]

12

𝑖𝑖=1

� (6) 

 
where d represents the distance between the component 
sounds, while e represents the number of occurrences of each 
component sound. The chord vector thus generates and stores 
a correlation between all component sounds in each section. 

 
Figure 11. A visualization of tonality changing in one music 
item. The tonality changes with time. 
 

 
Figure 12. Component sound distance matrix representing dis-
tance between each sound based on tonality. 
 

57

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



C. Distance Calculation 
As stated in the previous section, the chord-vector matrix 

is derived by multiplying the component sounds distance ma-
trix with the number of occurrences of each sound; this result 
consists of a 12-dimensional vector representing the strength 
of each sound within a section. The system compares songs in 
terms of their representative features encoded in the 12-di-
mensional distance metric space (“chord-vector space”) by 
their respective chord vectors. Distances between sections are 
calculated from the inner products of vectors, using 
 

𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝐶𝐶𝐶𝐶1 ∙ 𝐶𝐶𝐶𝐶2) ≔�𝐶𝐶𝐶𝐶1[𝑖𝑖] ∙
12

𝑖𝑖=1

𝐶𝐶𝐶𝐶2[𝑖𝑖] (7) 

 
where CV1 and CV2 are the chord vectors of two different 
songs. 

D. Visualization Module 
The system utilizes the chord vector to compare user-se-

lected songs to all songs in the music database. Defining each 
section of music1 (i.e., a user-imported song) as S1a, S1b, and 
S1c, and of music2 (another song in the database) as S2a, S2b, 
and S2c, the similarity calculation function distance between 
S1a and S2a is calculated as d1, the distance between S1b and 
S2b is d2, and the distance between S1c and S2c is d3. If, on 
the 3D space consisting of the respective song section type, 
music1 is located at the origin (0, 0, 0), then the coordinates 
for music2 can be represented as (d1, d2, d3). Thus, the system 
can visualize the distances between songs as Cartesian dis-
tances in a solid body called the “Chord-Cube,” as shown in 
Figure 3. 

The system is able to adopt differing user-input styles; 
therefore, it is able to make comparisons between songs on the 
basis of varying criteria. Each song can be assigned vector val-
ues and allocated a coordinate in the cube on the basis of its 
correlation to a particular criterion, creating a space that intu-
itively represents the semantic distance between songs, and in 
which the most relevant piece of music is located very close 
to the origin, while irrelevant items are more remote. Figures 

13 and 14 show typical and effective use cases of this system. 
A typical scenario in which a user compares songs from mul-
tiple aspects is depicted. Figure 13 shows a perspective for de-
tecting the similarity by using the introductive-melody and 
continued-melody. Figure 14 shows a comparison between 
the introductive-melody and the bridge-melody. It can be seen 
that there are obvious differences about the dark green and 
pink spheres between those two figures. In Figure 13, the two 
songs represented by these spheres have identical similarities 
to the blue sphere, whereas they are separated in Figure 14. 
This means that the two songs are similar in terms of introduc-
tive-melody and continued-melody, but have different fea-
tures in terms of bridge-melody. 

VII. WEB-BASED SYSTEM IMPLEMENTATION 
We implemented a prototype of the Chord-Cube system 

that calculates the similarity between songs and visualizes 
them in a 3D cubic space. Screenshots of the prototype, which 
uses HTML5 Canvas and JavaScript, are shown in Figures 5 
through 10. Figure 15 details the architecture of our prototype 
system, which specifically includes the modern HTML5 tech-
nologies WebGL API, Web Storage API, and Web Worker 
API. The system consists of the following three modules: a 
query input module, a distance calculation module, and a vis-
ualization module. We describe these components in detail be-
low. 

The main user interface is the visualization module, which 
uses the HTML5 WebGL API to render a three-dimensional 
interactive screen. We implemented this prototype system by 
utilizing three.js (http://threejs.org/), an open-source WebGL 
wrapper utility library. The implemented system extends 
three.js to support interactive music data visualization and 
real-time rendering of the chord-vector space. This 3D UI en-
ables users to compare songs from any desired perspective. 
Users can view the rendered cube and spheres representing 
songs from any angle by rotating the cube, zooming in, and 
zooming out. 

When users input a song as a query, the system invokes 
the MIDI file analyzer implemented in JavaScript. This MIDI 
file analyzer is implemented using the HTML5 FileReader 
and ArrayBuffer objects. On completing the analysis process, 

 
Figure 13. The system facilitates comparison of music items from 
multiple perspectives. In this case, a user compares from introduc-
tive-melody and continued-melody. 

 
Figure 14. The system facilitates comparison of music items from 
multiple perspectives. In this case, a user compares from introduc-
tive-melody and bridge-melody. 
 

58

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the visualization module renders the query song on a vertex of 
the cube. In addition, the MIDI file analyzer encodes the anal-
ysis result into JavaScript Object Notation (JSON) format and 
passes it to the distance calculation module. This procedure 
allows our system to share the JSON-encoded figure among 
multiple web workers to parallelize the execution of distance 
calculation. 

The distance calculation module compares the queries and 
the database contents. This retrieval process is parallelized by 
the Web Workers API, and the retrieved songs are presented 
to the user by the search result visualization engine. This sys-
tem spawns real OS-level threads from the Web Workers API 
to parallelize the retrieval process. In this way, modern 
HTML5 technologies enable us to implement complex pro-
cesses in web browsers. 

After getting a number of users to evaluate the imple-
mented system, we became cognizant of two primary music 
retrieval use cases. In case-1, the user desires to search for 
similar songs via the bridge-melody of one song. In this case, 
the user performs the following music retrieval process: 
 Step-1: The user inputs the song that s/he wants to set as 

the comparison criteria for a bridge-melody. 
 Step-2: The system visualizes the similarity calculated 

based on the input song. 
 Step-3: The user rotates the cube on the axis correspond-

ing to the bridge-melody. 
 Step-4: The user obtains songs similar in bridge-melody 

by seeing the visualized results around the axis of the 
bridge-melody. 

In case-2, after the user has found his/her desired song, s/he 
uses the found song as a query in order to retrieve more songs. 
This case continues the previous process in case-1. 
 Step-5: The user selects a specific song as a new query 

from the visualized cube. 
 Step-6: The system recreates music visualization space 

based on the new query song. 

 Step-7: The user repeats Step-5 and Step-6 until s/he has 
retrieved enough music items.  

VIII. EVALUATION 
In this section, we discuss several experiments conducted 

to evaluate the effectiveness of our Chord-Cube system when 
applied to existing Japanese Pop songs. We conducted the fol-
lowing two experimental studies: Experiment-1, evaluation of 
the precision of dissimilarity calculations; and Experiment-2, 
evaluation of the effectiveness of our visualization. We per-
formed the two experiments by comparing the results of sim-
ilarity measurements between the implemented system and 
the results of questionnaires submitted to listeners who 
awarded points based on the level of similarity that they felt. 
As preprocessing for the two experiments, we asked 10 sub-
jects (three male and seven female) to create a correct set for 
each query in Experiment-1 and Experiment-2. The correct set 
is a data set that stores only items that are considered relevant 
to a query by test subjects. 

A. Experiment-1: Outline of Experimental Studies 
Experiment-1 was conducted to evaluate the effectiveness 

of our similarity calculation precision. For this experiment, we 
chose one query song as a criterion and 10 other songs as com-
parison targets. Ten listeners used a one-to-five scoring tem-
plate to evaluate their perceptions of similarity between each 
comparison song and the criterion by section, after which we 
aggregated the scoring results from each listener and con-
verted them into reciprocal values defined as the “dissimilari-
ties by survey.” We then used these values to calculate the dis-
tance within the Chord-Cube of each target song from the cri-
terion point (the query); this process is called “collection of 
data dissimilarity.” To evaluate the effectiveness of our 
method, we compared the dissimilarities by survey to the dis-
similarities as calculated by our method. In Experiment-1-A, 
we applied our system to measure dissimilarities of introduc-
tive-melody for each music item, whereas in Experiment-1-B, 

 
Figure 15. Conceptual view of the query-by-appearance system for style-oriented e-book retrieval using encapsulated editorial design 
templates for query generation. 
 

Chord-Cube System implemented on the HTML5 Technologies

Web Browser

JavaScript Interpreter

WebGL APIWeb Worker APIWeb Storage API

Distance 
Calculation VisualizationQuery Input

The visualization module utilizes 
WebGL API to create interactive cubic 
space showing each song as a small 
sphere inside the cube.

The Distance Calculation module 
utilizes the Web Worker and Web 
Storage API to execute the matching 
process in parallel. 

A query song is 
inputted as the origin 
point of the cube

Three distances corresponding 
to X,Y, and Z axis are used for 
mapping a song

HTML DOM API

59

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



we measured dissimilarities of integration of introductive-
melody, continued-melody, and bridge-melody for each mu-
sic item. 

B. Experiment-1: Experimental Results 
Figure 16 and TABLE I show the results for Experiment-

1-A. The left-hand side of the figure shows the dissimilarity 
as measured by the manual survey, while the right-hand side 
shows the dissimilarity as measured by our system. It can be 
seen in TABLE I that the test subjects judged songs s1, s4, s5, 
s8, and s9 to be  highly similar to the query music, whereas 
our system retrieved songs s1, s5, s6, s9, and s10 as similar 
music; thus, the system correctly extracted songs s1, s5, and 
s9. 

Figure 17 and TABLE II show the results for Experiment-
1-B. As before, the left-hand side shows dissimilarity meas-
ured by manual survey, and the right-hand side shows dissim-
ilarity measured by our system. By comparing Figures 16 and 
17, it can be seen that the surveyed dissimilarity of song s3 
significantly increases from Experiment-1-A to Experiment-
1-B, whereas our system returns identical results for all songs 
in both experiments. Thus, it can be concluded that our system 
improves its retrieval precision by integrating a differing eval-
uation axis into the Chord-Cube visualization space, and thus 
can effectively display multiple perspectives simultaneously. 

The results for song s8, on the other hand, show that some 
improvements are still necessary. Whereas the survey results 

judged s8 to be similar to the query music, our system judged 
it to be dissimilar. We believe that a perceptional gap between 
the theme melody and the chords progression of song s8 
strongly affected the results here, because s8 has a complex 
chord progression but a very simple melody. However, the ex-
perimental results from the other songs closely parallel the re-
sults obtained from the dissimilarity by survey, clarifying the 
overall effectiveness of our method for utilizing chord-metric 
space and 3D visualization. 

C. Experiment-2: Outline of Experimental Studies 
In this section, we evaluate the precision of our visualiza-

tion result by using three types of queries. This experiment 
clarifies that our approach calculates the appropriate distance 
between songs. As in Experiment-1, we compared the results 
of similarity measurements between calculated results and 
questionnaire survey. For this experiment, we established 
three query songs as criteria and ten other songs as compari-
son targets. We have selected three songs from ten JPOP 
songs randomly. Ten test subjects (three male and seven fe-
male) used a one-to-five scoring template to evaluate their 
perceptions of similarity between each comparison song and 
the criterion by section. The scoring template is as follows: 0 
(completely irrelevant), 1 (irrelevant), 2 (slightly relevant), 3 
(relevant), and 4 (very relevant). We consider the ideal rank-
ing as the average of ten results. We then used these scores to 

 
Figure 16. Results of Experiment-1-A: Dissimilarity measurement for introductive-melody. 

 

 
Figure 17.  Results of Experiment-1-B: Dissimilarity measurement for integrated sections. 

 

0.25

0.3

0.35

0.4

0.45

0.5

0.55

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Di
ss

im
ila

rit
y 

Sc
or

e
(L

ow
er

 is
 B

et
te

r)

Songs

Dissimilarity Score by Survey
(Introductive-melody)

0

0.05

0.1

0.15

0.2

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Di
ss

im
ila

rit
y 

Sc
or

e
(L

ow
er

 is
 B

et
te

r)

Songs

Dissimilarity Score by Our Method
(Introductive-melody)

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Di
ss

im
ila

rit
y 

Sc
or

e
(L

ow
er

 is
 B

et
te

r)

Songs

Dissimilarity Score by Survey
(Integrated sections)

0

0.05

0.1

0.15

0.2

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Di
ss

im
ila

rit
y 

Sc
or

e
(L

ow
er

 is
 B

et
te

r)

Songs

Dissimilarity Score by Our Method
(Integrated sections)

60

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



compare with the distance from the origin point in the visual-
ization result. 

D. Experiment-2: Experimental Results 
To evaluate this experiment, we computed the normalized 

discounted cumulative gain (NDCG) as follows: 
 

𝐷𝐷𝐷𝐷𝐷𝐷 = �
𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2𝑖𝑖

11

𝑖𝑖=2

 (8) 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = �
𝑟𝑟𝑟𝑟𝑟𝑟′𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙2𝑖𝑖

11

𝑖𝑖=2

 (9) 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝐷𝐷𝐷𝐷𝐷𝐷
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (10) 

 
where reli are the average survey scores given by the test sub-
jects in order based on ranking of visualized distance, and rel'i 
are the average scores in descending order. Figure 18 shows 
the NDCG of visualization in the Chord-Cube for three que-
ries. A higher score implies a better retrieval precision. From 

this experimental result, we obtain a value for NDCG that is 
higher than 0.79 in every query. This result explains the high 
precision of the visualization result of our system. 

IX. CONCLUSION AND FUTURE WORK 
In this paper, we proposed the Chord-Cube system, a mu-

sic visualization and navigation system that provides an intu-
itive visual retrieval method using chord-metric space. The 
unique feature of this system lies in its construction of a chord-
vector space to extract the transition of emotions within a song 
as a feature vector. We implemented a prototype system uti-
lizing modern HTML5 technologies. The implemented sys-
tem supports the chord-metric based similarity between songs 
according to a user’s selected criterion song and visualizes 
that result within a 3D cube constituted by three evaluation 
axes. We also performed evaluations of the effects of our sys-
tem applied to existing J-pop songs. Our experimental results 
indicate that visually represented search results carry out a 
practical function.  

In future work, we plan to improve the chord-metric space 
by capturing the direction of chord transitions in order to rep-
resent the change in emotional energy through the resulting 
motion on the cycle of fifth. We are also developing an auto-
matic playlist generation function using the spatial analogy for 
selecting songs in the visualized cube. The most important fu-
ture work is to apply our system to raw audio signals, such as 
MPEG Audio Layer-3 (MP3) format. Our system rely on the 
score data of music, so we are planning to integrate an existing 
music transcription system into the Chord-Cube system. In or-
der to enhance the query description scope, multiple songs can 
be used as a query. We have implemented such a query inter-
pretation method for video retrieval in [24]. 

REFERENCES 
[1] Imai, T. and Kurabayashi, S., “Chord-Cube: multiple aspects 

visualization & navigation system for music by detecting 
changes of emotional content,” In Proceedings of the Eighth 
International Conference on Internet and Web Applications 
and Services (ICIW 2013), pp.129-134, June 23-28, 2013. 

[2] Goto, M. and Hirata, K., “Recent studies on music information 
processing,” Acoustical Science and Technology, vol. 25, no. 
6, the Acoustical Society of Japan, pp. 419-425, 2004. 

[3] Type, R., Wiering, F., and Veltkamp, R.C., “A survey of music 
information retrieval system,” In Prof. of the 6th International 
Conference on Music Information Retrieval (ISMIR 2005), pp. 
153-160, 2005. 

[4] Ghias, A., Logan, J., Chamberlin, D., and Smith, B.C., “Query 
by humming: musical information retrieval in an audio 
database,” In Prof. of the Third ACM International Conference 
on Multimedia (MM 1995), pp. 231-236, 1995. 

[5] Dannenberg, R.B., Birmingham, W.P., Tzanetakis, G., Meek, 
C., Hu, N., and Pardo, B., “The MUSART testbed for query-
by-humming evaluation,” In Prof. of 4th International Confer-
ence on Music Information Retrieval (ISMIR 2003), pp. 34-48, 
2003. 

[6] Shifrin, J., Pardo, B., Meek, C., and Birmingham, W., “HMM-
based musical query retrieval,” In Proc. of the 2nd ACM/IEEE-
CS joint conference on digital libraries (JCDL 2002), pp. 295- 
300, 2002. 

TABLE I. SIMILARITY RANKS OF INTRODUCTIVE-
MELODY 

Rank Survey Score Our Method Score 
1 s8 0.294118 s9 0.000280 
2 s5 0.312500 s1 0.001422 
3 s1 0.344828 s5 0.007712 
4 s9 0.357143 s6 0.012242 
5 s6 0.416667 s2 0.024543 

 
TABLE II. SIMILARITY RANKS OF INTEGRATED 

SECTIONS 
Rank Survey Score Our Method Score 
1 s8 0.103093 s9 0.002429 
2 s5 0.109890 s1 0.002381 
3 s1 0.112360 s5 0.012566 
4 s9 0.117647 s2 0.027525 
5 s2 0.129870 s6 0.044053 

 

 
Figure 18. NDCG Scores. 

 

query1 query2 query3
NDCG 0.790025956 0.896657722 0.840336857

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

N
DC

G
 sc

or
e 

of
 e

ac
h 

qu
er

y
(h

ig
he

r i
s b

et
te

r)

61

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[7] Cheng, H.T., Yang, Y.H., Lin, Y.C., Liao, I.B., and Chen, H.H., 
“Automatic chord recognition for music classification and re-
trieval,” In Proc. of the IEEE International Conference on Mul-
timedia and Expo (ICME2008), pp. 1505-1508, 2008. 

[8] Bello, J.P., “Audio-based cover song retrieval using approxi-
mate chord sequences: testing shifts, gaps, swaps and beats,” 
In Prof. of the 8th International Conference on Music Infor-
mation Retrieval (ISMIR 2007), pp. 239-244, 2007. 

[9] Cooper, M., Foote, J., Pampalk, E., Tzanetakis, G., 
“Visualization in audio-based music information retrieval,” 
Computer Music Journal, Vol. 30, No. 2, pp. 42-62, MIT Press, 
2006. 

[10] Pampalk, E. and Goto, M., “Musicrainbow: A new user inter-
face to discover artists using audio-based similarity and web-
based labeling,” In Prof. of 7th International Conference on 
Music Information Retrieval (ISMIR 2006), pp. 367-370, 2006. 

[11] Knees, P., Schedl, M., Pohle, T., and Widmer, G., “An innova-
tive three-dimensional user interface for exploring music col-
lections enriched with meta-information from the web,” In 
Proc. of the 14th ACM International Conference on Multime-
dia (MM 2006), pp. 17-24, 2006. 

[12] Stober, S. and Nürnberger, A., “MusicGalaxy: a multi-focus 
zoomable interface for multi-facet exploration of music 
collections,” In Proc. of the 7th International Symposium on 
Computer Music Modeling and Retrieval (CMMR 2010), pp. 
259-272, Springer, 2010. 

[13] Dittmar, C., Großmann, H., Cano, E., Grollmisch, S., 
Lukashevich, H., and Abeßer, J., “Songs2See and GlobalMu-
sic2One: two applied research projects in music information 
retrieval at Fraunhofer IDMT,” In Proc. of the 7th International 
Symposium on Computer Music Modeling and Retrieval 
(CMMR 2010), pp. 259-272, Springer, 2010. 

[14] Hijikata, Y., Iwahama, K., and Nishida, S., “Content-based 
music filtering system with editable user profile,” In Proc. of 
the 2006 ACM Symposium on Applied Computing (SAC 
2006), pp. 1050-1057, 2006. 

[15] Goussevskaia, O., Kuhn, M., and Wattenhofer, R., “Exploring 
music collections on mobile devices,” In Proc. of the 10th In-
ternational Conference on Human Computer Interaction with 
Mobile Devices and Services (MobileHCI 2008), pp. 359-362, 
2008. 

[16] Gómez, E. and Bonada, J., “Tonality visualization of poly-
phonic audio,” International Computer Music Conference 2005, 
MPublishing, University of Michigan Library, 2005. 

[17] Mardirossian, A. and Chew, E., “Visualizing music: tonal pro-
gressions and distributions,” In Prof. of the 8th International 
Conference on Music Information Retrieval (ISMIR2007), pp. 
189-194, 2007. 

[18] Ciuha, P., Klemenc, B., and Solina, F., “Visualization of 
concurrent tones in music with colours,” In Proc. of the 18th 
International Conference on Multimedia (MM 2010), pp. 1677- 
1680, ACM, 2010.  

[19] Imai, S., Kurabayashi, S., and Kiyoki, Y., “A music database 
system with content analysis and visualization mechanisms,” 
In Proc. of the IASTED International Symposium on Distrib-
uted and Intelligent Multimedia Systems (DIMS 2008), pp. 
455-460, 2008. 

[20] Krumhansl, C.L., “Cognitive foundations of musical pitch,” 
Oxford University Press, 1990. 

[21] Temperley, D., “The cognition of basic musical structures,” 
MIT Press, ISBN-13: 978-0-262-70105-1, 2001. 

[22] Temperley, D. “Music and probability,” MIT Press, ISBN- 
13:978-0-262-20166-7, 2007. 

[23] Kurabayashi, S. and Kiyoki, Y., “MediaMatrix: a video stream 
retrieval system with mechanisms for mining contexts of query 
examples,” In Proc. of the 15th International Conference on 
Database Systems for Advanced Applications (DASFAA2010), 
pp. 452-455, Springer, 2010. 

[24] Kurabayashi, S. and Kiyoki, Y., “Impression-aware video 
stream retrieval system with temporal color-sentiment analysis 
and visualization,” In Proc. of the 23rd International Confer-
ence on Database and Expert Systems Applications (DEXA 
2012), pp.168-182, Springer, 2012. 

 

62

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Rethinking Traditional Web Interaction:
Theory and Implementation

Vincent Balat
Univ Paris Diderot – Sorbonne Paris Cité – PPS, UMR 7126 CNRS, Inria – Paris, France

Email: vincent.balat @ univ-paris-diderot.fr

Abstract—In recent years, Web sites evolved into ever more
complex distributed applications. But current Web program-
ming tools are not fully adapted to this evolution, and force
programmers to worry about too many inessential details. We
want to define an alternative programming style better fitted to
that kind of applications. To do that, we propose an analysis of
Web interaction in order to break it down into very elementary
notions, based on semantic criteria instead of technological ones.
This allows defining a common vernacular language to describe
the concepts of current Web programming tools, but also some
other new concepts. We propose to use these new concepts to
create new frameworks for programming Web applications. This
results in a significant gain of expressiveness. The understanding
and separation of these notions also makes it possible to get strong
static guarantees, that can help a lot during the development
of complex applications, for example by making impossible the
creation of broken links. We show how most of the ideas we pro-
pose have been implemented in the Ocsigen Web programming
framework. Ocsigen makes possible to write a client-server Web
applications as a single program and the interaction model we
propose is fully compatible with this kind of applications.

Keywords–Typing; Web interaction; Functional Web program-
ming; Continuations

I. INTRODUCTION

Nowadays, Web sites behave more and more like real
applications, with a high-level of interactivity on both the
server and client sides. For this reason, they deserve well-
designed programming tools, with features like high-level
code structuring and static typing. These tools must take into
account the specificities of that kind of application. One of
these specificities is the division of the interface into pages,
connected to each other by links. These pages are usually
associated to URLs, which one can bookmark. It is also
possible to turn back to one page using the back button. This
makes the dynamics of the interface completely different from
a regular application. Another specificity is that this kind of
applications is highly dependent on standards as they will be
executed on various platforms.

Web programming covers a wide range of fields, from
database to networking. The ambition of this paper is not to
address them all, nor to deal with the full generality of service
oriented computing. We concentrate on what we will call Web
interaction; that is, the interaction between a user and a Web

Work partially supported by the French national research agency (ANR), PWD project,
grant ANR-09-EMER-009-01, and performed at the IRILL center for Free Software
Research and Innovation in Paris, France

application, through a browser interface [1]. Web applications
communicate with one or several servers, and sometimes need
the ability to make part of the computation in the browser.
A few similar Web interaction systems have already been
described before (for example Links [2], or Hop [3]). The goal
of this paper is to improve the way we program Web interaction
using one feature that has been very rarely addressed before,
namely: service identification. That is: how the service to
handle a request is chosen. We will show that a good service
identification mechanism can help programmers a lot, and
that the concepts we present here allow to take into account
very concrete needs of Web developpers that are usually not
addressed by more theoretical works.

Through an analysis of existing programming frameworks
and Web sites, we will give a semantic description of the
diverse behaviours we want to have. This language will lead
to the definition of a vernacular language for describing Web
interaction. This will allow to understand the concepts and
to propose new ones to increase the expressiveness of Web
frameworks.

Our second goal is the safety of programming. By using well
defined concepts and static checking, it is possible to eliminate
a lot of programmer’s errors and make the application much
more reliable thus simplifying by a lot the maintenance work
and evolutions of the site.

The concepts we present here have been implemented in
the Ocsigen Web programming framework [4], [5], [6], [7]
(Eliom project). It allows to program fully in OCaml both the
server and client parts of a Web application, with a consistent
abstraction of concepts. A compiler to Javascript is used to run
the client parts in the browser [8], [9].

A. A common vernacular language for Web interaction
Web development is highly constrained by technologies.

First, it relies on the HTTP protocol, which is non-connected
and (mainly) stateless (on the applicative layer – even if
many solutions have been proposed to circumvent this). Then,
Web applications must be executable in various browsers that
implement more or less accurately common standards and
recommendations.

One of our goals is to remove these constraints and focus
on the programming of Web interaction. Obviously, this is
also a question of taste. But rather than proposing yet another
programming model from scratch, we start by analyzing com-
mon Web programming practices, in order to understand the
notions they use. Then we decompose them in very elementary

63

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



notions that can be used to describe the features of Web
programming tools, from PHP to JSP or Miscrosoft.NET
Web Forms, etc. Some frameworks impose some artificial
restrictions, like the shape of URLs. Ideally, we would like
to give a generic language, flexible enough to describe all
possible behaviours, without imposing any artificial restriction
due to one technology.

We will then see how to implement this with current
technology, when possible, and how it would be interesting
to make technologies evolve.

We place ourselves at a semantic level rather than at a tech-
nical one. Moving away from technical details will allow to
increase the expressiveness of Web programming frameworks.
In the domain of programming languages, high-level concepts
have been introduced over the years, for example genericity,
inductive types, late binding, closures. They make easier the
implementation of some complex behaviours. We want to do
the same for the Web. For example the notion of “sending
a cookie” benefits from being abstracted to a more semantic
notion like “opening a session” (which is already often the
case today). Also it is not really important for the programmer
to know how URLs are formed. What matters is the service we
want to speak about (and optionally the parameters we want
to send it).

This abstraction from technology allows two things:
• First, it increases the expressiveness of the language by

introducing specific concepts closer to the behaviours
we want to describe (and irrespective of the way they
are implemented). From a practical point of view, this
allows to implement complex behaviours in very few
lines of code.

• Having well-designed dedicated concepts also allows
to avoid wrong behaviours. We forbid unsafe technical
possibilities either by making them inexpressible, or by
static checking.

B. Improving the reliability of Web applications

As Web sites are currently evolving very quickly into com-
plex distributed applications, the use of strongly and statically
typed programming languages for the Web becomes more and
more helpful. Using scripting languages was acceptable when
there was very little dynamic behaviour in Web pages, but
current Web sites written with such languages are proving to
be very difficult to evolve and maintain. Some frameworks
are counterbalancing their weaknesses by doing a lot of
automatic code generation (for example [10]). In the current
state of knowledge, we are able to do much better, and Web
programming must benefit from this.

Static validation of pages: One example where static typing
revolutionizes Web programming concerns the validation of
pages. Respecting W3C recommendations is the best way to
ensure portability and accessibility of Web sites. The novelty
is that there now exist typing systems sophisticated enough to
statically ensure a page’s validity [11], [12], [13]. Whereas
the usual practice is to check the validity of pages once
generated, such typing systems make it possible to be sure

that the program that builds the XML data will always generate
something valid, even in the most particular cases.

For example, even if a programmer has checked all the pages
of his site in a validator, is he sure that the HTML table he
creates dynamically will never be empty (which is forbidden)?
What if for some reason there is no data? He must be very
conscientious to think about all these cases. It is most likely
that the evolutions of the program will break the validity of
pages. In most cases, problems are discovered much later, by
users.

In lots of cases, such errors will even make the generated
output unusable, for example for XML data intended to be
processed automatically. The best means to be sure that this
situation will never happen is to use a typing system that will
prevent one from putting the service on-line if there is the
slightest risk for something wrong to be generated.

For people not accustomed to such strong typing systems,
this may seem to impose too much of a constraint to pro-
grammers. Indeed, it increases a bit the initial implementation
time (by forcing to take into account all cases). But it also
saves such a huge amount of debugging time, that the use
of such typing systems really deserves to be generalized. For
now, these typing systems for XML are used in very few cases
of Web services, and we are not aware of any major Web
programming framework. Our experience shows that it is not
difficult to use once one get used to the main rules of HTML
grammar, if error messages are clear enough.

Validity of Web interaction: Static checking and abstraction
of concepts can also benefit in many other ways to Web
programming, and especially to Web interaction. Here are a
few examples:
• In a link, do the types (and names) of parameters match

the types expected by the service it points to?
• Does a form match the service it points to?
• Do we have broken links?
It is not so difficult to have these guarantees, even if almost

no Web programming framework are doing so now. All what
is needed is a programming language expressive enough (in
the sense we explained above).

Improving the ergonomics of Web sites: Lots of Web devel-
opers are doing implementation errors resulting in reduced ease
of use (wrong use of sessions or GET and POST parameters,
etc.). Take as example a famous real estate Web site that allows
to browse through the results of a search; but if someone sets
a bookmark on one of the result pages, he never goes back
to the same page, because the URL does not refer to the
advertisement itself, but to the rank in the search. We will see
that a good understanding of concepts can avoid such common
errors.

C. Overview of the paper
Sections II and III are devoted to the definition of our

vernacular language for describing the services provided by
a Web application. Section II explains the advantage of using
an abstract notion of service instead of old-fashioned page-
based programming and string URLs. Section III presents a
new service identification and selection method. It shows how

64

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



powerful this notion of service can be made, by separating it
into several kinds. This results in a very new programming
style for Web interaction.

Section IV explains how to ensure correct use of these
services using static typing. Then, Section V shows how
these notions of services interact with sessions. Finally, some
hints on the implementations of these concepts are given in
Section VI.

II. ABSTRACTING SERVICES

As explained above, our goal is to formalize Web interac-
tion, that is, the behaviour of a Web application in reaction to
the actions of the user. What happens when somebody clicks
on a link or submits a form? A click often means that the user
is requesting a new document: for example a new page that
will replace the current one (or one part of it). But it can also
cause some actions to take place on the server or the client.
Let us enumerate the different kinds of reactions. A click (or a
key strike) from the user may have the following main effects:

1) Modifying the application interface. That is, changing
the page displayed by the browser (or one part of the
page), or opening a new window or tab with a new
page,

2) Changing the URL displayed by the browser (protocol,
server name, path, parameters, etc.),

3) Doing some other action, like the modification of a state
(for example changing some database values),

4) Sending hidden data (like form data, or files),
5) Getting some data to be saved on the user’s hard disk.
Two important things to notice are that each of these items

is optional, and may either involve a distant server, or be
processed locally (by the browser).

This decomposition is important, as a formalization of Web
interaction should not omit any of these items in order not to
restrict the freedom of the programmer. All these items are
described semantically, not technically.

A. The role of URLs
The item “Changing the URL” above is a really significant

one and is one key to understand the behaviour of Web
applications. This section is devoted to the understanding of
that notion. URLs are entry points to the Web site. Changing
the URL semantically means: giving the possibility to the user
to turn back to this point of interaction later, for example
through bookmarks.

Note that, unlike many Web sites, a good practice is to keep
the URL as readable as possible, because it is an information
visible to users that may be typed manually.

1) Forgetting technical details about URLs: The syntax of
URLs is described by the Internet standard STD 66 and RFC
3986 and is summarized (a bit simplified) here:
scheme://user:pwd@host:port/path?query#fragment

The path traditionally describes a file in the tree structure
of a file system. But this view is too restrictive. Actually, the
path describes the hierarchical part of the URL. This is a way
to divide a Web site into several sections and subsections.

The query string syntax is commonly organized as a se-
quence of ‘key=value’ pairs separated by a semicolon or an am-
persand, e.g., key1=value1&key2=value2&key3=value3.
This is the part of the URL that is not hierarchical.

To a first approximation, the path corresponds to the service
to be executed, and the query to parameters for this service.
But Web frameworks are sometimes taking a part of the path
as parameters. On the contrary, part of the query, or even of
the host, may be used to determine the service to call. This
will be discussed later in more detail.

The fragment part of the URL only concerns the browser
and is not sent to the server.

The item “Changing the URL” is then to be decomposed
semantically into these sub-tasks:

1) Changing the protocol to use,
2) Changing the server (and port) to which the request

must be made,
3) Choosing a hierarchical position (path) in the Web site

structure, and specifying non hierarchical information
(query) about the page,

4) And optionally: telling who the user is (credentials) and
the fragment of the page he wants to display.

2) URL change and service calls: There are two methods
to send form data using a browser: either in the URL (GET
method) or in the body of the HTTP request (POST method).
Even if they are technical variants of the same concept (a
function call), their semantics are very different with respect
to Web interaction. Having parameters in the URL allows to
turn back to the same document later, whereas putting them
in the request allows to send one-shot data to a service (for
example because they will cause an action to occur).

We propose to focus on this semantical difference rather than
on the way it is implemented. Instead of speaking about POST
or GET parameters, we prefer the orthogonal notions of service
calls and URL change. It is particularly important to forget
the technical details if we want to keep the symmetry between
server and client side services. Calling a local (javascript for
example) function is similar to sending POST data to a server,
if it does not explicitly change the URL displayed by the
browser.

Semantically speaking, in modern Web programming tools,
changing the URL has no relation with calling a service. It is
possible to call a service without changing the URL (because
it is a local service, or because the call uses POST parameters).
On the contrary, changing the URL may be done without
calling a service. There is only one reason to change the URL:
give the user a new entry point to the Web site, to which he
can come back when he wants to ask the same service once
again, for example by saving it in a bookmark.

To keep the full generality that is necessary for program-
ming, it is important to understand that the notions of URL
change and service call are completely disconnected. It is
possible to change the URL by a call to a javascript DOM
function, without calling a service. This changes the entry
point of the Web site (just the page one will turn back to
if a bookmark is registered). On the contrary, it is possible to
all a service without changing the URL, either a distant service

65

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



through POST parameters, or a local service through a local
function call.

B. Services as first class values

The main principle on which is based our work is:
1) consider services as first class values,

exactly as functional languages consider functions as first class
values. That is: we want to manipulate services as abstract data
(that can for example be given as parameter to a function). This
has several advantages, among which:

• The programmer does not need to build the syntax of
URLs himself. He can rely on some function that will
create the syntax of the URL (if it is a distant call) or the
function call if it is a client side call. Thus, it is really
easy to switch between a local service and a distant one.

• All the information about the service is taken automat-
ically from the data structure representing the service,
including the path to which the service is attached and
parameter names. This has a very great consequence:
if the programmer changes the URL of a service, even
the name of one of its parameters, he does not need to
change any link or form towards this service, as they are
all built automatically. This means that links will never
be broken, and parameter names will always be correct
(at least for internal services, i.e., services belonging to
the Web site, and modulo to some restrictions in current
implementation, as we will see later).

Some recent frameworks already have an abstraction of the
notion of service. We will show how to take the full benefit
of it. Our notion of service must be powerful enough to take
into account all the possibilities described above, but without
relying on their technical implementation.

A service is some function taking parameters and returning
some data, with possibly some side effects (remote function
calls). The server is a provider of services. Client side function
calls can also be seen as calls to certain services. The place
where services take place is not so significant. This allows
to consider a Web site with two versions of some services,
one on server side, the other on client side, depending on
the availability of some resources (network connection, or
browser plug-ins for example).

The model we strongly advocate for building Web ap-
plications is a compiled language with static type checking
and dynamic generation of URLs from abstract services. The
language must provide some way to define these services,
either using a specific keyword or just through a function call.

Once we have this notion, we can completely forget the old
“page-based” view of the Web where one URL was supposed
to be associated to one file on the hard disk. Thus, it is possible
to gain a lot of freedom in the organization and modularity of
the code, and also, as we will see later, in the way services
are associated to URLs. One of the goals of next section is
precisely to discuss service identification and selection, that
is, how services are chosen by the server from the hierarchical
and non-hierarchical parts of the URL, and hidden parameters.

III. A TAXONOMY OF SERVICES

A. Values returned by services
A first classification of services may be made according to

the results they send. In almost all Web programming tools,
services send HTML data, written as a string of characters.
But as we have seen before, it is much more interesting to
build the output as a tree to enable static type checking. To
keep full generality, we will consider that a service constructs a
result of any type, that is then sent, possibly after some kind of
serialization, to the browser which requested it. It is important
to give to the programmer the choice of the kind of service he
wants.

A reflection on return types of services will provide once
again a gain of expressiveness. Besides plain text or typed
HTML trees, a service may create for example a redirection.
One can also consider using a service to send a file. It is
also important to give the possibility to services to choose
themselves what they want to send. For example, some service
may send a file if it exists, or an HTML page with an error
message on the other case. The document is sent together with
its content type, telling the browser how to display it (it is a
dynamic type). But in other cases, for example when a service
implements a function to be called from the client side part of
the program, one probably want the type of the result to be
known statically.

We also introduce a new kind of output called actions.
Basically sending an action means “no output at all”. But the
service may perform some action as side effect, like modifying
a database, or connecting a user (opening a new session). From
a technical point of view, actions implemented server side are
usually sending a 204 (No content) HTTP status code. Client
side actions are just procedures. We will see some examples of
use of actions and how to refine the concept in Section III-D2.

B. Dynamic services, or continuation-based Web program-
ming

1) Dynamic services: Modern Web frameworks propose
various solutions to get rid of the lack of flexibility induced
by a one-to-one mapping between one URL and one service.
But very few take the full benefit of this, as most of them do
not allow to dynamically create new services.

For example, if we want to add a feature to a Web site,
or even if we occasionally want to create a service depending
on previous interaction with one user. For example, if one
user wants to book a plane ticket, the system will look in
a database for available planes and dynamically create the
services corresponding to booking each of them. Then it
displays the list of tickets, with, on each of them, a link towards
one of these dynamic services. Thus, we will be sure that the
user will book the ticket he expects, even if he duplicates his
browser window or uses the back button. This behaviour is
really simple to implement with dynamic services and rather
tricky with traditional Web programming. Witness the huge
number of Web sites which do not implement this correctly.

If we want to implement such behaviour without dynamic
services, we will need to save somewhere all the data the
service depends on. One possibility is to put all this data in the

66

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



link, as parameters, or in hidden form data. Another possibility,
for example if the amount of data is prohibitive, is to save it
on the server (for example in a database table) and send only
the key in the link.

With dynamic service creation, all this contextual data
is recorded automatically in the environment of the closure
implementing the service. This closure is created dynamically
according to some dynamic data (recording the past of the
interaction with the user). It requires a functional language to
be implemented easily.

2) Continuations: This feature is equivalent to what
is known as continuation-based Web programming. This
technique was first described independently by Christian
Queinnec [14], [15], [16], John Hughes [17] and Paul
Graham [18].

There are basically two ways to implement dynamic ser-
vices. The first (described as continuation-based Web program-
ming) consists of viewing the sending of a Web page by the
server as a function call, (a question asked of the user) that will
return for example the values of a form or a link pressed. The
problem is that we never know in advance to which question
the user is answering (because he may have pressed the back
button of his browser or he may have duplicated the page).
Christian Queinnec solves this problem by using the Scheme
control operator call/cc that allows to name the current
point of execution of the program (called continuation) and to
go back to this continuation when needed.

The second solution is the one we propose. It is symmetric
to the first one, as it consists in viewing a click on a link
or a form as a remote function call. Each link or form of
the page corresponds to a continuation, and the user chooses
the continuation he wants by clicking on the page. This
corresponds to a Continuation Passing programming Style
(CPS), and has the advantage that it no longer needs control
operators (no saving of the stack is required). Strangely, this
style of programming, usually considered unnatural, is closer
to what we are used to doing in traditional Web programming.

The use of dynamic services is a huge step in the
understanding of Web interaction, and an huge gain of
expressiveness. Until now, very few tools have used these
ideas. None of the most widely used Web programming
frameworks implement them, but they are used for example
in Seaside [19], PLT Scheme [20], Hop [3], Links [2], and
obviously Ocsigen.

3) Implementation of dynamic services: The implementation
of dynamic services (in CPS) is usually done by registering
closures in a table on the server. It associates to an automat-
ically generated key a function and its environment, which
contains all the data needed by the service. The cost (in
terms of memory or disk space consumption) is about the
same as with usual Web programming: no copy of the stack,
one instance of the data, plus one pointer to the code of the
function.

An alternative approach [2], [21], [22] is to serialize the

closures and send them to the client. Either we serialize
the environment and a pointer to the function, or even the
environment and the full code of the function. This has the
advantage that no space is required on the server to save the
closures. But serializing functions is not easy and this solution
may require sending large amounts of data to the client,
with potentially several copies of some state information.
Obviously, security issues must be considered, as the server
is executing code sent by the client.

C. Finding the right service
The very few experimental frameworks which are proposing

some kind of dynamic services impose usually too much
rigidity in the way they handle URLs. This section is devoted
to showing how it is possible to define a notion of service
identification that keeps all the possibilities described in Sec-
tion II.

The important thing to take care of is: how to do the
association between a request and a service? For example if
the service is associated to an URL, where, in this URL, is
the service to be called encoded?

To make this as powerful as possible, we propose to delegate
to the server the task of decoding and verifying parameters,
which is traditionally done by the service itself. This has the
obvious advantage of reducing a lot the work of the service
programmer. Another benefit is that the choice of the service
to be called can depend on parameters.

Let us first speak about distant (server side) bookmarkable
services, i.e., services called by sending a GET request to
a server. We will speak later about client side services, and
hidden services.

1) Hierarchical services: One obvious way to associate a
service to an URL is by looking at the path (or one part of
it). We will call these services hierarchical services. These
kinds of services are usually the main entry points of a Web
site. They may take parameters, in the query part of the
URL, or in the path. One way to distinguish between several
hierarchical services registered on the same path is to look
at parameters. For example the first registered service whose
expected parameters exactly match the URL will answer.

2) Coservices: Most of the time one probably wants dy-
namic services to share their path with a hierarchical service,
at least those which last for only a short time (result of a
search for example). Also one may want two services to share
the same hierarchical position on the Web site.

We will call coservices services that are not directly asso-
ciated to a path, but to a special parameter. This is one of the
main original features of our service identification mechanism
and this has a huge impact on expressiveness, as we will see
on example in Section III-D2. From a semantic point of view,
the difference is that hierarchical services are the entry points
of the site. They must last forever, whereas coservices may
have a timeout, and one probably want to use the associated
main service as fallback when the coservice has expired.

We will distinguish between named coservices and anony-
mous coservices, the difference being the value of the special
parameter. Named coservices have a fixed parameter value

67

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



(the name of the coservice), whereas this value is generated
automatically for anonymous coservice.

Like all other services, coservices may take parameters, that
will be added to the URL. There must be a way to distinguish
between parameters for this coservice and parameters of the
original service. This can be done by adding automatically a
prefix to coservice parameters.

3) Attached and non-attached coservices: We will also
distinguish between coservices attached to a path and non-
attached coservices. The key for finding an attached coservice
is the path completed by a special parameter, whereas non-
attached coservices are associated to a parameter, whatever
the path in the URL. This feature is not so common and we
will see in Section III-D2 how powerful it is.

4) Distant hidden services: A distant service is said to be
hidden when it depends on POST data sent by the browser.
If the user comes back later, for example after having made
a bookmark, it will not answer again, but another service, not
hidden, will take charge of the request. We will speak about
bookmarkable services, for services that are not hidden.

Hidden services may induce an URL change. Actually, we
can make exactly the same distinction as for bookmarkable
services: there are hierarchical hidden services (attached to a
path), hidden attached coservices (attached to a path, and a
special POST parameter), and hidden non-attached coservices
(called by a special POST parameter).

It is important to allow the creation of hidden hierarchi-
cal services or coservices only if there is a bookmarkable
(co)service registered at the same path. This service will act as
a fallback when the user comes back to the URL without POST
parameters. This is done by specifying the fallback instead of
the path when creating a hidden service. It is a good idea to
do the same for bookmarkable coservices.

Registering a hidden service on top of a bookmarkable
service with parameters allows to have both GET and POST
parameters for the same service. But bear in mind that their
roles are very different.

5) Client side services: Client side service calls have the
same status as hidden service calls. In a framework that allows
to program both the server and client sides using the same
language, we would like to see local function calls as non-
attached (hidden) coservices. Hierarchical hidden services and
(hidden) attached coservices correspond to local functions that
would change the URL, without making any request to the
server.

6) Non-localized parameters: One additional notion that is
interesting in concrete cases is to enable parameters that are
not related to any service at all. The server does not take into
account their presence to choose the service, and services do
not have to declare them, but can access them if they want.
This avoids declaring the same optional parameters for each
service when you want the whole Web site to be parametrized
by the same optional parameters (for example the language the
user prefers to display the pages).

D. Taxonomy of services
1) Summary of service kinds: Figure 1 summarizes the

full taxonomy of services we propose. This set is obviously

complete with respect to technical possibilities (as traditional
services are part of the table). It is powerful enough for
describing in very few lines of code lots of features we
want for Web sites, and does not induce any limitations with
respect to the needs of Web developers. Current Web program-
ming frameworks usually implement a small subset of these
possibilities. For example “page-based” Web programming
(like PHP or CGI scripts) does not allow for non-attached
coservices at all. Even among “non-page-based” tools, very
few allow for dynamic (anonymous) coservice creation. To
our knowledge, none (but Ocsigen) is implementing actions
on non-attached services as primary notions (even if all the
notions can obviously be simulated).

2) Example cases: We have already seen some examples
of dynamic service creation: if a user creates a blog in a
subdirectory of his or her personal site, one possibility is to
add dynamically a hierarchical service to the right path (and
it must be recreated every time the serser is relaunched). If
we want to display the result of a search, for example plane
ticket booking, we will create dynamically a new anonymous
coservice (hidden or not), probably with a timeout. Without
dynamic services, we would need to save manually the search
keyword or the result list in a table.

Coservices are not always dynamic. Suppose we want a link
towards the main page of the site, that will close the session.
We will use a named hidden attached coservice (named, so
that the coservice key is always the same).

We will now give an example where non-attached hidden
coservices allow to reduce significantly the number of lines
of code. Consider a site with several pages. Each page has a
connected version and a non-connected version, and we want
a connection box on each non-connected page. But we do not
want the connection box to change the URL. We just want
to log in and stay on the same URL, in connected version.
Without non-attached services (and thus with almost all Web
programming tools), we need to create a version with POST
parameters of each of our hierarchical services to take into
account the fact that each URL may be called with user
credentials as POST parameters.

Using our set of services, we just need to define only one
non-attached (hidden) coservice for the connection. At first
sight, that service only performs an action (as defined in
Section III-A): saving user information in a session table. But
we probably want to return a new page (connected version
of the same page). This can be done easily by returning a
redirection to the same URL. Another solution if we do not
want to pay the cost of a redirection, is to define a new kind of
output: “action with redisplay” that will perform the action,
then make an internal (server side) request as if the browser
had done the redirection. The solution with redirection has one
advantage: the browser would not try to resend POST data if
the user reloads the page.

Now say for example that we want to implement a wiki,
where each editable box may occur on several pages. Clicking
on the edit button goes to a page with an edit form, and
submitting the form must turn back to the original page. One
dirty solution would be to send the original URL as hidden
parameter in the edit link. But there is now a simpler solution:

68

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1: Full taxonomy of services.

just do not change the path. The edit form is just a page
registered on a non-attached service.

Our reflexion on services, also allows to express clearly a
solution to the real estate site described in Section I-B. Use (for
example) one bookmarkable hierarchical service for displaying
one piece of advertisement, with additional (hidden or not)
parameters to recall the information about the search.

3) Expressiveness: The understanding of these notions and
their division into very elementary ones induces a significant
gain in expressiveness. This is particularly true for actions with
redisplay. They are very particular service return values and
seem to be closely related to non-attached coservices at first
sight. But the separation of these two concepts introduces a
new symmetry to the table, with new cells corresponding to
very useful possibilities (see the example of the wiki above). It
is noteworthy that all cells introduced in this table have shown
to be useful in concrete cases.

4) Priority rules: One may wonder what succeeds when one
gets apparently conflicting information from the request, for
example both a hidden coservice name and a URL coservice
name. In most cases, the solution is obvious. First, hidden
services always have priority over URL services.

Secondly, as non-attached coservices parameters are added
to the URL, there may be both attached and non-attached
coservice parameters in the URL. In that case, the non-
attached service must be applied (because its parameters have
necessarily been added later).

The last ambiguous case is when we want to use a hidden
non-attached coservice when we already have non-attached
parameters in the URL. We may want to keep them or not.
The programmer must choose the behaviour he wants himself
when defining the service.

IV. TYPING WEB INTERACTION

A. Typing service parameters
Another advantage to our way of building Web sites is that

it becomes possible to perform more static checking on the
site and thus avoid lots of mistakes. We have already seen that
some very strong guarantees (no broken links) are ensured just
by the abstraction of the notion of services and links. But static
types can help us to make things even safer.

When defining a service, it is easy to add type information
to each parameter. This has three advantages:
• The server will be able to dynamically convert the data

it receives into the type expected by the service (and
also check that the data corresponds to what is expected,
which saves a lot of time while writing the service).

• It is possible to check statically the types of parameters
given to the links we create towards the services.

• It is also possible to do some static verification of forms
(see next section).

It should also be possible to use type inference to avoid
declaring manually the types of parameters.

On first sight, the type system for services parameters seems
rather poor. But declaring basic types like string, int and
float is not enough. We need more complex types. Just think
about variable length forms, for example a page displaying
a list of people with just a checkbox for each of them. The
implementation of this is a tedious work with traditional Web
programming tools, because you need to give different names
to each parameter (for example by using numbers) to be able to
find back on server side the person associated to the checkbox.
Obviously, you do not want to worry about such details when
programming a Web application. Your service just wants to get
an association table from a name to a boolean value, however
they are encoded in parameters.

Another example is when you want to send an (unordered)
set of values to a service, or optional values.

Unfortunately, most of this is sometimes difficult to imple-
ment, due to the way parameters are encoded in the URL, and
the way browsers send them. One example of this is the way
browsers handle unchecked boxes: they send no parameter at
all, instead of sending a false value. Thus, there is no way to
distinguish between an unchecked box and no parameter at all.

Sets of base types data may be implemented using the
same parameter name for each member of the set. But an
implementation of sets of more complex data requires more
thinking.

In conclusion, the types of parameters for Web pages is
highly constrained by current technology.

In the case your Web program has a client side, and you
are using the same language for both sides, a solution is to

69

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



send directly your language values, after serialisation. This is
acceptable and very powerful in the case of hidden (POST)
services but will result in unreadable URLs for bookmarkable
services.

B. Forms
To be correct relative to the service it leads to, a form must

respect these conditions:
• The names of the fields of the form must correspond to

the names expected by the service,
• The types of the fields must correspond to the types

expected by the service,
• All required fields must be present, and the right number

of times.
The first item may be solved by taking the parameter names

from the data representing the service in memory. The static
verification of the adequacy of types may be done by putting
type information in the type of names (instead of using just
the string type, we use an abstract type with phantom type
information [23] on the type of the parameter). The third
condition is more difficult to encode in types.

One idea interesting for some particular cases of services is
to create dynamically the service that will answer to the form
from the form itself (as for example in Seaside, Links [24] or
PLT Scheme).

V. ABSTRACTING SESSIONS

Sessions are a way to maintain a state during several
interactions with one user. The abstraction of sessions is
something more common in usual Web programming tools
than the abstraction of services. It is now standard to have a
way to save some data for one user and recover it each time
the user comes back.

A. Technical remainder
From a technical point of view, sessions are not so easy to

implement due to the fact that the HTTP protocol is stateless on
the applicative layer (once a request is fulfilled, the connexion
is usually closed). There are several ways to get around this
limitation.

One possibility is to send all the data to the user. But this
does not have exactly the semantics we expect for sessions.
Indeed, several browser tabs opened on the same site will have
different versions of the state, which is not what we want. The
nature of a state being to be unique, it is supposed to be kept
in one place, and the only simple solution is to keep it server
side. Therefore, there must be one way to identify the user to
get back her data.

This is done by asking the browser to send one session
identifier at each request. Two techniques are used for that:
either you put the session identifier in each link and form of
the site, or you ask the browser to send it at each request
using cookies. But only the second solution has exactly the
semantics we expect for sessions. Using the first solution leads
to incompatibilities between tabs (for example if you log in
from one tab and return to another tab opened on the same
site).

B. Session data and session services
Opening a session on server side may be done transparently

when the Web site decides to register some data for one user. A
session identifier is then generated automatically and a cookie
is set, and sent back by the browser in the header of each
request for the site.

This is a common feature in current Web programming
tools. But we propose to add the ability to dynamically register
coservices or services in a session table, that is, for one user.
One obvious reason for this is to allow the use of certain
anonymous coservices only for the user who requested them.
You probably do not want to give access to these kind of
coservices to everybody, especially because they may contain
private data in the closure.

We also propose to allow to re-register some existing
services in a session table. When the server is receiving a
request, it first looks in the session table to see if there is a
private version of the service, and if not, looks in the public
table. Using this feature, it is possible to save all the session
data in the closure of services. From a theoretical point of
view, this makes session data tables useless. Basically, when
a user logs in you just need to register in the session service
table a new version of each service, specialized for this user.

For the sake of flexibility, it is a good idea to allow both
session data and session services.

Thus, there is now a new possibility for creating each of
our service kinds: registering them in the session table. This
corresponds to a fourth dimension in the table of Figure 1.

C. Session duration
When implementing such kinds of session, one must be very

careful about the duration of sessions and timeout for services.
If you want your sessions to survive a restarting of the server,
you need a way to serialize data (for session data) and closures
(for session services).

D. Session names and session groups
To make the session system more powerful, we may want

to add two more notions, namely session names and session
groups.

Naming sessions allows to use several sessions in the same
site. Think for example about one site that allows some
features for non connected users, which requires some private
coservices to be created. If the user logs in, this opens a new
session, but must not close the previous one. To avoid that, we
use another session by specifying another session name.

Technically speaking, session naming can be implemented
by recording the name of the session in the cookie name.

The idea of session groups is complementary to that of the
session name. While session naming allows for a single session
to have multiple buckets of data associated with it, session
grouping allows multiple sessions to be referenced together.
For most uses, the session group is the user name. It allows
to implement features like “close all sessions” for one user
(even those opened on other browsers), or to limit the number
of sessions one user may open at the same time (for security
reasons).

70

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



As we have session data end session services, it is possible
to create notions of group data and group services.

E. Session scopes
In Ocsigen, session data are saved in some kind of

(persistent) references whose value depends on the browser
that is perfomring the request. This makes very easy to access
the data in a way that is very well integrated in language
features.

It is possible to make the concept even more powerful by
making possible to choose the scope of these references:

Session The default scope is session and correspond to
the usual use of sessions, implemented with regular
browser cookies. The data recorded in references
with session scope are specific to a browser.

Session group If you create a reference with scope session
group, the value will be available from all browser
sharing the same session group. For example, you
can implement a shoping basket just by setting this
kind of reference. It will be shared by all your
sessions.

Client process Ocsigen makes possible to write both sides
of a Web application (server and browser) as a
single program. Client side parts are extracted and
compiled into Javascript. Among many other things,
this makes possible to create server side references
with scope client process. These reference values are
specific to one tab of the browser. Think for example
of several instances of the same game running in
several tabs. We are also using this to record the
communication channels that are specific to one tab.
To implement that, we added a cookie mechanism,
very similar to the usual one, but at the level of a
client process.

Site References with scope site have the same value
for everyone. They have the same semantics of
regular references, but may be persistent across
server restarts.

Request References with scope request are a simple way
to store some data for a single request (that is, for
one thread of the server).

VI. IMPLEMENTATION

To implement the features presented above, we had two
possible solutions: either we created our own language, which
would have given us the full freedom in implementation. Or
we needed to choose a language expressive enough to encode
most of the features presented here.

We chose the second solution, for two reasons:
• We think that Web programming is not a task for a

domain specific language. We need the full power of
a general purpose language, because we do not want
only to speak about Web interaction and typing of pages,
but also for example about database interaction. We
also want code structuring and separation, and we need

programming environments and libraries. The cost of
creating our own new language would have been much
too high.

• We knew one language, namely OCaml that has almost
all features we want to implement the concepts of this
paper, most notably a powerful typing system able to
encode most of the properties we wanted to check
statically. Moreover, this language now has a strong basis
of users, in academia and industry, and a large set of
libraries.

We made this choice with the goal in mind to write not
only a research prototype but a full framework usable for
real applications. We benefited greatly from the free software
development model, which enabled us to have a powerful
framework very quickly, thanks to the growing community of
users.

Our implementation takes the form of a module for the Oc-
sigen [4] Web server, called Eliom [25]. More implementation
details may be found in [26] (but for an old version of Eliom
that was using a more basic model of services).

A. Static type checking of pages
As the return value of services is completely independent of

services, it is important to make the creation of new kinds of
output types easy. This is realized through the use of OCaml’s
module language, which allows parametrized modules (called
functors). To create a new output module, you apply a functor
that will create the registration functions for your output type.

Eliom does not impose one way to write the output, but
proposes several predefined modules. One allows text output,
as in usual Web programming, if you do not want any type-
checking of pages.

Another one is using an extension of OCaml, called OCaml-
duce [11], that adds XML types. This is really powerful, as
the typing is very strict, and corresponds exactly to what you
need to take into account all features of DTDs. It also has the
advantage of allowing to easily create new output modules for
other XML types, just from a DTD. Furthermore, it allows to
parse and transform easily incoming XML data. The drawback
is that is not part of the standard OCaml compiler.

As an alternative, we are using a second typing method
based on OCaml’s polymorphic variants (see [27]) used as
phantom types [23].

This technique is not new as we use an implementation due
to Thorsten Ohl, which is also distributed as a distinct library.
We are aware of another very similar implementation used by
Alain Frisch for the Bedouin project [28]. It is less strict than
OCamlduce for the validation of pages, as it only checks the
correct nesting of XML tags (for example it is not possible
to put a <div> tag inside a <em> tag). There also a way to
check the presence of mandatory tags.

See [26] for more information about that technique. Both
typing techniques have shown to be very helpful, and relieves
the programmer from thinking about validation of her pages.

B. Defining services
1) Creation and registration of services: Creating a new

service means two things: first filling a data structure with all

71

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the information about the service (that will be used to create
forms and links towards this service), and registering in a table
the “handling” function implementing the service.

In Eliom, these two operations have been disconnected. You
first create the service, then register a function on it. This may
be considered dangerous, as some services may be created and
not registered, which can lead to broken links. We were forced
to do so because services are usually highly mutually recursive
(every page may contain links towards any other one), and it is
not easy in OCaml to have mutually recursive data in several
different modules.

The solution that is currently implemented consists in a
dynamic check of the registration of services, when the server
starts. This solves the problem for static services, but not for
dynamic ones.

A solution we consider is to use a syntax extension to the
language to put back together creation and registration. But
the concrete realization of that idea is not straightforward.

2) Types of parameters: One important thing to check
statically when registering a function on a service is that the
type of this function corresponds to the type expected by
the service. This makes the type of the registration function
dependent on the value of one of its parameters (the service).
This requires very sophisticated type systems. As explained
in [26], it can be done either using functional unparsing [29]
or using generalized algebraic data types [30], [31].

Ideally, one would expect to declare page parameters only
once when defining both the service and its handling function.
As we separate definition and registration, it is not possible
to do so. But even without this separation it is probably not
possible to avoid this duplication without a syntax extension
for the language, for two reasons:

• We need the names of parameters to live both in the
world of variable names (static) and in the world of data
(dynamic), to be used as parameter names for pages.

• We need dynamic types (that is keeping typing informa-
tion during the execution) to enable the server to convert
received page parameters into the type expected by the
handling function.

But in any case, we must keep in mind that the types of
service parameters are not OCaml types, and it is difficult to
use sophisticated OCaml types for services as mentioned in
Section IV-A.

C. Links and forms
We are using functions to create links and forms. Obviously

the adequacy of the service to its parameters is checked
statically while creating a link.

To implement non-localized parameters, we just needed
a way to build a new service data structure by combining
together a service and non-localized parameters.

We mentioned in Section IV-B that performing statically all
the verification on the form would require a very sophisticated
type system, that would be difficult to mix with the already
complex typing model we use to check the validity of pages.
We decided to restrict the static verifications to the names and
types of fields. To do that, we use an abstract type for names,

as explained in Section IV-B, and we get parameters names
from the service. This is done by giving as parameter to our
form building function, a function that will build the content
of the form from parameters names.

We implemented some sophisticated types for service pa-
rameters, like lists or sets. In the case of lists, the names of
parameters are generated automatically by an iterator.

VII. CONCLUSION

A. Related work
A lot of modern Web programming frameworks (for exam-

ple GWT or Jif/Sif [32]) are trying to propose integrated and
high level solutions to make easier the development of Web
application. They often provide some abstraction of concepts,
but most of them preserve some historical habits related to
technical constraints. It is impossible to make a full review
of such tools, as there are numerous. We will concentrate on
the main novel features presented here. One can try to make a
classification of existing Web frameworks with respect to the
way they do service identification.

The old method is what we called “page-based Web pro-
gramming”, where one path corresponds to one file. Modern
tools are all more flexible and make service identification
and selection independent of the physical organization of
components in the Web server (for example JSP assigns an
URL to a service from a configuration file). But very few
belong to the third group, that allows dynamic services. Among
them: Seaside [19], Links [2] and Hop [3], Wash/CGI [33].
Their service identification models are more basic, and they
do not have a native notion of coservice. Some of them are
using an abstraction of forms [33], [24] that is fully compatible
with our model.

There have been few attempts to formalize Web interac-
tion. The most closely related work is by Paul T. Graunke,
Robert Bruce Findler, Shriram Krishnamurthi and Matthias
Felleisen [34], [35]. Their work is more formal but does
not take into account all the practical cases we speak about.
In particular their service model is much simpler and does
not fully take into account the significance of URLs. Peter
Thiemann [33] uses monads to create HTML pages, which
makes possible an original and interesting way of handling
the typing of forms, using Haskell’s type system.

We think our approach is compatible with more data driven
approaches [10], component based interfaces [36], or even
code generation techniques. One interesting work would be
to see how they can be mixed together.

B. Evolution of technologies and standards
This reflection about Web programming techniques has

shown that Web technologies suffer from some limitations that
slow down the evolution towards really dynamic applications.
Here are a few examples:
• As mentioned above, the format of page parameters and

the way browsers send them from form data does not
allow for sophisticated parameters types.

• (X)HTML forms cannot mix GET and POST methods.
It is possible to send URLs parameters in the action

72

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



attribute of a form that is using the POST method, but
it is not possible to take them from the form itself. This
would open many new possibilities.

• A link from HTTP towards the same site in HTTPS is
always absolute. This breaks the discipline we have to
use only relative links (for example to behave correctly
behind a reverse proxy). We have the same problem with
redirections, which have to be absolute URLs according
to the protocol.

• There is no means to send POST data through a link,
and it is difficult to disguise a form into a link. Links and
forms should probably be unified into one notion, that
would allow to make a (POST or GET) request from a
click on any part of the page. This limitation is not really
significant if we have a client side program that does the
requests itself when we click on a page element.

• Having the ability to put several id attributes for one
tag would be very useful for automatically generated
dynamic pages.

• Probably one of the main barriers to the evolution of
the Web today is the impossibility to run fast code
on the browser (without plug-ins), even with recent
implementations of Javascript. When thinking about a
Web application as a complex application distributed
between a server and a client, we would often like to
perform computationally intensive parts of the execution
on the client, which is not feasible for now. We want to
make some experiments with Google Native Client [37].

C. Concluding words and future works
This paper presents a new programming style for Web

interaction which simplifies a lot the programming work and
reduces the possibilities of semantical errors and bad practices.
The principles we advocate are summarized here:

1) Services as first class values
2) Decoding and verification of parameters done by the

server
3) Dynamic creation of services
4) Full taxonomy of services for precise service identifi-

cation
5) Same language on server and client sides
6) Symmetry between local and distant services
One of the main novel feature is the powerful service iden-

tification mechanism performed automatically by the server. It
introduces the notion of coservice which make the program-
ming of sophisticated Web interaction very easy.

Beyond just presenting a new Web programming model, this
paper defines a new vocabulary for describing the behaviour
of Web sites, on a semantic basis. It is a first step towards a
formalization of Web interaction. We started from an analysis
of existing Web sites and we extracted from this observation
the underlying concepts, trying to move away as much as
possible from non-essential technical details. This allowed a
better understanding of the important notions but above all to
bring to light some new concepts that were hidden by technical
details or historical habits. The main feature that allowed this
is the introduction of dynamic services, and also forgetting the

traditional page-based Web programming. There exist very few
frameworks with these features, and none is going as far as
we do, especially in the management of URLs.

Besides the gain in expressiveness, we put the focus on
reliability. This is made necessary by the growing complexity
of Web applications. The concepts we propose allow for very
strong static guarantees, like the absence of broken links. But
more static checks can be done, for example the verification
of adequacy of links and forms to the service they lead to.
These static guarantees have not been developed here because
of space limitation. They are summarized by the following
additional principles:

7) Static type checking of generated data
8) Static type checking of links and forms

This paper does not present an abstract piece of work: all the
concepts we present have been inspired by our experience in
programming concrete Web sites, and have been implemented.
Please refer to Ocsigen’s manual [25] and source code for
information about the implementation. Some implementation
details may also be found in [26] (describing an old version
of Ocsigen that was using a more basic model of services).
Ocsigen is now used in industry (for example BeSport [38],
Pumgrana [39]). These concrete experiences showed that the
programming style we propose is very convenient for Web
programmers and reduces a lot the work to be done on Web
interaction.

As we have seen, the use of an existing language for the
implementation induces some limitations: the typing of forms
is not perfect, there is no type inference of service parameters,
the need to disconnect creation and registration of services.
But despite these limitations, our implementation is very close
to the model we presented in the paper and it is a huge step
forwards in the implementation of robust Web applications.

This paper is not a full presentation of Ocsigen. Many
aspects have been hidden, and especially how we program the
client side part of the application [8], [9], [40] using the same
language, and with the same strong static guarantees. As we
have seen, our notions of services also apply to client side
functions. Obviously, we are using the same typing system
for services but also for HTML. It is not easy to guarantee
that a page will remain valid if it can evolve over time [41].
We did not show how the server can send data to the client
at any time, or even call a function on client side. We are
currently working on extending our service model to multi-
tiers architecture, when more than two pairs are interacting.
On a more theoretical point of view, we are working on a
formal description of our services.

ACKNOWLEDGMENT

Many acknowledgements are due to Jean-Vincent Loddo,
Jérôme Vouillon and all the people who took part in Ocsi-
gen development. I also want to thank Russ Harmer, Boris
Yakobowski and Yann Régis-Gianas for their helpful remarks
about this paper, and Dario Teixeira for the idea of session
groups.

73

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



REFERENCES

[1] V. Balat, “Rethinking traditional Web interaction,” in International
Conference on Internet and Web Applications and Services (ICIW),
Jun. 2013, pp. 206–211.

[2] E. Cooper, S. Lindley, P. Wadler, and J. Yallop, “Links: Web pro-
gramming without tiers,” in In 5th International Symposium on Formal
Methods for Components and Objects (FMCO). Springer-Verlag, 2006,
p. 10.

[3] M. Serrano, E. Gallesio, and F. Loitsch, “Hop, a language for program-
ming the web 2.0,” in Dynamic Languages Symposium, Oct. 2006.

[4] “The Ocsigen project,” http://www.ocsigen.org [retrieved:
2014-06-16].

[5] V. Balat, J. Vouillon, and B. Yakobowski, “Experience report: ocsigen,
a web programming framework,” in ICFP ’09: Proceedings of the 14th
ACM SIGPLAN international conference on Functional programming.
Edinburgh, Scotland: ACM, 2009, pp. 311–316.

[6] V. Balat, P. Chambart, and G. Henry, “Client-server Web applications
with Ocsigen,” in WWW2012 dev track proceedings, Lyon, France,
Apr. 2012, p. 59.

[7] V. Balat, “Client-server Web applications widgets,” in Proceedings of
the 22nd international conference on World Wide Web (WWW 2013
dev track), Rio de Janeiro, Brazil, 2013, pp. 19–22.

[8] B. Canou, E. Chailloux, and J. Vouillon, “How to Run your Favorite
Language in Web Browsers,” in WWW2012 dev track proceedings,
Lyon, France, Apr. 2012, pp. –.

[9] J. Vouillon and V. Balat, “From bytecode to javascript: the js of ocaml
compiler,” Journal of Software: Practice and Experience, 2013.

[10] “Ruby on rails,” http://www.rubyonrails.com/ [retrieved:
2014-06-16].

[11] A. Frisch, “Ocaml + xduce,” in Proceedings of the international confer-
ence on Functional programming (ICFP). ACM, 2006, pp. 192–200.

[12] V. Benzaken, G. Castagna, and A. Frisch, “CDuce: An XML-centric
general-purpose language,” in Proceedings of the International Confer-
ence on Functional Programming (ICFP), 2003, pp. 51–63.

[13] H. Hosoya and B. C. Pierce, “XDuce: A statically typed XML process-
ing language,” ACM Transactions on Internet Technology, vol. 3, no. 2,
May 2003, pp. 117–148.

[14] C. Queinnec, “The influence of browsers on evaluators or, continuations
to program web servers,” in International conference on Functional
programming (ICFP), 2000

[15] C. Queinnec, “Continuations and web servers,” Higher-Order and Sym-
bolic Computation, Dec. 2004.

[16] C. Queinnec, “Inverting back the inversion of control or, continuations
versus page-centric programming,” ACM SIGPLAN Notices, vol. 38,
no. 2, Feb. 2003.

[17] J. Hughes, “Generalising monads to arrows,” Science of Computer
Programming, vol. 37, no. 1–3, 2000, pp. 67–111.

[18] P. Graham, “Beating the averages”
http://www.paulgraham.com/avg.html [retrieved: 2014-06-
16].

[19] S. Ducasse, A. Lienhard, and L. Renggli, “Seaside – a multiple control
flow web application framework,” in Proceedings of ESUG Research
Track 2004, 2004.

[20] S. Krishnamurthi, P. W. Hopkins, J. Mccarthy, P. T. Graunke, G. Pet-
tyjohn, and M. Felleisen, “Implementation and use of the plt scheme
web server,” in Higher-Order and Symbolic Computation, 2007.

[21] J. Matthews, R. B. Findler, P. Graunke, S. Krishnamurthi, and
M. Felleisen, “Automatically restructuring programs for the web,”
Automated Software Engg., vol. 11, no. 4, 2004, pp. 337–364.

[22] J. A. McCarthy, “Automatically restful web applications: marking mod-
ular serializable continuations,” in ICFP ’09: Proceedings of the 14th
ACM SIGPLAN international conference on Functional programming.
New York, NY, USA: ACM, 2009, pp. 299–310.

[23] D. Leijen and E. Meijer, “Domain specific embedded compilers,” in
Domain-Specific Languages, 1999, pp. 109–122.

[24] E. Cooper, S. Lindley, P. Wadler, and J. Yallop, “The essence of form
abstraction,” in Sixth Asian Symposium on Programming Languages
and Systems, 2008.

[25] V. Balat, “Eliom programmer’s guide,” Technical report, Laboratoire
PPS, CNRS, université Paris-Diderot, Tech. Rep., 2007. [Online].
Available: http://ocsigen.org/eliom [retrieved: 2014-06-16]

[26] V. Balat, “Ocsigen: Typing web interaction with objective caml,” in
ML’06: Proceedings of the 2006 ACM SIGPLAN workshop on ML

[27] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon, “The
objective caml system release 3.10 documentation and user’s manual,”
Inria, Tech. Rep., may 2007.

[28] A. Frisch, “The bedouin project”,
http://sourceforge.net/projects/bedouin [retrieved:
2014-06-16].

[29] O. Danvy, “Functional unparsing,” Journal of Functional Programming,
vol. 8, no. 6, 1998, pp. 621–625.

[30] F. Pottier and Y. Régis-Gianas, “Stratified type inference for generalized
algebraic data types,” in Proceedings of the 33rd ACM Symposium on
Principles of Programming Languages (POPL’06), Charleston, South
Carolina, Jan. 2006, pp. 232–244.

[31] H. Xi, C. Chen, and G. Chen, “Guarded recursive datatype construc-
tors,” in Proceedings of the 30th ACM SIGPLAN Symposium on
Principles of Programming Languages, New Orleans, January 2003,
pp. 224–235.

[32] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng, “Secure web applications via automatic partitioning,”
SIGOPS Oper. Syst. Rev., vol. 41, no. 6, 2007, pp. 31–44.

[33] P. Thiemann, “Wash/cgi: Server-side Web scripting with sessions
and typed, compositional forms,” in Practical Aspects of Declarative
Languages (PADL’02), 2002.

[34] P. T. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen,
“Modeling Web interactions,” in European Symposium on Programming
(ESOP), April 2003.

[35] S. Krishnamurthi, R. B. Findler, P. Graunke, and M. Felleisen, “Mod-
eling web interactions and errors,” in In Interactive Computation: The
New Paradigm. Springer Verlag, 2006.

[36] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, and M. Matera,
“A framework for rapid integration of presentation components,” in
WWW ’07: Proceedings of the 16th international conference on World
Wide Web. New York, NY, USA: ACM, 2007.

[37] “Google native client,”
http://code.google.com/p/nativeclient/ [retrieved:
2014-06-16].

[38] “Besport,” http://www.besport.com/ [retrieved: 2014-06-16].
[39] “Pumgrana,” http://www.pumgrana.com/ [retrieved: 2014-06-

16].
[40] B. Canou, V. Balat, and E. Chailloux, “O’browser: objective caml

on browsers,” in ML ’08: Proceedings of the 2008 ACM SIGPLAN
workshop on ML. New York, NY, USA: ACM, 2008, pp. 69–78.

[41] B. Canou, V. Balat, and E. Chailloux, “A declarative-friendly api for
Web document manipulation,” in International Symposium on Practi-
cal Aspects of Declarative Languages (PADL’13). Springer-Verlag,
January 2013.

74

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Enabling Data Collections for Open-Loop Applications in the Internet of Things

Alexander Kröner
Georg Simon Ohm University of Applied Sciences

Nuremberg, Germany
Alexander.Kroener@th-nuernberg.de

Jens Haupert, Matthieu Deru, Simon Bergweiler, Christian Hauck
German Research Center for Artificial Intelligence

Saarbrücken, Germany
{jens.haupert, matthieu.deru, simon.bergweiler, christian.hauck}@dfki.de

Abstract—Using label technology, a physical object may be
employed to build a continuously growing data collection, which
can, for instance, be exploited for product quality monitoring and
supply chain management. Along the object’s life-cycle, queries
to such a collection may stay quite similar, e.g., ”get unusual
observations”. However, expectations to a ”good” answer may
change, as with time different entities will come into contact with
the object. This article reports on work in progress concerning
a framework for collecting data about things, which aims at
decoupling logic employed for interpreting such a collection from
processing hardware and using the collection itself for trans-
porting such logic. Main contributions include an approach to
hardware-abstraction of processing logic at the object or remote,
an app store for retrieving interpretation and presentation logic,
and interaction forms with such memories.

Keywords-Ubiquitous computing; RFID tags; Distributed infor-
mation systems; Supply chain management.

I. INTRODUCTION

Within the Internet of Things, physical objects may function
as a focus for digital data and services concerning the artifact
itself as well as associated things, people and processes as
presented in [1] at UBICOMM’13. This function enables an
object to take a new role as a data collector and provider in a
broad range of scenarios, e.g., users may manually associate
data with an object in order to socialize and foster discussion
in a community [2], tools may automatically collect usage data
in support of pay-by-use accounting [3], and products may
steer and document their production [4] and transport rules
that support reasoning of healthcare applications [5]. Existing
applications of such technology are typically deployed in
”closed” scenarios, i.e., requirements of users and applications
are known before the collection process starts.

This reflects only to some extent a supply chain with
continuously changing users and requirements. In order to
facilitate communication between stakeholders in such an
”open” scenario, a uniform interaction behavior of the collection
would be advantageous, e.g., a uniform way to ”check integrity”
of an object, i.e., compliance to criteria for objects or kinds of
objects specified by a third party on an individual base.

In the following, Section II provides an example scenario,
where one stakeholder has to employ logics provided by another
stakeholder. Section III summarizes requirements that arise from
this scenario. Then, Section IV wraps up work accomplished
so far concerning so-called Active Digital Object Memories

(ADOMe), a framework for processing logic in a way that
allows for embracing a broad range of infrastructure approaches
common to Internet of Things applications. Section V extends
this approach with a concept of an app store supporting
distribution of the processing logic. Section VI deals with
approaches to support user interaction with access to object
memories - by the framework itself as well as by mobile devices
and smart objects. Finally, the article concludes with a summary
of results and a discussion of future work in Section VII.

II. SCENARIO

The following logistics scenario deals with integrity control
during transportation of a heterogeneous set of goods (see
Figure 1). Each good is packaged in a way matching its
nature (e.g., fragility) and value. All packages are tagged with
some kind of label technology, which allows for automatically
identifying the object. Depending on the respective kind of
package, this technology may range from passive RFID (Radio
Frequency IDentification) to embedded systems with integrated
sensing and processing capabilities. At the same time an
object memory was created and filled with static product and
manufacturer data, as well as criteria to be monitored in the
following. Additionally, the memory can contain information
what sensor values are interesting to the object and orders how
to treat and transport the object.

A retail chain advertises the quality of products sold in
its stores, which is subject of the company’s own, particular
strong quality guideline. In order to leverage compliance to
this guideline, the company provides business partners along
the supply chain with constraints on parameters that need
to be monitored. A supplier uses these parameters in order
to configure an integrity test for each package destined for
this particular retailer; for accuracy, input parameters should
be sensed and processed by the package itself or by IT
infrastructure near the object. Performing this configuration
task is supported by a hardware-abstraction layer, which allows
for assigning tests to packages independent from the kind of
label technology provided by the respective package.

During loading a truck (by means of this layer), a dialog be-
tween package, truck, and an app store, hosting implementations
of tests matching the retailer’s parameters, is performed. Result
of this dialog is an assignment determining which technical
component (truck or package) has to conduct the monitoring
task, an assignment, which may differ for each package.

75

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



2

External Check

1
Start Monitoring

Object Memory
Initialization

1
Add Criteria & 

Set Order

Object Memory

I II III IV

App Store

2

Figure 1. Logistics scenario with memory initialization [I], on-product criteria storage and monitoring orders [II], active logic processing [III], and external
checks [IV].

Finally, the packages arrive at the retailer’s receiving area.
There, an employee uses a mobile device in order to identify
the respective object and access its digital records - values
sensed during transport as well as testing methods and their
results. The access is performed using an app, which downloads
from the app store a method suited to visualize the test chosen
by the logistics expert. This visual adaptation is performed
automatically in the background; even for very different kinds
of packages the employee experiences always the same way
of interacting with the respective object.

At the retailer’s store some products and their new capabil-
ities can be utilized for direct product-to-customer interaction.
E.g., a milk carton (called ”Milky”) instrumented with an
embedded controller, sensors and a display is present on a shop
shelf (see Figure 3). The milk carton tries to catch the attention
of customers with blinking eyes and an acoustic feedback. The
proximity sensor and accelerometer sensor detect the fact that
the customer is going to take the product from the shelf. Once
bought, milky activates a new mode as the product now belongs
to the customer. At this moment the sensor data tracking module
is activated and all parameters are tracked and stored in the
object’s memory. In the same manner the customer will be
also informed when the best-before day is up. The consumer
can also switch between two views, the first one being the
face of Milky and the second one showing a more factual
view by displaying the sensor’s raw data values. Depending
on the content of the milk carton a personalization module
can be started; strawberry milk could be presented as a pink
face on the display. Once the product is no more consumable,
e.g., due to an expiry of the best-before day or because the
customer has completely used it, Milky goes into the ”dead”-

state. In this mode three options are displayed on the screen:
the first one displays a map with the nearest recycling stations
to ensure correct recycling for optimizing the product’s carbon
footprint. The second option allows the customer to share his
”product-experience” over a social network. With the third and
last option the product asks the consumer if he would like to
buy the same product again.

Extending the mentioned fixed stakeholder chain, a more
flexible approach is currently emerging. The so called ”open-
loop” life-cycle chain is determined by the idea of supporting
different successors in each life-cycle step. This approach
allows for a flexible ”routing” of products by incorporating
different stakeholders and delaying the process of choosing
which stakeholder is next from design time to runtime (see
Figure 2). This approach demands flexible systems that support
various hardware platforms, diverse device capabilities and
different data content.

Considering such open-loop supply chains, our scenario
can be enhanced. Let’s assume our known logistics partner
equips each individual object with a dedicated embedded
system to perform the monitoring tasks. By adding additional
providers we also have to support their approach (see Figure
4). E.g., some providers equip the products only with RFID
tags with server-based storage and perform the monitoring
only on pallet- or container-level, whereas others attach an
embedded controller to each product. Such controllers provide
storage, processing and sensor capabilities. The complete data
set is created and stored locally. And other providers even do
not support direct monitoring of individual products during
transport at all. Depending on the providers involved, a retailer
might receive memories equipped with different hardware

76

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Open-LoopClosed-Loop

Figure 2. Supply chain: ”closed-loop” (left) and ”open-loop” (right) paradigm.

Figure 3. Smart milk carton ’Milky’ showing object-related recipes (1), in
anthropomorphic mode ’happy’ (2), advertising on-product re-buy task (3),
and presenting recycling information (4).

platforms and filled with data of different quality and quantity.

Summarizing, the described scenario is characterized by
the following key features:

• Varying stakeholders

• Varying capturing technology

• Varying interaction devices

• Varying interaction processes

• Reconfiguration at any time throughout the process

III. RELATED WORK

This work is related to research and development concerning
frameworks that leverage collecting and processing data related
to physical objects, and as such related to the Internet of
Things. Related research comprises embedded systems as well
as web-based data stores. So-called Collaborative Business
Items (CoBIs) illustrate the benefits of delegating small parts
of a well-defined business process - e.g., monitoring and self-
assessment tasks - to objects with embedded sensing and
processing capabilities [6].

In order to decouple such a service from the employed
hardware, SmartProducts [7] seek to dynamically integrate
resources - including web-based structures - in the object’s
environment into the service realization. Complementary to our
proposal, this work puts particular emphasis on semantic device
and data descriptions for products with embedded technology.

Other projects also cover innovative solutions for the
logistics domain. European projects EURIDICE [8] and iCargo

Manufacturer RetailerLogistician

A

B

C

Figure 4. Extended supply chain based with three difference logisticans.

[9] build information services platforms centered around the
individual object to increase the interaction, the exchange and
the organization of data to increase efficency and to reduce
the carbon footprint. The approach introduced in this paper
targets partially similar goals, but will utilize techniques that
can cover the entire life-cycle chain.

An example of collecting object-related data in a web-
based data store is the Tales of Things electronic Memories
(TOTeM) system. It seeks to foster communication between
humans via personal stories digitally linked with things [2].
Its infrastructure shares aspects of an ADOMe, in particular a
unified approach for structuring data concerning a thing, and
open web-based information storage. The human-computer-
interaction is performed by a web-based application on mobile
devices.

Similar applications focus on connecting people with
objects (e.g., like Anythinx [10], or creating object-centric
data collections for personal use (e.g., like Qipp [11]). They all
share a user interface, which allows for accessing collections
from a desktop as well as on-the-way from a smartphone; data
creation is left to the user.

Going beyond, EVRYTHNG [12] extends this general
approach with Active Digital Identities for objects, where
services linked with an object employ information collections
(concerning the object, or objects of the same kind) in order
to adapt to the user. The web-based system can be accessed
either by a desktop computer or a mobile device.

The question of how implementation and provision of such
services can be supported is addressed by Xively [13]. The
web-based service supports not only hosting and sharing object
data, but also software products and descriptions concerning
devices, which we propose to extend in a way that supports
exchanging such components across devices using unified data
structures and semantic descriptions.

A data structure for representing object memories in open
loop scenarios similar to the one mentioned in this article
has to meet particular requirements. These are addressed by
the so-called Object Memory Model (OMM), created by the
W3C Object Memory Model Incubator Group (OMM-XG)
and co-developed by the authors. The model partitions the
memory content into several blocks, each with content of
the same origin or nature (see Figure 5) [14]. Each block
consists of two parts: the payload representing the content itself
and a set of corresponding meta data defining and describing
the payload. This set of machine-readable annotations eases
the process of searching data inside object memories that

77

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Block Meta Data Block Payload

ID
Name-
space

Format Title
Descrip-

tion
Creator

Contri-
butor

TypeSubject

Table of 
Contents

Block 1 Block n…
OMM 

Header

Access History Cleartext DataPayload Description

Block

Memory

Figure 5. Sample memory based on the Object Memory Model (OMM) with detailed metadata.

contain heterogeneous data and are often not known in advance.
Additionally, such memories demand new interaction forms
considering machine-to-machine communication (M2M) and
human-computer-interaction (HCI) [15].

IV. THE ADOME FRAMEWORK

The envisioned framework has to balance between the need
for flexibility (to support different hardware platforms, open
processes, new requirements in the future), for standardized
structures that ease data retrieval and communication among
different and cross-domain content providers and for normative
description of object-related logic. Corresponding goals to the
architecture model can be divided in three parts that reflect
a 3-tier approach to the realization of such a model, namely
the collection model for data storage (1), support for active
analysis functionality (2), and a common access architecture
and infrastructure support for hardware abstraction with an
app-store-like approach (3).

Data storage is the basic functionality of any ADOMe.
In order to enable a stakeholder to analyze data added to
the memory by another one, a common storage model is
achieved, which is shared by all parties along the object’s
life-cycle. In addition, the model should be flexible enough to
cover a large variety of data formats (including encodings and
further data types) and should ease the process of data retrieval.
Due to the cross-domain usage of such memories involving
several partners, a common infrastructure that provides an
abstract memory access (including protocol and data exchange
specifications) independent from any memory implementation
or hardware platform is necessary to ease the task of memory
access for existing and newly created applications. This
hardware abstraction layer enables a transparent access for

clients, which includes a compensation of missing object
features by the environment. Setting up activity and analysis
support on top of the data storage can extend the functionalities
of object memories, by allowing the memory to process
data autonomously based on given algorithms. Based on this
functionality we want to enable applications to ask common
(but pre-defined) semantic questions, rather than processing the
entire memory data, which might be a complicated process
due to possibly very large and capacious memories and in
contrast a slow connection speed. In addition, the memory
should pro-actively process data with rules based on expert
knowledge, and deploy results to memory storage or return
the result on queries. Finally, a mechanism to retrieve machine
and platform-compatible logic code for the given use case is
needed to support the mentioned hardware abstraction.

A. Object Identification and Data Model

To identify each physical object a unique ID is necessary
that goes along with the object during the entire life-cycle
chain and represents the corresponding object memory. Our
framework uses a unique Uniform Resource Locator (URL)
[16], [17]. This approach has the advantage that URLs can
be used to easily create unique identifiers and to directly
indicate the type of memory access (web-based via a http-
connection). This URL can be attached to physical objects
in different ways. The options range from simple machine-
readable 1D- or 2D-codes (e.g., barcodes, DataMatrix Codes or
QR Codes) [18]–[20] to more sophisticated wireless solutions
like Radio Frequency Identification (RFID) [21] and Near Field
Communication (NFC) [22], or the well-known standards like
Bluetooth [23] and Wi-Fi [24]. Both approaches can be easily
accessed with the help of a smartphone or tablet.

78

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The foundation of the framework is the storage of object-
related data. To structure this data a data model covering
the requirements of open-loop scenarios is necessary. In our
approach we use the aforementioned Object Memory Model
(OMM) for structuring the memory content in blocks composed
of the payload and additional meta data (see Figure 5). In the
following, we will describe the set of meta data in detail.

The first attribute, called ID, is a unique identification
for each block represented as string. The next four attributes
are intended for machine-to-machine (M2M) communication
purposes. The Namespace is represented as URN and can be
used to indicate that the payload has a defined content and
a standardized type (e.g., ”urn:objectdata:pml”). This
allows for direct access to the payload, if the reader supports
the namespace. Format is just the MIME-Type of the payload.
Subject contains a tag cloud like structure to annotate the
block payload with free text tags (e.g., ”manual”), hierarchical
text tags with a point as delimiter (e.g., ”norms.din.a4”) and
ontology concepts (e.g., ”http://s.org/o.owl#Color”). The Type
attribute is a Dublin Core DCMI Type Vocabulary Type [25].
The following two attributes create a modification history for
this block. Creator is a tuple of the entity that created the
block and a corresponding timestamp. In addition, Contributor
is a list of tuples with entities that change the block and
the corresponding timestamps. Finally, the last two attributes
are rather intended for human-computer-interactions (HCI).
Title contains a human readable short title for this block and
Description contains a longer textual description, both with
support for multiple languages.

In case that the payload has a very large size and does not
fit into the memory (e.g., located in an embedded system) or
the data is redundant and used in many similar memories, the
payload can be out-sourced. This is done by an additional Link
attribute that indicated the source of the payload (e.g., in the
World Wide Web).

Furthermore, each memory contains a header that includes
the unique ID of this memory and an optional list of links
to additional blocks (e.g., that are out-sourced due to space
restrictions) and a table of contents (ToC) that provides the
meta data information from all blocks to enable applications
to get an overview of the memory content without the need to
download and access all blocks.

Generally, the OMM does not provide a set of regulations for
the block payload, so the users are free to store the information
in the way they want or in the way they have defined with other
partners. However, the model includes three pre-defined blocks
useful in several scenarios. The OMM-ID Block carries a list
of identification codes combined with the corresponding string
type and a validity timestamp or time-span. The OMM-Structure
Block indicates relations of the physical object to other objects,
without the need of additional formats. The user can use one
or several of the following fixed relations: isConnectedWith,
isPartOf, hasPart and isStoredIn. Each relation can also be
combined with a validity time span. The OMM-Key-Value
Template provides a container for an arbitrary amount of key-
value-pairs that can be used in many use cases.

In addition, we added a proposal for additional blocks
(called OMM+) extending the OMM meta model. The OMM+
Semantic Block is an extension of the OMM-Structure Block

RDFa/Microdata-
Representation

Digital Object Memory

Object Memory Server (OMS)

libOMM

OMS-Client

HTTP(S) | REST

HTML5

User

Binary-
Representation

Application

Webbrowser

XML/JSON-
Representation

Service

Figure 6. Hierarchical view of OMM-related components.

and allows the definition of arbitrary relations similar to
ontology relations (e.g., provided by RDF and OWL) relative
to the physical object. Each relation consists of a triple (subject,
predicate, and object) represented by uniform resource identi-
fiers (URIs) combined with a validity statement. To indicate the
physical object itself the URI urn:omm:this is used. The
predicate can be use case specific or use common RDF/OWL ob-
ject relations. It is also possible to include the OMM-Structure
Block relations, e.g., the isConnectedWith relation by us-
ing the URI urn:omm:structure:isConnectedWith.
This block allows the definition of simple semantic statements
that can be processed semantically (e.g., with a graph reasoner)
or without a reasoner just compare the strings of the relation
triple.

The OMM+-Embedded Block is meant to integrate an entire
OMM-based memory into a specific block. In use cases where
objects are physically combined to a compound object, or if
access is physically hindered by arrangement of objects, it
might be the case that the attached ID or the embedded system
cannot be reached any longer. The problem can be solved by
copying the object’s memory, e.g., to the memory of the factory,
so its memory can be accessed even if the object’s label can
no longer be reached. A specific subject meta data attribute
primaryID.<ID of integrated object> is used to
indicate the embedded memory’s ID without the need of
extracting the memory itself.

B. Storage Infrastructure and Communication Interfaces

The storage infrastructure built on top of this data model is
divided in two components. Firstly, a generic software library
(libOMM) was developed to integrate the object memory model
into Java- and C#-applications and can handle local XML-based
OMM-representations. Secondly, we extended this library to a
dedicated object server system called Object Memory Server
(OMS) [26]. Figure 6 shows a hierarchical view of the OMM-
related components. This server is divided into several modules
that can be compiled depending on the intended application
(see Figure 7).

79

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Data 
Model 

Server Activity 

Interfaces 

Revision Control Access Control 

Visualization Data Input 

Object 
Identification 

Figure 7. Server-based OMM Architecture.

To foster the usage of digital object memories, the access
to memories is not restricted in general. However, the OMS
is equipped with a role-based security module. The owner of
a memory can restrict read and write operations for specific
blocks or the entire memory. Three approaches are available
to grant access to memories: passwords, certificates, and
electronic ID cards. The simple approach uses a username and
a password stored in a white-list containing all entities with
access permissions. The more sophisticated approach utilizes
digital certificates based on the ITU standard X.509 [27]. With
certificates an additional way of restriction is possible: the
certificate chain mode. This mode demands that an accessing
entity uses a valid certificate and this certificate must provide
a valid certificate chain with respect to the root certificate
of the memory. The owner can select between two options.
First the certificate must be directly signed by the owner or
secondly a valid chain to the owner is sufficient. The latter
option allows for certificate users to create their own child
certificates and deploy them to other users of the memory. This
approach lacks the risk that the user pool can be extended
in an uncontrolled manner, but allows to distinguish between
different ”subcontractors” (each using individual certificates
inherited from a accepted authority) without any administrative
costs by the memory owner. Finally, we created a prototype
application based on the new German ID card (nPA). This card
is issued to German citizens by the local registration offices
and provides an electronic identification (eID) mechanism to
create a unique but anonymous and application dependent ID
for each card. This can be utilized to restrict memory access
to such eIDs by using an DOMe infrastructure with access
control [28], [29].

To increase the level of security the system also prevents
the possibility of creating plagiarism by duplicating memories.
If a server-based approach is used, the given API allows only
block-based memory access, so each block has to be copied to
another fake memory, but these ”new” blocks contain different
creator information than the origin. If a solution based on RFID-
tags is used, the framework can add an additional hash value
incorporating the entire memory and the tag ID. A simple copy
of the tag data breaks this hash value, due to a different tag

ID. For more complex scenarios a more sophisticated solution
providing a secure provenance change is described in the next
section.

For memory interaction tasks two different interfaces are
available (see Figure 6). Applications can use a RESTful
HTTP-interface to access, to supplement and to modify object
memories. End users can alter memories with the built-in web-
based HTML5 user interface that can be utilized within a
standard browser on multiple different devices. As mentioned
before each memory can be accessed with a unique URL
that serves simultaneously as access point and as the object’s
primary ID. This URL begins with the DNS name or IP address
of the OMS and ends with the name of the memory. In between
the caller indicates which module of the OMS should be
triggered. This module can be set to ’st’ for the RESTful
storage interface or to ’web’ for the HTML5 user interface.
Further actions and commands deployed to this module are
added to this generic URL part. In the following, we use an
exemplary memory that is stored on an OMS and accessible
at the domain ’sampleoms.org’ and the sample memory named
’s memory’:

http://sampleoms.org/st/s_mem
http://sampleoms.org/web/s_mem

The RESTful interface, represented throughout the ’st’ path,
maps the functions and operations of the mentioned libOMM.
The URL path .../st/s_mem/block/_ids/ retrieves the
list of all blocks with their IDs that allows applications to
access the entire memory. For data retrieval located in a block
with unknown ID the function .../st/s_mem/toc/ can
be utilized to get the table of contents of this memory that
is a compressed set of meta data from all blocks (e.g., large
meta data like clear text description and tags are excluded).
Finally, a direct access to block meta data is possible, e.g., to
access the creator of a block an application can use URL
part .../st/s_mem/<blockID>/meta/creator/ or
.../st/s_mem/<blockID>/payload/ to access or to
change the block payload.

C. Smart Binary Encoding and Secure Provenance

The proposed Object Memory Model and its XML represen-
tation can be easily used on a server-based infrastructure with
virtually unlimited storage space. Introducing technologies with
smaller storage spaces like RFID-tags [21], [30], [31] or cheap
embedded controllers do not provide enough capacity to store
all memory related metadata, not even by using compressed
binary representations. To foster the usage of OMM-based
memories even on such technologies, we introduce a context-
aware dynamic schema-based mapping approach (see Figure 8)
to reduce the overhead of OMM metadata [32]. The mapping
schema is utilized to define the mapping process between OMS-
interfaces and the corresponding byte stream. The advantage of
this approach is to be format-independent by concentrating the
mapping logic to the schema rather than using inflexible format-
dependent code. The schema is created by an author, delivered
to each stakeholder of this object memory and combined
with the corresponding OMM access code. The storage space
contains only the raw binary memory content.

80

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Core

Interfaces

Object Memory Server

BinaryMapper

Mapping-Schema

Figure 8. Binary mapping for Object Memory Models.

The schema itself contains rules to map the binary content
to code interfaces. In this sample schema, the namespace
metadata of a block is defined. The <composition>-section
defines the structure of the corresponding binary part. Due to
the variable length of a namespace, the binary representation
consists of a length indicator (one byte) with a restriction to
a maximum of 32 bytes and a value (the namespace string
itself) as UTF-8 string. The <interface>-part defines a code
interface including methods that enable the mapper to retrieve
the data to be written and to transfer the loaded binary data
to the application logic. The definition allows for specifying
methods (e.g., for Java or C++ implementations) as well as
properties (e.g., for C# or PHP implementations).

The mapping process supports different modes. First, it
simply streams the given object memory data to a byte array
and vice versa based on the schema definitions. The more
advanced modes allow the schema author to limit specific
information, e.g., the length of the title block metadata or the
number of blocks of a specific type. In addition, priorities can
be defined for each part of the metadata model to allow the
mapper to dynamically drop metadata and blocks with low
priority. This process can be applied in two different ways:
only to newly written or changed blocks or retroactively to all
existing blocks in the memory. The quality and quantity of this
loss of information is transparently retrieved by the respective
application.

The framework presented in the previous chapters is meant
to leverage the process of free access to object memories, to
encourage different stakeholders to contribute available data
to such memories. However, other use-cases demand a more
controlled and secured memory structure. E.g., in a pharma
setting where drugs are filled in boxes, then are transported to
a pharmacy and finally are sold to customers a consistently and
verifiable documentation for these life-cycle steps is needed
to ensure the necessary quality requested by the customer. For
such purposes the object memory model can be extended, to
guarantee the integrity and the authenticity of the memory
and to prevent subsequent modifications and amendments of
the stored data, as well as the illegal erasing of unwanted
information similar to EPC Pedigree approach [33].

This goal is achieved with the help of an extended model by
adding the following information to each block (see Figure 9).
First, a hash-value of the block content (the metadata and the
payload) is generated by concatenating the content and using a
SHA-512 [34] hash function. Second, the ID of the predecessor
block to connect each block with its predecessor is added.
Third, a cryptographic signature is created by using standard

…

Cryptographic Hash
Crypt. 
Hash

Authority 
Server

Block n

Cryptographic Hash

LinkBlock 1Fist 
Block

Figure 9. Secure Object Memory with linked Blocks.

X.509-certificates [27] and a private key. The aforementioned
two values are integrated as certificate extensions. Finally, the
signature of the last (meaning the most recent block) is stored
on an additional authority server. This server contains the
certificate of the most recent block for several memories.

These modifications can prevent an attacker to add addi-
tional blocks or to change existing blocks because he needs a
private key to generate valid certificates. In addition, an attacker
can no longer remove unwanted blocks from a memory because
the integrity chain (linking each block with its predecessor)
would be broken in this case. Finally, the authority server
shows the certificate of the most recent block for each memory
such that it is not possible to remove this block without
leaving a broken integrity chain. However, since such techniques
cannot be used directly by users, e.g., within a web browser,
applications have to be extended (by using the mentioned
libOMM or the RESTful interfaces) to benefit from this
approach.

V. HARDWARE ABSTRACTION

The aforementioned scenario involves a heterogeneous set of
goods equipped with different techniques, ranging from simple
barcodes to embedded systems with storage and processing
capabilities. In our sample scenario, a user does not have to care
about processing power and storage capabilities of the hardware
used to implement the object memory. In order to achieve this
goal, the ADOMe framework includes a data access interface,
which provides abstraction that allows accessing users and the
objects themselves to complement their missing functionalities
on their own, or at least to inform the outer environment about
requested but not available functionalities.

This concept utilizes the aforementioned ADOMe frame-
work that is built on modular software components. It allows the
framework to run on a large variety of platforms raging from
high-end servers to small embedded systems (see Figure 10).
The framework’s RESTful interface decouples communication
with a memory from its concrete hardware and software imple-
mentation. In addition, it enables systems lacking embedded
ADOMe functions (e.g., for logic processing) to outsource
these to server-based ADOMe solutions by passing-through
incoming requests.

In fact, we distinguish three kinds of instrumentation
types and interaction approaches, respectively (see Figure
10). These solutions range from a packaging instrumented
minimalistically with a barcode or an RFID-tag that can be
read during the production and by any mobile compatible device,
or instrumented with a fully integrated intelligent embedded
system, incorporated into the packaging during the production
process.

81

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



RFID tag

OMS

2D-Barcode

www

Embedded Platform

= ADOMe Content

Off-Product StorageOn-Product Storage

Figure 10. ADOMe hardware abstraction ranging from ”off-product” memories
linked via barcodes to ”on-product” embedded systems.

The first approach, called off-product, is focused on a
lightweight object instrumentation with a barcode or RFID-tag.
An external device with internet connection is necessary to
access the data stored on server-based solution (e.g., Object
Memory Server). The reading and visualization of the data
is done with the consumer’s own internet compatible device.
The drawback of this approach is that it heavily relies on
the instrumented environments providing services like sensor
measurements and data connections. An access to memory data
is only possible with available internet connection. On the other
hand, the centralized storage allows an access to memory data
without access to the physical object.

Whereas the off-product scenario relies heavily on a dedi-
cated infrastructure, the on-product scenario uses the full power
of the inbuilt embedded system. Such systems (like Gadgeteer
[35], Arduino [36] or other embedded controllers) are directly
included within the packaging and are constantly tracking the
physical properties of the product like temperature, humidity,
air pressure, geo-localization over GPS position, or even shock
detection, and thus enabling a precise autonomous tracking.
Integrated visualization (ranging from simple multicolor LEDs
to touch displays) allow users to get a full overview of the status
of the intelligent product and to inspect the object’s memory
(see Figure 11) without the need of an external device (e.g.,
like a smartphone or tablet). The drawback of this solution
is that the costs are much higher than simple barcodes or
RFID stickers, due to the electronic components that need to
be embedded into the packaging to realize the sensor value
tracking. In addition, the memory data is only accessible as
long as the physical device is in range if there is no distributed
backup server kept in sync.

A hybrid solution set between the on-product and off-
product approach is the so called incycling approach [37],
[38] that might be a solution for the following cases: the
cost-benefit ratio of the product concerning the price of an on-

Figure 11. Performing built-in and on-product integrity checks on a smart
package equipped with ADOMe and accessed by a mobile handheld device.

product instrumentation and the given surplus value of a local
object memory is below 1, or the on-product instrumentation
is only meaningful for a short term or a short life-cycle phase.
Hence, incycling proposes the following scenario: a product is
instrumented at a specific point of time (e.g., a new lify-cycle
phase). As soon as the next phase is applied (e.g., the product
is consumed or local sensors are not needed anymore) the
intelligent board is removed from the package and is attached
to a new object that is just entering this phase. Due to the fact
that such an on-product memory can be reused in a closed-loop
and the costs are distributed over several carriers of the memory,
the value of benefit is increased significantly. Sample incycling
applications range from attaching an embedded controller to
a solid product during transport to workpiece carriers that
provide memory functionalities for each workpiece that is
carried through the production line.

The next evolution is the integration and processing of
logic code directly inside such active object memories. This
approach has the advantage that there is no need for an external
device to execute the logic code, no need to download the
entire memory content to this device and no need to keep
code ready for each platform and for every object type. The
code fragments (called snippets) are stored in blocks inside the
memory. This allows manufacturers to deliver their products
with build-in quality check or monitoring scripts. The snippets
can be addressed with a unique ID or a semantic concept (e.g.,
”#QualityCheck”) stored in the block meta data. The latter one
can be deemed as definition of semantic questions and accessed
from external sources that trigger such concepts as asking a
question (trigger of ”#QualityCheck” equals asking the question
”Are you ok?”). To complement the activity module, snippets
can also be triggered event-based or by a so called heartbeat
timer. The event-based mechanism allows users to define a set
of monitored blocks for each snippet and the activity module
triggers the snippet each time these blocks are changed. The
heartbeat represents a timer, that allows for snippet execution
in a defined period (e.g., every 30 minutes).

The processing and execution location (either in embed-
ded systems ”on-product” or on server-based solutions ”off-
product”) is transparent for the access application. In case of
no fitting software module available in memory, an access
to a so called app store is possible based on a semantically

82

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Snippet Selection by User

3

Memory

Logik

Activity Modules

19°CKnowledgeLogic

Memory URL

1

Installed Snippets

2

Upload

4

Figure 12. Dataflow of Activity Update with external Snippetstore.

defined logic description. This store contains a large set of
logic modules for different applications and platforms, ranging
from fixed domain-specific code to generic modules capable of
parametrization. If available the framework downloads, installs
and executes the downloaded module from the store (see Figure
12). Client applications performing operations based on memory
data can be extended with in-memory or app store modules
the same way.

VI. USER INTERACTION WITH OBJECT MEMORIES

In the following section, we describe the interaction forms
with smart objects within the already mentioned logistic process
starting at the warehouse and ending at the customer’s house.
The kind of interaction used within these scenarios is closely
linked to the hardware type and chosen packaging type.

During the entire logistics chain, an intelligent product will
need to go through several checks and validation processes
until reaching the end consumer. In the first stage, the product
leaves the production phase, in which an object memory was
created and filled with static product and manufacturer data.
This is done by machine-to-machine (M2M) communication
without any user involvement. The special monitoring or
processing capabilities of some products can be achieved with
the already mentioned snippets that can perform such tasks.
The manufacturer adds tailored snippets to the object memory
and starts execution. If the product is equipped with an on-
board memory the snippets are inside the embedded controller
otherwise (in the off-product case) the execution is done within
the object memory server.

During transport sensor values are generated, e.g., by mon-
itoring temperature, humidity, acceleration, and position either
by the object itself (on-product) or by the environment (off-
product). Since memories may contain hierarchical information
about their environment, sensor data measured at higher levels
(e.g., on container or palette level) can be passed to and stored
in lower levels (e.g., a transport box or the object itself). The
continuously updated memory can be accessed (pulled) with a
simple web-browser or control station directly (off-product, via
OMS) or by relaying information to higher levels (on-product),
e.g., palettes relay data to containers and these containers sync
their data to web-based OMS. Additional important data can
also be pushed by active memories with the help of output
channels triggered by snippets (e.g., a product can send an
email as soon as a temperature threshold is exceeded).

Figure 13. Client application displaying ADOMe-based measurements created
by a software module downloaded from an external appstore.

Some products may require special treatment or have
to comply with special customer demands. In our scenario,
compliance is verified by a worker by means of a mobile
device (smartphone or tablet). Once the worker has scanned
the barcode or RFID-tag attached to the object, an app running
on the mobile device connects to the on-product memory or
the off-product object memory server. In case of an on-product
memory the app can directly access the memory, e.g., with Wi-
Fi Direct [39] or Bluetooth [23]. The app retrieves memories
nearby with the UPnP [40] standard (see also Figure 11). The
snippet store is available as smartphone or tablet app and is
structured and handled the same way as known app stores
on such devices. A check for available snippets regarding the
specific object is performed and displayed to the user. He
or she can select the favored one and automatic upload and
activation process is initiated (see Figure 12). Such snippets
ease the process of adding and adjusting additional monitoring
and processing logic.

The identical concepts and hardware extended with a display
can be integrated in products of everyday life. An example
is the already mentioned milk carton ”Milky” that supports
direct product-to-consumer interaction within three life-cycle
steps [41]. Due to the highly instrumented product no further
infrastructure or tools are necessary to interact with the carton.
In the advertising phase (intended to raise the customer’s
attention) product-related data is presented via the built-in
display. A generic framework gets all related data from the
object memory. Information is provided by the manufacturer and
can be extended by the retailer. Once bought, milky continues
monitoring conditions like temperature and humidity without
any user interaction if the customer allows such tasks in his
or her preferences. Otherwise, milky asks the customer. Any
condition violations are displayed. At home milky informs
about best-before dates coming closer based on a memory
data set by the manufacturer and possibly adjusted by sensor
readings (e.g., higher temperatures are measured and the best-
before date is set to an earlier date) Once the content is
consumed recycling information are displayed regarding the
current position. In addition to these presentations based on
raw data, the object can also display the ’face’ of milky (see
Figure 14). This anthropomorphic style presents the ’mood’
of the milk carton. The system provides four different moods:
happiness, sadness, amorousness and annoyance reflecting the

83

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 14. Smart milk carton ’Milky’ in anthropomorphic mode ’happy’.

current state of the milk inside the carton by addressing the
customer’s feelings. Happiness is the default mood representing
the milk to be in a good condition. Sadness occurs shortly
before the carton is empty. Amorousness is used to display
that other products or customers are detected in range. And
finally annoyance (addressing the fact that in German language
the states annoyance and sour are expressed by the same word
’sauer’) is displayed once the milk has turned sour.

VII. CONCLUSION AND OUTLOOK

This article summarized work in progress concerning a
framework for setting up so-called Active Digital Object
Memories. Its contribution is twofold: In order to leverage
the application of such data collections in open scenarios, this
framework seeks to 1) embrace different ways of deploying
answering logic in a collection, and 2) provide abstraction from
the technical diversity of existing infrastructures for collecting
object-related data, which employ technology embedded into
physical objects, virtual data stores located in the Web, and
combinations of both approaches. Future work will address
in the very first place the proposed method of distributing
processing logic within this framework: the app store imple-
mentation. A first prototype illustrates the feasibility of this
approach in a manufacturing scenario involving passive RFID,
Android tablets, and embedded devices; however, more efforts
are needed to verify that concept for broader range of embedded
system platforms as well as logic hosted for deployment.

ACKNOWLEDGMENT

This research was funded in part by the German Fed-
eral Ministry of Education and Research under grant num-
ber 01IA11001 (project RES-COM) and 01IS12050 (project
OMM++). The responsibility for this publication lies with the
authors.

REFERENCES

[1] A. Kröner, J. Haupert, C. Hauck, M. Deru, and S. Bergweiler, “Fostering
access to data collections in the internet of things,” in UBICOMM 2013,
The Seventh International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies located at NexTech 2013, September
29 - October 3, Porto, Portugal, W. Narzt and A. Gordon-Ross, Eds.,
IARIA. IARIA, 9 2013, pp. 65–68.

[2] R. Barthel, K. Leder Mackley, A. Hudson-Smith, A. Karpovich,
M. de Jode, and C. Speed, “An internet of old things as an augmented
memory system,” in Personal and Ubiquitous Computing, vol. 17.
Springer London, 2011, pp. 321–333.

[3] D. Fitton, F. Kawsar, and G. Kortuem, “Exploring the design of a
memory model for smart objects,” in Ambient Intelligence and Smart
Environments, vol. 4: Workshops Proceedings of the 5th International
Conference on Intelligent Environments. IOS Press, 2009, pp. 33–38.

[4] P. Stephan, G. Meixner, H. Kling, F. Flörchinger, and L. Ollinger,
“Product-mediated communication through digital object memories in
heterogeneous value chains,” in Proceedings of the 8th IEEE International
Conference on Pervasive Computing and Communications. IEEE, 2010,
pp. 199–207.

[5] M. Schneider, M. Velten, and J. Haupert, “The objectrules framework -
providing ad hoc context-dependent assistance in dynamic environments,”
in Proceedings of the Sixth International Conference on Intelligent
Environments. July 19-21, Kuala Lumpur, Malaysia. IEEE Computer
Society CPS, 2010, pp. 122–127.

[6] C. Decker, T. Riedel, M. Beigl, L. Moreira, S. Souza, P. Spiess, and
S. Haller, “Collaborative business items,” in Proceedings of IE 07: 3rd
International Conference on Intelligent Environments, Ulm, Germany,
2007, pp. 40–47.

[7] M. Mühlhäuser, “Smart Products: An introduction,” in Constructing
Ambient Intelligence: AmI 2007 Workshops. Springer Berlin /
Heidelberg, 2007, pp. 158–164.

[8] EURIDICE, “EURopean Inter-Disciplinary research on Intelligent
Cargo for Efficient, safe and environment-friendly logistics,” 2011, [last
accessed: 05-16-14]. [Online]. Available: http://www.euridice-project.
eu/index.php/web/pubdocs/58

[9] iCargo, “Intelligent Cargo in Efficient and Suitable Global Logistics
Operations,” 2014, [last accessed: 05-16-14]. [Online]. Available:
http://i-cargo.eu/type/publications

[10] stuffl UG, “Anythinx,” 2014, [last accessed: 05-16-14]. [Online].
Available: http://www.anythinx.de/

[11] qipp AG, “qipp,” 2014, [last accessed: 05-16-14]. [Online]. Available:
https://www.qipp.com/en

[12] EVRYTHNG Ltd., “EVRYTHNG Every Thing Connected,” http://
evrythng.com/, [last accessed: 05-16-2014].

[13] Xively (by LogMein Inc.), “Xively - Internet of Things Platform
Connecting Devices and Apps for Real-Time Control and Data Storage,”
http://xively.com/, [last accessed: 05-16-2014].

[14] A. Kröner, J. Haupert, M. Seißler, B. Kiesel, B. Schennerlein, S. Horn,
D. Schreiber, and R. Barthel, “Object memory modeling - W3C incubator
group report,” 2011, [last accessed: 05-16-2014]. [Online]. Available:
http://www.w3.org/2005/Incubator/omm/XGR-omm-20111026/

[15] R. Barthel, A. Kröner, and J. Haupert, “Mobile interactions with digital
object memories,” Pervasive and Mobile Computing, vol. 9, Issue 2,
2013, pp. 281–294.

[16] M. Mealling and R. Denenberg, “RFC 3305: Uniform resource identifiers
(uris), urls, and uniform resource names (urns): Clarifications and
recommendations,” 2005.

[17] T. Berners-Lee, R. Fielding, and L. Masinter, “RFC 3986: Uniform
resource identifier (uri): Generic syntax,” 2005.

[18] O. Rosenbaum, Das Barcode-Lexikon, ser. Edition advanced. BHV-
Verlag, 1997.

[19] International Organization for Standardization, “Information technology
automatic identification and data capture techniques data matrix bar
code symbology specification,” Geneva, Switzerland, 2006.

[20] ——, “Information technology — automatic identification and data
capture techniques — qr code 2005 bar code symbology specification,”
ISO/IEC 18004:2006, 2006.

84

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[21] ——, “Identification cards - contactless integrated circuit(s) cards -
proximity cards,” ISO/IEC 14443:2000, 2000.

[22] ——, “Near field communication interface and protocol-2,” ISO/IEC
21481 / ECMA-352, 2010.

[23] Bluetooth Special Interest Group, “Bluetooth Specification ,” 2013,
[last accessed: 05-16-14]. [Online]. Available: https://www.bluetooth.
org/en-us/specification/adopted-specifications

[24] IEEE, “802.11: Wireless LANs,” 2014, [last accessed: 05-16-14].
[Online]. Available: http://standards.ieee.org/about/get/802/802.11.html

[25] DublinCore, “DCMI Type Vocabulary,” 2014, [last accessed:
05-16-14]. [Online]. Available: http://dublincore.org/documents/
dcmi-type-vocabulary/#H7

[26] J. Haupert, “DOMeMan: A framework for representation, management,
and utilization of digital object memories,” in 9th International Confer-
ence on Intelligent Environments (IE) 2013, July 18-19, Athens, Greece.
IEEE, 7 2013, pp. 84–91.

[27] ITU-T Recommendation X.509 Version 3, “Information technology -
open systems interconnection - the directory: Authentication framework,”
1997.

[28] B. Brandherm, J. Haupert, A. Kröner, M. Schmitz, and F. Lehmann,
“Demo: Authorized access on and interaction with digital product
memories,” in 8th Annual IEEE International Conference on Pervasive
Computing and Communications, March 29 - April 2, Mannheim,
Germany. IEEE Computer Society, 2010, pp. 838–840.

[29] ——, “Roles and rights management concept with identification by
electronic identity card,” in 8th Annual IEEE International Conference
on Pervasive Computing and Communications, March 29 - April 2,
Mannheim, Germany. IEEE Computer Society, 2010, pp. 768–771.

[30] G. Reinhard, P. Engelhardt, E. Genc, T. Irrenhauser, M. Niehues, M. Ost-
gathe, and K. Reisen, “Einsatz von RFID in der Wertschöpfungskette
- Konsortium entwickelt RFID-basierte hybride Steuerungsarchitektur
und Bewertungsmethode für Wertschöpfungsketten,” RFID im Blick -
Sonderausgabe RFID in der Region München, 3 2011.

[31] N. Schlitter, F. Kähne, S. T. Schilz, and H. Mattke, Operations and

Technology Management, ser. Innovative Logistics Management. Erich
Schmidt Verlag, 2007, vol. 4, ch. Potential and Problems of RFID-Based
Cooperation in a Supply Chain, pp. 147–164.

[32] A. Höh, “Smart Binary Representation For Digital Object Memories,”
Bachelorthesis, Saarland University, 2014.

[33] EPCglobal, “The Pedigree Ratified Standard Version 1.0,” 2007, [last
accessed: 05-16-14]. [Online]. Available: http://www.epcglobalinc.org

[34] D. Eastlake 3rd and T. Hansen, “RFC 6234: US secure hash algorithms
(SHA and SHA-based HMAC and HKDF),” 2011.

[35] Microsoft Corporation, “.NET Gadgeteer,” 2014, [last accessed:
05-16-14]. [Online]. Available: http://www.netmf.com/gadgeteer/

[36] Arduino, “Arduino Project,” 2014, [last accessed: 05-16-14]. [Online].
Available: http://arduino.cc/

[37] B. Brandherm, A. Kröner, and J. Haupert, “Incycling - sustainable
concept for instrumenting everyday commodities,” in Proceedings of the
International Workshop on Networking and Object Memories for the
Internet of Things. Workshop on Digital Object Memories (DOME-11),
located at UbiComp 2011, September 17-21, Peking, China. ACM, 9
2011, pp. 27–28.

[38] B. Brandherm, A. Kröner, J. Haupert, M. Schmitz, F. Lehmann, and
R. Gampfer, “Sustainable instrumentation of everyday commodities -
concepts and tools,” in 10th Annual IEEE International Conference on
Pervasive Computing and Communications, 10th, March 19-23, Lugano,
Switzerland. IEEE Computer Society, 2012, pp. 467 – 470.

[39] WiFi Alliance, “WiFi Direct,” 2010, [last accessed: 05-16-14]. [Online].
Available: http://www.wi-fi.org/discover-wi-fi/wi-fi-direct

[40] International Organization for Standardization, “Information technology
- UPnP device architecture - part 1: UPnP device architecture version
1.0,” ISO/IEC 29341-1:2011, 2011.

[41] M. Deru and S. Bergweiler, “Milky: On-product app for emotional
product to human interactions,” in Proceedings of the 15th International
Conference on Human Computer Interaction with Mobile Devices and
Services, 15th, August 27-30, Munich, Germany. ACM, 2013.

85

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Virtualization as a Driver for the Evolution of the Internet of Things: Remaining 
Challenges and Opportunities Towards Smart Cities 

 

Andreas Merentitis1, Vangelis Gazis1, Eleni Patouni2, Florian Zeiger1, Marco Huber1, Nick Frangiadakis1, and Kostas Mathioudakis1  
1AGT International, Darmstadt, Germany 

2 Department of Informatics & Telecommunications, University of Athens, Athens, Greece 
{amerentitis, vgazis, fzeiger, mhuber,  nfrangiadakis, kmathioudakis}@agtinternational.com 

{elenip}@di.uoa.gr 

 
 

Abstract— Fueled by advances in microelectronics, wireless 
communications and the availability of affordable mobile 
connectivity, the last decade has seen an unprecedented 
proliferation in the number of interconnected devices. This 
evolution is part of the transition to the Internet of Things 
(IoT), which envisions connecting anything at any time and 
place. While it can be argued we are already living in the IoT 
era, the next paradigm shift is already emerging on the 
horizon, targeting yet another order of magnitude increase in 
the number of interconnected devices and promising to bring 
people and processes in the equation. This is particularly 
important towards the vision of Smart Cities, where physical 
infrastructure is complemented by the availability of 
intellectual and social capital, increasing both urban 
competitiveness and quality of life. However, before such a 
paradigm shift can be realized, significant challenges with 
respect to scalability, cooperative communications, energy 
consumption, as well as convergence of sensor and analytics 
trends have to be resolved. In this paper we elaborate on the 
different trends, as well as the remaining open problems and 
we show how Sensor Virtualization Technology, capturing 
both the Virtual Sensors and Virtual Sensors Networks 
aspects, promises to alleviate or resolve these challenges, and 
pave the way towards the evolution of the Internet of Things.  

Keywords- Sensor Networks, Sensor Virtualization; Machine 
to Machine Communications; Internet of Things; Future 
Internet. 

I.  INTRODUCTION  

Technological advances in the fields of sensor 
technology, low power microelectronics, and low energy 
wireless communications paved the way for the emergence 
of Wireless Sensor Networks (WSNs). These networks are 
currently used in a wide range of industrial, civilian and 
military applications, including healthcare applications, 
home automation, earthquake warning, traffic control and 
industrial process monitoring. A WSN is a system 
composed of small, wireless nodes that cooperate on a 
common distributed application under strict energy, cost, 
noise and maintenance constraints [1], [2]. Although many 
interesting applications have been implemented/developed 
for WSNs, further work is required for realizing their full 
potential as “the next big thing” that will revolutionize the 
way we interact with our environment. 

Such promises are particularly important when viewed 
in the context of the global urbanization trend and the 

challenges that accompany it. With 60% of the world 
population projected to live in urban cities by 2025, the 
efficient use of resources becomes a topic of paramount 
importance. Such efficiency calls for situational awareness 
of the Smart City across multiple domains in an 
unprecedented level. 

As a promising step in this direction, during the last 
decade there has been a growing research interest in the 
Internet of Things (IoT), ranked as a disruptive technology, 
according to the US National Intelligence Council [3]. An 
early definition for the IoT envisioned a world where 
computers would relieve humans of the Sisyphean burden of 
data entry, by automatically recording, storing and 
processing all the information relevant to the things 
involved in human activities, while also providing “anytime, 
anyplace [...] connectivity for anything” [4]. 

Beyond offering pervasive connectivity, the IoT 
ecosystem is composed of smart things, objects, and 
applications. This notion of smartness is taking different 
forms in the literature. For example, the user experience of a 
mediated context-aware mobile system which is enabled by 
modern smart phones and is focusing on urban 
environments is presented in [5]. Approaches that support 
the exploitation of semantic technologies in context aware 
smart space applications are described in [6]. The presented 
technologies enable the creation of pervasive computing 
systems. A new flow-based programming paradigm for 
smart objects and the IoT is introduced in [7]. New 
workflow models suitable for embedded devices have been 
proposed, as well as orchestration techniques for the ad-hoc 
combination of smart objects. Smart spaces are discussed in 
[8] as a way to meet challenges such as interoperability, 
information processing, security and privacy towards the 
deployment of IoT.  

Combining the notions of pervasive connectivity and 
smartness, different understandings and definitions have 
been reported in the literature [9]-[11] regarding what the 
Internet of Things is about. However, while it is possible to 
argue that the IoT is already here [12], the next (r)evolutions 
are already on the horizon, ranging from the open effort to 
the Future Internet and the rapidly spawning Smart City 
projects around the world up to industry driven initiatives. 
The latter include efforts such as the National Instruments 
Data Acquisition Technology Outlook [13], the General 
Electric concept of “Industrial Internet” [14], and the 

86

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



CISCO initiated “Internet of Everything” [12], [15]. Such 
initiatives have differences in flavor and focus; yet, it is 
possible to distil the general trends and enablers that need to 
be in place for successfully realizing the shift to the next 
networking paradigm, whichever form it might take.  

In this paper, we argue that, among these enablers, 
Sensor Network Virtualization is a technology that has the 
potential to augment and unlock advances in several other 
fronts (e.g., scalability, cooperation, low energy solutions 
and convergence of Sensor Network and Data Analytics 
trends) that will pave the way towards this paradigm shift. 
Smart Cities are going to be at the forefront of this paradigm 
shift, therefore a lot of the examples and use cases discussed 
in following Sections are coming from the domain of Smart 
Cities.   

The rest of the paper is organized as follows: Section II 
highlights the main challenges of Smart Cities and the costs 
associated to the lack of data integration across multiple 
verticals. The lack of such data integration capability can be 
seen as a driver for some of the key networking trends that 
are commonly captured in several independent views for the 
next networking paradigm evolution. It finishes with a 
selection of four core areas where significant challenges 
remain unresolved. Section III introduces the Virtualization 
layers and the main functionality that each layer is 
responsible for. It gives also a broad overview of which 
virtualization types promise to address each of the core areas. 
The selected areas and the nature of the challenges in each of 
them are then discussed in more detail in Sections IV-VII. 
Section VIII elaborates on the different aspects of sensor 
infrastructure virtualization. Their advantages are captured 
and the potential of using different virtualization flavors to 
address the challenges described earlier is explained. Finally, 
Section IX concludes the paper. 

II. TOWARDS SMART CITIES: IDENTIFICATION OF 

RELEVANT NETWORKING TRENDS  

Amassing large numbers of people, urban environments 
have long exhibited high population densities and now 
account for more than 50% of the world’s population [16]. 
With 60% of the world population projected to live in urban 
cities by 2025, the number of megacities (i.e., cities with at 
least 10 million people in population) is expected to increase 
also. It is estimated that, by 2023, there will be 30 
megacities globally. Considering that cities currently occupy 
2% of global land area, consume 75% of global energy 
resources and produce 80% of global carbon emissions, the 
benefit of even marginally better efficiency in their 
operation will be substantial [16]. For instance, the 
Confederation of British Industries (CBI) estimates that the 
cost of road congestion in the UK is GBP 20 billion (i.e., 
USD 38 billion) annually. In London alone, introduction of 
an integrated ICT solution for traffic management resulted 
in a 20% reduction of street traffic, 150 thousand tons of 
CO2 less emissions per year and a 37% acceleration in 
traffic flow [17]. 

Being unprecedentedly dense venues for the interactions 
(economic, social and of other kind) between people, goods 
and services, megacities also entail significant challenges. 
These relate to the efficient use of resources across multiple 
domains (e.g., energy supply and demand, building and site 
management, public and private transportation, healthcare, 
safety and security, etc.). To address these challenges, a 
more intelligent approach in managing assets and 
coordinating the use of resources is envisioned, based on the 
embodiment of sensor and actuator technologies throughout 
the city fabric in a pervasive manner. This ubiquitous fabric 
will be supported by flexible communication networks and 
the ample processing capacity of data centers. 

By aggregating data feeds and applying data processing 
algorithms to reveal the main relationships in the data, the 
situational awareness of the Smart City across multiple 
domains (e.g., transportation, safety, health, energy, etc.) at 
the executive level is greatly facilitated. For instance, by 
leveraging its open data initiative, the city of London 
provides a dashboard application demonstrating the kind of 
high-level overview and insight achievable by cross-silo 
data integration and innovative analytic applications [18]. 
However, this vision entails significant challenges on the 
design of the sensory fabric and the application model 
through which sensory data are discovered, accessed and 
consumed. It is currently understood that an intermediary 
layer of abstraction between the actual sensors and the 
applications utilizing them will be necessary [19].  

The role of such a layer is to abstract the peculiarities of 
the sensor hardware from the applications, thus facilitating 
interoperability; to provide opportunities for forming shared 
resource pools, therefore increasing the efficiency and 
scalability of the system; and to allow creation of sandboxed 
islands that enforce the least privilege principle, thus 
enabling privacy protection (e.g., particularly important for 
a lot of healthcare applications in Smart Cities). Related 
activities towards such goals have been in the scope of 
various initiatives, focusing both on the scalable 
interconnection part, as well as on efficiency and privacy 
topics. All of these objectives have to be supported in a 
transparent way through well-established and standardized 
discovery and negotiation protocols, so that the devices can 
autonomously perform them with only minimal or no 
human intervention. 

In parallel with the efforts towards efficiently and 
transparently interconnecting a myriad of smart devices 
according to the IoT vision, the Future Internet stands as a 
general term for research activities and communication 
paradigms towards a more up to date and efficient Internet 
architecture. Approaches towards the “Future Internet” 
cover the full range from small, incremental evolutionary 
steps up to complete redesigns (clean slate) of the core 
architecture and the underlying mechanisms, where the 
applied technologies are not to be limited by existing 
standards or paradigms (e.g., the client server networking 
model might evolve into co-operative peer structures). In 

87

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



general, most of the work in this area is summarized by the 
Future Internet Assembly (FIA) [20], where it is underlined 
that whatever form the Future Internet may take, a set of 
core principles need to be preserved: 
• Heterogeneity support principle, refers to supporting a 

plethora of devices and nodes, scheduling algorithms 
and queue management mechanisms, routing protocols, 
levels of multiplexing, protocol versions, underlying 
link layers or even administrative domains and pricing 
structures. 

• Scalability and Amplification principle, describing the 
ability of a computational system to continue operating 
under well specified bounds when its input is increased 
in size or volume. 

• Robustness principle, ensuring that each protocol 
implementation must transparently interoperate with 
other implementations. 

• Loose Coupling principle, describing a method of 
interconnecting architectural components of a system so 
that those components depend on each other to the least 
extent practicable. 

• Locality principle, which in the computer science 
domain focuses on the design of thrashing-proof, self-
regulating, and robust logical systems. 

However, apart from these principles that should only 
undergo small incremental changes (if any) a list of 
additional principles that need to be significantly 
adapted/relaxed or augmented is also provided. Here, we 
focus on a subset of this list that is related or overlapping to 
the IoT evolution: 
• Keep it simple, but not “stupid” principle [20], which 

refers to the fact that in current Internet design, the 
complexity belongs always at the edges, while in a 
more flexible architecture inherently supporting 
heterogeneous “Things” this might not always be the 
case. 

• Polymorphism principle, which refers to the ability to 
manipulate objects of various classes, and invoke 
methods on an object without knowing that object’s 
type. The idea is to extend this principle to allow the 
same abstract components exhibiting different 
functional and non-functional behavior in case of 
changing environments or circumstances [20]. 

• Unambiguous naming and addressing principle, 
establishing that protocols are independent of the 
hardware medium and hardware addressing scheme. 
The proposal of the FIA initiative is to extend this 
principle in order to also capture the data and services. 

Even more recently than the FIA initiative, CISCO has 
evangelized the Internet of Everything (IoE) as the next 
wave in the evolution of the networking paradigms [12]. 
With a clear all-IP focus, building on the same principles as 
Machine to Machine Communications (M2M) and the 
Internet of Things but extending them, the IoE envisions to 

increase the number of connections by yet another order of 
magnitude (from ~10 billion currently connected “Things”). 
However, arguably the biggest innovation is that it targets to 
include processes and people in the loop, facilitating and 
enabling communications that are more relevant in order to 
offer new capabilities, richer experiences and unprecedented 
economic opportunities.  

In all the previous activities, as well as in various 
independent research efforts, it has already being identified 
that in future large-scale heterogeneous networks, the 
adoption of mechanisms achieving scalable, predictable and 
self-adaptive network behavior (“more relevant” in CISCO 
IoE terminology, “pushing the boundaries” in the GE 
Industrial Internet notion) will be a key enabler [12], [14], 
[15], [21], [22]. At the same time, with systems becoming 
continuously more complex in terms of scale and 
functionality, reliability and interoperability are getting 
increasingly important. Therefore, techniques for achieving 
dependable system operation under cost and energy 
constraints will be an important evolutionary step [2], [21], 
[22].  

In the majority of cases, wireless network development 
is guided by horizontal mass-markets (“one size fits all”). 
On the other hand, typically different verticals and niche 
markets require dedicated applications [22]. Consequently, 
the deployment or evolution of a wireless network in these 
areas often demands for expensive infrastructure 
replacement. Moreover, extending system and network 
capabilities, switching services or adopting the purpose of 
an operational network consisting of heterogeneous 
“Things” usually calls for costly (manual) reconfigurations 
and upgrades, while it often results in temporary 
unavailability of system services. Both of these properties 
are not attractive in a Smart City environment, while the 
second one is strictly unacceptable for a large number of 
relative vertical areas that form the backbone of the city 
infrastructure, such as water and electricity supply networks, 
Intelligent Transportation Systems, etc.  

On the other hand, dynamic changes during operation 
typically allow for only a limited subset or scope of updates, 
which may not be sufficient for example if the goals of the 
network have to be radically changed in order to support a 
mega-event or provide emergency services in case of a 
catastrophic event such as an earthquake or flood. Even in 
normal operation, the ability to evolve significantly the 
objectives of the networking infrastructure over a period of 
time might provide opportunities for cutting costs, making it 
easier to integrate new systems as they become available or 
change the scope of a network to a secondary objective, 
while still being able to provide backup capacity to the new 
primary network in case it is required. Solutions for such 
problems require capabilities for spontaneous ad-hoc 
cooperation between objects, self-adaptive behavior, 
exploitation of dynamic information, predictability of non-
functional properties (e.g., energy consumption), and on-
the-fly reconfiguration [21], [22], [23]. 

88

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Summarizing, first and foremost, scalability is the key 
enabler for facilitating the (r)evolution of the Future Internet 
as the number of interconnected devices is expected to rise 
by yet another order of magnitude. The vast majority of 
these devices will be smart sensors with relatively limited 
computation resources. Thus, key challenges lie in efficient 
cooperation of heterogeneous network elements in order to 
realize advanced capabilities and services. Furthermore, 
innovations to low energy solutions create an attractive 
business case by offering benefits in terms of operational 
cost, long-term product reliability and increased lifetime of 
wireless and mobile elements (especially relevant for a 
significant portion of the myriad of electronic “Things” that 
will be battery powered in the Smart City environment). 
Last but not least, as the number of interconnected devices 
will increase a convergence of the Sensor Network and 
Data Analytics trends is required for effectively bringing 
processes and people into the equation. Following a short 
description of the different virtualization levels, an overview 
of the respective trends and key open issues is provided in 
the sequel of this section. 

III.  V IRTUALISATION LEVELS  

The challenges identified in Section II for the evolution 
of Internet of Things require solutions for the scalability, 
data isolation and generation of relevant information at the 
end-user side. The latter will inevitably trigger changes at 
the network level, to handle performance issues as well as 
network/resource management technical challenges related 
to the vast number of interconnected devices and huge 
amount of generated data. Thus, this analysis addresses the 
benefits of virtualization at the end-user level, 
complemented by related requirements at the network side.  

Several types of virtualization can be distinguished at 
both the network and the end user side, including Virtual 
Machines and OS Virtualization, Sensor Virtualization, and 
Sensor Network Virtualization [24]. While the first two types 
have found their way into mainstream applications and are 
arguably the driving forces behind the cloud computing 
paradigm, the other two types are still in their infancy. In this 
work, we investigate sensor virtualization from the 
perspective of extracting relevant information from a large 
network of heterogeneous sensors, in a secure, efficient, and 
device-agnostic way. 

The end-user side addresses the interconnection of the 
different user hardware appliances/things (e.g., sensor or 
embedded devices) and is closely related to the evolution of 
the Internet of Things. However, the biggest breakthrough 
envisioned in this part is to include processes and people in 
the loop, enabling communications that are more relevant in 
order to offer new capabilities, richer experiences and 
unprecedented economic opportunities. To pave the way for 
this vision, sensor virtualization will play an important role 
towards: (1) addressing scalability challenges in the 
interconnection, control and management of a plethora of 
heterogeneous smart things, (2) promoting cooperation 
between the different elements in an energy efficient way, 

and (3) providing a basis over which the data analytics and 
sensor network trends can evolve and converge, independent 
of manufacturer-specific hardware or software perks [1].  

At the network side, virtualisation implements the 
abstraction of network elements and transport resources, as 
well as their combination into a common pool, possibly 
distributed among different network locations. When a static 
network location is considered, the physical resources of a 
single network element are partitioned to form virtual 
resources. The distributed case is realised through the 
relocation of specific network functions to standard hardware 
servers that can be placed anywhere in the network; in 
addition, the separation between physical resources and 
logical services of network elements is possible [25].  

In order to realize this separation, the Network 
Infrastructure Virtualization layer supports resource 
reusability and flexible resource pooling at the PHY and 
MAC layers. Its main purpose is to facilitate efficient usage 
of the network resources and not to abstract and aggregate 
their management from a central point. Thus, it facilitates 
the virtualization at the end-user side. 

In the end-user side we introduce the Thin Software 
Virtualization layer, to support dynamic formulation, 
merging and splitting of sensor network subsets that serve 
different applications and are possibly administered by 
different entities. This software is embedded in the end-user 
devices. It caters for (1) interoperability of heterogeneous 
sensors from different vendors, (2) exposure of the sensor 
basic functionality to the data consumer and sensor 
assignment to tasks, (3) data isolation and enforcement of 
the least privilege properties, and (4) collaboration with 
other sensors and/or consideration of analytic models that 
connect the underlying phenomena so that the sensed data 
can be transformed to relevant information, produced and 
transmitted on demand.  

 
Figure 1: Virtualization layers and supporting functions 

In addition, we propose the introduction of the following 
functionality within the layers (Figure 1): a) the Energy 
Management function, which spans across both the end-user 
and the network side - at the end-user side, an example of 

89

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



such functionality are the various LEACH variants or similar 
protocols that can be part of the node operating system; b) 
the Resource Management function, which realizes the fair 
dynamic resources allocation to the end-user devices; c) the 
Data Analytics  function, which is responsible for making 
sense of the collected information and extracting value from 
it, and d) the Self-Organization Function, residing at the 
network side to support the dynamic sensor collaboration. 

IV.  SCALABILITY OF COMMUNICATION AND 

MANAGEMENT 

In order to realize the vision of ~50 billion devices 
connected to the Internet by 2020 [12], several scalability 
enablers need to be in place. One can argue that some of 
them are already here and they have driven the evolution 
towards the estimated ~10 billion interconnected devices 
that we have currently reached [12], [15]. Hardware node 
miniaturization, node capability enrichment and cost 
reduction, all fueled by Moore’s law, are a good example of 
such enablers. Processing and storage availability are also 
improving thanks to the cloud computing paradigm. On the 
network protocol naming and addressing part, the transition 
to IPv6 has to take place sooner than later in order to 
facilitate the next jump in number of interconnected devices.    

However, apart from the hardware node and protocol/ 
communication part, efficient management of this huge 
number of heterogeneous devices is also a big challenge. 
The concept of network management traditionally captures 
the methods and tools that are related to the operation, 
administration, maintenance, and provisioning of networked 
systems. In this context, operation is related to keeping the 
network working according to the specifications; 
administration is dealing with resource tracking and 
utilization; maintenance is concerned with changes and 
upgrades to the network infrastructure; and finally 
provisioning addresses dynamic, service-based resource 
allocation. However, catering for heterogeneous sensors and 
actuators deployed in Smart Cities, each with different 
requirements and operational properties calls for a paradigm 
shift; higher layers need to efficiently capture the changing 
dynamics of the systems and the lower layers need to 
transform this information into appropriate action, in an 
autonomous and scalable fashion. 

In recent years, several extensions have been proposed 
to the traditional definition of network management that are 
specifically designed to address the topic of ever increasing 
network management complexity. The Self-Organizing 
Network (SON) notion was introduced by the 3rd 
Generation Partnership Project (3GPP) and targets to 
constitute future radio access networks easier to plan, 
configure, manage, optimize and heal compared to current 
state of the art. In similar direction, Autonomic Networking, 
inspired by the IBM initiated vision for Autonomic 
Computing [26], has been proposed as a means to create 
self-managing networks able to address the rapidly growing 
complexity of modern large scale networks and to enable 

their further growth, far beyond the size of today. The four 
main pillars of Autonomic Networking are self-
configuration, self-healing, self-optimization, and self-
protection, known also as self-CHOP features. However, the 
related technologies have so far found their way mostly in 
cellular networks or in smaller scale ah-hoc sensor 
networks. Frameworks for configurable and, to some extent, 
reusable deployment of SON functionality would be an 
important evolutionary step in the direction of scalable 
network management and lower maintenance cost.  

V. COOPERATIVE COMMUNICATIONS AND NETWORKING  

Close cooperation between network elements is 
increasingly seen as an important driver for further 
evolution. In the FIA recommendations, it is referenced, for 
example, that the traditional client-server model will at least 
partially evolve into co-operative structures between peer 
entities.  Cooperation frameworks cover the full range from 
information exchange, actions coordination and decision 
making. Moreover, such aspects are expected to be utilized 
in different context, thus spanning different communication 
layers and capabilities. A taxonomy of cooperative and 
collaborative frameworks was presented in [21]. 

In order to achieve cooperation between networks in 
multi-stakeholder networking environments, proper 
incentives need to be in place. Such incentives formulate the 
expected networking benefits that a single network can 
derive from its cooperation with another. Networks are only 
motivated to cooperate with other networks when this 
cooperation improves their performance according to such 
incentives [21]. However, in order to be effective and 
support generalization in a large scale dynamic 
environment, the incentives should not express low-level 
performance metrics, but instead indicate high level 
functional and network requirements. An incentive 
formulates a reason for cooperation between networks (i.e., 
if cooperation with another network can improve this high 
level objective, cooperation might be viable). Example 
incentives are (i) increasing coverage (to reach more 
clients), (ii) reduce energy consumption (to increase battery 
life), and (iii) increasing QoS guarantees (higher throughput, 
higher reliability, lower delay, etc.), among others [21]. 

Deciding, however, on the most beneficial cooperation 
settings requires mechanisms such as negotiation [21], [27]. 
During negotiations, independent devices or complete 
networks with the required capabilities are identified and the 
utility of the cooperation is derived also as part of the 
cooperation incentive [28], [29], [30]. While significant 
research efforts have been invested in this area, large scale 
commercial application is still limited. Variations in the 
realization of the cooperation mechanisms and compatibility 
problems between the early products of different vendors 
are among the more important inhibitors; therefore ways to 
alleviate them will be particularly beneficial.  

90

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



VI.  LOW ENERGY SOLUTIONS 

Energy efficiency is commonly perceived as one of the 
most important design and performance factors of a 
Wireless Sensor Network (WSN). This fact is only expected 
to increase in relevance as a myriad of additional mobile 
and portable devices will be connected to the Future 
Internet. The desired low energy behavior can be achieved 
by optimizing the sensor node as well as the communication 
protocol [31]. The goal is to reduce energy consumption 
and, consequently, increase the lifetime of the system.  

At the level of the independent nodes, the fundamental 
limit of the energy requirements is calculated by taking into 
account the energy consumption of every hardware (HW) 
component on a WSN node like sensors and conditioning 
electronic circuitry, processing and storage, radio, etc. The 
components selected in the final node architecture will have 
a significant impact on the nodes’ capabilities and lifetime. 
Thus, a holistic low-power system design should be pursued 
from the very beginning, creating the correct HW 
infrastructure base for further network, protocol, software 
and algorithmic energy efficiency optimization.  

This holistic low-power system approach can further 
incorporate methods for energy harvesting from the 
environment in order to utilize ambient energy sources (e.g., 
mechanical, thermal, radiant and chemical) that will allow 
extending lifetime and minimizing or possibly removing the 
need for battery replacement. Such a scenario would enable 
the development of autonomous wireless sensor networks 
with theoretically unlimited lifetime. Still focused on the 
sensor node level, but on the algorithmic part, ongoing 
efforts are targeting to design the sensor nodes in an 
inherent power-aware approach. The goal is to develop an 
adaptable system that is able to prioritize either system 
lifetime or output quality at the user’s request.  

Optimizations for low energy are a relatively mature 
field that has been (in different forms) around for a long 
time. For example, the radio communication and network 
protocol part is a major source of energy consumption that 
is often targeted for optimization. However, most of the 
available solutions are not directly transferable across 
different verticals and application domains.  

Optimizing the network protocol is typically done with 
respect to a specific application domain, usually to favor 
bursts of transmission followed by cycles of low or no 
activity. As the range of transmission is also a very 
important parameter, low energy operation of a specific 
protocol version is often achieved only for a selected range, 
whereas other protocols are more efficient beyond that 
range. Thus, a certain low energy protocol is typically 
“optimal” only with respect to a specific communication 
range and bandwidth, while other solutions might be 
preferable outside of this area. This implies that making the 
best selection usually requires a thorough understanding of 
the specific requirements and peculiarities of the targeted 
application domain and environment, so that the energy 
optimization can be appropriately tailored to these 

parameters. Therefore, a more transparent on-the-fly 
mechanism for node reconfigurations between different 
Pareto-optimal states is required to enhance sensor node 
reusability in the context of different vertical applications.  

VII.  CONVERGENCE OF THE SENSOR NETWORK AND DATA 

ANALYTICS TRENDS 

In order to efficiently bring together “Things” with 
processes and people as envisioned by the Internet of 
Everything, connected “Things” will need to share higher-
level information with distributed peer entities, as well as 
with centralized processing units or people for further 
evaluation and decision making. This transformation from 
data sharing to information sharing is considered as 
particularly important in the IoE notion because it will 
facilitate faster, more intelligent decisions, as well as more 
effective control of our environment [12]. Similarly, in the 
field of industrial automation, there is clear movement 
towards keeping the pace with the rapidly increasing data 
footprint by a paradigm shift in data acquisition and 
processing [13].  

In parallel with these activities, a significant evolution is 
taking place in the data analytics domain. In this case, the 
trend is to evolve from “descriptive analytics” that capture 
what is happening to “predictive analytics” that describe 
what is likely to happen. Similarly, a little further down the 
road is the progress from “diagnostic analytics” that 
describe why something is happening to “prescriptive 
analytics” that describe what should happen, i.e., what is the 
optimal response. Fusion of “hard” data coming from 
sensors with “soft” data from, e.g., social networks (often 
called also soft fusion or social fusion) is another important 
trend in this domain, which is already going in the direction 
of bringing humans into the equation. “Pervasive analytics” 
(in some cases even referenced as “butler analytics”) are 
envisioning to bring the power of analytics in an ever 
increasing range of day-to-day applications and make them 
available to non-experts. The relation between sensor and 
analytic trends is depicted in Figure 2. 

 
Figure 2: Convergence between sensor and analytic trends 

At the same time, as the amount of data generated by 
this ever increasing number of sensors (augmented also by 

91

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the social fusion trend) reaches new heights, the defining 
3Vs of Big Data (Volume, Variety and Velocity) require 
revisiting in order to cope with the new requirements. In this 
direction, IBM has added Veracity as a fourth dimension 
that captures the uncertainty of the data. And while Volume 
and Velocity are to some extent infrastructure planning 
issues, a fundamental paradigm shift might be needed in 
order to address Variety and Veracity in a generic 
framework that is able to handle the requirements of all the 
data types without the need to develop from scratch 
algorithms for each of them. Deep Learning is a novel idea 
in machine learning that promises to do exactly that, 
extracting the relevant information (features) from different 
types of raw data, without the need for (expensive and time 
consuming) manual feature engineering by human experts 
[32]. 

Although data sharing and access to sensor information 
enables a number of new and innovative applications 
beneficial for users, a major effort is needed to ensure that 
data protection and privacy policies are met. In order to 
leverage the full potential of IoT, work needs to be done 
beyond identity and access management – trust and 
reputation systems need to be introduced which can serve 
the needs of widely distributed and highly scalable mobile 
networks, while offering mechanisms to preserve privacy 
for the users.  

Whenever users are accessing Smart City services in the 
IoT enabled world, identity related data must be handled 
according to existing regulations and principles. In order for 
the system to work efficiently at full capacity, sensitive data 
need to be exchanged between multiple devices. The 
challenges in the future IoE environment are even more 
complex as protecting privacy is evolving to a continuous 
effort. For example, privacy protection cannot stop with the 
end of the users’ session as the focus is not only on 
protecting the identity on short term. Location of users, 
content of queries, as well as the footprint everybody is 
creating by using services in IoT is of interest [33]. Unless 
proper precautions are taken, aspects such as people 
location, previously considered very hard to trace, will 
become traceable. At the same time, an adversary 
employing an IoT enabled attack will have a vast capacity 
for data collection and thus a large attack surface. The 
research community is faced with new challenges that have 
yet to be fully addressed [34].   

A nice example of a future Smart City / IoT service is 
participatory sensing enabled environmental monitoring. In 
this scenario people are encouraged to provide data on 
pollution throughout the city using measurements from 
personal mobile sensors. Even this simple example shows 
how easy the users’ location together with a measurement 
timestamp can give more information than originally 
intended. The success of numerous Internet of things 
applications of similar nature will depend on the ability of 
contributors to preserve their privacy while maintaining 
accountability [35]. Despite the numerous challenges, some 

important steps in the required direction have already been 
made. New techniques combining anonymization, 
pseudonyms, and statistical disclosure control, will allow 
users to keep track of their privacy footprint [36], including 
also the information they are disclosing indirectly.  

Having processed the IoT generated information by 
some advanced data analytics algorithm, one scenario is that 
certain actions are then automatically realized without 
human intervention. However, there are cases that the final 
decision process might still be desirable to be done by a 
human expert, especially in the context of Smart Cities in 
the IoE vision where people are also an important part of the 
equation. In the latter case, Visual Analytics are coming into 
play in order to make the information perceptible to 
humans. Visual Analytics are a combination of machine 
learning tools and advanced information visualization 
methods with the goal of facilitating analytical reasoning. 
Such techniques might be for example of particular interest 
in the detection of trends and their possible causes inside an 
ocean of unstructured sensor data, so that informed 
decisions that combine human judgment and relevant data 
evidence can be made.  

Nevertheless, in order to apply all these advanced Data 
and Visual Analytics algorithms major impediments such as 
the limitations in bandwidth and storage (for example when 
dealing with devices generating a large data footprint, such 
as video camera streams) have to be tackled.  To overcome 
these limitations arising from the current systems for M2M 
applications, novel approaches have been proposed which 
are based on the following principle: storing and processing 
the data as close as possible, both in space and time, to 
where they are generated and consumed, hence enabling the 
so-called analytics at the edge [37].  

It is worth mentioning that developments in pervasive 
analytics and analytics at the edge go hand in hand, as both 
are aiming for migrating analytics capability to the 
“Things”, i.e., towards the edge of the network. An 
indicative realization of those proposals will be defined by a 
content-centric platform distributed over a local cloud, 
hosted by the gateways or advanced edge devices with 
process and storage capabilities.  This approach will not 
only alleviate the big-data problem as data is processed 
where it is created, but also will reduce network traffic and 
communication costs and can facilitate faster reactions when 
an event or an alarm is generated. 

The desired destination in the convergence of IoT and 
Data Analytics is a framework of abundant sensor 
information taping at the “anytime, anyplace […] 
connectivity for anything” notion of the IoT combined with 
advanced analytic models that can provide real insight (in 
the form of human-consumable prediction and 
recommendation) for any situation and usable by everyone.  

However, significant steps need to be taken before this 
vision is realized. “Analytics” is a very broad and varying 
field, and while wrapping them in a user friendly package is 
easy, using them in an irresponsive way without knowledge 

92

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



or respect for possible limitations or model constraints, can 
be the recipe for disaster [38]. Frameworks that can provide 
different tradeoffs of accuracy, execution time and easiness 
to interpret, enforce privacy policies, and at least make the 
users aware of model limitations and constraints would be 
an important driver towards approaching this vision.      

VIII.  SENSOR INFRASTRUCTURE VIRTUALIZATION AS A 

DRIVER TOWARDS THE FUTURE INTERNET 

Achieving a significant progress in the four open 
challenges identified in the previous sections calls for 
frameworks that either facilitate innovation or minimize the 
cost/risk for each of the four pillars identified previously 
(scalability, cooperation, low energy solutions and 
convergence of Sensor Network and Data Analytics trends). 
It is also important to underline that these pillars are not 
completely autonomous, but are mutually dependent. For 
example, one of the objectives of cooperation might be low 
energy operation, while the cooperation process by itself has 
to be scalable. Therefore, an important constraint is that 
possible solutions for each challenge are as transparent as 
possible to the other topics, to avoid setbacks in other fronts. 
A promising paradigm for addressing challenges in terms of 
decreasing the cost/risk as well as facilitating innovation in 
some of the topics identified previously is virtualization, as 
discussed in the Virtualization Levels Section.  

Virtual Sensor Networks (VSNs) are emerging as a 
novel form of collaborative wireless sensor networks [39] 
that can establish the basis over which the evolution from 
connecting “Things” to the efficient interaction of the 
“Things” with processes and people can be realized [1]. A 
VSN can be formed by supporting logical connectivity 
among collaborative sensors [24], [39], [40]. Nodes are 
grouped into different VSNs based on the phenomenon they 
track (e.g., number of cars vs. NO2 concentration) or the 
task they perform (e.g., environmental monitoring vs. traffic 
control). VSNs are expected to provide the protocol support 
for formation, usage, adaptation, and maintenance of the 
subset of sensors collaborating on a specific task(s).  

Even nodes that do not sense the particular 
event/phenomenon (directly or indirectly by the notion of 
Virtual Sensor - VS) could be part of a VSN if they permit 
sensing nodes to communicate through them. Thus, VSNs 
can utilize intermediate nodes, networks, or other VSNs to 
deliver messages across VSN members. The same physical 
infrastructure can be reused for multiple applications, 
promoting scalability and resource efficiency. In addition, 
VSN at the end user side allows for devices sharing among 
several virtual networks serving different 
purposes/applications. This concept builds upon the Service 
Oriented Architecture (SOA) paradigm, which provides a 
flexible infrastructure and processing environment for 
service-based software design. SOA lays its foundation in 
service provision to end-user applications/other services 
distributed in a network and comprises functionality for 
describing, publishing and discovering services as well as 

service composition and management [41], [42]. Using 
SOA, each end-user device may use one or more of the 
available services independent of the other devices. In a 
similar manner, respective functionality will be supported 
by the VSN at the end user side for the mapping of the 
devices to the virtual networks, the aggregation of the 
application based on the functions available in each node 
and the over VSN management. All of these architectural 
considerations are relevant for creating a unified situational 
awareness picture of the Smart City, as discussed in Section 
II. 

The VSNs may also evolve into a dynamically varying 
subset of sensor nodes (e.g., when a phenomenon develops 
in the spatial domain, the sensors that can detect it change 
over time). Similarly, the subset of the users or processes 
having access rights to different subsets of the VSN can 
vary (e.g., the people that have access to the network change 
with time or specific operations on a sensor network subset 
are only available to specific groups of people based on 
their role, etc.). This node grouping, merging and splitting 
property makes it easier to define, apply, and update policies 
(e.g., least privilege access) based on conceptual models 
rather than by configuring each of the myriad nodes 
independently. 

Having alleviated part of the scalability and information 
protection/privacy requirements through the VSN concept is 
a good starting point for progressing on an even more 
ambitious front: going from data exchange between sensors 
to the sharing of relevant information, produced on the spot 
as and when required, so that it can be consumed on demand 
by processes and people. This paradigm is also promising to 
address the transmission and processing challenges that 
traditional large scale sensor installations face. The latter 
include various Big Data scalability issues with respect to 
the centralized gathering, logging and processing of the 
sensor data. The Virtual Sensor notion is instrumental in this 
effort.  

In this paper, we use the term Virtual Sensor (VS) to 
refer to a software entity that can serve as an aggregation 
point for multiple sensors, using physical sensor entities and 
a computational model to combine their measurements [1]. 
The VS can be a thin layer of virtualization software that is 
executed on physical sensors (often referred as embedded 
hypervisor) or it can be a mathematical model for 
aggregating information residing in a sensor management 
platform similar to [41].  

These different realizations of the VS notion face 
different types of challenges. For example, centralized or 
hybrid semi-centralized solutions based on analytic engines 
have to address the challenges of data fusion from 
heterogeneous sources, both functional (different credibility 
levels of the sensors, co-dependent sensor observations, 
difficulty to link human information needs to sensor control, 
etc.) and non-functional (scalability and performance 
problems, security and privacy requirements, etc.). It should 
be noted at this point that the non-functional requirements 

93

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



such as scalability and privacy can prove critical in a Smart 
City context were a multitude of private and public devices 
need to interoperate and exchange potentially sensitive 
information.  

At the same time, the embedded hypervisors have to 
cope with the integrated nature of embedded systems, and 
the related need for isolated functional blocks within the 
system to communicate rapidly, to achieve real-
time/deterministic performance, and to meet a wide range of 
security and reliability requirements [2], [44]. In this 
context, bringing more processing capacity and intelligence 
in the end devices is both inevitable and necessary in order 
to cope with scalability challenges [21]. The related 
analytics at the edge effort (see Section VII) is focusing on 
realizing this transition from centralized to (semi)distributed 
analytics. 

However, despite the different types of challenges, both 
embedded hypervisors and analytically/computationally 
realized virtual sensors share a number of key properties. 
First and foremost, the VS is doing more than interpolating 
values of physical sensors measuring the same phenomenon, 
as translation between different types of physical sensors is 
a far more interesting topic when models for the relations 
between the underlying phenomena are available. 
Furthermore, such models can even be learned by data over 
time in a (partially) unsupervised manner, according to the 
Deep Learning paradigm [32] as indicated in Section VII. 

An interesting use case for this translation process in an 
urban setting is the estimation of car pollution based on a 

model that combines car counting (e.g., by induction loops 
or cameras) and weather conditions, while possibly utilizing 
also the information from the few available pollution 
sensors [1]. In this case, the VS can be configured to report 
periodically the estimated pollution value and give a 
warning if the pollution is above certain regulations 
(relevant information), instead of continuously reporting all 
the data. 

Another example that is applicable in smart grid 
scenarios is the calculation of electric grid parameters (e.g., 
the load on given points in the transmission network, or the 
sag of transmission lines). Such information can be deduced 
by the Virtual Sensor indirectly from correlated values and a 
model of the related phenomena, even with a sparse network 
of different sensors (e.g., voltage and temperature sensors 
for the sag case, coupled with measurements of wind speed 
from a nearby weather station). Again the VS can issue 
warnings or alerts when some dynamic threshold values are 
exceeded instead of producing and transmitting all the 
information continuously. It is important to note that both 
the embedded hypervisor and the platform-based 
realizations of Virtual Sensors can employ state of the art 
signal processing techniques such as compressive sensing 
(for efficiently reconstructing a signal from relatively few 
measurements taking advantage of sparseness properties) or 
robust statistics (for copying with outliers, impulsive 
interference, etc.). 

  

 
Figure 3: Sensor Infrastructure Virtulization depicted over the various dimensions of cooperative decision making and control.  

94

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
At their core, VSNs and VS are building on and/or 

extending existing collaborative networking paradigms, 
therefore classifying them with respect to the ways that 
cooperation is realized in more conventional cooperative 
communication schemes is of great value. Taking into 
consideration the properties of Virtual Sensors and VSNs 
discussed previously, an updated model of the 3D 
cooperative methods taxonomy introduced in [21] that also 
captures the different sensor-level virtualization aspects is 
provided below. Figure 3 depicts the scope of the 
cooperation as planes in a 3D space. Specifically, the 3 axis 
are: 1) information exchange, with the extreme values being 
independent sensing and full context exchange, 2) decision 
and configuration control with the extreme values being 
independent actions and fully coordinated actions, and 3) 
layer mechanisms, with the extreme values being upper layer 
and lower layer mechanisms.  

Each of these dimensions is being associated to a set of 
enablers and technical areas [1]. For example, cross-layer 
coordination spans the range of medium and low layer 
mechanisms, it requires a high information exchange level, 
and the level of coordination varies from medium/high to 
very high. Similarly, Virtual Sensors are depicted in the 
representation as a 3D cloud that spans medium to upper 
layer mechanisms. This cloud covers low/medium to high 
information exchange (because a VS can be either realized 
on the nodes as thin virtualization software or implemented 
as an aggregation software component running in a 
centralized platform). Finally, the cloud is mostly touching 
the area around medium action coordination since the state 
of the art efforts are mainly focusing more on the sensing 
rather than the actuation. The cloud that represents a VS can 
therefore expand to cover more of the axis that represents 
actions, in case virtualized actuation becomes more relevant 
in the future. 

IX. CONCLUSION 

The rapid proliferation in the number of devices 
connected to the Internet that occurred during the last 
decade is expected to continue, targeting yet another order 
of magnitude increase and promising to bring people and 
processes in the equation. However, in order to realize this 
paradigm shift, important challenges with respect to 
scalability, cooperative communications, energy 
consumption, as well convergence of sensor and analytics 
trends need to be addressed. In this paper, we have 
elaborated on the different flavors of Sensor Infrastructure 
Virtualization as a powerful enabler that can pave the way 
towards the next evolution of the IoT. The latter is expected 
to trigger disruptive innovation across different domains, 
laying the foundation for the Smart Cities of the future. 

ACKNOWLEDGMENT  

Part of this work has been performed under the research 
project FutureNET. The research project is implemented 
within the framework of the Action "Supporting 

Postdoctoral Researchers" of the Operational Program 
"Education and Lifelong Learning" (Action’s Beneficiary: 
General Secretariat for Research and Technology), and is 
co-financed by the European Social Fund (ESF) and the 
Greek State. 

REFERENCES 
[1] A. Merentitis, et al., “WSN Trends: sensor infrastructure 

virtualization as a driver towards the evolution of the Internet of 
Things,” International Conference on Mobile Ubiquitous Computing, 
Systems, Services and Technologies (UBICOMM), pp. 113-118, 
September 29 - October 3, 2013, Porto, Portugal. 

[2] A. Merentitis, N. Kranitis, A. Paschalis, and D. Gizopoulos, “Low 
energy on-line self-test of embedded processors in dependable WSN 
nodes,” IEEE Transactions on Dependable and Secure Computing, 
2011, vol. 9,  issue 1, pp. 86-100. 

[3] National Intelligence Council, “Disruptive civil technologies: six 
technologies with potential impacts on US Interests out to 2025,” 
Apr. 2008. [Online]. http://www.fas.org/irp/nic/disruptive.pdf, last 
access: May 2014. 

[4] International Telecommunication Union “The Internet of Things” 
2005. 

[5] J. Kjeldskov, M. Skov, G. Nielsen, S. Thorup, and M. Vestergaard, 
“Digital urban ambience: mediating context on mobile devices in a 
city,” Pervasive and Mobile Computing, vol. 9, issue 5, 2013, pp. 
738–749. 

[6] J. Kiljander, A. Ylisaukko-oja, J. Takalo-Mattila, M. Eteläperä, and 
J.-P. Soininen, “Enabling semantic technology empowered smart 
spaces,” Journal of Computer Networks and Communications, vol. 
2012, 2012, pp. 14. 

[7] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart 
objects as building blocks for the internet of things,” IEEE Internet 
Computing, vol. 14, no. 1, pp. 44–51, Jan. 2010. 

[8] D. Korzun, S. Balandin, A. Gurtov, “Deployment of Smart Spaces in 
Internet of Things: Overview of the Design Challenges, Internet of 
Things, Smart Spaces, and Next Generation Networking, 13th 
International Conference,”  NEW2AN 2013, and 5th Conference, 
ruSMART 2013, Springer, Lecture Notes in Computer Science, vol. 
8121, 2013, pp 48-59. 

[9] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: a 
survey,” Computer Networks, vol. 54, no. 15, 2010, pp. 2787–2805. 
[Online]. 
http://www.sciencedirect.com/science/article/pii/S138912861000156
8, last access: May 2014. 

[10] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, “Internet of 
Things: vision, applications and research challenges,” Ad Hoc 
Networks, vol. 10, no. 7, 2012, pp. 1497–1516. [Online]. 
http://www.sciencedirect.com/science/article/pii/S157087051200067
4, last access: May 2014. 

[11] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of 
Things (IoT): A vision, architectural elements, and future directions,” 
Future Generation Computer Systems, 2013, vol. 29, issue 7, pp. 
1645-1660 [Online]. 
http://www.sciencedirect.com/science/article/pii/S0167739X1300024
1, last access: May 2014. 

[12] D. Evans, “The Internet of Everything: how more relevant and 
valuable connections will change the world”, CISCO White Paper 
[Online]. http://www.cisco.com/web/about/ac79/docs/innov/IoE.pdf, 
last access: May 2014. 

[13] National Instrumnets, Data Acquisition Technology Outlook 2013, 
[Online]. http://www.ni.com/daq-trends/, last access: May 2014. 

[14] P. C. Evans and M. Annunziata, “Industrial Internet: pushing the 
boundaries of minds and machines,” GE White Paper, Nov. 26, 2012, 
[Online]. http://www.ge.com/docs/chapters/Industrial_Internet.pdf, 
last access: July 2013. 

95

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[15] J. Bradley, J. Barbier, and D. Handler, CISCO White Paper, 
“Embracing the Internet of Everything to capture your share of $14.4 
trillion,” 
[Online].http://www.cisco.com/web/about/ac79/docs/innov/IoE_Econ
omy.pdf, last access: May 2014. 

[16] United Nations, “World urbanization prospects 2011 revision,” 
[Online] http://esa.un.org/unup/, last access May 2014. 

[17] The Economist, “Running out of road”, [Online] 
http://www.economist.com/node/8355114, last access May 2014. 

[18] The London Dahsboard, [Online] http://data.london.gov.uk/london-
dashboard, last access: May 2014. 

[19] ETSI technical report, “Machine-to-Machine communications 
(M2M); study on semantic support for M2M data,” ETSI TR 101 
584, 
http://www.etsi.org/deliver/etsi_tr/101500_101599/101584/02.01.01_
60/tr_101584v020101p.pdf, last access: May 2014. 

[20] Future Internet Architecture (FIArch) Group, “Future Internet design 
principles,” January 2012, [Online]. http://www.future-
internet.eu/uploads/media/FIArch_Design_Principles_V1.0.pdf, last 
access: May 2014.  

[21] G. Koudouridis, et al., “Enablers for energy-aware cooperative 
decision and control in wireless networks,” Vehicular Technology 
Conference C2POWER Workshop, May 2011, pp.1-5, Budapest, 
Hungary. 

[22] N. Alonistioti, et al., “Towards self-adaptable, scalable, dependable 
and energy efficient networks: the self-growing concept,” 
UBICOMM, 25-30 October 2010, pp. 324-327, Florence, Italy. 

[23] E. Patouni, A. Lilis, A. Merentitis, N. Alonistioti, C. Beaujean, D. 
Bourse, and E. Nicollet, “Protocol reconfiguration schemes for 
policy-based equipment management,” Vehicular Technology 
Conference (VTC), September 2006, pp.1-5, Montréal, Canada. 

[24] H. M. N. D. Bandara, A. P. Jayasumana, and T. H. Illangasekare, 
“Cluster tree based self organization of virtual sensor networks,” 
GLOBECOM Workshops Nov. 2008, pp.c 1-6, New Orleans USA.  

[25] NGMN Technical Document, “Suggestions on potentil solutions to 
C-RAN by NGMN alliance,” January 2013, version 4.0. 

[26] B. Jacob, R. Lanyon-Hogg, D.K. Nadgir, and A.F. Yassin, 
“A practical guide to the IBM autonomic computing toolkit,” 
IBM, International Technical Support Organization, 2004. 

[27] P. Magdalinos, et al., “A proof of concept architecture for self-
configuring autonomic systems,” ICT Mobile and Wireless 
Communications Summit, June 2008, Stockholm, Sweden. 

[28] K. Chatzikokolakis, R. Arapoglou, A. Merentitis, and N. 
Alonistioti, “Fair power control in cooperative systems based on 
evolutionary techniques,” UBICOMM, September 2012, pp. 111-116 
Barcelona, Spain. 

[29] A. Merentitis and D. Triantafyllopoulou, “Transmission power 
regulation in cooperative cognitive radio systems under 
uncertainties,” International Symposium on Wireless Pervasive 
Computing, (ISWPC), pp. 537-568, 5-7 May 2010, Modena, Italy. 

[30] E. Patouni, B. Fuentes, and N. Alonistioti, “A network and service 
governance framework: case study for efficient load balancing,” in 
the Proceedings of the IEEE 17th International Workshop on 
Computer Aided Modeling and Design of Communication Links and 
Networks 2012 (CAMAD 2012), 17-19 September, Barcelona, Spain. 

[31] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, “Energy 
Conservation in Wireless Sensor Networks: a Survey,” Journal of Ad 
Hoc Networks, vol. 7, issue 3, May, 2009, pp. 537-568. 

[32] G. E. Hinton, “Learning multiple layers ofrepresentation,” Elsevier 
Trends in Cognitive Sciences, 2007, vol. 11, no. 10.  

[33] J. Braun, J. Buchmann, C. Mullan, and A. Wiesmaier, “Long term 
confidentiality: a survey,” Designs, Codes and Cryptography, pp. 1–
20, September 2012. 

[34] I. Barreira, T. Gustavsson, A. Wiesmaier, C. Galan, and S. Gorniak, 
“ENISA Guidelines for trust services providers,” ENISA Guidelines, 
December 2013. 

[35] F. Zeiger and C. Gorecki, “Method and system for preserving privacy 
and accountability,” Application for patent at the European Patent 
Office, EP2592805 . 

[36] R. Steele and A. Clarke, “The Internet of Things and Next-generation 
Public Health Information Systems,” Communications and Network, 
vol. 5 No. 3B, August 2013, doi=10.4236/cn.2013.53B1002. 

[37] Distributed Data Mining and Big Data, Intel White Paper [Online]. 
http://www.intel.com/content/dam/www/public/us/en/documents/whit
e-papers/distributed-data-mining-paper.pdf, last access: July 2013. 

[38] N.N. Taleb, “The Black Swan: the impact of the highly improbable,” 
Random House Digital, Inc., 2010, ISBN 978-1400063512, 
doi=10.1007/s00362-009-0226-8.  

[39] L. Sarakis, T. Zahariadis, H. Leligou, and M. Dohler, “A framework 
for service provisioning in virtual sensor networks,” EURASIP 
Journal on Wireless Communications and Networking 2012, pp. 1-19. 

[40] N. M. M. K. Chowdhury and R. Boutaba, “A survey of network 
virtualization,” Computer Networks, vol. 54, no 5, Apr. 2010, pp. 
862–876. 

[41] R. Berbner, T. Grollius, N. Repp, J. Eckert, O. Heckmann, E. Ortner 
and R. Steinmetz R, “An approach for the Management of Service-
oriented Architecture (SoA)-based Application Systems,” In: 
Proceedings of the Workshop Enter-prise Modelling and Information 
Systems Architectures, EMISA 2005, pp 208-221.  

[42] M.P. Papazoglou, and W-J van den Heuvel. “Service-Oriented 
Computing: State-of-the-Art and Open Research Issues,” IEEE 
Computer. v40 i11 (2003). 

[43] V. Gazis, K. Sasloglou, N. Frangiadakis, P. Kikiras, A. Merentitis, K. 
Mathioudakis, and G. Mazarakis, “Architectural Blueprints of a 
Unified Sensing Platform for the Internet of Things,” International 
Conference on Computer Communications and Networks (ICCCN), 
30 July – 2 August, 2013, Nassau, Bahamas. 

[44] A. Merentitis, G. Theodorou, M. Georgaras, and N. Kranitis, 
“Directed Random SBST Generation for On-Line Testing of 
Pipelined Processors,” International On-Line Testing Symposium 
(IOLTS), 6-9 July 2008, Rhodes, Greece. 

 
 

 

96

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A Lightweight Distributed Software Agent for Automatic
Demand—Supply Calculation in Smart Grids

Eric MSP Veith1, Bernd Steinbach2, and Johannes Windeln3

1,3Institute of Computer Science
Wilhelm Büchner Hochschule

Pfungstadt, Germany
e-mail: eric.veith@wb-fernstudium.de

1,2Institute of Computer Science
Freiberg University of Mining and Technology

Freiberg, Germany
e-mail: veith@informatik.tu-freiberg.de

Abstract—The number of renewable energy sources partici-
pating in the world-wide energy mix is increasing. However, they
come with different characteristics than the traditional power
sources. Energy generation happens on a smaller scale and is
more distributed, often because the location of such a power
generator cannot be freely chosen. Also, some sources like wind
or solar power depend on the weather, which is not controllable.
This poses more difficult challenges on every grid management.
We propose a distributed, self-adjusting agent-based solution for
smart grids. Based on a lightweight protocol, this distributed
software will dynamically and pro-actively calculate supply and
demand within the smart grid.

Keywords—smart grid; messaging; protocol description; agent
design; renewable energy sources.

I. INTRODUCTION

Two major parts contribute to the success of a distributed
agent software. First, the software itself, which must work
and act correctly. Second, a proper method of communication
must exist between any two agents. This does not only include
the information interchange itself in terms of encoding, but
also the correct behavior when sending or upon reception of
a message.

Therefore, the ground work for any distributed software is
the communication between the instances that are formed by
deploying the software. In [1], we have outlined a protocol
that focuses on the problem at hand: A distributed, i.e., non-
centralized, supply-demand calculation.

This completely distributed supply-demand calculation is
the primary goal of the architecture we propose in this
article. In his article “integration is key to smart grid manage-
ment” [2], J. Roncero shows how different technologies are
integrated in the rather abstract smart grid concept. Including
the customer via smart metering is typically considered one
of the cornerstones of the smart grid. However, the increasing
number of renewable energy sources with either a lower power
output than a traditional power plant or a not even completely
controllable output (e.g., a wind farm) will also introduce more
control logic at the producer side.

Considering a country such as Germany, an already high
number of 3841 wind farms [3] are controlled from only a
few control centers, which oversee a part of the transmission
net. Figure 1 shows control centers in Germany. Including
smaller, also distributed energy-generation appliances along
with photovoltaic and other renewable energy sources puts an

Figure 1. Control Centers in the power transmission system

increasing management strain on these control centers since
along with the number of small generators the data volume
also increases.

Distributing control logic along with distributed energy
generation is often proposed as a solution to this problem.
Several architectures exist, such as the one described by Lu
and Chen [4]. In these designs, the concept of microgrids often
plays an important role. Aggregating small distributed energy
generator along with consumers in a microgrid that acts as
one unit to the rest of the grid is considered necessary [5].
This still views energy generators as singular blocks within
the grid that yield a more or less constant behavior or can
even work in island mode, completely disconnected from the
rest of the power grid. While this accommodates the “central

97

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I. Share of renewable energy sources in Germany’s energy
mix in 2012 [7]

Type Power Produced
[GWh]

Percentage of
Total Production

[%]

Water 21,200 3.6
Wind (on- and offshore) 46,000 7.7
Photovoltaic 28,000 4.7
Biogas 20,500 3.4
Geothermal Energy 25.4 0.004

control”-approach, it is also an argument for a less flexible
management of the power grid.

We propose an architecture that enables every consumer and
producer node in the smart grid to communicate. The primary
goal is to create a self-organized smart grid allowing for
greater flexibility and a more efficient usage of dynamic power
sources such as wind power or photovoltaic while reducing the
information load for central control facilities.

II. MOTIVATION

The number of renewable energy sources increases steadily.
For the European Union, a goal of 20%, 30% and 50% for the
years 2020, 2030, and 2050, respectively has been fixed [6].
Since wind turbines and photovoltaic panels are relatively
easy to set up compared to other renewable energy sources,
they already contribute the biggest part of power generated
from renewable energy sources (see Table I for Germany).
However, they are dependent on a source of energy that is not
controllable by mankind, i.e., the weather.

Having a wind farm permanently connected to the power
grid means that it feeds in a greatly variable amount of energy,
as can be seen in Figure 2. This contrasts with the demand of
a stable power supply. In order to integrate renewable energy
sources more tightly, the grid needs to accommodate this
dynamic energy generation characteristic. Also, wind farms
are raised at positions providing strong and steady wind
currents, which is typically not ideal regarding the spread
of the power grid. This and smaller, local power generators
lead to a distributed generation, a paradigm shift considering
traditional energy generation.

One approach is to aggregate distributed generators and
nearby consumers into microgrids [4] or to compensate vari-
ations in power generation by using buffers, i.e., batteries.
In [8], Vasirani et al. use electric vehicles as buffers that form
a virtual power plant (VPP) together with the wind farm.

These approaches still assume homogeneous behavior as
central attribute of the power grid and its connected devices
and thus favor the traditional, simplified “base load”-view. If,
however, both consumers and producers act together in a grid-
wide planing phase of a short period’s load profile, we assume
that a more dynamic profile will emerge that allows a more
efficient inclusion of renewable power sources.

In the past, the initial approach has been to place smart
meters at the customers’ side in order to exercise indirect
control of their energy consumption. Providing dynamic rates
and information feedback to the customer should contribute to

 0

 500

 1000

 1500

 2000

 2500

 3000

 0

 2

 4

 6

 8

 10

O
ut

pu
t [

kw
]

W
in

ds
pe

ed
 [m

/s
]

2011-03-19 2011-03-20 2011-03-21

Power Output of Wind Farm Drense
Wind Speed at 10m Height

Figure 2. Modelled Output of Wind Farm Drense in the County of
Brandenburg, Germany, and the corresponding Wind Speed during
the same time

a more efficient use of energy [9]. Field studies have offered
mixed results, with some even suggesting that few consumers
change their behavior [10], [11]. One can also argue that
electricity should be a “when you need it” resource instead
of something that must be conserved.

Still, industrial consumers, i.e., factories, could accommo-
date to changes in the availability of energy. Also, the behavior
of a large or a group of customers such as a neighborhood
can yield valuable information. If a wind farm also becomes a
smart node within the power grid, the additional information
can be used to plan power supply more effectively.

However, this requires to introduce forecasting since we
cannot control a wind farm or photovoltaic panels the same
way as an operator is able to control a traditional power plant.
Specifically, there is no possibility to increase power output
when there is no wind blowing or sun shining. With an in-
creasing numbers of electricity producers based on renewable
energy sources, we rely more and more on a power source
completely outside of our control.

Planning beforehand will therefore help to integrate these
renewable energy sources better since the smart grid will be
able to match a partly controllable power generation with
customer behavior beforehand. This also includes a grid-wide,
distributed calculation of energy storage.

To this end, we propose a protocol that defines the ground
rules for such a distributed system to work. The protocol’s
information fields are defined by the necessity to follow these
rules instead of the wish to query information. This provides
us with a lightweight core allowing software agents in a
smart grid to create short-lived contracts on the fly. Thus,
all agents participating in this protocol act pro-actively; a
consumer node is no longer a database that is queried from
remote. Instead, it signals an increase or decrease in power
consumption beforehand. This, in turn, triggers the mentioned
supply-demand calculation.

The reminder of this article is structured as follows. In
Section III we survey related work, especially paying attention
to technologies useful to reaching our goal. Section IV outlines
the design considerations shaping the actual protocol. The

98

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



then following Section V specifies the basic rules every node
implementing our protocol must follow in order to properly do
so. We then detail the actual message types in Section VI. In
order to test the rules we define as inherent part of the protocol,
we propose a modular agent architecture in Section VII.
Although it is only a high-level view of the architecture, it
identifies the important parts of an agent implementing our
protocol and serves as a implementation-agnostic test case
notation that we introduce in Section VIII along with a test
driver proposition for an actual implementation. Selected test
cases are then outlined in Section IX. We discuss all presented
parts in Section X before concluding and outlining planned
future work in Section XI.

III. RELATED WORK

Several protocol proposals have been designated usable or
even specifically developed for use in a Smart Grid scenario.

The Scalable and Secure Transport Protocol (SSTP) [12] by
Kim et al. uses the existing IP-networking [13] infrastructure.
It addresses security and durability against attacks as well as
resource usage. The latter is especially important in the case
of sensor hardware, where SCTP [14] alone is already too
heavyweight and IPSec/TLS for encryption add to this burden.
SSTP is also state- and connectionless for the same reason.

Although the authors of SSTP designate it as a “protocol for
Smart Grid data collection”, they do not explicitly specify data
structures specific to devices or device groups. SSTP resides
in layer 4 of the ISO/OSI stack just as SCTP or TCP [15] do.

The Open Smart Grid Protocol (OSGP) [16] offers a bit-by-
bit protocol design that also includes transmission security. It
allows remote querying of devices, mostly smart meters, which
offer a virtual table-based interface. The OSGP does not utilize
existing communication infrastructures such as IP networks.

The ISO/IEC 61850 standard for substation automation
has also been successfully used in a smart grid scenario by
Zhabelova and Vyatkin [17], where a substation shows self-
healing capabilities due to a multi-agent approach that allows
to detect errors and work around them.

The multi-agent approach has been chosen for several
problems in the context of the smart grid. Pipattanasomporn et
al. design and implement a multi-agent system for microgrids
in [18]. In their design, the agents perform different tasks
based on their roles, thereby breaking the complex problem of
centralized management of a microgrid into smaller problems.
Their system uses the IP. A similar approach is chosen by
Oliviera et. al in MASGriP [19]. The decision-finding process
among agents in the latter case is based on market competition.

In fact, agents competing in a market scenario is often
chosen as a way to motivate an agent’s behavior. The market
will, so the premise, be the basis for demands and supply,
and market competition will allow agents to have a scale for
evaluating offers in order to select the “best” one. In fact, a
price forms a simple yet effective “fitness value” for a goal-
oriented behavior of agents. Hommelberg et al. go as far as
to call automatic markets an “indispensable feature of smart

power grids” [20]. For reasons we discuss in Section X, we
advise against this.

Many distributed agent approaches are based on the Con-
tract Net Protocol proposed by Smith [21]. The semantics,
however, differ in the understanding of how work packages
should be handled. For the contract net, a work item can be
awarded to another node; however, each node is free to offer its
services as it deems fit. This can not prevail in the power grid,
where shortages must be handled by each agent. Considering
any problem as essential for each agent is essential for all
nodes to survive. Also, we do not propose any pre-selection
of nodes since all agents should be able to participate in the
global solution-finding process equally.

It is also important to note that many multi-agent approaches
that are—directly or indirectly—based on the original Contract
Net Protocol have the notion of one atomar work item that can
be awarded. In a smart grid, situations will arise where a node
cannot fulfill the whole contract, but only a part of it. Breaking
the work package into smaller sub-packages, however, is the
responsibility of the offering node. In the smart grid, this
would lead to an increased amount of negotiation for the
“right” work package size.

This detail excludes most service discovery protocols per
se, as they are not designed offer “half a printer”.

IV. PROTOCOL DESIGN CRITERIA

In striving to be as simple as possible, our protocol uses
already existing technologies. This has let us to choose the
ISO/OSI stack model as basis for our design, where it can be
placed on the application layer (layer 7) of the stack model.
This design choice allows us to draw upon the strengths
of already existing infrastructure used for transport via the
Internet Protocol (IP). Utilizing IPv6 [13], we gain an address
space large enough for our needs.

Choosing the ISO/OSI protocol stack model also helps to
integrate other technologies. We can choose between TCP/IP
with IPsec for security, or SSTP, which has been specifically
outlined in Section III for this purpose.

Integrating hardware in our system is possible as long as
it can be attached to an IP network. Thus, we do not need
to accommodate to vendor specifics and have access to a
wide range of hardware through layer 2–3 protocols. For
example, remote locations can use GSM or UMTS links [22] to
exchange information with other nodes within our distributed
system.

Nodes within the grid exchange data via Connections. We
explicitly introduce the connection concept since it is a virtual
concept not directly given by IP networks unless utilizing TCP
or another connection-oriented transport protocol is explicitly
chosen. Since we have already offered SSTP as possible
transport protocol, we introduce the connection concept.

Here, a connection means that two nodes are known to
each other; as long as message boundaries can be preserved
and a loss reduction algorithm is in place, the choice of the
transport protocol is up to the implementor. SSTP is therefore
suitable as layer 4 protocol for our own. Connections must

99

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



be established only between two adjacent nodes and are bi-
directional communication channels between exactly these two
nodes. Concepts such as multicast must be realized on top
of this. There is no explicit connection between two distant
nodes, i.e., there is no end-to-end connection concept that
crosses several hops such as TCP offers on top of IP nodes.

A connection serves three purposes. First, it identifies the
two endpoints. Second, by establishing a (largely virtual)
network of nodes and connections, this protocol creates a
communications structure that resembles the actual power grid,
recreating it on top of any other networking structure, such as
an IP-based wide-area network (WAN). This way, the power
grid and the telecommunications infrastructure do not have to
match in their layout. The layout recreation algorithm must be
implemented by the actual connection facilities, which, e.g.,
map to an IP network. Third, since one connection always
concerns exactly two nodes, it allows us to set individual con-
nection parameters such as compression that do not interfere
with other data links to other nodes.

Having those virtual connections represent the actual physi-
cal power supply line also enables us to model “dumb” cables,
which have no other properties than a maximum capacity and a
line loss. Taking these attributes into account, the actual power
transfer becomes part of the protocol. Smart power supply
lines that are equipped with, e.g., metering devices, become
nodes of their own. The simple power line–connection unit
then evolves into a connection–power line–connection building
block, which also adheres to the protocol semantics described
in the following section.

Messages can travel further than the node–connection–node
boundary. To enable nodes to answer to requests that do not
originate from their immediate neighbors, each node must be
uniquely identifiable. The Sender ID of a node must be unique
at any given time. It is an opaque bit array of arbitrary length
and must not contain any additionally information about the
node itself or anything else. Generating an Universally-Unique
Identifier (UUID) [13] whenever the node’s software boots is
one way to get such an identifier.

Each message must contain an unique identifier (ID). This
is important since messages fall into two distinct categories:
requests and answers. A request is sent actively by a node
because of an event that lies outside the protocol reaction
semantics, such as a changed forecast. Answers are reactions
that occur because of the protocol semantics as described
below. Since any reaction pertains to an original action, it
needs to identify this action, which is the reason for the unique
identifier of each message. Reactions must carry a new, unique
identifier, too, since they are messages of their own.

Identifying individual messages is also important in order
to identify duplicates. All messages within our design must
be idempotent, i.e., they must yield the same result every time
they are received. For example, a request for energy from one
node must always lead to an increase in energy production by
exactly the amount requested; if duplicates were not identified
as such, twice or even many times the amount requested could
be fed into the grid. Complex grid structures will eventually

lead to duplicates, and so it is essential to identify those.
The type of the message must be denoted by a Message

Type field. The mapping is outlined in Table II. These numbers
are simple integer values with no coded meaning whatsoever.
We do not distinguish between message classes or priorities
here: The goal of the protocol is to remain simple, and we
believe that the message types outlined here suffice in reaching
the primary goal of the protocol, i.e., energy supply-demand
mediation.

A message must also contain a Timestamp Sent field denot-
ing the time and day when the message was initially sent as
an Unix Timestamp (see [23] for the definition of the Unix
Timestamp).

To prevent messages from circulating endlessly, a Time-
To-Live (TTL) field is introduced. This TTL has the same
semantics as the IP TTL [24] field: It starts at a number greater
than 0. Whenever a message is forwarded or sent, the TTL is
decremented by 1. If the TTL reaches 0, the packet must not be
forwarded or otherwise sent but must be discarded. Messages
with a TTL value of 0 may be processed.

The TTL field exists in addition to the IP TTL mechanic:
First, because there is no vertical integration of our protocol
with the lower-layer protocols. Even though it might seem
unusual, other protocols can be used instead of IPv6 that do
not offer a TTL field in the same way IP does. Second, our
protocol creates an overlay network where a hop from one
node to another translates to any number of hops in the IP
network, which is even variable depending on different paths
chosen by IP-level routers. Thus, we need a separate TTL field
in order to preserve the semantics of this protocol.

Additionally, an Hop Count is introduced. The Hop Count
is the reverse of the TTL: It starts with 0 and must be
incremented upon sending a message. It allows to measure
the distance between two nodes in the form of hops.

A message must carry an Is Response flag to distinguish
original requests from responses. If the Is Response flag is
set, the ID of the original message is contained in the Reply
To field. If Is Response is not set, the Reply To field must
not be evaluated; however, if a response is indicated, Reply To
must contain a value that must be evaluated by the receiving
system.

An answer must also contain the original message’s Time-
stamp Sent field (in addition to its own), and the Timestamp
Received denoting the time when the original message was
received.

To summarize, each message must contain at least the fields
of the following enumeration. In parentheses, we give the
identifier used in the actual implementation.

1) message ID (ID)
2) message type (type), see Table II above
3) original sender ID (sender)
4) timestamp sent (sent)
5) TTL (TTL)
6) hop count (hops)
7) is response (isResponse)

100

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE II. Message Types

Value Type

0 Null Message
1 Echo Request
2 Echo Reply
3 Online Notification
4 Offline Notification
5 Demand Notification
6 Offer Notification
7 Offer Accepted Notification
8 Offer Acceptance Acknowledgement
9 Offer Withdrawal Notification

The message type defines what additional values a message
carries; these message types are described in Section VI. The
message type itself is a simple integer value field with type-
to-number mapping shown in Table II.

If Is Response is true, the following fields must be added:
1) Reply To (i.e., original message ID) (replyTo)
2) Timestamp Received (received)

V. COMMON PROTOCOL SEMANTICS

The following rules must be applied to each message,
regardless of their type.

First, a message must not be ignored (“no-ignores” rule).
This might seem trivial and obvious, but it is actually an
essential rule: If a request for electricity or for electricity
consumption would be silently ignored, other nodes would
not be able to react since they probably would not even
receive the message. This, in turn, would again lead to a
“dumb grid” behavior. For this reason, we do not propose a
mechanism for resending messages. Here, we differ from the
behavior implemented in the internet. The IP routing’s best
effort approach is dictated by scarce buffer space. If a router’s
buffer is full, a packet is simply discarded; the original sender
usually is not noticed about that. This behavior implicitly leads
to a conservation of the node itself. However, the primary
goal of a smart grid agent is to preserve the grid and not the
agent itself. If an agent fails due to overload, traditional grid
protection mechanism will still be available.

All messages except the Null Message, the Echo Re-
quest Message and the Echo Reply Message must be for-
warded, partially answered and forwarded, or answered. This
is the “match-or-forward” rule. It becomes important with
requests and offers and it is further specified in Subsections
VI-F and VI-G.

Forwarding denotes the general process of receiving a
message and resending it. The message may be modified in
this process, for example, the requested energy level must be
lowered when a node can fulfill a portion of the request (see
below).

When forwarding, message must be sent to all connected
nodes except to the node from which the original message was
received. If the message is an answer, the node may limit the
number of outgoing connections to those via which it can reach
the addressee. This prevents message amount amplification:
Would the receiver also send the message on the connection

on which it was originally received, it would be useless since
the original sender already knows about its offer or request. It
would thus only lead to additional processing and unnecessary
use of bandwidth (“forwarding” rule).

Each node must keep a cache of recently received messages.
If a message is received again, it must not be answered or
forwarded (“no-duplicates” rule). This cache should also be
used to forward answers to requests recorded in the cache
only on the originally receiving connection.

If a two nodes are connected via more than one connection,
only one may be used to send or forward a message. If the
sending node can determine the best connection in order to
reach its partner, it should choose it. However, what constitutes
this “best connection” is hard to define. Many properties a
connection between two nodes may have can be attributed
to the lower layers of the ISO/OSI stack and, therefore,
should not be known to the agent software. If, however, there
were two distinct connections between two agents, with one
encrypting traffic and the other one featuring low latency, these
properties are not comparable in an automatic and quantified
way.

Additionally, if an administrator wanted to achieve rendun-
dancy in order to implement a resistance against failures, he
can (and should) resort to proven algorithms on the ISO/OSI
layers 2, 3, and 4.

We therefore advise that the administrator establishes only
one connection between two nodes. As noted above, the
Connection concept serves to create an overlay network and
to define two connected endpoints (i.e., the agents). If there
still remains a wish for redundant connections, a connection
priority should be applied, and a lower-priority connection
should only be used when the connection with a higher priority
is disconnected.

VI. MESSAGE TYPES

These nine available message types constitute the minimum
set that is required for the distributed supply-demand calcula-
tion. Except for the Null, the Echo Request and Echo Reply
messages, all directly contribute to this task.

Any node must be able to signal its online or offline state.
This is not only important for scheduled maintenance, but also
allows a node to make itself known it its other endpoints.

During normal operation, two main cases must obviously be
handled: First, a demand for energy, and second, a possible
over-production that is advertised. The latter reason especially
applies to renewable energy sources. A wind farm, for exam-
ple, would signal an increasing power output due to increasing
wind speeds.

For an power request, the corresponding Demand Notifi-
cation must be used. It travels through the grid until either
its TTL reaches 0, or it is received and answered by another
node using a Offer Notification. In this case, the Is Answer
flag is true. However, as stated above, an over-production
can also occur, in which case the node will send an Offer
Notification without having received a message indicating

101

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



{
ID: "...eb9e90335495",
type: 0,
sender: "...e4d9b83d2bb7",
TTL: 42,
sent: 1367846889,
hops: 23,
isResponse: false

}

Figure 3. An example for a null message, encoded as JSON. The
UUID strings have been shorted for clarity.

demand beforehand. The Is Answer flag is consequently set
to false in this case.

What follows in both cases is the actual calculation. The
requesting node—whether it requests power or requests the
usage of power does not matter—receives offers or demand
notifications and now has to decide which offers it takes on.
Since there is no limit in how many messages related to the
original request may arrive, this explicit “contract-making”
needs to take place. This is the reason for the Offer Accepted
Notification.

An explicit acknowledgment is also introduced in form of
the Offer Acceptance Acknowledgment. The same offer could
have been made to different nodes, requiring the offering node
to withdraw all other offers as soon as one node takes it. This
is possible using the Offer Withdrawal Notification.

In the following subsections, we will describe these message
types in more detail, including the additional information fields
they introduce along with the corresponding concepts.

A. Null Message

The Null message is the simplest message available in the
protocol. It contains no additional information besides the
basic protocol fields each message carries.

Null messages can be used as a form of heartbeat informa-
tion. This is especially useful on weak links, for example for
a remote wind farm, which might only have a mobile phone
(GSM) connection. It thus can be sent at regular intervals to
keep the line open.

A Null message in JSON representation is shown as an
example in Figure 3. Please note that the message is formatted
to be easy to read. In an actual transmission, the JSON string
would be compressed, with unnecessary whitespace characters
removed.

B. Echo Request Message

An Echo Request can be sent on any connection to see if
the endpoint is still alive and reachable. It must be answered.
An Echo Request must not be an answer, and it also must not
contain any additional information.

C. Echo Reply Message

An Echo Reply is the answer to an Echo Request. It must al-
ways be an answer and thus cannot be sent independently. This
message type also does not contain any additional information;

the proposed common fields (Timestamp Sent and Timestamp
Received) are sufficient for Round-Trip-Time measurements.

D. Online Notification

Using this message, a node in the grid can notify its
neighbors that it is going online or will be online at a certain
point in the future.

To actually be able to carry the second kind of information,
i.e., going online at a certain point in the future, this message
contains two additional fields: Valid From (validFrom) and
Valid Until (validUntil). A message using validity dates
must use the Valid From field and may optionally make use
of the Valid Until field.

This concept of validity dates is used by other message
types, too. It denotes a timespan between the time indicated
by Valid From and Valid To, both inclusive. Both fields are
Unix timestamps like, e.g., the Timestamp Sent. Whenever a
node wants to indicate that a message is valid immediately,
it places the current time and date in the Valid From field.
A “valid until further notice” semantic can be achieved by
omitting the Valid Until field entirely.

Any protocol implementor, however, must take care to
adjust his implementation whenever the Unix Timestamp data
type changes. As the time of writing, a Unix Timestamp of
64 bit width is typically used in modern operating systems,
which provides enough seconds since midnight 1.01.1970
(UTC) for the whole lifetime of this protocol. Previously, the
time_t C type was specified as having 32 bits, which meant
that an overflow would happen on 19.01.2038, the so-called
“year 2038 problem”.

Note that the Unix Timestamp also allows for negative val-
ues to represent times before 1.01.1970. Although this would
not be a necessary feature in the terms of this protocol, we
advise against choosing an unsigned type as it would introduce
the need for additional programing quirks for implementors.

An Online Notification may be forwarded, but can also
be discarded. This type of message is important for all
directly connected nodes, because it has influence on the
wires connecting the originating and its neighbor nodes. Any
change in power levels, however, will be communicated using
demand/supply messages, which will be described later.

E. Offline Notification

The Offline Notification is the counterpart of the afore-
mentioned Online Notification. It notifies the neighboring
nodes that the originating node will be offline (i.e., possibly
disconnected from the grid), utilizing the same Valid From and
Valid To Timestamp fields. For all purposes of the protocol,
especially for complying with the “match-or-forward” rule,
the Connection to the node originally sending the Offline
Notification must be considered as inactive.

Unlike the Online Notification, this type of message must
be forwarded. It provides additional information to the energy
supply/demand solving algorithms of other nodes, which get
a chance to re-calculate their supply plans. It is assumed that
a demand or supply message that reaches the node sending

102

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the Offline Notification means that the Offline Notification will
also be received by the original sender of the demand/supply
message since the Hop Count is the same both ways.

However, since the Offline Notification message does not
contain a field supplying the change in the grid energy level
when the shutdown happens, an additional supply/demand
message must be sent if the node has influence on the grid’s
energy level.

F. Demand Notification

A Demand Notification message indicates the need for
energy of a particular node. It carries the Valid From and Valid
To fields.

Primarily, it carries the quantified demand for energy in
watts in the Power (power) field. Fractions of watts are not
supported, i.e., the lowest amount that can be requested is 1 W.
The field must not be 0, as this would make the message itself
superfluous. This field must not carry negative values; those
would mean an offer, which has its own message type.

This message type additionally features the Answer Until
(answerUntil) field, which holds the date and time the
requester can, at the latest, meaningfully incorporate an an-
swer into its internal planning phase. This bit of information
accommodates a wide range of different constraints that apply
to a demand/supply calculation such as the time it takes to spin
up turbines or scale down production in case a request is not
answered as desired. This field must be present, and it must
contain a time that is before the one contained in the Valid
From field. At the time and date Answer Until indicates, the
internal process of solution finding may begin; definite answer
must not be sent until this time has arrived.

An answer arriving after the given date must not be consid-
ered by the requester. If a successful solution to the original
request can not be found by offers from other nodes alone, the
passing of this date and time indicates the need for an internal
solution, for example, the deactivation of some turbines within
a wind farm.

Demand Notification messages must be forwarded if they
cannot be (completely) fulfilled. Each node must try to react
to a demand message, i.e., try to match it and supply the
energy requested. This is called the “match-or-forward” rule
as described above. If it cannot fulfill the demand, it must at
least forward it under the semantics outlined in Section IV.

If the node can supply the requested amount of energy com-
pletely, it must notify the requester using an Offer Notification
message. It must not forward the original Demand Notification
then.

If, however, the demand can only be partially fulfilled, the
node must send an Offer Notification indicating the amount
of energy that can be offered. It must then subtract this value
from the original value indicated in the request and forward
the thusly modified message. It must not change the message’s
ID or the message’s sender ID (“same-ID” rule). The partial
matching described in this paragraph is depicted in Figure 4.

A Demand Notification message must not be an answer.

demand 500 kW

supply 250 kW

demand 250 kW

Figure 4. A Demand Notification having the “match-or-forward”
rule applied

{
ID: "deadbeef",
type: 6,
sender: "2d60a262",
TTL: 42,
sent: 1367846889,
hops: 23,
isResponse: false,
validFrom: 1367846889,
validUntil: null,
answerUntil: 1367846289,
power: 500000,
cost: 12

}

Figure 5. An example for an Offer Notification message that is
sent as a request to consume power in order to accommodate to
an over-supply of energy. Note the isResponse field, which is set
to false to express this circumstance. UUID strings are shortened
for clarity.

G. Offer Notification Message

This type of message indicates an offer to the grid. It carries
the fields Valid From, Valid Until, and Answer Until as they
are described in Subsection VI-D and the amount of energy
offered in the field Power. This number is an unsigned integer
and is expressed in units of watts with no fractions possible.

Additionally, the offer includes a field Cost, which carries
the cost of this offer in cents per kilowatt hour (ct/kWh). This
allows for implementing cost-based policies, such as accepting
energy only if it is cheap.

An Offer Notification may be an answer. If so, it is an
answer to a previous Demand Notification, as described in
the above subsection. A node receiving multiple offers must
prefer offers of lower hop count over those with higher hop
count. This favors micro-grids and reflects the actual flow of
energy.

However, Offer Notification messages may also be sent as
a request. This is the case whenever the agent estimates that
it will output more power than it currently does. Consider,
for example a wind park, which is dependent on the weather.
If the agent’s forecasting module predicts an increased wind
speed in an hour and therefore an increased energy output, it
may send an Offer Notification instead of pitching or stalling
the wind turbines. This could allow a factories to increase its
demand by powering up machines. Figure 5 shows an example
of such a message.

Just like a Demand Notification, such an original offer must
be matched by nodes in the grid. The difference between an
original offer and one that is an answer to a request is the

103

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



value of the Is Answer field: If set to false, a node must try
to match the offer.

For matching and forwarding, the same mechanics as for
the Offer Notification message type applies, especially if it
can only be partly fulfilled.

H. Offer Accepted Notification

Whenever a request for energy is made and the offers have
been received, there may arise a situation when more energy
is offered by all nodes than originally requested. For example,
if a wind park, a solar park and a traditional power plant send
Offer Notification messages after a request has been sent, the
sum of energy offered is likely to exceed the original amount
requested.

For this reason, a node must indicate which offer it accepts.
Otherwise, all offers would be fulfilled, leading to an over-
supply of energy in the grid, which would be fatal.

As soon as the node finishes its demand/supply calculation,
it must send Offer Accepted Notification messages to all nodes
that were offering energy. In the body of the message, it must
list the IDs of those nodes whose offer it takes, using the
Accepted Offers field (acceptedOffers). All other nodes
will notice that their ID is missing from the notification and
thus not actually deliver the energy they offered.

An Offer Accepted Notification must be an answer. It must
also be sent by the node that is taking on an original offer (as
indicated above). In that case, the Offer Accepted Notification
must be addressed to the offering node only, while the original
offer must be forwarded if it cannot be completely fulfilled as
described in Subsection VI-G.

I. Offer Acceptance Acknowledgement

After an offering node has received an Offer Accepted
Notification, it must reply with an Offer Acceptance Acknowl-
edgement to indicate that the offer is still valid. This message
type must always be an answer.

J. Offer Withdrawal Notification

If a node has offered a certain amount of energy, be it as an
answer or as an original offer, and it can no longer stand up to
the offer, it must withdraw it. This type of message is always
an answer, carrying the ID of the original offer (in case of an
original offer that was withdrawn) or the ID of the original
request in the Reply To field.

If a node can still offer energy, but the amount has changed,
the original offer must be withdrawn using this message type,
and the new amount must be separately announced.

VII. IMPLEMENTING THE DISTRIBUTED AGENT

The protocol itself defines the ground rules of a distributed
supply/demand calculation. In order to actually test it, how-
ever, an implementation adhering to the rules is necessary.
Our own implementation consists of several modules, each
contributing to a part of the agent’s behaviour. We will use the
route of an incoming message as common theme for describing
all parts of our design, although, of course, information can

flow in any direction. We will come to other reasons for action
later.

Each agent has exactly one Messaging Module that is its
interface to the rest of the world. It maintains connections to
other agents, and is responsible for receiving and correctly
sending messages.

The Messaging Module contains the Duplicate Message
Cache. Each message received is first checked against this
cache; only if it is not yet stored in this cache will it reach
the other modules. Otherwise, it will be silently discarded. It
is important to keep this filter in mind during the following
paragraphs as every notion of a message will mean an unique
sending from another agent.

This message cache is regularly cleared of old messages.
For our tests, we have chosen a message retention period of
15 minutes. An implementor can, of course, choose another
value. However, he must keep in mind that the Duplicate
Message Cache with its retention period is vital to preserve
the idempotence of all messages. A period that is too short
will harm the grid. The only reason to lower this period is to
preserve memory.

Instead of simply “throwing more hardware at the problem”
and setting a higher, but fixed time period for message re-
tention, a semi-dynamic cleanup should be implemented. The
Messaging Module can infer from Offer Acceptance Acknowl-
edged messages that a particular planning phase has ended
and clean up its cache accordingly. Of course, a maximum
retention period should still exists as a fall back.

When sending messages, the Messaging Module also takes
care to use the correct agent connection, which particularly
includes the application of the “forwarding” rule.

An incoming, unique message is then routed to the Gover-
nor. It has two main tasks. First, during startup, it initializes
all other modules, including the Messaging Module, monitors
them throughout the lifetime of the agent instance and is finally
responsible for resource deallocation on shutdown. Second, it
contains the business logic that allows it to act on incoming
messages, machine sensor readings or forecasts. The latter one
is, obviously, essential to the actual agent behaviour.

Upon receiving a new message, the Governor creates a
Requirement class instance. Requirements are the building
blocks the agent uses internally for bookkeeping and the
actual demand/supply calculation. Therefore, it contains two
attributes: The actual power delta and the immediately associ-
ated messages. The power delta is a deviation from a balanced
state of the grid, i.e., it is a relative value. Since it can attain
both positive and negative values, the Requirement class
allows us to treat both an anticipated excess in energy offered
as well as an anticipated demand uniformly. Consequently,
Demand Notifications and Offer Notifications constitute two
different Requirement instances that are matched against each
other in the agent’s demand/supply calculation.

The requirement class can store power deltas as
IEEE 754 [25] binary32 single precision floating point vari-
ables. Variances as they typically occur when using this data
type and prompt developers to use x + 1.0 == 1.0 when

104

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



t [s]

Δp [kW]

R1 R2

R3 R5

R4

R7
R6

Figure 6. A simplified illustration of the timeline concept

checking whether x is 0 or not are small enough as to not
harm the grid. However, an implementor should incorporate
proper safeguards against over- and underflows.

This is the main reason for the introduction of the classes
in the Winzent::Unit namespace, such as KiloWatt.
History has shown that simple floating point or integer vari-
ables can lead to a mixing of units in calculations with
possibly horrible results, such as the loss of the Mars Climate
Orbiter [26].

This calculation is done in the Supply/Demand Module.
Requirements are inserted into a timeline, which can be viewed
as a graph representing the power variances over time. For
the module, ∆p = 0 means a balanced grid, but not a power
level of 0.0—hence the delta. It might be noteworthy that the
Supply/Demand Module at no point has any knowledge of an
absolute energy level, but only needs relative levels in order
to work.

Figure 6 shows a very simplified, symbolic illustration of
the timeline. Requirements form blocks that are inserted into
the timeline. The module tries to find the optimal solution
within the search room of all blocks. Positive and negative
deltas cancel each other until the grid is, from the perspective
of the agent, balanced again. From an electric engineer’s point
of view, a total balance of ∆p = 0 will hardly ever be achieved
or even be desirable; we retain this formula for the sake of
simplicity but point out that, when deploying, a shift will have
to be taken into account.

This search is triggered by the answerUntil field of the
Offer Notification and Demand Notification messages. Typi-
cally, the module has no simple 1-to-1 matching of offers and
demands, but can choose from a number of blocks, including
the possibility of the agent to adjust itself. For example, a
wind farm signalling an offer pro-actively originating from a
forecasted increase of wind speed can either try to literally
collect Demand Notification messages until the excess energy
is used completely, or it can throttle itself and pitch or stall
turbines.

This exemplary case also introduces another module within
the agent: The Forecast Module. Incoming requirements must
be matched—or, at least, the agent must try—, and thus

the basic question is: “Can we scale up (or down) in order
to accommodate the new situation?” The Forecast Module
therefore contains the logic of the node’s ability to change
its production or consumption.

How this is done, depends on the actual node. A traditional
power plant will start its own planning phase in order to
spin up or down turbines, whereas a wind farm will try to
forecast weather conditions. Such a local forecast could be
done using Artificial Neural Nets, which have already been
proposed and successfully used for weather forecasting, for
example in [27], or even in connection to load forecasting [28].
An incorporation of weather forecasting in our agent is still
future work as we detail in Section XI.

As we previously noted, the Supply/Demand Module does
not have knowledge about absolute numbers. In an ideal world,
this is not a problem as the agent’s foremost goal is to provide
a stable power supply. However, constraints limit the solution
space. Such a constraint is hardware-based, e.g., in the form of
transformers, which have a limited capacity. All solutions are
therefore first checked against the output of the Constraints
Module. This module also allows administrator interaction,
which gives us the possibility to set policies, for example,
to not accept a power offering exceeding a certain cost.

As stated, this largely forms the way the agent behaves
upon incoming messages. However, this is obviously not the
only source of activity for a node—that initial request has to
come from somewhere. Within the agent, the Forecast Module
continuously creates new projections for the node. Once this
forecast has a variance that exceeds a certain limit, it creates
a Requirement of its own. The Governor then prompts a new
demand/supply calculation, which will, in many cases, yield a
deficit, i.e., no solution to the current situation. This, in turn,
prompts the Governor to create a request of its own, i.e., a
Demand Notification or Offer Notification message, which is
sent to other agents.

Although this might seem an obvious course of action, it is
not negligible. The continuous forecasting and adjustment of
forecast constitutes the very source of our agent’s pro-active
behavior. Thus, it is not a finite state machine at its heart, but
a long-running, stateful software agent.

All parts described live in the Winzent::Agent names-
pace as depicted in Figure 7.

VIII. TESTING THE PROTOCOL

A. Notation

To ensure that our protocol implementation, or, in fact, any
implementation of our protocol adheres to the rules defined in
the previous sections, we have created a test suite. This test
suite consists of two parts:

1) A written definition for test cases, initial situation and
expected results

2) A software implementation of the unit tests
The latter is tied to the implementation that is being tested.

We therefore provide the definition of our test cases in order
to document how we assert that the behavioral rules defined

105

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 7. The Winzent Agent design

through the protocol itself ensure that the system as a whole
works correctly if every agent adheres to the rules.

In our definition, we denote agents with upper case letters,
starting from A. Connection between agents are written down
as tuples. Since all connections are bi-directional, we simply
order the letters by the alphabet. For example, (A,C) defines
a data link from agent A to agent C and, at the same time, a
link from C to A.

We further define the inner state of any agent also by the
following quadruplet:

Agent = (Messaging, Forecast,Demand/Supply,

Constraints)

This can be shorted to (M,F,D,C) for brevity. A module
of a specific agent has the agent’s letter as subscript, e.g.,
FM denotes the Messaging Module of agent F. A subscript x
denotes a do-not-care, i.e., “any node” or “any value”.

Each module, finally, also has a state. Initial as well as
final module states are sets of items specific for the particular
module. All noted sets are interpreted as subsets of the actual
state. For initialization, this allows for local or implementation-
specific extra values, while for the final state, it defines the
way a successful or failed test run is determined. The final
state set must be a real subset of the actual state set of
an agent: Required ⊂ Actual. This is especially necessary
for the Messaging Module, where a correctly working agent

implementation can send Echo Request messages at any time,
which would lead to test case failures without this definition.

The state of the Messaging Module is defined by a list of
messages; we simply note the JSON text representation as it
is already quite easy to read. Message fields that do not matter
for the final result are omitted; in this regard, it follows the
real subset rule already employed for the module states.

The id field is never originally considered for subset
matching since it is opaque and implementation-specific to
begin with. However, we use it on a meta level to identify
individual messages in our notation. This way, we can track
messages on their way. The same technique is applied for
senders and receivers, where the actual ID of any agent
is similarly opaque. For example, { answerTo: "m1",
sender: "A" } would correctly describe a message that is
an answer to another message identified as m1 in our notation
coming from agent A. In reality, not only would a full message
travel across the line, but also would it contain ID strings like
4c23a34fab0.

In order to keep definitions clean, we refer to individual
messages with lower-case m letter with number subscript,
mi|i = 1, 2, 3, · · · , n. The combination of these specifics
allows us a more efficient notation: We can identify the
original message through the mi notation and refer to it using
the id field in our notation while leaving out all fields that
do not change. Also we do only note those messages that
were received since they are already stored in the duplicate
message cache. Otherwise, duplicate messages on forwarding

106

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



would clutter the notation too much.
Please note that an ASCII-based JSON text does not allow

subscripts and thus m1 becomes m1, but otherwise remains
the same.

The Forecast Module is defined by a list of forecasts notes
as tuples in the form of (Timestamp, Power). Alternatively,
for the initial state, an alternate form containing only the
forecast is also used; in this case, these values are emitted
when queried.

The Demand/Supply Module features a similar tuple form,
i.e., (Timestamp,Delta).

Constraints typically do not change over time. Aside from
the fact that the Constraints Module is also defined as a
possibly empty list of single constraints, they must be un-
derstandable by a human. For example, the maximum power
that can be forwarded by a node could be written as Cx =
((Pmax = 1000kW )).

In cases where the state of a module does not change
from the initial setup, we simply note the upper case letter
in the final state definition. If the state is of no interest,
we use the subscript x notation, meaning “any value”. E.g.,
A = (· · · , Fx, · · · ) would mean that, for the results, any state
of the Forecast Module is allowed for Agent A.

B. The Test Driver

Although our notation abstracts the actual tests from the
details of an agent implementation, it leaves an implementor
with the task of carefully reading a written definition and
creating actual unit tests out of it. This will again create
tests that only check whether an implementation works with a
set of tests specific to exactly this implementation. The only
advantage the written definition provides here is that it forms a
common ground to agree upon when it comes to the scenarios
that deserve testing.

Also, most implementation-specific unit test suites will be
exactly that: Code written in an imperative style. To that end, a
developer has translated the set form of the original definition
in source code. If two implementations yield different results,
the unit test code will have to be re-translated, at least
implicitly in the developer’s mind, to the set definition in order
to find out where things go wrong. This is obviously an error-
prone process.

For this reason, we have defined a test driver that reads
a JSON representation of the notation we introduced in the
previous paragraph and sets up a test bed for the agents. The
adapter an implementor has to create comes in the form of
interfaces or abstract classes.

The test driver is initialized using the Manager class,
which sets up the necessary environment. It creates
TestCase objects, with one object representing one distinct
test case. This class reads and parses the JSON notation of
the test case itself and is responsible for setting up the test,
running it and cleaning up afterwards. Success or failure is
indicated by the return value of the run() method, which is
a simple Boolean value indicating success on true or failure
on false.

During setup, agents are created and initialized accord-
ing to the initial state description. This is the responsi-
bility of the AgentFactory class. This factory, along
with the Agent class instances it creates, is an ab-
stract class: The concrete factory as well as the con-
crete agent must be implemented by the vendor wishing
to test his product. Along with the interfaces representing
the modules, i.e., MessagingModule, ForecastModule,
DemandSupplyModule, and ConstraintsModule, this
forms the API an implementor must use when attaching his
own agent code.

Although this API carries the spirit of the design we propose
in this article, it can be understood as nothing more than a
mere wrapper; the concrete classes implementing the module
interfaces can be shallow wrapper classes.

All these module interfaces simply provide a getter and a
setter for a set of objects. The setter is used during initializa-
tion to establish the initial state, while the getter allows us to
retrieve the final state. The Set class finally implements two
set primitives: equals() and isSubsetOf(). These two
are necessary for testing the success of a test case. Since the
final state consists of sub sets of the actual state, the success
or failure of any test case boils down to a number of subset
checks. If, and only if, all succeed, the test case itself succeeds.

The test driver architecture itself does not need many classes
in order to provide the necessary API. Figure 8 shows an
overview in form of an UML class diagram.

In order to work, this architecture needs test case definitions
in a computer-parsable format. We have again chosen JSON
for this for the same reasons we use it for the message format:
It is easy to read and write for a human and likewise easy to
parse for a computer. Also, reliable parsers exist, i.e., it is no
obscure, exotic format.

A test case is a JSON object consisting of three root
attributes: a list of agents, a list of connections, a list of initial
states, and a list of final states. Basically, it is a transcription of
the formal definition in JSON that adjusts the written notation
to the idiosyncrasies of JSON’s syntax.

The list of agents, agents, simply introduces the agent
IDs in much the same way the formal notation does. The same
is true for the connection list, connections, that contains
tuples in the form of JSON arrays with two elements.

The last two attributes, initialStates and
finalStates, contain the state sets of the
agents. All agents are listed here along with their
modules: messagingModule, forecastModule,
demandSupplyModule, and constraintsModule.
Each of them contains a list with items as defined in our
formal representation. As variables with subscripts do not
exist in JSON, references and do-not-cares, e.g., Fx or MA

are strings without subscripts in the same way as we refer
to messages: m1 becomes "m1", and subsequently MA

becomes "MA", Dx is written as "Dx".
Figure 9 has an exemplary test case definition where two

agents, A and B exist. For the test case to succeed, A is required
to send an Echo Request message to B, which the latter one

107

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 8. The Test Driver implementing the Test Case notation

answers with an Echo Reply message.

IX. SELECTED TEST CASES OF THE PROTOCOL TEST
SUITE

This chapter illustrates how we test the semantics of the
protocol and the correct functioning of our implementation
using selected test cases. We refrain from publishing the full
source code of each test case for the sake of readability. Also,
this does not constitute a complete suite of test cases. Its intent
is to illustrate not only the application of the implementation-
agnostic description, but also to show how nodes that correctly
implement the protocol behave.

Therefore, we illustrate the important parts using the test
case notation introduced in the previous Section VIII.

A. Test Case: “Forward” Rule

Three agents are connected in a linear fashion, i.e., A—B—
C. The correct notation of this layout is:
Agents (A,B,C)
Connections ((A,B), (B,C))

A sends a Demand Notification message for 500kW , which
B and C cannot answer. The test case ends when C receives
the message that B has to forward. This test case proves the
correct working of the “forwarding” rule.

Thus, for the initial state, we need only to define the
Demand/Supply Module of all three agents, all other state
tuples remain empty. The final state then has to show that
a message has travelled to both nodes B and C, but no
answer has been transmitted. Agent A’s Demand/Supply tuples
therefore remains the same, while the Messaging Module tuple
of A and B each have to list one message.

The complete source code must contain a definition of this
message. Both its Type and Power fields have to be defined
in order to indicate that A and B have received a Demand
Notification message. We thus note:
Initial State

A = ((), (0,−500000), (), ())

B = ((), (0), (), ())

C = ((), (0), (), ())

Final State

A = ((), Fx, (0,−500000), C)

B = ((m1), F,D,C)

C = ((m1), F,D,C)

Together with the definition of the message m1, this test
case completely defines initial and final state of the simulated

108

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



{
agents: ["A", "B"],
connections: [ ["A", "B"] ],
initialStates: {

A: {
messagingModule: [],
forecastModule: [],
demandSupplyModule: [],
constaintsModule: []

}, B: {
messagingModule: [],
forecastModule: [],
demandSupplyModule: [],
constaintsModule: []

}
},
finalStates: {

A: {
messagingModule: [{

type: 2,
hops: 1,
sender: "B"

}],
forecastModule: [],
demandSupplyModule: [],
constaintsModule: []

}, B: {
messagingModule: [{

type: 1,
hops: 1,
sender: "A"

}],
forecastModule: [],
demandSupplyModule: [],
constaintsModule: []

}
}

}

Figure 9. A Test Case Definition in JSON notation for a “ping”
example: A sends an Echo Request message to B that the latter one
answers.

system concerning the transmission of messages and the
agent’s reactions to it.

B. Test Case: TTL

The setup is similar to the previous test case, however, an
additional node D with connection (C,D) is introduced. The
message TTL of A’s Demand Notification is 2. Thus, C may
not forward the message on the connection (C,D) and the
final state of MD = () must exist.

Also, the notation of messages needs to change. A and B
have now received messages which have changed regarding
the value of the TTL field. Thus, we note the TTL field with
the changed value for both messages and therefore need to
assign different indexes to them:

Final State

A = ((), Fx, (0,−500000), C)

B = ((m1), F,D,C)

C = ((m2), F,D,C)

D = (M,F,D,C)

Even though we need to distinguish the two messages in the
test case definition by writing m1 and m2, we can still show
that the message carries the same ID. We do so by indicating
the ID field of m1 and setting it to the identifier m2. Thus,
the message can be traced while still showing that a part of it
has changed its value.

C. Test Case: Simple Demand and Supply

This test case will, again, use the topology of the first
test case. But now, agent C is able to completely answer A’s
request for energy.

This seems to be the simplest of all test cases, but, in fact,
more messages than for the previous ones are required. Here,
we need to explicitly confirm the offer using an Offer Accepted
Notification.

This test case serves to check an implementation for all
defined rules of behavior. It applies the “forwarding” rule and
will modify a message’s TTL field in the same way as the
other two test cases, combined.

Additionally, it shows the application of the “match-or-
forward” rule. The agent C is required to answer the Demand
Notification, which can be checked using B’s message cache.
We discuss this imperative in Section X. Also, the correct
formation of the implicit contract can be monitored.

The creator of the test case therefore needs to track a number
of messages: First, the forwarding of the initial Demand
Notification with modified TTL Values. Second, the Offer
Notification message which travels back to the requester and
must be recorded in both B’s and A’s Message Module’s
duplicate request cache. In the same way, the Offer Accepted
Notification is sent by A and reaches C via B, being recorded
in the same way as the previous two messages. Finally, an
Offer Acceptance Acknowledgement is sent by C to A.

With the reception of the final message, the Message
Module of A and C must contain two received messages, while
that of B holds copies of all four. The reception of the Offer
Acceptance Acknowledgement also marks the formation of the
contract between A and C. Thus, the Supply/Demand Module
of the requester must appear as balanced in the final state
definition.

D. Test Case: Circular Demand/Supply with Partial Offers

This test case offers a more complex topology featuring
one requester and three suppliers. Since the setup is harder
to imagine than the previous ones, instead of a written prose
description or the formal connections notation, it is depicted
in Figure 10.

This test case serves to test the protocol-implementing
nodes’ behavior on a more complex topology. It also uses

109

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



partial offers, which increases the amount of messages that
need to be sent in order to arrive at a working contract.

Initially, the requesting node A sends a Demand Notification
message for the same amount used in the previous two test
cases. However, now three other agents answer with an offer.

First, the agents C and F will offer one half of the requested
power, while agent H is able to supply the complete power
needed. This tests not only the “forwarding” rule, but also
“match-or-forward”. The agents C and F not only have to
send their offer, but also forward a modified version of the
initial request. This forwarded version can be found in G’s
Messaging Module’s cache.

G and H also serve to test the correct implementation of
the “no-duplicates” rule. G will, via E and D, receive two
modified Demand Notification messages. However, it may
forward only one of the two. This means that the cache of H
may contain exactly one Demand Notification message which
can easily be identified using its ID field as the one originating
from A. The transmission of the Demand Notification message
therefore stops at G and also B, effectively preventing an
endless circulation.

This original requester will finally have three Offer Noti-
fications received. Since we advise preferring messages with
a lower hop count, it will accept the two partial offers. This
Offer Acceptance Notification must be recorded by all three
offering agents. This is vitally important since all parties have
now knowledge of whether they need to provide the advertised
power or not.

Applying the same rules, the final Offer Acceptance Ac-
knowledgement messages will then travel through the network
back to A.

Please note that it is not necessary to list all transmitted
messages in order to show that the actual demand/supply
scenario is solved. In fact, the Message Module tuple of
A’s final state alone suffices to show that three agents have
sent their offers. Listing its Demand/Supply Module definition
serves to verify that it has accepted the two partial offers.

However, if all described messages are recorded in the test
case definition, we can also show that an endless message
circulation is prevented by the duplicate message cache. There-
fore, this additional information asserts an important part of
the behavioral rules of this protocol and are included.

X. DISCUSSION

A. Comparison with SIP and RSVP

Our protocol seems to share some features with already
deployed, well-known protocols such as the Session Initiation
Protocol (SIP) [29], or the Resource Reservation Protocol
(RSVP) [30]. SIP is especially designed to to be usable on
exiting protocols in Layers 1–6, thus being not vertically
integrated similar to our protocol. However, there are several
differences that justify the creation of this Layer 7 protocol.

Traditional SIP relies on proxy servers. Here, individuals
register in order to be locatable. The proxy server typically
serves a domain and makes up the domain part of a SIP URI,
e.g., sip:bob@biloxi.com. These proxy servers create a

A

FC

H

B

D E

G

Figure 10. Topology of a circular demand/supply test case

layer of indirection in performing their duty. In our approach,
there could theoretically be any number of proxy servers from
1 to n, with n being the number of nodes in the grid. These
proxy servers create points of failures while also partially
obscuring the direct mesh that is used for routing the offers
and demand messages.

Using a Peer-to-Peer architecture (P2P) seems to be the next
logical step in order to rely on already existing architectures.
SOSIMPLE by Bryan, Lowerkamp, and Jennings [31] is a
“serverless, standards-based, P2P SIP communication system”.
The routing of requests still requires an a-priori knowledge of
the (potential) location of the callee in the grid: “Node A is not
responsible for that Resource-ID, so it sends a SIP 302 Moved
Temporarily reply, including the node it thinks is closest [. . . ]
in the headers [. . . ].”

Both SIP and RSVP are based on the premise that the
initiating client knows its counterpart, i.e., the caller knows
its callee as well as the video-requesting client knows which
server offers the desired video. In our case, however, there is
no a-priori knowledge about potential contract partners. Each
node has the same chance to match an offer, and therefore,
our protocol relies on and uses the meshed architecture of the
power grid that is re-created in the communication network.

In that regard it also becomes apparent that there is no
explicit session that is created and maintained by the protocol.
Sessions require a setup, potentially keep-alive and a teardown.
However, our protocol does not need the explicit notion of
sessions that are maintained. The power grid itself provides
the “session” since nodes act and react based on the state of
the power grid itself.

It can also be noted that we do not establish an end-to-end
connection in the protocol. It is the basis for a negotiation, but
the actual connection—if one would call it so—is done in the
power grid itself by initiating the flow of energy based on the

110

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



negotiation that took place earlier and was facilitated by the
protocol.

In summary, intermediate nodes are not required to keep
track of contracts made in order to reserve a specific capacity
once the flow of power has been initiated. We assume that
a node that requests a certain amount of power for a certain
amount of time does so truthfully, i.e., that it actually con-
sumes or delivers the power. In contrast, traffic on an Internet
channel such as one created by RSVP does not necessarily
flow continuously.

B. Message Transmission Volume

The test cases show clearly that there is room for im-
provement regarding efficiency: A lot of messages travel the
information network in order to establish a contract. Many of
those are redundant and are caused by the “forward” rule that,
in its current, simple form, resembles a routing by flooding
algorithm [32].

In fact, in our testcases no actual routing in the sense of
selecting a single path is performed at all. For large-scale
deployment, this behavior must change into a better version
that reduces the number of messages transmitted. Ideally, a
node would transmit the message only on sensible connections
instead of all but the receiving ones. The intial broadcasting
of requests is necessary in order to reach all potential contract
partners as there is no central registry of potential suppliers and
consumers. However, when those have made their offers, the
multicast character of messages can transform into an unicast
nature, thus using the existing communication facilities in a
more efficient way.

We believe that we can use the already existing Duplicate
Message Cache in order to identify a minimal set of outgoing
connections for answers. Using this local piece of knowledge,
the routing can be optimized for replies. This assumes that
no cache expiry timer on a node along the path the answer
takes has yet led to the removal of the necessary piece of
information.

In comparison to other protocols in the smart grid area,
the raw data volume of our proposal seems rather high. The
example Offer Notification message in Figure 5 compromises
170 Bytes if all unnecessary line breaks and whitespace
characters are removed. If transmitted via standard TCP/IPv6,
protocol headers add another 32 Bytes (TCP) and 40 Bytes
(IPv6) for a grand total of 170 + 32 + 40 = 242 Bytes.
Including the TCP three-way handshake and the connection
termination increases the number to 762 Bytes for a single
message. Adding in IPsec raises the grand total even more.

Of course, our Connection concept does not force a per-
manent setup and teardown of a TCP connection for every
message. Using SSTP instead of a solution based on IPsec
and TCP will also reduce protocol overhead. And since all
agent Connections are end-to-end connections, two nodes can
employ compression, e.g., using simple GZIP [33].

Currently, we compute the overall data volume for a con-
tracting process using the following formulae. All variables
are summarized in Table III.

First, the transmission volume of a singular message m on
an established connection c can be calculated by:

vu(m, c) = s(m)f(m, c) + Vc Bytes

The message’s size is given by calculating s(m), i.e., the
size of the message. f(m, c) denotes a dynamic cost factor of
the connection like compression. The constant V denotes the
constant costs of the connection c, such as TCP/IP headers
that get added to each transmission.

Forwarding a request generates costs on all connections of
a node n except the receiving one c0, i.e.,

vm(n,m) =

|CN |−1∑
i=1

vu(M, ci) Bytes

A request is forwarded at most TTL hops, i.e., the request’s
initial TTL limits the number of hops it can be forwarded.
Through the duplicate request cache we ensure that the mes-
sage will not pass any node twice. Therefore, the maximum
cost of transmitting a request message m from an initial node
n0 is given as

vr(m,n0) ≤
TTLM∑
i=0

vm(ni,m) Bytes

Since answers can be transmitted in an unicast fashion
thanks to the duplicate message cache, the volume of an an-
swer equals the transmission volume of any message, with c0
being a connection on which the initial request was received.
Choosing the “right” connection is the responsibility of the
node; using the first receiving one will typically suffice.

Thus, each answer produces at least

va(mr, nr,ma) =

hmr∑
i=0

vu(ma, c0) Bytes

The total volume of bytes each request generates is therefore
the sum of the volume a request produces plus the sum of all
answers that are sent by other nodes. If the Duplicate Message
Cache is not used as a means to optimize the path an answer
takes, va equals vr on all nodes. This effect is apparent in the
test cases we showed in Section IX.

Although optimization techniques such as using the Dupli-
cate Message Cache where possible are employed, our proto-
col uses a substantially higher volume in comparison with bit-
by-bit defined protocols such as OSGP. However, we approach
a different problem. OSGP or the IEC protocols access highly
integrated devices with low data rate links in order to query
sensor, usage and billing information. However, the protocol
we propose acts on the level of a whole neighborhood, a wind
farm, factory or traditional power plant in order to enable an
efficient, on-the-fly demand/supply calculation.

C. Choice of Offers

In cases where several solutions to the demand/supply
calculation emerge, we do not enforce any priorities. We do,
however, recommend to prefer messages with a lower Hop

111

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE III. Variables and functions used in the message volume
calculation

c An established connection
CN Set of all established connections on node n:

{c0, c1, . . . , cn}
ci ith established connection on a node
n A node
m A message
mr A request message
ma An answer message
hm Hop count of message m
TTLm TTL of message m
s(m) The size of a message m, in bytes
f(m, c) Dynamic factor by which the message m will be

modified when transmitted via connection c
Vc Static additional costs of a connection
vu(m, c) Total volume to transmit message m on connection

c
vm(m,n) Total volume to forward a message m using multi-

cast on node n

Count, even if this leads to a solution compromised of more
and “smaller” building blocks. In fact, the last test case we
describe in this article explicitly checks that a decision is made
on exactly this basis.

A lower Hop Count means that a node nearby has sent the
message. Our network architecture practically constitutes an
overlay network over existing IP-based ones and effectively
re-models the existing power grid. As a result, the power that
flows on grounds of a message with lower Hop Count bridges
less meters of the grid than that flowing due to a message
with higher Hop Count. This leads to a lower (transmission)
grid load and smaller overall line loesses since it automatically
prefers micro grids. Additionally, the Constraints Module can
be used to implement cost-based policies.

However, a focus on costs should be avoided. A pure “cents
per kilowatt hour” metric can be influenced to an amount
that diminishes or even destroys its value as an objective
criterion. For example, government subsidies can lead to huge
distortions. A study by the German Federal Environmental
Agency [34] shows that subsidies of coal and nuclear power
plants greatly influence the price per kilowatt hour.

It is obvious that this does not yield to the technically best
solution, or a solution that is the best from a grid-wide supply
point of view. Instead, a price-based fitness metric as acting
basis can even lead agents to hold back offers because the
price is too low. However, we see the preservation of the power
grid itself as the highest priority, whereas a profit margin is an
optimization problem that arises once more than one solution
can be considered.

But in comparison, it is clear that the Hop Count metric
is very abstract. Power may travel many kilometers with just
one hop, depending on the grid layout. Other metrics may
be better applicable. Takeru Inoue et al. use actual physical
metrics in their article [35], which will be a better application
for a decision-making algorithm in the future.

Both the Demand Notification and Offer Notification mes-
sage types include timestamps. Especially the Answer Until
field is noteworthy, because it takes part in timing the start

of a demand/supply calculation on a node. Any node can set
a meaningful time considering its own characteristics that it
knows about, like hardware constraints that require a certain
time buffer in order to employ a fall-back solution, or to have a
search room populated enough to arrive at a meaningful result
in a local demand/supply calculation.

It is tempting to include information network constraints in
the time buffer the Answer Until field provides. However, we
advise against it for two reasons:

First, a node does not have knowledge about the latency
to other nodes when it broadcasts its initial request. When
answering another node directly, e.g., using a Offer Noti-
fication, it would have to measure the latency beforehand
to include a meaningful value. In internet communication,
this latency would reside in the area of milliseconds, which
are not included in the Unix Timestamp that makes up the
answerUntil field.

Second, even when packets are routed in an extremely
inefficient way [36], a high delay means values of < 300ms ,
while even fast gas turbine power plants react in a matter
of minutes (“Boosting times of a few minutes including
synchronization to the grid are possible”, translated from [37]).

XI. CONCLUSION AND FUTURE WORK

In this article, we have defined a lightweight protocol based
on behavioral rules that enable a distributed supply/demand
calculation for smart grids. It allows nodes to act pro-actively
based on their local energy situation and to propagate a future
demand or over-supply of power. This, in turn, initiates a dis-
tributed, automatic search for a solution to this problem. This
way, renewable energy sources can be used more efficiently
since consumers can make use of an increased supply or scale
down dynamically based on the local knowledge of individual
nodes.

We have also proposed an architecture for an agent im-
plementing this protocol and the rules related to it. This
architecture serves as basis for our test cases, which are not
just unit tests tied to a specific software, but also provide a
written-down definition of a successful execution of a test case.

However, the way we define tests today is based on a textual
representation. While this is good for parsing and to create a
definite collection of implementation-independent test cases,
it is clear that all topologies that are not extremely simple
are best visualized. That is why we also created a graphical
simulation environment, which we will publish in a separate
paper.

Currently, we employ a very simple routing algorithm
for requests that resembles a classical “routing by flooding”
approach, as noted in Section X. We plan to employ all agents
to be more aware of their immediate neighbors in order to
relay requests more efficiently without using separate registry
servers.

In this article, we have not touched the problem of how
connections are initially created, but have simply assumed
that they already exist. Connections can be a tool to negotiate
individual data link parameters such as encryption for low data

112

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



rate links and can even be used to identify potentially malevo-
lent nodes by implementing a credibility-based algorithm in
the same manner as it is already done in current peer-to-
peer networks. However, the actual algorithm how nodes could
automatically connect to their immediate neighbours, negotiate
parameters and shield themselves against attacks is still future
work.

XII. ACKNOWLEDGMENTS

This article has been created as part of a cooperative
doctorate program between the TU Bergakademie Freiberg and
Wilhelm Büchner Hochschule, Pfungstadt.

REFERENCES

[1] E. M. Veith, B. Steinbach, and J. Windeln, “A lightweight messaging
protocol for Smart Grids,” in EMERGING 2013, The Fifth International
Conference on Emerging Network Intelligence. IARIA XPS Press,
2013, pp. 6–12.

[2] J. R. Roncero, “Integration is key to smart grid management,”
CIRED Seminar 2008 SmartGrids for Distribution, no. 9,
pp. 25–25, 2008, retrieved 2013-02-11. [Online]. Available:
http://link.aip.org/link/IEESEM/v2008/i12380/p25/s1&Agg=doi

[3] M. Pierrot, “Wind energy data for germany - coun-
try windfarms,” retrieved 2013-12-10. [Online]. Available:
http://www.thewindpower.net/country_windfarms_en_2_germany.php

[4] M. Z. Lu and C. L. P. Chen, “The design of multi-agent based distributed
energy system,” 2009 IEEE International Conference on Systems, Man
and Cybernetics (SMC 2009), Vols 1-9, pp. 2001–2006, 2009.

[5] B. Lasseter, “Role of distributed generation in eeinforcing the critical
electric power infrastructure,” pp. 146–149, 2001.

[6] European Parliament, Council, “Directive 2009/28/ec of the european
parliament and of the council of 23 april 2009 on the promotion of
the use of energy from renewable sources and amending and subse-
quently repealing directives 2001/77/ec and 2003/30/ec (text with eea
relevance),” Official Journal of the European Union, 04 2009, date of
effect: 25/06/2009; Entry into force Date pub. + 20 See Art 28.

[7] Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit,
“Datenreihen zur Entwicklung der erneuerbaren Energien in Deutsch-
land,” p. 41, February 2013.

[8] M. Vasirani, R. Kota, R. L. G. Cavalcante, S. Ossowski, and N. R.
Jennings, “An agent-based approach to virtual power plants of wind
power generators and electric vehicles,” IEEE Transactions on Smart
Grid, vol. 4, no. 3, pp. 1314–1322, 2013.

[9] A. Faruqui, S. Sergici, and A. Sharif, “The impact of informational feed-
back on energy consumption—a survey of the experimental evidence,”
Energy, vol. 35, no. 4, pp. 1598–1608, 2010.

[10] P. Merrion, “Pilot test of comed’s smart grid shows few consumers power
down to save money,” Crain’s Chicago Business, May 2011.

[11] B. M. Buchholz, V. Bühner, U. Berninger, B. Fenn, and Z. A. Styczynski,
“Intelligentes lastmanagement — erfahrungen aus der praxis,” in VDE-
Kongress 2012. VDE VERLAG GmbH, 2012.

[12] Y.-J. Kim, V. Kolesnikov, H. Kim, and M. Thottan, “SSTP: a scalable
and secure transport protocol for smart grid data collection,” in IEEE
International Conference on Smart Grid Communications (SmartGrid-
Comm). IEEE, 2011, pp. 161–166.

[13] P. Leach, M. Mealling, and R. Salz, “An universally unique identifier
(UUID) URN namespace,” July 2005, retrieved 2013-05-25. [Online].
Available: http://tools.ietf.org/html/rfc4122

[14] S. Kent and K. Seo, “Security architecture for the internet protocol,”
IETF RFC 4301. [Online]. Available: http://www.ietf.org/rfc/rfc4301.txt

[15] R. Stewart, “Stream control transmission protocol,” RFC 4960, Sep.
2007. [Online]. Available: http://www.ietf.org/rfc/rfc4960.txt [Retrieved
2013-05-13]

[16] European Telecommunications Standards Institute, “Open smart grid
protocol,” European Telecommunications Standards Institute, Tech.
Rep., 2012.

[17] G. Zhabelova and V. Vyatkin, “Multi-agent smart grid automation
architecture based on iec 61850/61499 intelligent logical nodes,”
IEEE Transactions on Industrial Electronics, vol. 59, no. 5,
pp. 2351–2362, 2011, retrieved 2013-04-03. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6018303

[18] M. Pipattanasomporn, H. Feroze, and S. Rahman, “Multi-agent
systems in a distributed smart grid: design and implementation,”
2009 IEEE/PES Power Systems Conference and Exposition,
pp. 1–8, March 2009, retrieved 2013-06-01. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4840087

[19] P. Oliveira, T. Pinto, H. Morais, and Z. Vale, “MASGriP — a multi-agent
smart grid simulation platform,” in IEEE Power and Energy Society
General Meeting. IEEE, 2012, pp. 1–8.

[20] M. Hommelberg, C. Warmer, I. Kamphuis, J. Kok, and G. Schaeffer,
“Distributed control concepts using multi-agent technology and auto-
matic markets: An indispensable feature of smart power grids,” in IEEE
Power Engineering Society General Meeting. IEEE, 2007, pp. 1–7.

[21] R. G. Smith, “The contract net protocol: high-level communication
and control in a distributed problem solver,” in IEEE Transactions on
Computers, vol. C, no. 12. IEEE, December 1980, pp. 1104–1113.

[22] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and
G. P. Hancke, “Smart grid technologies: communication technologies
and standards,” IEEE Transactions on Industrial informatics, vol. 7,
no. 4, pp. 529–539, 2011.

[23] K. Thompson and D. M. Ritchie, UNIX programmer’s manual. Bell
Telephone Laboratories, 1975.

[24] S. Deering and R. Hinden, “Internet protocol,” 1998, retrieved
2013-05-14. [Online]. Available: http://tools.ietf.org/html/rfc2460

[25] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp.
1–70, 2008.

[26] E. Euler, “The failures of the mars climate orbiter and mars polar
lander—a perspective from the people involved,” in Guidance and
Control, 2001, pp. 635–655.

[27] I. Maqsood, M. Khan, and A. Abraham, “An ensemble of neural
networks for weather forecasting,” Neural Computing and Applications,
vol. 13, no. 2, pp. 112–122, May 2004. [Online]. Available:
http://link.springer.com/10.1007/s00521-004-0413-4

[28] S.-T. Chen, D. C. Yu, and A. R. Moghaddamjo, “Weather sensitive short-
term load forecasting using nonfully connected artificial neural network,”
IEEE Transactions on Power Systems, vol. 7, no. 3, pp. 1098–1105,
1992.

[29] J. Rosenberg, H. Schulzrinne, and G. Camarillo, “SIP: Session initiation
protocol,” Vasa, pp. 1–269, 2002, retrieved: 2014-05-10. [Online].
Available: http://www.hjp.at/doc/rfc/rfc3261.html

[30] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, Request for
Comments.

[31] D. A. Bryan, B. B. Lowekamp, and C. Jennings, “SOSIMPLE: A
serverless, standards-based, p2p SIP communication system,”
First International Workshop on Advanced Architectures
and Algorithms for Internet Delivery and Applications
(AAA-IDEA’05), pp. 42–49, 2005. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1652335

[32] M. Abolhasan, T. Wysocki, and E. Dutkiewicz, “A review of routing
protocols for mobile ad hoc networks,” Ad hoc networks, vol. 2, no. 1,
pp. 1–22, 2004.

[33] P. Deutsch, “GZIP file format specification version 4.3,” IETF
RFC 1952, 1996, retrived 2013-12-08. [Online]. Available:
http://www.ietf.org/rfc/rfc1952.txt

[34] A. Schrode, A. Burger, F. Eckermann, H. Berg, and K. Thiele, “Environ-
mentally harmful subsidies in Germany,” Federal Environment Agency,
Germany, Dessau-Roßlau, Tech. Rep., 2011.

[35] T. Inoue, K. Takano, T. Watanabe, J. Kawahara, R. Yoshinaka,
A. Kishimoto, K. Tsuda, S.-i. Minato, and Y. Hayashi,
“Distribution loss minimization with guaranteed error bound,”
IEEE Transactions on Smart Grid, vol. 5, no. 1, pp.
102–111, January 2014, retrieved 2014-01-15. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6693788

[36] Renesys, “The new thread: targeted traffic redirection,”
November 2013, retrieved 2014-01-01. [Online]. Available:
http://www.renesys.com/2013/11/mitm-internet-hijacking/

[37] K. Heuck, K.-D. Dettmann, and D. Schulz, Elektrische Energiever-
sorgung. Wiesbaden: Vieweg + Teubner, 2010.

113

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Redundancy Method for Highly Available OpenFlow Controller 
 

Keisuke Kuroki, Masaki Fukushima, and Michiaki Hayashi                                Nobutaka Matsumoto 
Integrated Core Network Control and Management Laboratory                  Department of Evolved Packet Core Network Development 

KDDI R&D Laboratories, Inc.                                                                                   KDDI Corporation 
Saitama, Japan                                                                                                  Tokyo, Japan 

e-mail:{ke-kuroki, fukusima, mc-hayashi}@kddilabs.jp                                               e-mail:nb-matsumoto@kddi.com 
 
 

Abstract—OpenFlow is an important element for achieving 
Software Defined Networking (SDN) and is expected to be an 
enabler that solves the problems of today’s network. Thanks to 
the centralized management with OpenFlow, agile network 
operation can be achieved with flexible programmability; how-
ever, the centralized management implies a significant impact 
of any outages of the OpenFlow controller. Hence, a high 
availability technology is indispensable for building the Open-
Flow controller. To achieve the highly available system, we 
have to consider extraordinary events (e.g., power outage) af-
fecting the entire data center as well as anticipated server fail-
ures within a local system. In this paper, we review the issue in 
using the conventional redundancy method for OpenFlow con-
trollers. Based on this observation, we propose a redundancy 
method considering both local and global (i.e., inter data-
center) recoveries using the multiple-controllers capability that 
is defined in OpenFlow switch specification version 1.2 and 
later. The proposed redundancy scheme eliminates virtual IP 
address-based redundancy and frontend server causing limita-
tion of performance scalability, while it achieves competitive 
role change and failover times. 

Keywords-OpenFlow; controller; redundancy. 

I.  INTRODUCTION 

This paper is an extended version of our previous work 
[1]. Towards future telecom services, the programmability 
of the network is expected to shorten the service delivery 
time and to enhance the flexibility of service deployment 
meeting diversified and complex user requirements on vari-
ous applications (e.g., real-time and non real-time applica-
tions). Software Defined Networking (SDN) is an important 
concept for achieving a programmable network and Open-
Flow [2] is an important factor for achieving the concept.  
OpenFlow is an enabler of the centralized management so-
lution, which enables management and control of several 
OpenFlow switches, which allows the network operators to 
configure the switches easily and speedily. However, we 
have to solve some issues of OpenFlow (i.e., scalability, 
reliability and so forth) to deploy the OpenFlow technique 
in carrier grade networks. Many researches have addressed 
the issues of the OpenFlow-based solution.  

Fernandez evaluates several OpenFlow controllers from 
the viewpoint of scalability in centralized management and 
control [3]. Message processing performances of two opera-
tion modes (i.e., proactive and reactive) of the OpenFlow 
controller are evaluated using several existent implementa-

tions (e.g., Floodlight, NOX, Trema). Pries et al. analyze the 
scalability of the OpenFlow solution for a data center envi-
ronment to show an implementation guideline [4]. The pa-
per concludes that, to achieve lossless and low delay per-
formance in the data center application, the number of 
OpenFlow switches managed by one controller should be 
limited to eight. To leverage the advantage of centralized 
management, the OpenFlow controller should not be a sim-
ple flow switching policy server. OpenQoS [5] architecture 
delivers end-to-end quality of service (QoS) with Open-
Flow-based traffic control. The OpenFlow controller with 
OpenQoS plays the role of collecting the network state to 
perform dynamic QoS routing, i.e., the controller has a route 
calculation function just like the Path Computation Element 
(PCE). Indeed, in the Internet Engineering Task Force 
(IETF), PCE architecture is growing as a stateful operation 
supporting the enforcement of path provisioning in addition 
to its original path computation role. Hence, the importance 
of the OpenFlow controller is growing with the broader 
concept of SDN, and thus the high availability of the con-
troller system must be discussed.  

There are two approaches to achieve high availability of 
the OpenFlow controllers. One approach is to reduce their 
load. The OpenFlow controller exchanges many messages 
with the OpenFlow switches especially in reactive mode. As 
a result, the OpenFlow controller could be overloaded and 
thus become unable to process incoming messages. In such 
a case, some processing is required to handle failover. If the 
OpenFlow Controller uses Link-Layer Discovery Protocol 
(LLDP) [6] messages to discover link and node failures and 
manages and monitors several switches, the monitoring 
model has serious scalability limitations. Kempf et al. [7] 
propose a monitoring function for OpenFlow switches that 
achieves a fast recovery in a scalable manner. Dixit et al. [8] 
propose a new OpenFlow switch migration algorithm for 
enabling load shifting among the OpenFlow Controllers. 
This algorithm improves the response time for the Packet-in 
messages by shifting the controlled switch. Thus, there are 
some researches on reducing the load of the OpenFlow con-
troller for protection of the data-plane.  

The other approach is to replace a single controller with 
redundant controllers. However, there is little research on 
the redundancy of the OpenFlow controller, which must 
play an important role in SDN.  

In this paper, we investigate the issue of achieving re-
dundancy for the OpenFlow controller with a conventional 
method, and we propose a method to improve the availabil-

114

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



ity of the OpenFlow controllers. In the proposed redundant 
method, “global” recovery (i.e., inter data-center redundan-
cy) as well as local recovery (i.e., redundancy within a local 
network) are considered. The proposal achieves a competi-
tive failover time compared with existing redundant 
schemes (e.g., server clustering), while the proposal does 
not require any frontend server limiting performance scala-
bility of the OpenFlow controller. 

The organization of this paper is as follows: In Section 
II, we review related works and the capability of multiple-
controllers as defined in OpenFlow switch specification 1.2 
[9] and also explain its applicability to achieving redundan-
cy of the OpenFlow controller. In Section III, we describe a 
conventional method to achieve the redundancy of the 
OpenFlow controller by using the Virtual Router Redun-
dancy Protocol (VRRP) and its limitation. In Sections IV-A 
and B, we propose the redundancy method using multiple-
controllers in a single domain and evaluate its performance. 
In Sections IV-C and D, we propose the redundancy method 
using multiple-controllers in multiple domains and evaluate 
its performance. Finally, concluding remarks are given in 
Section V. 

 

II. BACKGROUND AND RELATED WORK 

Typical implementation of OpenFlow allocates a con-
troller separating the control plane from the data plane, and 
an OpenFlow switch playing the role of data plane com-
municates with an OpenFlow controller using the OpenFlow 
protocol over a Transport Layer Security (TLS) [10] or a 
Transmission Control Protocol (TCP) connection [11] de-
fined as an “OpenFlow channel.” The switch tries to for-
ward a packet by looking up flow entries populated in ad-
vance by the controller. If the packet does not match the 
current flow entries, the switch sends a packet-in message 
over the OpenFlow channel to the controller in order to re-
trieve a direction on how to treat the packet.  

One method of handling data plane failure is to imple-
ment a monitoring function on the OpenFlow switch; how-
ever, only the monitoring function in a data plane is not suf-
ficient for achieving high availability in an OpenFlow net-
work. We cannot achieve a highly available OpenFlow net-
work without achieving the redundancy of the OpenFlow 
controller. In the case of controller outages, the OpenFlow 
channel is lost accordingly, and then the controller cannot 
successfully process the packet-in message. Hence, new 
packets that are not matched with the flow entry are simply 
dropped or allowed to fall in a default operation (e.g., for-
warding to a neighbor anyway) that does not provide desira-
ble services until the ultimate recovery of the controller. To 
achieve a high availability in the OpenFlow network, we 
have to achieve recovery methods in both global and local 
networks that exploit the redundancy of the OpenFlow con-
trollers. 

The HyperFlow [12] approach improves the perfor-
mance of the OpenFlow control plane and achieves redun-
dancy of the controllers. HyperFlow introduces a distributed 
inter-controller synchronization protocol forming a distrib-
uted file system. HyperFlow is implemented as a NOX-C++ 

application and synchronizes all events between controllers 
by messaging advertisements. In the case of controller fail-
ures, HyperFlow requires overwriting of the controller reg-
istry in all relevant switches or simply forming hot-standby 
using servers in the vicinity of the failed controller. Thus, 
this approach assumes re-establishment of the OpenFlow 
channel, and does not assume the multiple-controllers capa-
bility defined in OpenFlow 1.2. Therefore, the time duration 
of the failover operation may increase with the growth of 
the number of switches managed by the failed controller. 
Since the failover process of HyperFlow does not consider 
any server resource, overload of CPU utilization is a poten-
tial risk in the event of migrating switches to a new control-
ler especially in the global recovery scenario. 

There are several methods of general server redundancy, 
and such methods may also be effective for OpenFlow con-
trollers. For example, one possible server redundancy can 
use one virtual IP address aggregating hot-standby or sever-
al servers. Koch and Hansen [13] evaluate a failover time in 
the case of using the virtual IP address-based implementa-
tion with the Common Address Redundancy Protocol 
(CARP), which is similar to VRRP [14]. According to the 
analysis, the average time to change the role between master 
and backup is 15.7 milliseconds. However, the virtual IP 
address-based approach may take a longer failover time in 
the case of applying this approach on the OpenFlow net-
work because this approach involves the re-establishment 
process of the OpenFlow channels. We discuss this issue in 
Sections III and Sections IV-A. Although the virtual IP-
based scheme is straightforward if it is applied within single 
LAN, it cannot simply be applied to multiple locations (e.g., 
data centers) managed under different addressing schemes. 
This means that the virtual IP-based scheme alone is not 
sufficient to tackle global recovery. Zhang et al. [15] pro-
pose a server clustering method with a mechanism to seam-
lessly handover the TCP connection between backend serv-
ers. While each TCP connection is visible to only one back-
end server in a normal clustering scheme, the proposal [15] 
makes the connection visible to at least two back-ends using 
proprietary backup TCP (BTCP) protocol within a backend 
network. The connection migrates to a backup, and then the 
backup is able to resume the connection transparently before 
the client TCP connection is lost. Using this scheme, the 
connections are recovered by the backup server within 0.9 
seconds including a failure detecting time of 0.5 seconds. 
This approach is expected to be applicable also for global 
recovery involving multiple locations. However, from the 
viewpoint of the performance scalability of the OpenFlow 
controller as analyzed in [3, 4], a common frontend server 
required in the clustering system can be a serious bottleneck 
of message processing in the control plane (e.g., if the 
frontend server is broken, all TCP connections are lost). The 
high availability scheme should avoid such single frontend 
server to ensure the performance scalability of OpenFlow 
controllers. In addition, when we tackle global recovery 
with many switches, the migration process should also con-
sider the server utilization. However, conventional ap-
proaches do not consider utilization of the server resources 
(e.g., CPU). 

115

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



OpenFlow specification 1.2 introduced the capability of 
multiple-controllers by defining three states (i.e., MASTER, 
SLAVE, and EQUAL) of a controller. A controller plays its 
own role by using the multiple-controllers capability, and 
the state itself is owned by the switch. In the three states, 
MASTER and EQUAL have full access to the switch and 
can receive all asynchronous messages (e.g., packet-in) 
from the switch. A switch can make OpenFlow channel 
connections to multiple EQUAL controllers, but the switch 
is allowed to access only one MASTER controller. In the 
SLAVE state, a controller has read-only access to switches 
and cannot receive asynchronous messages apart from a 
port-status message from the switches. A controller can 
change its own state by sending an 
OFPT_ROLE_REQUEST message to switches. On receipt 
of the message, the switch sends back an 
OFPT_ROLE_REPLY message to the controller. If the 
switch receives a message indicating the controller’s intent 
to change its state to MASTER, all the other controllers’ 
states owned by the switch are changed to SLAVE. This 
function enables a switch to have multiple OpenFlow chan-
nels, and thus the switch is not required to re-establish new 
OpenFlow channels in the event of controller outages. In the 
multiple-controllers capability, the role-change mechanism 
is entirely driven by the controllers, while the switches act 
passively only to retain the role. Therefore, it is important to 
investigate the implementation of the controller side to 
achieve the redundancy; however, that has yet to be propos-
ed. We use the capability of multiple-controllers to achieve 
high availability of the control plane. 

III.  CONVENTIONAL METHOD 

In this section, we describe a conventional method of a 
redundant OpenFlow controller (OFC) using VRRP. We 
investigate the issue in the case of using VRRP. Table I 
shows the parameters common to all experiments (i.e., Sec-
tion III, Section IV-A, and Section IV-C) in this paper, and 
Table II shows the parameters specific to the VRRP experi-
ment in Section III. 

We implement OpenFlow-1.2-compliant controllers and 
switches on Linux by extending an existing implementation 
[16], which consists of a NOX-based controller [17] and 
Ericsson TrafficLab 1.1 software switch [18]. In addition, 
we use Keepalived [19] to run VRRP between the control-
lers.  

We conducted an experiment on our testbed as shown in 
Fig. 1. There are two controllers (i.e., OFC01 and OFC02). 
To achieve redundancy between the two controllers, VRRP 
is used. Initially, the state of OFC01 is set to Master and 
thus OFC01 has a virtual IP address. The state of OFC02 is 
set to Backup. An OpenFlow Switch (OFS01) is connected 
to OFC01 through an OpenFlow channel since OFC01 has a 
virtual IP address. OFS01 sends a packet-in message to the 
controller when it receives a new packet undefined in the 
flow entry because OFS01 is operated under the reactive 
mode. A traffic generator sends packets at the rate of 100 
packets per second (pps). 

Fig. 2 shows an operational sequence that indicates the 
state transition in the case of OFC01’s going down. Initially,  

TABLE I.  PARAMETERS COMMON TO ALL EXPERIMENTS. 

 

TABLE II.  PARAMETERS SPECIFIC TO VRRP EXPERIMENT. 

 

 
Figure 1. Experimental scenario using VRRP. 

 

  
Figure 2. Operational sequence of the recovery using VRRP 

 
the OFS01 sends an asynchronous message to OFC01 

through the OpenFlow channel. Since the OFCs are running 
VRRP, OFC01 sends a VRRP advertisement message to 
OFC02 every 1000 ms. When OFC01 goes down, OFC02 
sends a VRRP advertisement message to take over the virtu-

OFC01 OFC02 OFS01

OFPT_PACKET_IN

Role-change time

224.0.0.18 Broadcast

OFPT_ECHO_REQUEST

OFPT_ECHO_REPLY

OFPT_FLOW_MOD

OFPT_PACKET_OUT

VRRP_Advertisement

Packet-In

OFPT_ECHO_REQUEST

VRRP_Advertisement

1000ms

1000ms

Interface Down

VRRP_Advertisement

TCP_SYN

Gratuitous ARP x 5

TCP_SYN

TCP_SYN,ACK

TCP_ACK

OFPT_HELLO

OFPT_HELLO

OFPT_ECHO_REPLY

OFPT_FLOW_MOD

OFPT_PACKET_OUT

OFPT_FEATURES_REQUEST

OFPT_SET_CONFIG

OFPT_FEATURES_REPLY

OFPT_PACKET_IN

OFPT_FLOW_MOD

OFPT_PACKET_OUT

Failover time

OFPT_ECHO_REQUEST
a

b

c

: Virtual IP address 

OpenFlow
Switch 01

OpenFlow
Controller 01

OpenFlow
Controller 02

HUB

Traffic
Generator

: OpenFlow channel

: Physical connection 

: Data traffic 

VRRP Master VRRP Backup

: Asynchronous message 

OpenFlow
Switch 01

OpenFlow
Controller 01

OpenFlow
Controller 02

HUB

Traffic
Generator

Data plane

Control plane

VRRP Fault VRRP Master

OFC01’s 

Interface

goes down

Node Parameter Value

operating system Ubuntu12.04
openflow implementation NOX-based [16]
network interface Gigabit Ethernet
operating system Ubuntu12.04
openflow implementation TrafficLab 1.1 software-based [16]
network interface Gigabit Ethernet

Traffic generator sending rate 100 packets/s

OpenFlow controller

OpenFlow switch

Node Parameter Value

vrrp implementation Keepalived [19]

vrrp advertisement interval 1000 ms
vrrp master down interval 3004 ms

OpenFlow controller

116

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



al IP address and change its own state to Master from Back-
up after the master down interval, which is a guard timer for 
Backup to judge the failed condition of Master. Master 
down interval is defined by 

3 *  Advertisement_Interval + (( 256 – Priority ) / 256 ). 

The master down interval for OFC02 is 3004 ms be-
cause the priority of OFC02 is set to 255 (i.e., the highest 
priority) to detect the failure of OFC01 as soon as possible. 

OFC02 sends five gratuitous ARP packets to inform that 
the MAC address of the virtual IP address is changed in one 
second after the Keepalived sends the VRRP advertisement 
message.  If OFS01 sends a SYN packet to reconnect to the 
virtual IP address before OFC02’s sending gratuitous ARP 
packets, OFS01 cannot connect to OFC02 because the des-
tination MAC address of the SYN packet is set to the 
OFC01’s MAC address. If the OFS is successfully recon-
nected to OFC02, in other words, if TCP connection is 
reestablished, OFS01 starts sending a Hello message to 
OFC02 to establish an OpenFlow protocol connection. Then, 
OFS01 sends a packet-in message to and receives a packet-
out message from OFC02. Thus, the failover is completed. 
In Fig. 2, the failover time is defined as the duration time 
from the failure event of OFC01 to the first packet-out mes-
sage sent by OFC02. Also, the role-change time is defined 
as the duration time from OFS02’s sending the VRRP ad-
vertisement message to the receipt of OFPT_FEATURE_R-
EPLY by the OFS. Intervals a, b and c shown in Fig. 2 are 
defined as follows. Interval a is advertisement delay that is 
the time from OFC01’s going down to OFC02’s sending the 
advertisement message. Interval b is TCP-recovery delay 
that is the time from OFC02’s sending an advertisement 
message to OFS01’s sending the OPFT_HELLO message. 
Interval c is OpenFlow-recovery delay that is the time from 
OFS01’s sending the successful OPFT_HELLO message to 
OFC02’s sending OFPT_PACKET_OUT message. 

We measured the failover time and role-change time 10 
times respectively. The results are shown in Table III. We 

TABLE III.  ROLE-CHANGE TIME AND FAILOVER TIME IN THE CASE OF 
DEFAULT PARAMETER. 

 
can improve these times by tuning some parameters.  

Fig. 3 shows three operational sequence patterns of 
VRRP and Fig.3-(a) shows the sequence in the case of the 
default parameter. In VRRP, it is difficult to shorten the 
time to detect a failure because the minimum value of the 
master down interval is 3004 ms. To shorten the failover 
time in VRRP, we should reconnect the OFS to the OFC as 
soon as possible. To this end, OFS01 should send a SYN 
packet as soon as OFC02 sends the gratuitous ARP packets. 
The OFS01 first sends the SYN packet in two seconds after 
the failure of sending the OFPT_ECHO_REQUEST mes-
sage. Since OFC01 is down, the OFS cannot receive the 
SYN_ACK packet. In our OFS implementation, the chan-
nel-establishment timer of OpenFlow is expired if both of 
the TCP connection and OpenFlow connection are not es-
tablished within one second. And then OFS01 retries to 
connect to OFC02 after two seconds.  

We changed the channel-establishment timer of Open-
Flow to three seconds from one second. In that case, the 
SYN packet is retransmitted in one second after OFS01’s 
sending the first SYN packet because the initial value of the 
TCP retransmission timer of Linux is one second. So, we 
can shorten the failover time as shown in Fig. 3-(b). How-
ever, the failover time depends on the timing of the failure 
of OFC01. If OFS01 sends an OFPT_REQUEST message 
to OFC immediately after OFC01 fails, the second SYN 
packet is sent before OFC02’s sending the gratuitous ARP 
packets. As a result, the failover time increases as shown in 
Fig. 3-(c). Table IV shows the result in the case of changing 
the connection-establish timer to three seconds. According 
to Table IV, we can shorten the minimum and average times 
by changing the channel-establishment timer of OpenFlow. 

OpenFlow Switch:Waiting-time Before Reconnect(2000ms)

OFC01 OFC02 OFS01 224.0.0.18 Broadcast

VRRP_Advertisement

Interface Down

VRRP_Advertisement

Master Down Interval:3004ms

TCP_SYN_1
Gratuitous ARP x 5

OpenFlow Switch:Connection Time Out (1000ms)

TCP_SYN_2

Time Out

OFPT_ECHO_REQUEST

2000ms

Linux Reconnect Time(1000ms)

OFC01 OFC02 OFS01 224.0.0.18 Broadcast

VRRP_Advertisement

Interface Down

VRRP_Advertisement

Master Down Interval:3004ms

TCP_SYN_1
Gratuitous ARP x 5

OpenFlow Switch:Connection Time Out (3000ms)

TCP_SYN_2

Time Out

OFPT_ECHO_REQUEST

2000ms
Linux Reconnect Time(1000ms)

OFC01 OFC02 OFS01 224.0.0.18 Broadcast

VRRP_Advertisement

Interface Down

VRRP_Advertisement

Master Down Interval:3004ms

TCP_SYN_1

Gratuitous ARP x 5
TCP_SYN_2

TPC_SYN_3

OFPT_ECHO_REQUEST

2000ms

Time Out

Good Timing

Bad Timing
TCP_SYN_ACK

TCP_ACK

OFPT_HELLO

TCP_SYN_ACK
TCP_ACK

OFPT_HELLO

TCP_SYN_ACK
TCP_ACK

OFPT_HELLO

a

b

a a

b

b

Figure 3. VRRP-based switchover operations for three conditions of the channel-establishment timer. 

(c) Channel-establishment timer is 
set to 3000ms in bad timing. 

(b) Channel-establishment timer is 
set to 3000ms in good timing. 

(a) Channel-establishment timer is 
set to 1000ms 

Minimum [ms] Average [ms] Maximum [ms]

Role-change time 3058 3365 3613

Failover time 5307 5653 5958

117

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE IV.  ROLE-CHANGE TIME AND FAILOVER TIME IN THE CASE OF 
CHANGING THE CHANNEL-ESTABLISHMENT TIMER. 

 

 
Figure 4. Breakdown of failover time. 

 

 
Figure 5. CPU utilization of NOX controller process during VRRP-based 

failover operation. 
 
However, the maximum time is longer than the case with 
the original timer of one second. 

Fig. 4 shows a breakdown of the failover time in both 
cases (i.e., the channel-establishment timer of OpenFlow is 
one second or three seconds). Intervals a, b and c set in Fig. 
4 correspond to the markers shown in Fig. 2. Since Interval 
c is a very small value compared with Intervals a and b, the 
value is hardly visible in Fig. 4. According to Fig. 4, we can 
shorten Interval b by changing the channel-establishment 
timer of OpenFlow in the minimum and average value. 
However, considering that Interval b varies depending on 
the timing of OFC01’s failure, it is difficult to adjust the 

parameter to the optimal values. In addition, it is also costly 
for network operators to set the optimal value to each switch 
if the OFC controls many OFSes provided by various ven-
dors on various operating systems. 

In the redundancy method using VRRP for the OFC, we 
measure the CPU utilization of the NOX controller process 
when the Master controller is changed and the OFS is re-
connected to the controller. The experimental testbed is al-
most the same as shown in Fig. 1, except for the following 
two points. First, we use Open vSwitch [20] as the OFS to 
connect several switches to the OFC. Second, the traffic 
generator does not generate the data packet to measure only 
CPU utilization due to the failover of the NOX process. We 
measure the CPU utilization by a top command of Linux at 
one-second intervals. The maximum CPU utilization of the 
NOX process due to the failover is evaluated as a function 
of the number of OFSes. Fig. 5 shows the average of 10 
measurements. According to Fig. 5, the CPU utilization of 
the NOX process increases with the growth of the number 
of OFSes. The CPU utilization is approximately 40% with 
1000 OFSes.  

In summary, using VRRP for redundancy of OFCs has 
two issues. First, it requires a long failover time. The failo-
ver time of VRRP has lower bound depending on its imple-
mentation. For example, Keepalived needs at least three 
seconds as the failover time since the minimum advertise-
ment delay is two seconds and minimum TCP-recovery de-
lay is one second. Also, it is difficult to shorten the failover 
time by changing parameters. Second, considering that the 
CPU utilization due to the failover process is high, VRRP is 
not suitable for a large OpenFlow network. 

 

IV. PROPOSAL AND EVALUATION  

In this section, we propose an architecture that uses mul-
tiple-controllers capability for local and global recoveries. 
We also evaluate recovery operation in two scenarios (i.e., 
local and global). To avoid the re-establishment of both the 
TCP connection and the OpenFlow channel, which is inevi-
table in conventional virtual IP address-based redundancy, 
we apply the multiple-controllers capability [9] to both local 
and global scenarios. Through the evaluation of the two 
scenarios, we use OpenFlow-1.2-compliant controllers and 
switches on Linux by extending an existing implementation 
[16] as shown in Section III. 
 

A. Proposed Design of Local Recovery 

First, we explain the redundant method in a single do-
main, which is typically a data-center hosting OpenFlow 
controllers. Table V shows parameters specific to a local-
recovery experiment. 

Fig. 6 shows a reference model for describing and eval-
uating the proposed scheme designed for the local recovery. 
OFC01 is connected to two controllers through two Open-
Flow channels. In a normal operation, the role of OFC01 is 
set to MASTER and that of OFC02 is set to SLAVE. 
OFC01 and 02 have the same flow entry information mir-
rored between the two OFCs. OFS01 and OFS02 are 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

minimum average maximum minimum average maximum

c:OpenFlow-recovery delay

b:TCP-recovery delay

a:advertisement delay

Connection-timeout:
1second

Connection-timeout:
3seconds

F
ai

lo
ve

r 
tim

e 
(m

s)

200 400 600 800 1000
0

20

40

Number of OpenFlow SwitchesC
P

U
 u

til
iz

at
io

n 
of

 O
pe

nF
lo

w
 C

on
tr

ol
le

r 
[%

]

Minimum [ms] Average [ms] Maximum [ms]

Role-change time 1040 2621 4597

Failover time 3663 5161 7336

118

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE V.  PARAMETERS SPECIFIC TO LOCAL-RECOVERY EXPERIMENT 

 

 
Figure 6. Experimental scenario using multiple-controllers capability in 

local environment 
 

 
Figure 7. Design of a control procedure for a local recovery 

 
operated under the reactive mode, and send a packet-in mes-
sage to OFC01 when it receives a new packet undefined in 
the flow entry. To evaluate the performance influence in the 
data plane, a traffic generator continuously generates data 
packets with 100 packets per second (pps) where every 
packet has unique flow identifiers for stressing the reactive 
operation of the controller.  

Fig. 7 shows an operational sequence of the proposed 
redundant scheme utilizing the multiple-controllers capabil-
ity. In the proposed scheme, controllers send keep-alive 
messages (e.g., ICMP echo) to each other every 50 millisec-
onds. In a normal operation, OFS01 sends an asynchronous 
message such as packet-in to OFC01, since the switch rec-
ognizes the role of OFC01 as MASTER and that of OFC02 
as SLAVE. OFC01 sends a flow-modification message and 
packet-out message to respond to the packet-in message 
from the switch. If the keep-alive message is lost, a control-

ler (i.e., OFC01) is assumed to have failed. Due to the fail-
ure of OFC01, OFS01 cannot send any packet-in messages, 
and then the data plane cannot continue successful packet 
forwarding for any new incoming flows. Upon detecting the 
failure of OFC01, OFC02 sends an 
OFPT_ROLE_REQUEST message to OFS for changing its 
own role to MASTER. Then, OFS replies the 
OFPT_ROLE_REPLY message, and starts sending asyn-
chronous messages to OFC02 after the completion of the 
role-change process.  To respond to the asynchronous mes-
sages, OFC02 starts sending flow-modification and packet-
out messages, and finally, the packet forwarding in the data 
plane is restored. As represented in Fig. 2, failover time is 
defined as the duration time from the failure event of 
OFC01 to the first packet-out message sent by OFC02. Fail-
over time is measured using a traffic generator to obtain the 
data plane outage time. The role-change time is defined as 
the duration time from the detection of OFC01 failure to the 
receipt of OFPT_ROLE_REPLY by OFC02. Role-change 
time is measured by retrieving the event log of each control-
ler to observe the control message process. 

 

B.  Evaluation of Local Recovery 

The failover time and role-change time are evaluated by 
increasing flow entries in order to investigate the influence 
of the entry size. Fig. 8 shows the average of 10 measure-
ments of the failover time and role-change time. Failover 
time is around 60-90 milliseconds and role-change time is 
about 15 milliseconds. Since the failure detection included 
in the failover time has a timing offset within the keep-alive 
interval, the observed failover time has some fluctuation 
range. Although the role-change time of the proposal is 
comparable with that of the virtual address-based redundan-
cy, the failover time of the proposal shows a significant ad-
vantage thanks to the seamless handover between multiple 
OpenFlow channels. Fig. 8 also shows that entry size on 
OFCs does not affect the local recovery operation both for 
role-change time and failover time.  

In the redundancy method that uses the multiple-
controllers capability in the local recovery, we measure the 
CPU utilization of the NOX process due to failover. We use 
Open vSwitch as OFS instead of Ericsson TrafficLab 1.1 
software switch. The traffic generator does not generate any 
data packet to measure only CPU utilization of the NOX 
process due to failover. Fig. 9 shows the average of 10 
measurements of the maximum CPU utilization. According 
to Fig. 9, the CPU utilization of the NOX process increases 
with the growth of the number of OFSes. However, the uti-
lization is smaller than that of using VRRP. This is because 
there is no process of OFS01’s reconnecting (i.e., TCP re-
connecting and OpenFlow reconnecting) to OFC02 in the 
proposed method of using the multiple-controllers capability. 
Thus, the proposed redundancy method of using the multi-
ple-controllers capability has two advantages compared with 
the conventional method of using VRRP. First, its failover 
time is short because the process of failure detection is in-
dependent of the process of handover. Consequently we can 
combine the fast detection method (e.g., BFD [21]) with the  

Node Parameter Value
keep-alive interval 50 ms

keep-alive timeout 50 ms
OpenFlow controller

OpenFlow
Switch 01

OpenFlow
Controller 01

OpenFlow
Controller 02

HUB

Traffic
Generator

: OpenFlow channel

: Physical connection 

: Data traffic 

: Asynchronous message 

OpenFlow
Switch 01

OpenFlow
Controller 01

OpenFlow
Controller 02

HUB

Traffic
Generator

Data plane

Control plane
OFC01’s 

Interface

goes down

Role: MASTER Role: SLAVE Role: SLAVE Role: MASTER

OFC02

Keep-alive(ECHO_REQUEST)

50ms

OFPT_ROLE_REQUEST

OFPT_PACKET_IN

Failover time

Role-change time

OFPT_FLOW_MOD

ECHO_REPLY

Interface down

OFC01 OFS

OFPT_ROLE_REPLY

OFPT_PACKET_OUT

OFPT_PACKET_OUT

OFPT_FLOW_MOD

OFPT_PACKET_IN

Failure detection time

Keep-alive(ECHO_REQUEST)
ECHO_REPLY

Keep-alive(ECHO_REQUEST)

ECHO_REPLY

ECHO_REPLY

Keep-alive(ECHO_REQUEST)

Keep-alive(ECHO_REQUEST)

50ms

119

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
Figure 8. Result of failover and role-change time in a single domain. 

 

 
Figure 9. CPU Utilization of NOX process during multiple-controllers-based 

failover operation. 
 

process of handover and we can achieve the short failover 
time. Second, considering that the CPU utilization due to 
the failover is low compared with the method of using 
VRRP, the proposed redundancy method of using multiple-
controllers is suitable especially for a large OpenFlow net-
work. 
 

C. Proposed Design of Global Recovery  
In this section, we explain the redundant method of mul-

tiple domains. Table VI shows the parameters specific to the 
global-recovery experiment. Fig. 10 shows a reference mod-
el of the controller redundancy for the global recovery sce-
nario. The global recovery should consider tackling extraor-
dinary events affecting, for example, the entire data center. 
We assume that a controller is installed in each domain to 
retain its scalability and performance. The controller man-
ages OFSes belonging to the same domain as the MASTER, 

and the controller manages the other OFSes in the other 
domains as the SLAVE. The respective roles of the control-
lers are depicted in the upper side of Fig. 10. For example, 
OFS-A (i.e., some switches belonging to domain-A) recog-
nizes the role of OFC-A (i.e., the controller belonging to 
domain-A) is MASTER and the role of the other controllers 
is SLAVE. Similarly, OFS-B and OFS-C also recognize the 
role of the controller that belongs to its same domain is 
MASTER and the roles of the other controllers are SLAVE. 
The controller has flow entry information for only OFSs 
recognizing the controller as MASTER. Thus, the controller 
does not need to have an excessive configuration or receive 
an excessive message. Additionally, one characteristic of 
our proposal is the existence of a Role Management Server 
(RMS). RMS monitors all controllers to manage their role, 
and RMS has some data such as CPU utilization, role in-
formation, configurations of all controllers and domain in-
formation of all switches. RMS determines which controller 
should take over the role of MASTER and relevant configu-
ration data, if a controller has failed. In this regard, we have 
to be careful to prevent second failures. If OFC-B takes over 
the role of MASTER for broken OFC-A and places OFS-A 
under management besides OFS-B, there is the possibility 
of CPU utilization overload of OFC-B and then OFC-B may 
fail consequently. Thus, we should consider that one failure 
would induce subsequent failures. That is why RMS moni-
tors CPU utilization and judges multiple-controllers should 
take over the role of MASTER from one controller, if RMS 
judges that taking over with a single controller raises over-
load of CPU utilization. 

TABLE VI.  PARAMETERS SPECIFIC TO  GLOBAL -RECOVERY 
EXPERIMENT 

 

 
Figure 10. A network model for global recovery. 

 

5000 10000
0

50

100

150

Number of Flow Entries

T
im

e 
[m

s]

Failover time
Role−change time

200 400 600 800 1000
0

10

20

Number of OpenFlow Switches

C
P

U
 u

til
iz

at
io

n 
of

 O
pe

nF
lo

w
 C

on
tr

ol
le

r 
[%

]

Node Parameter Value

operating system Ubuntu12.04

network interface Gigabit Ethernet
snmp monitoring interval 50 ms

Role management system

OFS A OFS B OFS C

OFS A Master
Master

Master
Slave
Slave Slave

Slave Slave
SlaveOFS B

OFS C

OFC A OFC B OFC C

Role-Management
Server(RMS)

Domain A Domain B Domain C

:OpenFlow Channel :Asynchronous message 

OFC A OFC B OFC C

The role of the controller

120

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 Fig. 11 shows the role-change transition for the global 
controller recovery. Fig. 11-(a) shows the initial state, and 
two switches are connected to three controllers through 
three OpenFlow channels. In the normal operation, both 
switches recognize that the role of OFC-A is MASTER and 
the other controllers are SLAVE. So only OFC-A receives 
some asynchronous messages such as packet-in messages. 
In this case, the three controllers have different configura-
tions respectively and the information is reflected in the 
database of RMS. Also RMS has CPU utilization, the role 
information of each controller and the cognition haven by 
switch regarding the role of the controller in its database.  
The traffic generator connects OFS01 and OFS02 respec-
tively and the data transfer rate is 100 pps. The two switches 
receive a new packet and send a packet-in message to the 
controller at all times as well as the measurement of a single 
domain. 

If OFC-A fails and RMS judges there is no problem of a 
single controller taking over the MASTER role, the initial 
state (i.e., Fig. 11-(a)) is changed to Fig. 11-(b) where only 
OFC-B takes over the role of MASTER. The RMS database 
is updated accordingly, and both switches start sending asyn-
chronous messages to OFC-B. 

In contrast, if OFC-A fails and RMS judges that a single 
controller cannot take over the Master role but two control-
lers can, the initial state is changed to Fig. 11-(c) where two 
controllers take over the role of MASTER. The database of 
RMS is updated accordingly, and then OFS01 starts sending 
asynchronous messages to OFC-B. OFS02 sends asynchro-
nous messages to OFC-C. 

Fig. 12 shows a global recovery scheme in the case of 
Fig. 11-(b). RMS monitors the CPU utilization of all control-
lers every 50 milliseconds with Simple Network Manage-

ment Protocol (SNMP) [22]. Since Fig. 5-(b) has three con-
trollers, each controller is monitored every 150 milliseconds. 
The proposed recovery process consists of a judge-phase and 
a takeover-phase. If RMS is unable to retrieve the infor-
mation about CPU utilization from OFC-A, RMS does not 
immediately assume that OFC-A has failed to avoid false 
positive. To ensure the failure detection, RMS requests that 
the ICMP echo be sent from the other controllers (OFC-B 
and OFC-C) to OFC-A. If more than half of the results indi-
cate the failure of OFC-A, RMS determines that OFC-A has 
failed and starts calculating a new MASTER controller mi-
grating OFC-A’s configuration and OFSs under OFC-A. The 
process from failure detection to the determination of a failed 
controller is defined as the judge phase as indicated in Fig.12. 

 
Figure 12. Proposed operational sequence for Figure 5 (b) scenario. 

OFS01

OFC A

RMS

Layer 3 Switch

Traffic
Generator

Traffic
Generator

OFC B OFC C

Layer 3 Switch Layer 3 Switch

OFS02

CPU OFS 01 OFS 02Config

OFC A

OFC B

OFC C

MASTER MASTER
SLAVE

SLAVE SLAVE

SLAVE

x%

y%

z%

A

B

C

OFS01

OFC A

RMS

Layer 3 Switch

Traffic
Generator

Traffic
Generator

OFC B OFC C

Layer 3 Switch Layer 3 Switch

OFS02

CPU OFS 01 OFS 02Config

OFC A

OFC B

OFC C

SLAVE SLAVE
MASTER

SLAVE SLAVE

MASTER

x%

y+a%

z%

A

A+B

C

OFS01

OFC A

RMS

Layer 3 Switch

Traffic
Generator

Traffic
Generator

OFC B OFC C

Layer 3 Switch Layer 3 Switch

OFS02

CPU OFS 01 OFS 02Config

OFC A

OFC B

OFC C

SLAVE SLAVE
MASTER

SLAVE MASTER

SLAVE

x%

y+b%

Z+c%

A

A+B

A+C

: OpenFlow channel : Physical connection : Asynchronous message : Data traffic 

OFC A goes down

The database of RMS The database of RMS The database of RMS

Figure 11. Role-change transition in the global controller recovery 

(c) Two switches are migrated to 
two controllers. 

(b) Two switches are migrated to  
a single controller. 

(a) Normal state. 

OFPT_PACKET_OUT

50ms

RMS OFC-A OFC-B

Keep-alive(ECHO_REQUEST)

Send result of keep-alive

snmp

OFS01

OFTP_ROLE_REPLY

Send updated configuration

Completion notice about updated configuration

Fail detection

Request to change role

OFPT_ROLE_REQUEST

Completion notice about role-change

OFPT_PACKET_IN

OFPT_FLOW_MOD

OFPT_PACKET_OUT

Role-change time

judge

Judge-phase

Takeover-phase

OFC-C OFS02

Keep-alive(ECHO_REQUEST)

Send result of keep-alive

OFPT_PACKET_IN

Failover time

snmp

snmp

Request sending a keep-alive

Request sending a keep-alive

OFPT_ROLE_REQUEST

OFTP_ROLE_REPLY

a

b

c
d

e

f

Failure detection time

Interface down

OFPT_FLOW_MOD

121

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
Figure 13. Result of failover time and role-change time in global recovery. 

 

 
Figure 14. Breakdown of role-change time observed for scenario Fig. 11-

(b) and (c) 
 

After the judge-phase, RMS moves to the takeover-phase. In 
the takeover-phase, RMS firstly calculates whether it is no 
problem for a single controller to take over all switches con-
nected to OFC-A by considering CPU utilization of OFC-A 
as well as OFC-B and C. If two or more controllers are re-
quired to take over all switches of OFC-A, RMS separates 
the switches based on the ratio of the available CPU re-
sources of new MASTER controllers. If RMS decides that 
OFC-B is adequate to become a new single MASTER as 
shown in Fig. 11-(b), RMS integrates OFC-A’s configuration 
into OFC-B’s and registers the integrated configuration into 
OFC-B. Upon receiving the integrated configuration, OFC-B 
updates its own configuration and then reports the comple-

tion of the integration process. Then, RMS requests OFC-B 
to send the OFPT_ROLE_REQUEST to the switches for 
updating the role of OFC-A to SLAVE and OFC-B as 
MASTER. The switches send the OFPT_ROLE_-REPLY 
after updating the role change process. Then, OFC-B reports 
the completion of the role-change process to RMS. The pro-
cess from completion of the judge-phase to completion of the 
role-change is defined as the takeover-phase. After the take–
over phase, the switches OFC01 and 02 start sending asyn-
chronous messages to OFC-B. 
 

D. Evalution of Global Recovery  
Fig. 13 shows the average of 10 measurements of role-

change time and failover time in both cases of Fig. 11-(b) 
and (c). Role-change time and failover time increase with the 
growth of flow entry size. This result shows the difference in 
behavior compared with the result of a local recovery shown 
in Fig. 8.  The major reason for this increase of failover time 
is that RMS needs integration of multiple configurations of 
failed OFC and registration of the configuration during the 
takeover-phase. As different scenarios of the global recovery, 
RMS selects multiple-controllers as the new MASTER as 
shown in Fig. 11-(c), and the scenario takes a longer role-
change time and failover time as shown in Fig. 13. This rea-
son is analyzed using the result of Fig. 14 that shows a 
breakdown of the role-change time under 1000 entries in 
both cases (i.e., Fig. 11-(b) and (c)). The characters (“a” to 
“ f”) placed on the x-axis of Fig. 14 correspond to the marker 
shown in Fig. 12. As shown in Fig. 14, the major perfor-
mance difference comes from c that is the time to integrate 
configuration in RMS and register it to OFC. Current im-
plementation suffers from the serial processing of the regis-
tration of integrated data. This means introducing parallel 
processing of the registration resolves the delay of role-
change  fo r  t he scenar io  shown in  F ig .  11 - (c ) . 

According to Fig. 13, the role-change time is about 300 
milliseconds and failover time is 420 milliseconds in 10000 
flow entries, in the case of the scenario in Fig. 11-(b). In the 
case of the Fig. 11-(c) scenario, the role-change time is about 
500 milliseconds and failover time is about 620 milliseconds. 
These results indicate that, for both scenarios, our proposal 
achieves a competitive role-change time and faster failover 
time compared with existing redundant mechanisms [13, 15]. 
We consider the proposed implementation of multiple-
controllers achieves high availability controllers for both 
intra and inter data-center recoveries. 

In this paper, we do not evaluate the redundancy of RMS 
itself. Although conventional server redundancy mechanisms 
accompanying a relatively longer failover time may be ap-
plied to RMS redundancy, RMS cannot be a critical bottle-
neck of processing asynchronous messages. This is because 
RMS failure itself does not affect any OpenFlow channel 
sessions and thus the data plane is not affected, accordingly. 

 

V. CONCLUSION AND FUTURE WORK 

In OpenFlow architecture, the controller is an important 
element for achieving reliable SDN. In this paper, we evalu-

5000 10000
0

200

400

600

Number of Flow Entries

T
im

e 
[m

s]

(b) Role−change time
(b) Failover time
(c) Role−change time
(c) Failover time

0

200

400

(b) Role−change time
(c) Role−change time

a b c d e f

T
im

e 
[m

s]
122

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



ated the redundant method for the OpenFlow controller by 
using a conventional method (i.e., VRRP) and we verified 
the existence of the issue from the viewpoint of failover time 
and CPU utilization. And then we proposed a redundant 
scheme to tackle both a single domain (“local”) and multiple 
domain (“global”) recovery scenarios, which cannot be re-
solved with conventional redundant schemes. To avoid a 
long failover time and heavy CPU load due to conventional 
virtual IP address-based schemes, our scheme used the mul-
tiple-controllers capability for seamless handover. To avoid 
performance scale-limit due to conventional clustering 
schemes, our scheme eliminates any frontend server from the 
redundant system. The evaluation shows that the proposed 
scheme involves lower CPU utilization and competitive role-
change and failover times compared with conventional 
schemes. In our scheme, the CPU utilization due to the pro-
cess of failover is half or less compared with the virtual IP 
address-based scheme in the case of 1000 units of OFSes. 
Our scheme is more suitable for a large OpenFlow network. 
The role-change time observed in a local recovery scenario is 
about 15 milliseconds regardless of entry size, and that in a 
global scenario ranges from 200 to 400 milliseconds. CPU 
resource-aware migration of managed OpenFlow switches in 
the failover process was successfully achieved by our 
scheme. The proposal is expected to be an effective high 
availability scheme necessary for deploying reliable and 
scalable SDN.  

In future work, we will shorten the failover time for the 
scenario of some OpenFlow switches migrated to some 
OpenFlow controllers. In RMS, we will separate the current 
redundancy process that is sequential migration into every 
controller, and we will establish CPU-based controller re-
source modeling to accurately handover many OpenFlow 
switches in the event of, especially, global recovery where 
massive nodes may need to be protected. 
 

ACKNOWLEDGMENT 

We are grateful to Yasunori Maruyama for our produc-
tive discussions, support for our experiments and program-
ming assistance. 
 

REFERENCES 
[1] K. Kuroki, N. Matsumoto, and M. Hayashi, “Scalable 

OpenFlow controller redundancy tackling local and global 
recoveries,” Proc. International Conference on Advances in 
Future Internet (AFIN2013),  August 2013, pp. 61-66. 

[2] N. McKeown et al., “OpenFlow: enabling innovation in 
campus networks,” ACM SIGCOMM Computer 
Communication Review, vol. 38, isssue 2, April 2008, pp. 69-
74. 

[3] M. P. Fernandez, “Evaluating OpenFlow controller 
paradigms,”  Proc. International Conference on Networks 
(ICN2013), January 2013, pp. 151-157. 

[4] R. Pries, M. Jarschel, and S. Goll, “On the usability of 
OpenFlow in data center environments,”  Proc. IEEE 
International Conference on Communications (ICC2012), 
June 2012, pp. 5533-5537. 

[5] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, 
“OpenQoS: an OpenFlow controller design for multimedia 

delivery with end-to-end quality of service over software-
defined networks,” Proc. Signal & Information Processing 
Association Annual Summit and Conference (APSIPA ASC 
2012), December 2012, pp. 1-8. 

[6] “IEEE standard for local and metropolitan area networks – 
station and media access control connectivity discovery,” 
IEEE Std 802.1AB, September 2009. 

[7] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and 
P. Skoldstrom, “Scalable fault management for OpenFlow,” 
Proc. IEEE International Conference on Communications 
(ICC2012), June 2012, pp. 6606-6610. 

[8] A. Dixit et al., “Towards an elastic distributed SDN 
controller,” Proc. ACM SIGCOMM Computer 
Communication Review, vol. 43, October 2013, pp. 7-12. 

[9] “OpenFlow switch specification version 1.2,” Open 
Networking Foundation, December 2011. 

[10] “The transport layer security (TLS) protocol version 1.2,” 
IETF RFC5246, August 2008. 

[11] “Transmission control protocol,” IETF RFC793, September 
1981. 

[12] A. Tootoonchian and Y. Ganjali, “HyperFlow: a distributed 
control plane for OpenFlow,” Proc. the 2010 Internet Network 
Management Conference on Research on Enterprise 
Networking (INM/WREN’10), 2010. 

[13] F. Koch and K. T. Hansen, “Redundancy performance of 
virtual network solutions,” Proc. IEEE Conference on 
Emerging Technologies and Factory Automation (ETFA’06), 
September 2006,  pp. 328-332. 

[14] “Virtual router redundancy protocol (VRRP),” IETF 
RFC3768, April 2004. 

[15] R. Zhang, T. F. Abdelzaher, and J. A. Stankovic, “Efficient 
TCP connection failover in web server clusters,” Proc. IEEE 
International Conference on Computer Communications 
(INFOCOM’04), vol. 2, March 2004, pp. 1219-1228. 

[16] CPqD/OpenFlow-1.2-Tutorial - GitHub, 
https://github.com/CPqD/OpenFlow-1.2-Tutorial  
[retrieved: April, 2013]. 

[17] NOXRepo, http://www.noxrepo.org 
[retrieved: April, 2013]. 

[18] TraffcLab/of11softswitch – GitHub, 
https://github.com/TrafficLab/of11softswitch 
[retrieved: April, 2013]. 

[19] Keepalived for Linux, http://www.keepalived.org 
[retrieved: October, 2013]. 

[20] Open vSwitch, http://openvswitch.org 
[retrieved: April, 2013]. 

[21] “Bidirectional forwarding detection (BFD),” IETF RFC5880, 
June 2010. 

[22]  “A simple network management protocol (SNMP),”  IETF 
RFC1157, May 1990. 

 
 
 
 
 
 
 
 
 
 

123

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A Mobile Mashup for Accessing Distributed Recycling Knowledge

Sönke Knoch
German Research Center for Artificial Intelligence

Research Department Intelligent User Interfaces
Saarbrücken, Germany
Soenke.Knoch@dfki.de

Alexander Kröner
Georg Simon Ohm University of Applied Sciences

Department of Computer Science
Nuremberg, Germany

Alexander.Kroener@th-nuernberg.de

Abstract—From the consumer perspective, classifying a product
regarding its environmental impact is a difficult task because
relevant knowledge is usually not only diverse, but also distributed
over several information sources. In this work, an analysis of
mobile ”green” applications formed the basis of a mobile appli-
cation, which aims at providing all recycling-related information
in-situ. Its domain model integrates recycling knowledge from
several information sources and is capable of disassembling a
product into its elementary parts. An information extraction
approach allows the automatic integration of relevant content
from new Web sources, which were suggested by the user. The
mobile application enables the user to initiate interaction with this
model over three different ways of describing a product. Beside
insights concerning information access and user interaction, a
first evaluation of the prototype indicates that the employed fused
domain model may outperform results achieved with a traditional
approach to web-based information search concerning recycling
information. Based on the outcomes of the evaluation, a revised
user interface is presented.

Keywords-Sustainability, decision support, domain model, mo-
bile mashup, mobile computing, case study.

I. INTRODUCTION

Limitation of natural resources affects everyday decision
making in diverse ways: indirectly through increasing costs for
products, e.g., based on oil, or directly due rationale insight and
ecological awareness. Unfortunately, such sustainable decision
making is a non-trivial task for various reasons. For instance,
a product has to be chosen that is ”easy” to recycle. From the
viewpoint of sustainability, recycling is affected by materials
the product is consisting of, the recycling process for disas-
semble the product, the extent such disassembly is possible,
and even the (potentially future) context that determines efforts
needed to insert the product into the recycling process.

In order to make an informed decision, a human deci-
sion maker has to acquire all of that knowledge—and to
fuse it. Information technology may support the user in this
task in various ways (cf. [1]). This is reflected by related
research and development activities ranging from integrating
sustainability-related information along the supply chain (e.g.,
[2]) to community-driven information hubs for recycling tips
(see e.g., [3]).

This complexity partially explains why expert advice in-
situ may increase people’s will to do such decisions [4]. In-
formation has to become more available [5], and be explained

to the user [6]. Thus, it is little surprising that there exists
a considerable amount of ”green” mobile applications, which
seek to support their user in-situ in solving tasks related to
sustainability.

This article extends previous work (see [1]) concerning a
mobile application and a linked information service, which aim
at supporting decisions concerning consumable products based
on recycling-related information.

The following Section II reviews typical characteristics
of such mobile applications. Then, Section III reports on a
data mashup, which fuses different kinds of recycling-related
knowledge from distributed sources in a single domain model.
Section IV describes a mobile information service, which em-
ploys that domain model in order to combine services of var-
ious previously reviewed applications. Section IV summarizes
the underlying system architecture, and provides further de-
tails concerning back end and mobile application. Afterwards,
Section V summarizes feedback obtained in a comparative
experiment, in which participants acquired recycling-related
information with the new service as well with traditional
information offers. That feedback affected the redesign of the
system’s user interface, which is presented in Section VI.
Finally, the article closes in Section VII with a summary of
achieved results and an outlook on future work.

II. RELATED WORK

In 2011, a preparatory internal study addressed the state-of-
the-art of mobile applications supporting sustainable decision
making. The survey comprised mobile applications offered at
the Android Market and the Apple App Store. Search terms
were ”energy consumption”, ”energy efficiency”, and ”green
life” and led to a result of 23 relevant mobile applications in the
Android Market and 25 mobile applications in the Apple App
Store. The result was sorted into four categories promotion,
education and information, calculators, and monitoring and
controlling. Figure 1 shows the amount of matches for each
category in the respective marketplace. The detailed result for
each category is described in the following:

Promotion (4 mobile applications). Mobile applications
in this category, typically, promote energy saving technologies,
such as solar energy systems, low-energy devices of certain
product classes (e.g., fridges, air conditioning systems, etc.),

124

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



or energy saving techniques (e.g., monitoring tools and pro-
grammable thermostats). For example, the mobile application
Lennox [7] calculates the energy savings achievable by a
new air conditioning system, provides product information and
directs the user to the next local dealer.

Education and Information (20 mobile applications).
References, encyclopedia, decision support systems, and
games form a category on its own. The majority of such mobile
applications provide information in form of references, tips, or
links and news collections. For example, the mobile application
”this is green” [8] offers information that is thematically
organized by a picture of a layout of a common one family
house. If the user tabs on the garage he will find information
on fuel consumption of the car, if he tabs on the bathroom
information on how to save water is provided. The application
”low carbon life” [9] is a collection of little games that tries
to teach the user, e.g., how to use the washing machine in an
efficient way and how to recycle trash that occurs in a common
household.

Calculators (9 mobile applications). Other mobile ap-
plications support the user in calculating balances concerning
sustainability-related factors. They can be distinguished in
mobile applications meant for the private and for the business
domain. The former ones focus on an individual’s habits and
objects, e.g., flights and TV. The latter ones focus on business
branches such as architecture or lamp industry. In general,
the user has to enter data manually into the respective mobile
application, which is a major difference to mobile applications
classified as ”monitoring and controlling”. For example, the
”green footprint calculator” [10] is filled manually with data
such as monthly bills (oil, gas, and electricity), number of
flights, and recycling behavior. Once filled with this data, the
mobile application calculates the yearly carbon footprint and
visualizes it with a maximum of six green trees if the carbon
footprint is very good/small. The application ”MeterRead”
[11] captures energy consumption. The number of kilo watts
is synchronized manually with the electrical meter over a
graphical meter that looks similar to the one that can be found
in households. After data gathering, the mobile application
provides a prediction for the consumption over the next 30
days.

Monitoring and Controlling (15 mobile applications).
Finally, there are mobile applications, which connect to energy
consuming devices in the private and the business domain.
In the private domain, they focus on devices common for an
individual’s environment, e.g., house, car, and mobile phone.
In the business domain, such mobile applications focus on
branches, e.g., IT, manufacturing industry, and facility man-
agement. For example in the private domain, the ”power tutor”
[12] analyzes system and power usage of the mobile device
and provides chart views, e.g., for the consumption of the
LCD, CPU, and Wi-Fi. The ”green gas saver 1.0” [13] shows
the greenest way of acceleration in a car. A lot of mobile
applications visualize energy consumption (electricity, oil, and
gas) and provide remote control features (e.g., switch on/off,
timer configuration, etc.). Alarms are set off when consumption
exceeds a defined threshold. One example from the business
domain is ”GSH ienergy” [14]. ”DONG Energy eFlex” [15]
controls home environments in the private domain. Community
features are included in some mobile applications, where the

2

5

6

10

2
4

9

10

Education and Information

Promotion

Calculators

Monitoring and Controlling

Android Market Apple App Store

Figure 1. Related Mobile Applications.

user’s green performance can be compared to the performance
of the user’s friends.

General observations included that mobile applications for
sustainable decision making were either highly specialized
(focus on product advertisement or industrial applications)
or generalized (dictionaries, household / lifestyle consulting).
Furthermore, the reviewed applications rely on data from a
single information source, which does not reflect diverse and
distributed character of such information mentioned in the
beginning. Finally, despite the mobile platform, there was little
use of the mobile sensing capabilities.

In May 2014, both marketplaces were revisited in order to
extract changes in categories identified in the previous study. In
both cases, the top 10 applications returned in response to the
query (”recycling”) were briefly reviewed. In 2011, the same
query led to irrelevant results, e.g., desktop recycling bins.
Compared to the search in 2011, an higher amount of ”green”
recycling applications (60-70%) was registered in 2014. Of
the overall 20 applications, about 30% now provide location-
based recycling recommendations for products that are scanned
via barcode. For instance, ”RecyclingScanner” recommends a
trash can in the vicinity or a supermarket for a given product.
The application, developed for the German market, was tested
and delivered good results. Also of interest and different to the
previous study, there were now applications (10%) offering
recommendations about creative ways of recycling. Finally,
new game applications aim at informing and teaching people
the proper way of recycling certain packaging. Nevertheless,
these solutions share the narrow application focus observed
in the 2011 study. This suggests that the mashup concept
proposed in this article is still relevant and can provide a benefit
for both user and environment.

This article reports on how these still existing gaps could be
addressed for a specific application scenario: an ”Eco-Advisor”
should support consumers in ranking products according to
their environmental impact, and in making informed decisions
concerning recycling options regarding a product at hand using
information from distributed recycling knowledge.

125

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



III. FUSION OF RECYCLING KNOWLEDGE

According to the previously introduced classification of
related work, the Eco-Advisor could be categorized in the first
place as an information and education service, which includes
aspects of a calculator. While the service as such could be
employed also for user support in non-mobile scenarios, its
particular focus is on decision support concerning a product
”at hand”.

Therefore, the service has to support the user in establish-
ing a link between the subject of interest—a physical product
instance—and relevant information concerning this individ-
ual artifact. This information may originate from distributed
sources, and may differ in format and semantics. It may
describe aspects of the artifact, this kind of artifacts, resources
used for creating the artifact, and related services. Efforts
needed in performing this task strongly depend on the way
data are organized and structured by the service—its domain
model.

A. Requirements

As the mobile application is meant to provide information
for products, its domain model has to be capable to represent
a product’s most important properties. The model is kept as
generic as possible because it is a storage for all kinds of data,
structured and unstructured.

A product is defined in an economic sense as the result
of a transformation that was initiated by humans. This trans-
formation consumes scarce resources, such as materials and
energy. In this article, we will focus on physical products and
exclude virtual products, such as information or services.

The information about a product, its components, and
resources that is necessary to provide decision support before
or after product usage is distributed and hard to find. This
challenge lead to three core requirements for the model, which
are explained in the following:

• Requirement 1: The domain model has to carry
information in form of various data patterns from
distributed sources on an abstract and a concrete level
and is open for extensions.

• Requirement 2: The domain model has to enable a
disassembly of products in terms of kind and amount
of materials included in the product’s (current) phys-
ical form.

• Requirement 3: The domain model has to support the
interaction implemented by the mobile application.

Requirement 1 asks for a domain model, which supports the
mapping of a product at hand to recycling-related information.
As recycling information is not provided by all manufacturers,
such information can be found on the abstract level in the
absence of manufacture specific information. If product spe-
cific information is available, it is stored on the instance level.
Additionally, the model has to ensure a degree of extensibility
that allows an adaption for specific needs. The last criterion is
related to the open/close design principle from object-oriented
programming. To integrate data from distributed sources, the
model has to be able to carry data in heterogeneous patterns,
and to make information available in a unified format.

recyclingObjects

component

material

Instance:colaCan

subClassOf

type

Can

consistsOfSubstance

Aluminum

(Metal)

Figure 2. Ontology representation of the product structure.

Requirement 2 demands a domain model able to reveal
product’s components and materials down to an elementary re-
source level. For example, a beverage can consist of aluminum,
which is a chemical element in the boron group with the
symbol Al, the third most common element, and most abundant
metal in the Earth’s crust. Such information can be employed
by the service in order to perform calculations involving a
product’s durability, kind of resources used, and recycling
potential. Thus, while a resource used within a product may be
scarce, this may be less crucial if the resource can be extracted
with limited efforts during recycling for later reuse.

Requirement 3 demands that the domain model supports the
particular kind of user-product-service interaction that forms
the background of the envisioned kind of support. The quality
of recommendations expressed by the service strongly depends
on knowledge about the product the user is interested in.
Ideally, this object is at hand and capable to describe itself, e.g.,
on the basis of data linked by identification (RFID) referenced
as ISO 14443 or Quick Response (QR) Code referenced as ISO
18004 describing the individual product instance. However,
other situations may require the user to describe the product
with less precise means. In order to support the user in this
task, the system’s user interface provides diverse ways of
describing products. The domain model has to reflect this
diversity with an organization, which facilitates information
retrieval starting from unique identifiers, visual features, key-
words and product categories.

B. Domain Model

The assembly information on a product was modeled in the
Ontology Web Language (OWL) [16]. In the model shown in
Figure 2, a product is an instance of a sub class of recycling
objects, which consist of one or multiple substances of a
certain type.

126

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Object Material

abstract object world

specific recycling world

Tip Location

concrete product world

Brand

part-of

Product

consists-of

Figure 3. Entity Relationship Model (ERM) of the domain model (most
relations and attributes are faded out).

According to Requirement 1, the final domain model is
open for extensions; it was developed as an onion layered
architecture. In the innermost layer lies the core, most abstract
model, which is the nucleus of the model that is visualized in
Figure 3, the ”abstract object world”. Objects consist of differ-
ent Materials, the bill of materials, and have thereby a certain
composition (Requirement 2). This kind of product assembly
is discussed for electromechanical products by Rachuri et al.
[17], an extension of the Core Product Model 2 (cf. Fenves et
al. [18]) that covers a product’s function, form, and behavior.
The entities in the next layer, the ”concrete product world”,
form the world of products and contain all entities from the
object world. Objects are manufactured differently by different
companies under different Brands. The combination of the
entities Brand, Object, and Material forms a Product. These
two worlds, the object and the product world, represented by
the two innermost layers can be transferred on numerous use
cases where product data is involved. Two kinds of products
are allowed: products with a structure of certain materials and
products that provide a structure under a certain brand. All
products can contain sub-modules. This hierarchical modeling
approach, indicated by the part-of relation, allows the subordi-
nation of sub-products, which are produced under a different
brand by a certain supplier. A similar classification hierar-
chy was provided by Pels [19], which distinguishes between
product instances, classes, and types to reduce the complexity
of product models. In a similar way substances, contained in
a material are modeled, which allows the disassembly of a
product in its most atomic elements. In the outermost layer,
the most specific one (”specific recycling world”), the entities
for the use case at hand are modeled and set in relation to the
entities in the other layers. The entity Tip contains creative
recycling tips, the transformation of old objects into something
new, for Products, Objects, and Materials. Location contains
recycling points where Products, Objects, and Materials can
be recycled. The specific (recycling) world is open for more
extensions to extend the Object and Product worlds according
to specific needs. The decision for an onion layered design
of the domain model supports extension of the model: it is
possible to add layers for specializing the model and to remove
layers for generalizing the model. A similar way of abstraction
was provided by Lee et al. [20], which proposed a generic and

independent multilevel product model that is divided into data,
model, and metamodel level.

To support the interaction (Requirement 3), textual defi-
nitions from WordNet [21] are used to identify the entities
Object, Material, and Brand that are denoted as things follow-
ing the notion ”Internet of Things”. This kind of identification
allows text searches on the IDs and users to find the Object,
Brand, or Material of interest. The relation among those three
entities allows the presentation of related Materials and Brands
when an Object is searched, the presentation of related Brands
and Objects when a Material is searched, and the presentation
of related Objects and Materials when a Brand is searched.
Related products from the overlapping of all three entities
can be presented. Additionally to the concept of definitions,
word forms—a set of synonyms—are assigned to Objects,
Materials, and Brands, respectively. These synonyms support
a query expansion mechanism that guarantees search results
for a set of valid search terms. For example, ”Al” leads to the
same result as ”aluminum”, ”aluminium”, or ”atomic number
13”. Recycling Tips are assigned to Objects and Materials. A
product taxonomy is used to categorize Products, which allows
a search for products by category. Products have additional
attributes that are amount and unit. This allows for storing
information on the quantity of materials, which are obstructed
in one object. Locations own the additional fields latitude and
longitude to store the GPS position.

IV. ACCESS TO RECYCLING KNOWLEDGE

The system is divided in two parts: the mobile application
that makes information available to the user and the back end
that provides an interface to the Web and pre-processes data
for fast information access. Overall, the system implements
a mashup [22] of tools and resources in order to realize one
particular service. The client forms a mobile mashup because it
combines contextual information provided by mobile devices
with a mashup’s capability to integrate web resources and
process data (cf. [23], [24]). The back end alone is denoted
as a data mashup. An overview of related work in the area of
mobile mashups is provided in previous work (cf. [25]).

Figure 4 provides an overview of the system’s main com-
ponents: The data mashup on the back end side, its information
extraction component, and the mobile application.

A. Back End

The data mashup combines the contents of multiple hetero-
geneous and distributed Information Sources that can be seen
on top of Figure 4. It integrates these sources in one database
in order to speed up query processing. Responsible for this
integration is the Information Integration component. The
latter one is responsible for processing semi-structured data
obtained from Information Extraction components, which wrap
the actual Information Sources. The Information Integration
stores its result in the Domain Model database and translates
the Information Management’s requests into database queries.
The Domain Model database contains the ontology model
depicted in Figure 2 that was transferred to a relational
database according to the ERM in Figure 3 for performance
reasons. In the database, per default, each entry consists of
the 4-tuple < ID,Name,Description, Image >. The ID is

127

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Mobile Application

Back End

Information 
Source 1

Information 
Source N

Information 
Management

Client

...

Query 
Expansion

Location-
based 
Service

Image 
Recognition

Tools

Information 
Extraction
<<instance>>

Information 
Integration

Domain Model

Information 
Extraction
<<instance>>

Components

Web

Figure 4. Components of the system architecture.

a unique identifier, Name represents the designation of the
data entry, and Description contains a long text that helps
to characterize the thing. An Image visualizes the entity and
can be stored in form of a file path. Each entity is expandable
by additional attributes that might be appended to the 4-tuple.
Additional attributes concerning an entity may be appended
to the tuple. For instance, GPS coordinates are added to the
location entity.

The Query Expansion tool is used to increase the hit rate
of search terms received from the Client side. These client
requests are handled by the Information Management that
receives HTTP requests over a REST interface. To process
image data, an Image Recognition component is connected and
delivers describing strings via Web hook (cf. Figure 6), as the
Information Integration component processes only textual data.

The Query Expansion tool expands search terms from all
three ways of interaction (search by text, search by category,
and search by image) by synonyms from the WordNet [21]
dictionary to match additional entries in the database. The
Image Recognition component was realized by using the
IQEngines API, which delivered acceptable results (in most
cases the labels and not the things are recognized) that can be
improved by training the image recognition algorithm. Since
IQEngines was acquired by Yahoo! in 2013, its service is no
longer available. Instead, we will use the visual search engine
Macroglossa [26].

The system’s modular architecture seeks to support adding
and removing Information Sources as well as exchanging back
end components. Technical details concerning the integration
and adaptation of information in this framework (e.g., the way
how recycling tips from World.org [3] are fused with other

Information 
Integration

NLP

Clean Up

Content 
Analysis

Text Mining

HTML
(semi-structured information)

HTML
(cleaned)

Textual Content, Metadata,
and Language Identification

Relevant Content
(structured information)

Domain 
Ontology

Grammatical structure

Query 
Expansion

Domain Model

Information 
Source

Figure 5. Extracting information from user defined Web sources.

recycling information) have been subject of previous work (see
[25]).

B. Information Extraction

In the first prototype, the information source was made
available by a wrapper module. The source-specific wrapper
parsed the content of the respective Web page, structured the
information, and delivered the data to the domain model to
receive a program-friendly structure. JAXB was used to make
the data from the database available at the REST interface. It
autogenerates class representations of the database entities and
of the corresponding schema files. The Information Manage-
ment component used this meta information to generate XML
structured data and delivered it to the mobile device.

After the first version was realized and the case study that
is described in Section V was conducted, it was recognized
that it would be useful to have a feature that allows the user to

128

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



add and share new information sources by simply providing the
URL. In order to achieve this goal, an approach to information
extraction without specific wrappers needs to be added to
the aforementioned Information Extraction (IE) component.
In the following, a concept for the realization of such an IE
mechanism that represents work in progress is suggested.

The process of IE is outlined in Figure 5 and was in parts
inspired by the system suggested by Germesin and Romanelli
[27]. The task of the process is the extraction of relevant
information and the transformation of semi-structured into
structured information that can be added to the database and
is merged with existing content. On top of the process, the
Information Source is defined by an URL that points to semi-
structured information usually encoded in HTML. Then, the
preparation phase that contains the process steps Clean Up,
Content Analysis, and NLP (Natural Language Processing)
starts. During the Clean Up phase the main textual content
of the Web page is extracted and surplus ”clutter” is removed.

For the realization, it is planned to use the Readability
API or the boilerpipe JAVA library. The Content Analysis
process determines the document type, in most cases HTML,
and extracts the textual content and metadata. Additionally,
the language of the document is identified. It is planned to
use Apache Tika for this task. Afterwards, it has to be distin-
guished between structured information, such as HTML tables
and unstructured information, such as free text. Structured
information is directly passed to the Text Mining process
while free text is parsed by the NLP process. We plan to
use the Stanford Parser for this task, which works out the
grammatical structure of sentences that is used in the Text
Mining process. Finally, the data preparation phase is finished
and the Text Mining starts. It uses the knowledge of the
Domain Ontology whose concepts were shown in Figure 2.
The ontology describes the content that is relevant for the IE
process and provides the domain knowledge that is compared
to the Information Source.

The existing Query Expansion component is used to pro-
vide synonyms for the entities in the ontology. These synonyms
are added to search patterns that are formulated based on
the ontology containing the materials, products, and brands of
interest. It is planned to use Apache Lucene to solve the search
task. The grammatical structures from the NLP process help to
discover relations between multiple search terms. For instance,
the sentence ”A cola can has a carbon footprint of 170g” sets
the pattern ”cola can” and ”carbon footprint” into relation
to each other. The low distance of both patterns indicates a
match. When such a relation is discovered, it is passed over
to the Information Integration component, which stores it in
the Domain Model database. Multiple relations for the same
entities can be stored. The source of the information is added
to the tuple to be able to provide the origin of the information
on the user interface.

C. Mobile Application

The mobile mashup was realized as a mobile application
that presents the contents provided by the data mashup that is
encapsulated by the back end and adds additional information
from the Location-based Service. It provides the user interface
components with an interface for data search and retrieval that
provides abstraction from the underlying actual data sources.

Back End
Image Recognition

image image_resized

resultresult_formatted

resize(image) recognize(image)

Mobile Application

format(result)

Figure 6. Client–server communication.

The mobile application runs on a mobile device with
Internet connection. It communicates via a REST interface
with the back end, which is implemented as a Web service.
The user interacts with the mobile device and things—in our
scenario for the experiment an aluminum can, a plastic or a
glass bottle. Three ways of interaction were realized, search by
text, search by category, and search by image. A navigation
tree containing screen shots from the mobile application is
presented in Figure 7 and shows the search result for an
aluminum can manufactured by a certain brand.

When the user starts the application he sees the home
screen that is labeled with A. The three buttons trigger the
three interaction methods. Search by text leads to screen B,
which provides a text field and a search button. A drop down
list shows a list of recent search terms. Search by image starts
the camera application of the phone and allows the user to
take a picture from an object or to choose a picture from the
phone’s file system. Once an image is selected, it is sent to
the back end. The back end resizes the image and forwards it
to the associated image recognition API that is invisible to the
user, and waits for a response (Web hook). When the response
is arrived it is immediately passed over to the mobile device.
The whole process is outlined in Figure 6. The processing time
strongly depends on quality of image and Internet connection
(in our setup 2-5 seconds). For a given object, search by
text and search by image may result in a broad range of
search terms, since users may follow different approaches
to describing or photographing objects. The search result is
visualized on screen E and shows a definition of the object
in the headline. If multiple definitions are matching the query
the user has to choose a definition from a list of definitions
that the system considers as relevant. The object’s composition
is viewed in four categories on screen E. The drop down list
Products contains products in the database for a given object.
Aluminum can is an example for a product related to the object
can. The Objects list contains the objects, in this case a can.
Materials lists all materials that are contained in the listed
products. Finally, all brands that are selling the products under
the selected definition are listed in the Brands list. Another
search mechanism is the Search by category that was built
using the Google product taxonomy and can be seen on screen
D. It allows to browse for products by category. Screen F
shows the results for the category soda pops. Aluminum cans,
glass bottles, and plastic bottles are listed.

In the next step, the user can select one entry: a product, an
object, a material, or a brand. If the user selects an object, the
application displays a description of the object and creative
recycling tips on screen G. Recycling tips are structured in
categories. If the user selects a category, then the application
responds with a list of tips. The list is sorted by relevance. If

129

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



OR ORInteraction

A

B

C

D

E

F

G

H

I

J

K

L

Figure 7. Screens and navigation.

the user selects a product, screen H and K show the product’s
description and recycling locations nearby. When the user se-
lects a certain location, the application loads the Google Maps
view (screen L). For each location the distance to the user’s
current position, an estimation about the emissions associated
with the trip to the location, and the deposit to receive for
this product is presented in a bubble. If the user selects a
material, the application presents a detailed description about
the material and its recycling behavior (screen I). Selecting
brands, the user receives a list about associated product’s
carbon emissions provided by the respective company.

The mobile application was implemented platform-
independently using HTML5 on top of the frameworks jQuery
mobile and PhoneGap. A prototype running on an Android
device was publicly demonstrated [25]. It is subject of the
study described in the following.

V. CASE STUDY

In the following, a survey is presented that evaluates the
mobile mashup and its underlying data mashup built on top of
the domain modeling terms of usability and usefulness. First,
the user interface is evaluated to check if the navigation and
interaction method is easy to handle for the user. Second, the
data mashup stored in the aforementioned domain model is
evaluated to find out if the integrated information sources are
helpful (1) in the way they are presented, (2) while the user
has to solve different tasks from the recycling domain.

A. Research Question and Experimental Design

When the first running prototype of the Eco-Advisor
mobile application was finished, feedback was gathered by
involving a small probe of people in order to validate concept

and basic design decisions. The main question the experiment
sought to answer was the following one:

Do the mobile mashup and the domain model help a user
to achieve recycling goals more efficiently compared to a
stationary Web browser?

Here, ”efficiency” comprises various facets of the original
task, including quality of result (subjective measures such
as user satisfaction, objective quality of recycling), efforts
required to perform this kind of recycling, as well as efforts
needed to deal with the application (time, interaction steps).
In addition, the experiment aimed at gathering information
concerning the preferred way of interaction with such a service.
Acquiring information from such a service can be realized in
quite different ways of interaction ranging from search by text,
category, to image taken from the subject of interest.

In order to address these questions, three experimental tasks
were defined, which had to be executed by participants of an
experiment. These tasks had to be solved with the mobile
application on a mobile device (”app variant”), and with a
regular web browser (”browser variant”), respectively. The web
browser was installed on a regular desktop PC in order to
remove effects from potential issues specific to the interaction
with mobile web browsers from the experiment (e.g., entering
URLs, need for zooming gestures). Furthermore, the web
browser was pre-configured in order to support participants
in the requested tasks. This setup was chosen based on
the assumption that users interested in recycling would have
created bookmarks and other pointers to knowledge relevant
for performing such tasks. Thus, the browser configuration
seeks to reduce search for information sources as such, and
instead to leverage search for information using these sources.

During Task1 (Conventional Recycling), the participant

130

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



is confronted with an object that has to be recycled in a
conventional way in the vicinity. In the browser variant, the
participant will find his or her location in an opened Google
Maps tab and additional tabs with websites about recycling.
The offer of opened websites on a workstation instead of an
empty browser on the mobile phone makes the comparison
between browser and app variant fairer and prevents the
occurrence of a bias. During the study of results, the reader
should keep in mind the difference between the two settings.

During Task2 (Environmental Impact), the participant
is confronted with a set of objects and is asked to choose
the most environmental-friendly one among them. During task
execution in the browser variant, the participant can continue
his or her Web browser session from Task1.

During Task3 (Creative Recycling), the participant is
confronted with one of the objects from Task2. For this object,
the participant should search a creative way of recycling, which
stands in contrast to conventional ways of recycling in Task1.

During the three tasks, the main factor is the Search
for Information regarding the domain of sustainability. Every
participant interacts on both levels Web browser and mobile
application. Each task is related to one particular hypothesis:

• H1: The mobile application supports a more efficient
search for conventional ways of recycling than a
common stationary Web browser.

• H2: The mobile application supports the user in judg-
ing an object’s environmental impact more efficiently
than a common stationary Web browser.

• H3: The mobile application supports a more efficient
search for creative recycling methods than a common
stationary Web browser.

For measuring support of these hypotheses in the respective
tasks, the study relies on several parameters: one measurement
is time. The time a participant takes to accomplish one task
is measured and allows for comparing, which kind of search
method (stationary browser/mobile application) leads faster
to results. Another measurement is the satisfaction of the
user concerning search result and interaction comfort. The
participants are asked to rank their opinion in both categories
(satisfaction and comfort) on a five point Likert scale (ranging
from 1 (disagree) over 3 (neutral) to 5 (fully agree). To check
a user’s preference, the participant has to select the preferred
search variant per task (stationary browser/mobile application).
To check if the domain model and the information it provided
was helpful, each participant specified the criteria taken into
consideration for the decision eventually made at the end of
each task.

To receive feedback on usability related aspects, a user
rating in the dimensions usefulness, readability, navigation, and
visualization is gathered on a 5 point Likert scale, respectively.

Questions about the preferred search mechanism (by text
/ by category / by image) and ideas for improvement are
meant to provide the developer some feedback for further
improvements.

The (potential) persuasive nature of the mobile application
is tested by asking about the influence of the mobile application

on the participant’s current recycling behavior: if the infor-
mation offered by the mobile application would be available
during decision making, would people expect a change in their
behavior?

Finally, at the end of the study, an overall preference
(stationary browser versus mobile application) is asked for.

B. Setup

The experiment was conducted in-lab under the supervision
of one instructor. The participants sat at a table in front of
a common PC workstation. On the workstation, participants
filled out questionnaires and solved the tasks in the browser
variant. The instructor guided through the experimental pro-
cedure, explained the tasks, and answered questions. For the
mobile setting the mobile device Google Nexus S by Samsung
was used. The objects during task execution contain three
objects from the category soda pop beverages. It was decided
to use beverages from one well-known brand, to allow a brand
specific search and to avoid that an unknown product will
confuse a user. As questions of the survey are answered on
the workstation, it can be profited by the advantage of fast
result analysis and automated time measurements during the
experiment. Most of the questions were of closed nature, while
in some cases open questions were asked where the participant
had to fill in an answer into the text field, for example the
result of each task. All questions were mandatory, except
the questions for problems during execution and ideas for
improvement. During operations in the browser variant, the
browser’s history was used to log visited pages and used search
terms. During operations on the mobile phone, search terms
and navigation paths were logged on server-site.

C. Procedure

The experiment was divided into three phases: In the first
phase, the participant had to answer a set of questions on
his or her demographical background, the experience level
concerning computer, mobile phone, and Internet usage, and
the knowledge about recycling. In the second phase, all par-
ticipants had to solve three tasks. To solve these tasks two
tools were provided: a Web browser on the workstation and a
mobile phone with an application. For each task the participant
had to use the Web browser in the first run and the mobile
application in the second. After each run the participant had
to answer a set of questions. In order to balance competition
of mobile application and browser variant, in the latter one,
7 Web pages were already open in the browser’s tabs once a
session started. Those pages contained the same content that is
integrated in the data mashup behind the mobile application.
However, during task execution the participants were allowed
to open new tabs and to start an own free search.

In the third phase, the study concluded with questions about
the preferred search method, problems during task execution,
and ideas for improvement. Additionally, it was asked if the
presented mobile application could influence the participants
recycling behavior, and if the mobile application would be
preferred over the stationary browser.

131

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



D. Result

The study lists 22 records, 2 experts and 20 non-experts.
The average participant was 26 (median) years old. In the
following presentation of the results percentages are rounded
to integers. 13 female (59%) and 9 male people (41%) took
part. Regarding the occupation, among the participants were
2 pupils (9%), 18 students (82%), and 2 professionals (9%,
one software engineer and one researcher). Areas of work are
wide spread and include linguistics and translation, computer
science and IT, literature and culture, business administration
and economics, and education.

The technical experience level regarding the usage of
stationary and moveable computers was relatively high. 22
(100%) use a computer that is connected to the Internet, 16
(73%) use a mobile phone with Internet. On the stationary
computer 8 (36%) surf more than 20 hours per week and 8
(36%) less or equal than 10 hours per week. On the mobile,
only 4 (25%) spent more than 10 hours per week in the
internet, while 8 (50%) are only between 0 and 2 hours online.
While browsing the Web on the mobile, 4 out of 16 (25%)
use predominantly applications. 4 (25%) additionally search
for information about products during a shopping trip.

The participants’ recycling knowledge was diverse. 19
(86.36%) are recycling their trash, 13 (68%) self-motivated,
and 11 (58%) through regulation (multiple selections possible).
13 (68%) consider a product’s environmental impact while
coming to a decision during a shopping trip. Those who do,
consider all different kinds of factors, energy consumption
during operation as well as production and packaging. Those
who do not, do not have time, are not informed enough, or
have other reasons. Additionally, 8 (36%) knew what a carbon
footprint is and were able to explain it, in most cases precisely.

Task1: Browser. All participants except one (the par-
ticipant was not really motivated to spend some minutes
on a location search) found a location for the glass bottle.
The average distance to the user location was 0.71 miles.
Two locations (9%) were subtracted out, one location was
a container service and the other a junk hauling service. 4
(19%) identified trash cans, 5 (24%) chose supermarkets, and
10 (48%) identified a recycling center as point of disposal.
Decision criteria were distance in most cases (15 / 71%),
deposit value in 4 cases (19%), the ”fastest result” in 2 cases
(9%), and missing information on trash cans in 1 case.

Task1: Mobile application. All participants found a
location for the glass bottle. The average distance to the
user location was 0.36 miles, 0.35 miles lower compared to
the results from the browser search. Distance was the most
frequently mentioned decision criteria. Only one participant
named carbon emissions associated with the trip as a decision
criterion.

The preferred search method for Task1 was the mobile
application (15 votes out of 22 / 68%).

Task2: Browser. All participants except one were able
to identify one product out of three (glass bottle/plastic bot-
tle/aluminum can) as the most environmental friendly one. 12
(57%) decided for the glass bottle, 6 (29%) for the plastic
bottle, and 3 (14%) for the aluminum can. The decision criteria
were carbon footprint (17 / 77%), the product’s composition

TABLE I. AVERAGE EXECUTION TIME IN MINUTES

Browser Application
Task1 8:17 min. 7:10 min.
Task2 7:09 min. 5:17 min.
Taks3 6:26 min. 5:25 min.

into materials (6 / 27%), and studies found through a search
engine (1 / 5%). One participant said: ”glass bottle is re-usable
and I am safe from molecules from the plastic bottle entering
my drink”.

Task2: Mobile application. All participants were able
to identify one product out of three (glass bottle/plastic bot-
tle/aluminum can) as the most environmental friendly one. 9
(41%) decided for the glass bottle, 10 (45%) for the plastic
bottle, and 3 (14%) for the aluminum can. While 43% of the
participants changed their mind, 57% kept the decision from
the browser variant.

The preferred search method for Task2 was the mobile
application (16 votes out of 22 / 73%).

Task3: Browser. All participants except one (95%) found
a creative way of recycling for the aluminum can. Several
creative ways of recycling were discovered: potting plants,
lanterns, aluminum boat, pen and pencil holder, build a
children’s telephone, tinker decorative items, sculptures, art,
camping cooker, solar furnace, ashtray, money box, and so
on. Asked, if the knowledge about reusing a product would
influence the participant’s buying decision was approved by 5
out of 21 / 24%).

Task3: Mobile application. All participants identified a
creative way of recycling for the aluminum can. Additional
results were a children’s drum set, a candy box, a seed storage,
a picture frame, gift wrapping, hooks, and film canisters. All
participants except 3 (86%) found a new creative way of
recycling different from the one they found in the browser
variant. Knowledge about reusing the product could influence
the participant’s buying decision in 9 (41%) out of 22 cases,
17% more compared to the browser variant.

The preferred search method was the mobile application
(14 votes out of 22 / 64 %).

Satisfaction and Comfort during the tasks is shown in
Figure 8. The time measurement during the tasks resulted in
the values that are presented in Table I.

The concluding questions showed that most participants
preferred the traditional search mechanisms ”search by text”
(13 / 59%) to the ”search by category” (4 / 18%) and
the uncommon ”search by image” (5 / 23%). In the four
categories usefulness, readability, navigation, and visualization
the lowest average rating received the navigation (3.27) on a
scale between 1 (worst) and 5 (best). Visualization was rated
with 3.36, usefulness with 4.05, and readability with 4.14.
Many participants experienced problems to find information
placed at the leaf level of the navigation tree although a
legend with hints on the underlying content was given on
the screen. Room for improvement was seen in the navigation
(”too complicated”, ”less clicking”). One participant suggested
placing favorites on the home screen. Another one suggested
integrating more pictures to improve the visualization, e.g., to
visualize the creative ways of recycling. Asked if the mobile

132

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0

1

2

3

4

5

Task 1 Task 2 Task 3

Satisfaction

S
ta

ti
o

n
a

ry
 B

ro
w

s
e

r

M
o

b
ile

 A
p

p
lic

a
ti
o

n

S
ta

ti
o

n
a

ry
 B

ro
w

s
e

r

S
ta

ti
o

n
a

ry
 B

ro
w

s
e

r

S
ta

ti
o

n
a

ry
 B

ro
w

s
e

r

S
ta

ti
o

n
a

ry
 B

ro
w

s
e

r

S
ta

ti
o

n
a

ry
 B

ro
w

s
e

r

M
o

b
ile

 A
p

p
lic

a
ti
o

n

M
o

b
ile

 A
p

p
lic

a
ti
o

n

M
o

b
ile

 A
p

p
lic

a
ti
o

n

M
o

b
ile

 A
p

p
lic

a
ti
o

n

M
o

b
ile

 A
p

p
lic

a
ti
o

n

Satisfaction SatisfactionComfort Comfort Comfort

Figure 8. Satisfaction and comfort during task execution (satisfaction: 1=not
satisfied, 2=satisfied in parts, 3=indifferent, 4=satisfied, 5=very satisfied; com-
fort: 1=not comfortable, 2=comfortable in parts, 3=indifferent, 4=comfortable,
5=very comfortable).

application could influence the participants recycling behavior,
73% responded with ”yes”. After all, the mobile application
was mentioned as the preferred method of acquiring recycling
information (15:7 / 68% : 32%).

E. Findings and Discussion

Feedback obtained in the categories navigation and vi-
sualization indicates that potential for improving the mobile
application lies in the optimization of navigation concept and
the presentation of content. For example, some participants had
difficulties to find the content that was necessary to solve the
task. Especially pieces of information on recycling locations,
which is provided in bubbles on the map, for example infor-
mation on carbon emissions associated with a trip from the
user location to the recycling location, are hard to discover.
This information lays 5 navigation steps away from the start
screen and hidden behind a 4 categories menu, which is too
far. Especially users not familiar with mobile applications in
general became frustrated very fast, as they did not understand
the mobile application’s concept.

An interesting phenomenon is the development of time that
was necessary to solve the tasks (cf. Table I). The first task
took in average 7:10 minutes on the mobile application. For
Task2 and 3 the duration lowered by about 2 minutes. This fact
supports the statement of one participant who said, ”after I was
used to the mobile application I found it very helpful”. How-
ever, since a mobile application might be installed right before
a situation where its support is needed, it should be usable with
little to no training. Therefore, this barrier has to be overcome.
It has to be mentioned that in this experimental setting only a
brief introduction to the mobile application was given. Usually,
the user reads a description from the app store and may have
a better understanding of the mobile application in advance.
Thus, further experiments should start with an informing page
about the mobile application as it is common in the big mobile
application portals. Nevertheless, having a look on the average
task execution times in the stationary browser and the app
variant, the app variant outperforms the browser variant in all
three tasks. This result underlines that, after understanding
the mobile application, the participants were able to find

TABLE II. HYPOTHESE MEASUREMENTS APPLICATION VS BROWSER

Time Satisfaction Comfort Preference
H1 -1:07 min. +0.71 +0.36 +36%
H2 -1:52 min. +0.05 +0.53 +46%
H3 -1:01 min. +0.45 +0.15 +28%
Avg. -1:20 min. +0.40 +0.35 +37%

0

1

2

3

4

5
Visualization

Navigation

Readability

Usefulness

Figure 9. Usability.

information faster using the mobile application than using
the Web browser. Having a look at the level of satisfaction
concerning the investigated result in Figure 8, the level of
satisfaction was higher for the mobile application in all tasks.
The perceived comfort during task execution was also higher
when searching with the mobile application. The fact that the
average distance to the identified recycling location during
Task1 was about 0.35 miles lower in the app variant, while
distance was the most important criterion for the participants
shows that the implemented map visualization was easy to
understand. These aforementioned results show that the three
task-related hypotheses are supported in all categories, time,
satisfaction, comfort, and user preference. Table II depicts the
”delta”, Measurement(Browser) - Measurement(Application),
in all categories that were used to measure hypotheses support.
Only some users used the uncommon search method ”search
by image”. People with a great interest in technics found this
search variant ”very nice”.

16 out of 22 (73%) participants reported that the mo-
bile application could influence their recycling behavior. 15
(68%) participants reported that the mobile application is the
preferred method of research for the tasks given. Both facts
together support the appropriateness of the provided kind of
support and indirectly of the employed domain model.

VI. USER INTERFACE IMPROVEMENTS

Since the usability dimensions visualization and navigation
performed not so well in the case study (cf. Figure 9), a revised
version of the user interface (UI) is provided in Figure 10. The
design was inspired by the Google Play Store. In the figure,
only the most relevant screens are presented. The remaining
screens are designed using the same style. Welcome screen
and the three search methods (search by text, search by image,

133

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



I II III IV V

Figure 10. Revision of the user interface based on feedback obtained in the experiment and on metaphors from state-of-the-art mobile applications.

search by category) are left out. They all lead to the new screen
I. On screen I, the categories Products, Materials, and Brands
are visualized by colors to allow a better orientation. The
category Objects was removed because many users in the case
study did not understand the concept of abstract objects, which
lead to confusion by many participants. The text search field
is embedded in the bar on top of the screen (a loupe indicates
the search function) to allow an edit. It enables initiating a
new search at any time, which directs back to screen I. When
a product is selected (in the figure an aluminum can) a screen
with four different tabs is presented (screens II–V). Some
participants were confused by organization of information
behind the categories Products, Materials, and Brands. For
them, it was not intuitive that an Object leads to recycling
tips and a product to recyclinglocations, for instance. The
new interface addresses this issue with a display of all search
categories for each category. The first two tabs, description and
impact, contain a short textual description of the selected object
and its environmental impact. The tab Creative Recycling
contains a list of recycling tips. New are the pictures that
visualize the tips and a five star user rating that allows users
to rate a recycling tip and to see how other users rated it. The
tab Recycling Locations contains a list of recycling locations
nearby. Deposit value to receive, distance to the location, and
estimated carbon emissions associated with the trip to this
location by public transportation and by car are presented for
each list entry. This information was hard to find on the old
UI, as it was hidden in the bubbles on the map visualization.
Now, the user has the possibility switch between list and map
view (screens IV and V). Compared to the UI in Figure 7, the
depth of the navigation tree was reduced by one, which can be
ascribed to the fact that the user now simply switches between
list and map view of recycling locations.

VII. CONCLUSION AND FUTURE WORK

Sustainable behavior requires people to take a consider-
able amount of diverse information from distributed sources
into account for decision making. This article reported on a
domain model for a mobile mashup, which integrates such
sources automatically. In order to gain feedback concerning
the appropriateness of model and system architecture, a case
study was conducted. In an experimental setup, participants

had to perform recycling-related tasks with a mobile applica-
tion implementing the mobile mashup approach, and with a
browser-based solution on a desktop PC providing similar, but
non-integrated features. Findings include that participants were
able to find faster more accurate results when using the mobile
application. Beyond, they were more satisfied with the mobile
application’s results and with the way of interaction provided
by the mobile application.

Thus, the mobile mashup concept turned out to be of value
for supporting people in making recycling-related decisions.
However, this conclusion is limited in some ways. For instance,
the user group shares certain demographic aspects, and the
experiment did not involve true real-world interaction, where
time pressure, interruption, and cognitive load might influ-
ence the results. Consequently, potential directions of future
research should include a revision of the proposed interaction
method in order to support new users in getting familiar
with the mobile application. Furthermore, positive feedback
obtained during the experiment indicates that persuasive tech-
nics might combine well with the mobile application concept.
A context model could help to involve more user related
constraints during decision support.

ACKNOWLEDGMENT

This research was funded in part by the German Federal
Ministry of Education and Research under grant number
01IA11001 (project RES-COM). The responsibility for this
publication lies with the authors.

REFERENCES

[1] S. Knoch and A. Kröner, “Enabling mobile access to distributed
recycling knowledge,” in The Seventh International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies,
UBICOMM ’13, W. Narzt and A. Gordon-Ross, Eds. IARIA, Sept.
2013, pp. 30–37.

[2] A. Schiffleitner, T. Bley, R. Schneider, and D. Wimpff, “Stakeholder
perspectives on business model requirements for a sustainability data
exchange platform across supply chains,” in Electronics Goes Green
2012+ (EGG), Sept. 2012, pp. 1–5.

[3] WORLD Environmental Organization, “Recycling database reduce,
reuse, recycle,” July 2013. [Online]. Available: http://www.world.org/
weo/recycle

134

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[4] S. Burn and S. Oskamp, “Increasing community recycling with persua-
sive communication and public commitment,” Journal of Applied Social
Psychology, vol. 16, no. 1, Feb. 1986, pp. 29–41.

[5] E. M. Huang and K. N. Truong, “Sustainably ours: Situated sustainabil-
ity for mobile phones,” ACM Interactions, vol. 15, no. 2, Mar. 2008,
pp. 16–19.

[6] V. Margolin, “The waste manifesto,” ACM Interactions, vol. 16, no. 4,
Nov. 2009, pp. 12–15.

[7] Lennox Industries, “Lennox,” June 2013. [Online]. Available: https:
//play.google.com/store/apps/details?id=com.lennox.len

[8] This Is Green, Inc., “This is green,” June 2013. [Online]. Available:
https://itunes.apple.com/us/app/this-is-green/id337495391

[9] Adbrownies Advertising Ltd., “Low carbon life,” June 2013. [Online].
Available: http://www.appleapp.com/low-carbon-life.html

[10] SampathG, “Green footprint calculator,” June 2013. [Online]. Avail-
able: https://play.google.com/store/apps/details?id=com.virdea.mobile.
android.carbonfp

[11] M. Barton, “MeterRead,” June 2013. [On-
line]. Available: http://www.macworld.com/product/71548/
meterread-sale-gogreen-save-money-save-earth-.html

[12] PowerTutor.org, “PowerTutor,” June 2013. [Online]. Available: https:
//play.google.com/store/apps/details?id=edu.umich.PowerTutor

[13] The Apple Seed Store, “Green gas saver 1.0,” June
2013. [Online]. Available: http://iphone-apps.toptenreviews.com/green/
3015-green-gassaver-screenshot4.html

[14] GSH Group, “GSH ienergy,” June 2013. [Online]. Available:
https://itunes.apple.com/en/app/gsh-ienergy/id377909195

[15] GreenWave Reality, Inc., “DONG energy eFlex,” June 2013. [Online].
Available: http://dong-energy-eflex.topapp.net

[16] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein, “OWL
web ontology language,” Dec. 2013. [Online]. Available: http:
//www.w3.org/TR/owl-ref/

[17] S. Rachuri, Y.-h. Han, S. Foufou, S. C. Feng, U. Roy, F. Wang,
R. D. Sriram, and K. W. Lyons, “A model for capturing product
assembly information,” Journal of Computing and Information Science
in Engineering, vol. 6, Mar. 2006, pp. 11–21.

[18] S. Fenves, S. Foufou, C. Bock, and R. Sriram, “CPM2: a core model
for product data,” Journal of Computing and Information Science in
Engineering, vol. 8, no. 1, 2008, p. 014501.

[19] H. J. Pels, “Classification hierarchies for product data modelling,”
Production Planning & Control, vol. 17, no. 4, 2006, pp. 367–377.

[20] J. H. Lee, S. J. Fenves, C. Bock, H.-W. Suh, S. Rachuri, X. Fiorentini,
and R. D. Sriram, “A semantic product modeling framework and its
application to behavior evaluation,” IEEE Transactions on Automation
Science and Engineering, vol. 9, no. 1, 2011.

[21] G. A. Miller, “WordNet: a lexical database for english,” Communica-
tions of the ACM, vol. 38, no. 11, 1995, pp. 39–41.

[22] D. Merrill, “Mashups: The new breed of web app,” in developerWorks.
IBM Corporation, July 2009.

[23] E. Maximilien, “Mobile mashups: Thoughts, directions, and chal-
lenges,” in IEEE International Conference on Semantic Computing,
ICSC ’08, Aug. 2008, pp. 597–600.

[24] K. Xu, X. Zhang, M. Song, and J. Song, “Mobile mashup: Architecture,
challenges and suggestions,” in International Conference on Manage-
ment and Service Science, MASS ’09, Sept. 2009, pp. 1–4.

[25] S. Knoch and A. Kröner, “A mashup supporting sustainable decision
making,” in 9th International Conference on Intelligent Environments,
IE ’13, 2013, pp. 274–277.

[26] Macroglossa, “Macroglossa,” Feb. 2014. [Online]. Available: http:
//www.macroglossa.com

[27] S. Germesin and M. Romanelli, “terkait: semantic interactions with
web content,” in 8th International Conference on Semantic Systems,
I-SEMANTICS ’12, V. Presutti and H. S. Pinto, Eds. ACM, 2012, pp.
169–172.

135

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Query-Based Static Analysis of Web Services in 

Service-Oriented Architectures

Michael Gebhart 

Gebhart Quality Analysis (QA) 82 GmbH 

Karlsruhe, Germany 

michael.gebhart@qa82.de 

 

 
Abstract—The switch to a service-oriented architecture is often 

associated with strategic goals, such as an increased flexibility 

and maintainability of the IT architecture. The design of the 

services as building blocks directly influences the achievement 

of these goals. For that reason, in recent years best practices 

and patterns have evolved that describe how to design services 

and how to implement them by means of web service 

technologies. However, the best practices and patterns that 

focus on the architectural issues are often too abstract to be 

verified on concrete web service artifacts. Previous work 

describes how these best practices and patterns can be broken 

down into measurable quality indicators. This article shows a 

query-based approach for a static analysis to measure these 

quality indicators on implemented web services. To illustrate 

the approach, services of an automotive scenario are developed 

using a product that realizes the introduced concepts.  

Keywords-soa; web service; design; quality; metrics 

I.  INTRODUCTION 

This article is an extended version of [1]. When 
companies switch to a service-oriented architecture (SOA) as 
paradigm to structure their IT architecture, in most cases 
strategic goals are the main drivers. Typical strategic goals 
are to increase the flexibility and maintainability as the 
ability to realize new business requirements within shortest 
time has become a critical success factor for companies 
[2][3]. In the past, experiences have shown that the success 
of SOA projects is influenced by the design of the 
architecture especially its service layer [4]. On a service 
layer the architecture focuses on the design of service 
interfaces, service components, and their dependencies. 
Decisions, such as the grouping of operations to services and 
their granularity, impact the achievement of the previously 
described goals.  

For that reason several best practices and patterns from a 
conceptual point of view have evolved that describe how to 
design services in a way that they support the achievement of 
these strategic goals. These best practices include hints, such 
as how to group operations to services and what is important 
to consider regarding their names. When starting with the 
implementation, further guidelines provide information 
about how to implement services using a certain technology. 
While SOA does not dictate any technology usage, in most 
cases web services are applied as their standardization 
supports the flexibility and maintainability of the architecture 

from a technical point of view [5]. In this case, the web 
services are described using the World Wide Web 
Consortium (W3C) standards Web Services Description 
Language (WSDL) [6] and XML Schema Definition (XSD) 
[7]. Furthermore, in some projects the Service Component 
Architecture (SCA) [8] standardized by the Organization for 
the Advancement of Structured Information Standards 
(OASIS) is applied to describe the component model. 

Though both the best practices and patterns from a 
conceptual point of view and the guidelines from a technical 
point of view provide valuable information, there is a gap 
between both approaches. On the one hand, best practices 
that focus on architectural issues from a conceptual point of 
view are too abstract to be verified on concrete web service 
artifacts. On the other hand, the technology-specific 
guidelines that describe how to implement services using a 
certain technology are not related to strategic goals which 
hampers their motivation. As result, for architects and 
developers who want to design and implement web services 
that consider existing architectural best practices it is hard to 
verify that they have done everything correct.  

In previous work, we have shown how to close this gap: 
In [9], we have described how to break architectural best 
practices down into measurable quality indicators that can be 
verified on concrete artifacts, such as web services. The 
quality indicators can be formalized using metrics that enable 
an objective and repeatable quality analysis. The metrics 
already provide the first step to evaluate web services 
systematically. However, for an efficient application in 
development processes the metrics have to be measured 
automatically on concrete technology elements of web 
services, such as WSDL documents and SCA artifacts. For 
that reason, this article introduces a query-based static 
analysis (QSA) approach that includes the mapping of 
metrics and their constituents onto elements of web services 
implementation artifacts for an automatic execution.  

The concept is illustrated using a scenario in the context 
of automotive manufacturing. In this case, the usage of 
formalized metrics helps to systematically design web 
services and to coordinate several developers. Furthermore, 
the concepts are integrated into the QA82 Analyzer as 
product for analyzing software and data. The product enables 
the automatic measurement of the design quality of the 
created web services, thus increases the efficiency.  

136

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The article is organized as follows: Section II introduces 
existing best practices and patterns for web services, their 
formalizations, and their automatic measurement. The 
scenario is introduced in Section III. In Section IV, the 
services for the scenario are developed using a quality 
model, the QSA approach, and our product. Section V 
concludes this article and introduces future research work. 

II. BACKGROUND 

This section describes best practices for the design of 
services in service-oriented architectures. Furthermore, this 
work is examined regarding its possibility to be efficiently 
measured on web services using tools. In addition, work in 
the context of evaluating software regarding best practices is 
considered. The technologies of web services, such as 
WSDL, XSD, and SCA are not further introduced in this 
article. They are assumed to be well known.  

The service design phase is an essential ingredient of 
software service engineering that can be defined as the 
“discipline for development and maintenance of SOA-
enabled applications” [10]. The service design phase 
includes design decisions about the interface of a certain 
service, such as its grouping of operations, and its internal 
behavior. As services constitute the building blocks of an 
SOA, they determine the design of the entire architecture. In 
the last years, for services several best practices and patterns 
have evolved. 

In [4] and [11], Erl describes numerous patterns for 
services in particular web services. They have been derived 
from experiences in real-world projects and provide valuable 
hints for architects and developers. Nevertheless, all 
guidelines are only textually describes. This results in 
ambiguities and requires interpretation before using it in 
concrete projects. This again may result in faulty 
applications.  

Similar to Erl, also Cohen [12] and Josuttis [13] focus on 
patterns from a similar point of view. While the guidelines 
are clearly motivated, their usage in projects similarly 
requires interpretation. Furthermore, due to the textual 
description concrete artifacts cannot be checked against these 
guidelines without manual effort.  

A more academic approach is chosen in [14] and [15]. 
Perepletchikov et al. introduce metrics for quality attributes, 
such as loose couplings. These metrics consider formalized 
service designs independent from concrete technologies. The 
essential benefit of this work is its ability to perform an 
automatic measurement. However, the motivation of the 
introduced metrics is not obvious. Work as introduced by Erl 
and Josuttis that is derived from real-world projects is not 
reflected by the metrics. This is even not possible as 
Perepletchikov et al. consider an abstract formalization of 
services. Most of the best practices introduced by Erl and 
Josuttis refer to elements that are not part of the 
formalization used by Perepletchikov et al. Furthermore, the 
abstract formalization is not mapped onto concrete 
technologies, such as web services. This hampers the 
measurement of the introduced metrics in real-world projects 
and requires additional effort.  

Similarly to Perepletchikov et al. [14][15], Hirzalla et al. 
[16] and Choi et al. [17] introduce metrics for services. Also 
in this work, the metrics are very abstract and cannot be 
directly applied in projects. Even though they are formalized 
which reduces interpretation effort, they do not represent 
best practices as introduced by Erl and Josuttis which 
hampers their motivation. These metrics should be 
associated with best practices of real-world projects. A 
mapping onto concrete web service technologies would 
enable their application in concrete projects. 

To fill this gap, in previous work  [9] we created a quality 
model that combines best practices as introduced by Erl et al. 
[4][11] with a formalization as used by Perepletchikov et al. 
[14][15]. The quality model was aligned with the Service 
oriented architecture Modeling Language (SoaML) [18] as 
profile for the Unified Modeling Language (UML) [19] that 
is meant to replace proprietary UML profiles for services, 
such as the one developed by IBM [20][21][22]. As result of 
this work, an SOA formalized using SoaML can be checked 
against wide-spread best practices. The usage of SoaML is 
explained in [23][24] and a case study that applies the 
metrics is presented in [25]. However, in most cases web 
services are created or are already existent without a 
formalization based on SoaML. Furthermore, some best 
practices refer to elements that are not part of a SoaML-
based description. Thus, an approach is necessary that is 
applicable on web services directly.  

In [26], it is shown how service designs based on SoaML 
can be transformed into web services using WSDL, XSD, 
and SCA. This work was not necessarily created with quality 
analysis in mind. However, it can be applied to transfer the 
service design metrics based on SoaML to web services.  

The summary of existing work in the context of best 
practices for web services shows that a lot of good work 
exists, which focuses either on the description of best 
practices, patterns, design guidelines etc. for web services or 
on a formalization of academic metrics. Whilst the former 
are too imprecise to be efficiently measured as they are only 
textually described, the latter are too academic to be 
comprehensible understandable and motivated. For that 
reason, we use the metrics introduced in [9] that on the one 
hand represent best practices and on the other hand are 
formalized so that they can be automatically measured. They 
are transformed so that they can be applied on web services 
using the mapping rules described in [26]. As result, metrics 
are available that can be directly be measured on web 
services and their development artifacts. However, there is 
also a mechanism for the measurement itself necessary. 

Next, existing work to evaluate software artifacts, such as 
the described web service artifacts, regarding best practices 
and patterns is examined. 

A typical approach to evaluate implementation artifacts 
regarding a certain architecture specification is the usage of 
software reflexion models as shown by Murphy et al. in [27]. 
This approach is helpful to find differences between two 
models, mostly a specification and a source code model. By 
this means, inconsistencies between an architecture 
specification and its implementation can be identified. 
However, this approach is not applicable to analyze an 

137

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



architecture regarding best practices as the compared models 
have to be on the same level. Best practices describe rules 
that refer to elements of the metamodel. Thus, they are not 
described on the same level as the source code model. 

A more applicable approach is shown by Giesecke et al. 
in [28]. In this work, architecture styles represent the basis 
for architecture evaluations. Even though this is the only 
work of the authors in this context and there is no example 
described, it can be recognized that the basis for the 
evaluation is an architecture model that is derived from the 
source code and has to be described in a certain language. 
The essential disadvantage of this approach is the limiting 
metamodel the architecture model bases on. Best practices 
can refer to many different aspects of an architecture that go 
beyond components and their dependencies. When creating 
an architecture model from the source code, all these 
specifics the best practices refer to have to be available in the 
architecture metamodel and have to be considered when 
mapping the source code to the architecture model. 
Furthermore, especially when considering best practices that 
are more technology-specific, either the metamodel has to be 
extended in a way that it represents all these technology 
specifics or information gets lost and the best practices 
cannot be verified. Another approach could be to check some 
best practices on a general architecture model and some 
other best practices on the source code directly. However, 
our experience is that this results in further complexity: First, 
again a mapping mechanism is required to get the 
architecture model from the source code. And second, to 
check the technology-specific best practices two approaches 
are necessary: One to verify the architecture model and one 
to verify the source code.  

We suggest to unify the evaluation methodology to 
reduce complexity. The consideration of the entire wide 
range of best practices would result in complex mapping 
rules and a very complex architecture metamodel. This is 
exactly the reason why we propose not to derive an abstract 
architecture model from the source artifacts, such as source 
code, but directly work on the source artifacts using a query-
based approach.  

III. SCENARIO 

To illustrate the query-based static analysis approach for 
the evaluation of web services, a scenario from automotive 
manufacturing is chosen. A service landscape has to be 
created that supports the manufacturing of cars. A new 
service has to be provided that offers functionality to 
initialize the manufacturing of a new automobiles. Meta data 
about the manufactured automobile are expected to be stored 
in external systems. Furthermore, the construction system 
has to be triggered.  

The project team consists of two developers and one 
product and quality manager who coordinates the developers 
and delivers reports to the management and the customer. In 
some cases, the role of the product and quality manager 
might also be fulfilled by an architect, who is responsible for 
the design of the architecture and its quality. Fig. 1 illustrates 
the participants and their relationships. 

 

 

 

Figure 1. Participants and their relationships. 

According to this figure, the product and quality manager 
has an interest in proving the high quality of the created 
software. In this scenario, besides functional requirements 
especially the architectural design is of interest. So it is 
necessary that developers consider best practices and 
patterns that support the achievement of a flexible and 
maintainable architecture. Furthermore, the product and 
quality manager is required to analyze software artifacts 
regarding these quality requirements. To support this quality 
assurance, this article shows how to analyze artifacts, such as 
web service interfaces, regarding wide-spread best practices 
and guidelines for services. 

The scenario begins with the development of a service 
for the manufacturing of automobiles by the first developer. 
An SCA Composite is created, which combines a service for 
manufacturing automobiles and a service for filing 
manufactured automobiles in the database. Furthermore, for 
all services appropriate web services interfaces using WSDL 
are developed. The artifacts are filed in a shared Git 
repository. Fig. 2 illustrates the composite using the 
graphical representation introduced in the official SCA 
standard. In the scenario, originally a proprietary tool is 
applied that uses a different visualization. 
 

 

Figure 2. Created SCA composite. 

 

Manufacturing

Process

Manufacturing

Mediator Deliver

Mediator

Manufacturing

Construction

ManufacturedAutomobile

138

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Starting with this SCA composite the product and quality 
manager determines the quality of the architecture using the 
approach introduced in the following section. The used 
WSDL documents are shown later in this article. The results 
of the quality analysis will help both the product and quality 
manager and the developers to revise the architecture in a 
quality-oriented way. 

IV. QUERY-BASED STATIC ANALYSIS OF WEB SERVICES 

IN SERVICE-ORIENTED ARCHITECTURES 

In this section, the query-based static analysis approach is 
applied to automatically analyze web services in service-
oriented architectures regarding best practices. For that 
purpose, first the applied quality model for web services in 
service-oriented architectures is shown. As this quality 
model describes the quality of web services only on a 
conceptual lever, a mapping onto web service artifacts, such 
as WSDL documents and SCA artifacts, is described. 
Finally, based on this mapping the analysis is automated 
using the query-based static analysis approach. 

A. Quality Model for Web Services 

To determine the quality of software, one approach is to 
refine the term quality until it can be measured. A wide-
spread quality model methodology is Factor, Criteria, Metric 
(FCM) introduced by McCall et al. in [29]. According to this 
methodology a factor is refined into more fine-grained 
criteria that again are refined into quantifiable metrics. 
Similar approaches use the equivalent terms quality 
characteristics, quality sub-characteristics, and quality 
indicators. 

Correspondingly, applied on the design of web services 
in service-oriented architectures the term quality from a 
design perspective has to be broken down into measurable 
aspects that can be formalized by means of metrics. In [9], a 
quality model has been created that enables the measurement 
or at least systematic evaluation of services regarding best 
practices and patterns that have evolved as important for 
service-oriented architectures. The quality model is shown in 
Fig. 3 in a tree structure. 

In recent work, the quality model has been formalized on 
basis of Service oriented architecture Modeling Language 
(SoaML) as language to formalize the architecture. When the 
product and quality manager of the scenario in Section III 
tries to apply this quality model, the usage of SoaML 
hampers the direct application. As in the scenario other 
technologies, in particular WSDL, XSD, and SCA are used, 
the metrics introduced in [9] cannot be applied without 
additional effort. However, in [26], a mapping between 
SoaML and web service technologies is described. The 
combination of this work enables the mapping of metrics 
onto web services so that they can be directly applied. This 
mapping is shown next and constitutes the basis to 
implement the query-based analysis approach. 

 

 
Figure 3. Quality model for web services in service-oriented architecture. 

 

B. Application on Web Service Implementation Artifacts 

According to Gebhart et al. [9] in particularly four quality 
sub-characteristics or criteria can be considered as relevant 
for the design quality: unique categorization, loose coupling, 
discoverability, and autonomy. Even though this set of 
quality characteristics is not expected to be complete it is a 
good starting point to evaluate the design of a service-
oriented architecture and to illustrate the approach.  

To apply these quality sub-characteristics on concrete 
web service implementation artifacts, a mapping of the 
quality indicators and their metrics is required first. In this 
section, especially the unique categorization as quality sub-
characteristic is considered. This sub-characteristic is 
comparable to the concept of cohesion in object-oriented 
systems. It consists of four quality indicators with metrics 
introduced in [9][30][31]. To illustrate the approach, these 
metrics are mapped and applied to analyze the service-
oriented architecture design. 

 
 
 
 

Service Design Quality

Unique Categorization

Loose Coupling

Division of Business-related and Technical Functionality

Division of Agnostic and Non-agnostic Functionality

Data Superiority

Common Business Entity Usage

Discoverability

Asynchrony

Common Data Types Complexity

Abstraction of Operations and Parameters

Compensating Functionality

Functional Naming of Service Interface, Roles,

Operations, Parameters, and Data Types

Naming Convention Compliance of Service Interface,

Roles, Operations, Parameters, and Data Types

Information Content

Autonomy

Service Dependency

Functional Overlap

139

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



1) Division of Agnostic and Non-Agnostic 
Functionality: The background of this metric is that generic 
functionality should be seperated from specific one so that 
changes regarding the specific operations do not affect the 
highly reused ones. It has its origin in the patterns described 
by Erl [4]. 

 

     ( )   
|   ( (  (  ( )))) |

|  (  (  ( ))) |
   

 
To apply this metric for the scenario, the functions and 

variables have to be mapped onto elements within XSD, 
WSDL, and SCA. Table I shows a brief introduction of the 
element and afterwards a mapping. This mapping specifies 
where to find this information. 

TABLE I.  VARIABLES AND FUNCTIONS USED FOR DANF 

Element Description and Mapping 

DANF Division of Agnostic and Non-agnostic Functionality 

s service: the considered service that is provided or 
required 

It is represented by a SCA Service or Reference element. 

SI(s) Service Interface: service interface of the service s 

It is represented by the WSDL document that describes 
the SCA Service or Reference. 

RI(si) Realized Interfaces: realized interfaces of the service 
interface si.  

It is represented by the WSDL PortType that includes 
provided operations of the service. 

O(i) Operations: operations within the interface i 

The WSDL Operations within the identified WSDL 
PortType are expected to be returned. 

AF(o) Agnostic Functionality: operations providing agnostic 
functionality out of the set of operations o 

This information has to be determined by an IT expert. It 

cannot be found within the web service technologies. 

| o | Number of operations o 

 
As result a value of 0 or 1 is desired. These values mean 

that the service operations provide only agnostic or only non-
agnostic functionality. A value between 0 and 1 means that 
agnostic and non-agnostic functionality has been mixed. In 
this case, the participants should revise the design. For 
example the provided operations can be separated into 
several services.   

Based on this mapping information, the metric can be 
applied for the Manufacturing service that is the SCA 
Service within the SCA Composite. According to the metric, 
in a first step the service interface has to be identified. This is 
the WSDL file Manufacturing.wsdl. Next, the WSDL 
PortType comprising the provided operations within the 
WSDL is selected and finally, the operations themselves are 
returned. Fig. 4 shows the proceeding. 
 

 

 Figure 4. Determination of DANF metric. 

After the relevant operations have been identified, the 
product and quality manager has to decide whether these 
operations are agnostic or non-agnostic. If he is not capable 
to answer these questions, he has to ask the developers and 
estimate the reusability of these operations. In this case, the 
quality manager comes to the conclusion that the operation 
“Manufacture” is non-agnostic as it is very specific and 
cannot be used in other contexts. The operation 
“getManufacturedAutomobiles” however is agnostic as it 
provides functionality to request manufactured automobiles, 
which can be reused in several scenarios. As result the metric 
returns 0.5, which represents a suboptimal value.  

2) Division of Business-Related and Technical 
Functionality: A metric similar to DANF is DBTF that 
targets the division of business and technical functionality. 
It can be mapped in a similar way. 
 

     ( )   
|   ( (  (  ( )))) |

|  (  (  ( ))) |
   

 

TABLE II.  VARIABLES AND FUNCTIONS USED FOR DANF 

Element Description and Mapping 

DBTF Division of Business-related and Technical Functionality 

BF(o) Business-related Functionality: operations providing 

business-related functionality out of the set of  
operations o 

This information has to be determined by an IT expert. It 
cannot be found within the web service technologies. 

 
Also in this case, a value of 0 or 1 is desired. These 

values represent the case that a service provides either only 
business-related or only technical functionality. In our 
scenario, all functionality is business-related.  

 
 

composite.xml

…

<service name="Manufacturing.service" ui:wsdlLocation="Manufacturing.wsdl">

<interface.wsdl

interface="http://xmlns.oracle.com/bpmn/bpmnProcess/Manufacturing#

wsdl.interface(ManufacturingPortType)"

…                    

Manufacturing.wsdl

<wsdl:definitions …>

…

<wsdl:portType name="ManufacturingPortType">

<wsdl:operation name=„Manufacturing">

<wsdl:input message="tns:start"/>

</wsdl:operation>

<wsdl:operation name=„getManufacturedAutomobile">

<wsdl:input message="tns:getManufacturedAutomobileRequest"/>

<wsdl:output message="tns:getManufacturedAutomobileReponse"/>

</wsdl:operation>

</wsdl:portType>

…

</wsdl:definitions>

1

2

3

140

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



3) Data Superiority: This quality sub-characteristic 
describes that a service that manages an entity is exclusively 
responsible for managing it. The metric can be formalized 
as follows. Most functions have already been described. The 
others are explained in Table III. 

 
 

   ( )      

||

   ( (  (  ( )))) 

  ( (  (  ((       )))))
||

|   ( (  (  ( ))))|
  

 

TABLE III.  VARIABLES AND FUNCTIONS USED FOR DS 

Element Description and Mapping 

DS Data Superiority 

M1 \ M2 Elements of set M1 without elements of set M2 or the 
element M2 

ALLS All existing services 

Represented by all SCA Services 

ME(o) Managed Entities: entities that are managed by 

operations o 

This information has to be determined by an IT expert. It 

cannot be found within the web service technologies. 
 
 
 
 

 
Figure 5. Determination of DS metric. 

To illustrate this metric we assume that the 
ManufacturedAutomobile Reference within the SCA 
Composite refers to a service described by the 
ManufacturedAutomobile.wsdl and that no other services are 
relevant for this metric.  

To calculate the metric, the product and quality manager 
has to consider the provided operations of the Manufacturing 
service and of all other developed services, i.e., the 
ManufacturedAutomobile service in this case. Afterwards, 
the product and quality manager has to decide for each 
operation whether an entity is managed by this one. Finally, 
he has to compare the set of managed entities of the services 
to identify conflicts. Fig. 5 illustrates the proceeding for the 
Manufacturing service. According to this figure all entities 
managed by the Manufacturing service are not exclusively 
managed. The ManufacturedAutomobile service that 
corresponds to an entity service [1][4] manages 
manufactured automobiles too. So from a data superiority 
perspective the Manufacturing service is not ideal and should 
be revised.   

4) Common Entity Usage: Finally, the last quality 
indicator of the unique categorization quality sub-
characteristic can be measured. According to the common 
entity usage metric, all operations within a service should 
work on the same entities. This guarantees that entities that 
do not belong together are managed by different services. In 
turn, the prior described data superiority ensures that 
operations that manage the same entities are part of one 
service.  

 

   ( )   

|

|
    

(

  
 

 (  (  ( )))  

   (
 (  (  ( )))      ( (  (  ( ))))  

   ( (  (  ( ))))
)

)

  
 
 
|

|

 |  (  (  ( ))) |
 



TABLE IV.  VARIABLES AND FUNCTIONS USED FOR CEU 

Element Description and Mapping 

CEU Common Entity Usage 

CMP(o, 

e1, e2) 

Composition: biggest set of entities managed by 

operations o out of e2 that depend on entitites e1 

UE(o) Used Entities: entities that are used within operations o 

as input 

MOUE(o) Mostly Often Used Entities: entities that are mostly often 
used within one operation out of operations o 

OUE(o, 
be) 

Operations Using Entities: operations out of operations o 
that only use entities out of be  

 
This table shows that there is no explicit mapping to web 

services necessary. All functions that refer to certain 
elements within a technology have already been mapped by 
the functions described in Table I and Table III. 

Applied on the Manufacturing service, the metric returns 
the value 1 as all operations that manage entities manage the 
same. This is also the case for the ManufacturedAutomobile 

Dr. Michael Gebhart: QA82 Analyzer - Demonstration Video

Manufacturing.wsdl

<wsdl:definitions …>

…

<wsdl:portType name="ManufacturingPortType">

<wsdl:operation name=„Manufacturing">

<wsdl:input message="tns:start"/>

</wsdl:operation>

<wsdl:operation name=„getManufacturedAutomobile">

<wsdl:input message="tns:getManufacturedAutomobileRequest"/>

<wsdl:output message="tns:getManufacturedAutomobileReponse"/>

</wsdl:operation>

</wsdl:portType>

…

</wsdl:definitions>

2

ManufacturedAutomobile.wsdl

<wsdl:definitions …>

…

<wsdl:portType name="ManufacturedAutomobilePortType">

<wsdl:operation name="get">

<wsdl:input message="tns:GetRequest"/>

<wsdl:output message="tns:GetResponse"/>

</wsdl:operation>

<wsdl:operation name="create">

<wsdl:input message="tns:CreateRequest"/>

<wsdl:output message="tns:CreateResponse"/>

</wsdl:operation>

<wsdl:operation name="delete">

<wsdl:input message="tns:DeleteRequest"/>

<wsdl:output message="tns:DeleteResponse"/>

</wsdl:operation>

<wsdl:operation name="update">

<wsdl:input message="tns:UpdateRequest"/>

<wsdl:output message="tns:UpdateResponse"/>

</wsdl:operation>

</wsdl:portType>  

…

</wsdl:definitions>

Managed Entities

Manufactured Automobiles

1

Summarized

Manufactured Automobiles

2

Managed Entities

Manufactured Automobiles

6

Managed Entities

Manufactured Automobiles

5

Managed Entities

Manufactured Automobiles

4

Managed Entities

Manufactured Automobiles

3

2
Summarized

Manufactured Automobiles

7

141

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



service. As this entity service provides Create, Read, Update, 
Delete (CRUD) operations for the same entity, this metric is 
also ideal for this service. If the ManufacturedAutomobile 
service would also manage another entity, the CEU metric 
would return a suboptimal value.  

C. Query-Based Static Analysis Approach 

The previous section illustrated the mapping of 
conceptual metrics onto web service artifacts. In this section, 
the QSA approach is introduced that is afterwards applied to 
automate the web service evaluation.  

As mentioned in the Background section, one central 
disadvantage of existing architecture evaluation approaches 
is the usage of an architecture model that is derived from the 
source code. This architecture model is a representation of a 
source, however it is limited to the elements defined in a 
metamodel. This means that either information is lost or that 
the metamodel and the mapping mechanism has to be 
enhanced in a way that all necessary information is 
considered. However, as best practices cover a wide range of 
information this approach is not practicable. As some best 
practices refer to technology specifics, the metamodel and 
the mapping mechanism would escalate. The approach is 
illustrated in Fig. 6. 

 

 
Figure 6. Usual architecture evaluation approaches 

The alternative approach as proposed in this article is to 
query necessary information from artifacts when they are 
needed. This means that there is no architecture model 
derived from the source code. Instead we use mechanisms to 
find information directly in the web service artifacts when 
they are required. Fig. 7 shows the query-based approach.  

Similar to the architecture evaluation approach in Fig. 6, 
we start with an information need. For example, metrics or 
their elements, such as the number of available services or 
the operations of a certain operations, are expected to be 
determined. Also, the comparison of the architecture to a 
certain specification might be an information need. 
Compared to the approach in Fig. 6, the query-based 
approach does not work on an architecture model that is 
derived from the artifacts, such as WSDL documents, SCA 
artifacts, or source code. Instead, a central component, in this 
case called Analyzer, receives the information need and tries 
to satisfy it. For that, the Analyzer component has a 
repository of so-called information providers.  

 

Figure 7. Query-based analysis approach. 

An information provider is able to receive a certain query 
and answer it depending on the expected result. For example, 
if the information provider is requested to return the number 
of services within a service-oriented architecture as Integer, 
the information provider is able to understand this 
information need and return it in the expected format. We 
distinguish between Technology Providers and Refinement 
Providers. Technology Providers are able to answer a query 
on basis of information contained in certain artifacts, such as 
WSDL documents, SCA artifacts, source code, models, 
databases, and so on. For example, if the query is to get all 
provided services in a service-oriented architecture, a WSDL 
Technology Provider and a SCA Technology Provider will 
be called. These providers access WSDL documents and 
SCA artifacts within the architecture and determine the 
services in the architecture and return them to the Analyzer 
component. A Refinement Provider receives a query, refines 
it into several information needs, and creates the result for 
the original query depending on the results for these refined 
information needs. For example, if the query is to get all 
operations within the service-oriented architecture, a SOA 
Refinement Provider refines this query into 1) an information 
need to get all services in the architecture and 2) to get the 
operations for each of these services. The refined 
information needs are answered in the same way, i.e., they 
are satisfied by the Analyzer component that uses 
information providers. The SOA Refinement Provider uses 
these results to generate the result for the original query and 
returns it to the analyzer. 

Besides the flexibility and reduced complexity, another 
advantage of this approach is that for each information 
provider a different implementation language can be chosen. 
When deriving a central architecture model from 
implementation artifacts, often the same transformation 
language has to be used for all artifacts. In our approach, an 
information provider that is expected to analyze XML 
artifacts, such as WSDL documents and SCA artifacts, can 

Architecture

Model

Artifacts

Available in

Derivation

Architecture

Metamodel

Information

Need

Artifacts
Artifact

Elements of architecture metrics 

comparison with specification etc.

WSDL documents,

SCA artifacts,

source code etc.

Bases on

Refinement

Provider

Information

Provider

Technology

Provider

Artifacts

Satisfied by

Examines

Information

Need

Artifacts
Artifact

Elements of architecture metrics 

comparison with specification etc.

WSDL documents,

SCA artifacts,

source code,

architecture model etc.

Analyzer

Information

Provider

Repository

Queries

Looks up

Refines

Query

142

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



be implemented in another language than an information 
provider that is expected to work on databases or on 
hardware information, such as card readers. This has the big 
advantage that for every purpose the most suitable language 
can be chosen and that all information that can be requested 
by any technology can be actually requested and reused in 
the analysis. Furthermore, languages most people are used 
to, such as Java and C#, can be applied and no proprietary 
languages have to be learned. In our case, most of the 
information providers are directly implemented using Java. 
This reduces the development time for new information 
providers and increases the adoption of this approach in real-
world projects. 

Furthermore, when there is a new artifact that is expected 
to be considered during the analysis only a new information 
provider has to be added and the existing logic does not have 
to be changed. For example, when in the future besides 
WSDL and SCA also the Business Process Model and 
Notation (BPMN) 2.0 language is expected to be considered, 
we only have to add a new technology provider for BPMN 
that is able to answer queries related to this language. This 
increases the flexibility and maintainability of this analysis 
methodology. 

D. Query-Based Static Analysis for Evaluation Automation 

In this section, the QSA approach is used to 
automatically evaluate web service artifacts. For that 
purpose, the mapping knowledge introduced before is 
implemented as information providers. As illustrated in Fig. 
7, an information need can be a metric or elements of a 
metric. This information need is then sent to the Analyzer 
component so that it can be satisfied. For that purpose, the 
Analyzer component uses one or several information 
providers. 

 

 
Figure 8. Interaction between Analyzer and SOA refinement provider. 

 

These are able to answer the query. In the previous 
section, the metrics were introduced and mapped onto web 
service artifacts. This mapping has shown that 1) the metrics 
mostly consist of several elements that have to be requested 
separately and 2) the metrics refer to information kept in 
WSDL documents and SCA artifacts. Thus, to automate the 
metrics the following information providers are required: 

1) SOA Refinement Provider: The SOA Refinement 
Provider contains the metrics and describes their refinement. 
For example, the SOA Refinement Provider knows how to 
calculate the values for the DANF metric. It breaks this 
metric down into the metric elements, requests their result 
from the Analyzer component, and generates the result for 
the original query. The interaction between the SOA 
Refinement Provider and the Analyzer component is shown 
in Fig. 8.  

WSDL Technology Provider: The WSDL Technology 
Provider examines WSDL artifacts regarding certain 
information needs. For example, when the information need 
is to get all services within the architecture, the WSDL 
Technology Provider checks all WSDL files in the 
architecture and examines them regarding the service XML 
element. Aftwards, an element as representer for this service 
is returned to the Analyzer component. In our case, the 
WSDL Technology Provider is implemented using Java as 
the Analyzer component is implemented in Java too. 
However, in our implementation any other language based 
on the Java runtime can be chosen. It is also possible to 
switch from operation calls within the Java Virtual Machine 
to external web service calls etc. In this case, any other 
language would be possible too. Fig. 9 illustrates how the 
WSDL Technology Provider interacts with the Analyzer 
component. 

2) SCA Technology Provider: Similar to the WSDL 
Technology Provider, the SCA Technology Provider 
examines SCA artifacts, such as SCA composites. This 
means that when the Analyzer component needs to satisfy an 
information need, such as the available services or the 
service interfaces for a certain service, the SCA Technology 
Provider examines the SCA artifacts regarding this 
information. Fig. 9 shows how this information provider 
works and how it interacts with the Analyzer component. 

It is important to mention that several information 
providers can answer the same type of query. For example, 
both WSDL documents and SCA artifacts can provide 
information about available services in the architecture. 
Also, BPMN processes can provide information about 
available processes and provided services. So when BPMN 
is used, also this information has to be considered. 

The QSA approach allows to query information 
independent from how it can be answered. The information 
provider simply receive the query and try to answer it based 
on their knowledge. Afterwards, they return the result if 
possible. The Analyzer component however is responsible to 
merge the results. So when several available services are 
returned, both from the SCA Technology Provider and the 
WSDL Technology Provider, the Analyzer component tries 
to merge the result so that a holistic view is guaranteed.  

 

Information

Need

Analyzer

Instance

SOA Refinement

Provider Instance

Analyzer

Instance

Analyzer

Instance

Refined

Information Need

Refined

Information Need

…

DANF Metric

Knowledge

O(…)SI(s)

Further Information

Provider Instance

Further Information

Provider Instance

143

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 
Figure 9. Interaction between Analyzer and technology providers. 

E. Manual Information 

In Section IV.B the mapping of the conceptual metrics 
onto web service artifacts has been explained. As part of this 
mapping it was shown that there is some information that 
cannot be found in the implementation. For example: What 
about the business-relation of a service operation? Or what 
about its agnosticity? There is some information that cannot 
be determined automatically on basis of existing artifacts. To 
solve this issue, we have created an additional information 
provider, the Custom Function Results Provider that 
represents manual information that can be added by experts. 
For example, when it is not known if a certain operation is 
business-related, this knowledge can be added by experts and 
then it will be considered during the analysis process. 

F. Tool Support 

Based on these concepts, we have developed a product 
that realizes the QSA approach and enables the evaluation of 
web services regarding the quality model introduced in [9]. 
The QA82 Analyzer is a generic quality management 
platform that implements these concepts. Based on the QA82 
Analyzer we have developed the QA82 SOA Compliance 
Center, which implements the SOA quality model introduced 
before and provides the described information providers. As 
result, the product and quality manager can automatically 
perform quality analyses of the developed web services. To 
demonstrate the behavior of the application we have used it 
to analyze the introduced scenario. Fig. 10 shows how 
knowledge can be added by experts.  

 

 
 

Figure 10. Questions in QA82 Analyzer to add expert knowledge. 

 
The QA82 Analyzer or the QA82 SOA Compliance 

Center creates questions for every information that is not 
available by any information provider. These questions can 
be answered by experts and the answer is stored in an 
internal storage, the Custom Function Result Storage. The 
Custom Function Result Provider will request this 
information when it is necessary so that it can be included in 
the next analysis. In Fig. 10, the expert is asked if the 
operation “manufacture” is business-related or not. The 
expert can answer this question by selecting the button “Yes” 
or the button “No”.  

 

 
 

Figure 11. Analysis result in detail. 

 

Analyzer

Instance

Refined

Information Need
SI(s)

SCA Technology

Provider Instance

WSDL Technology

Provider Instance

composite.xml

…

<service name="Manufacturing.service"ui:wsdlLocation="Manufacturing.wsdl">

<interface.wsdl

interface="http://xmlns.oracle.com/bpmn/bpmnProcess/Manufacturing#

wsdl.interface(ManufacturingPortType)"

…                    

Manufacturing.wsdl

<wsdl:definitions …>

…

<wsdl:portType name="ManufacturingPortType">

…

</wsdl:portType>

…

</wsdl:definitions>

1

2

No Answer

Service s

SI(s)

144

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



When an analysis has been performed, it is archived. The 
user can take a look at the analysis and the entire calculation 
trace. The analysis represents the prior defined quality 
model. Fig. 11 shows an analysis result in detail. According 
to Fig. 11, the Manufacturing service has a design quality of 
50%. This means, that the best practices described by the 
quality model are only partially fulfilled. In our application, 
the user can select this entry to get more information about 
how this value has been measured and how it can be 
improved. 

Finally, a quality dashboard shows the recent analysis 
results and some further information, such as the distribution 
of certain quality attributes and the number of open 
questions. Fig. 12 shows the quality of time that is displayed 
as part of the dashboard.  

 
 

 
Figure 12. Quality results over time as part of the dashboard. 

 
To sum up, the QA82 Analyzer or the QA82 SOA 

Compliance Center implement the concepts described in this 
article and enable their automation. Different views, such as 
the analysis details view and the dashboard help the user, i.e., 
the product and quality manager to calculate the quality and 
to ensure that the developed artifacts comply with wide-
spread best practices.  

Furthermore, our product is not only for managers or 
architects. Also developers can now directly take a look at 
the quality of their artifacts from a design perspective. I.e., 
they get an impression about how they have considered 
certain best practices and patterns. If the quality is not 
optimal, they can interact independently and without being 
informed by any responsible person. This makes them aware 
of quality aspects and increases the development speed.  

G. Integration into Scenario 

Back in our scenario, the quality manager can use the 
results of the QA82 SOA Compliance Center to inform 
developers about the design weaknesses. The usage of these 
metrics in a quality-oriented service design process is 
illustrated in [32]. Furthermore, as described before, 
developers can already independently get an insight into the 
quality of their artifacts. 

 

For example, the result of DANF shows that the two 
provided service operations “Manufacture” and 
“getManufacturedAutomobiles” should be separated into two 
services. In addition, the result of the DS metric shows the 
conflict between the operations provided by the 
ManufacturedAutomobile service and the operation 
“getManufacturedAutomobile” of the Manufacturing service. 
Summarized, the operation “getManufacturedAutomobile” 
should be deleted as it provides functionality that is also 
offered by the ManufacturedAutomobile service. Service 
consumers using this operation should switch to the 
ManufacturedAutomobile Service. This and further 
information are given to all participating persons so that they 
can improve the artifacts with quality goals in mind.  

In addition to the revision hints, the results of the metrics 
can be used to deliver reports to the management and the 
customer. For example the product and quality manager can 
justify cost and investments into quality assurances. 
Furthermore, the manager can prove the quality of the 
software by means of objective criteria.  

V. CONCLUSION AND OUTLOOK 

In this article, an approach was illustrated to measure the 
design quality of web services in service-oriented 
architectures regarding wide-spread best practices. For that 
purpose an existing quality model that refers to SoaML as 
formalization of a service-oriented architecture design was 
chosen. By use of another work that describes the mapping 
between SoaML and web service technologies, this quality 
model was transferred onto WSDL, XSD, and SCA. By this 
means the resulting quality model can be directly applied on 
service-oriented architectures based on web services. For an 
automation of the web service evaluation the quality-based 
static analysis approach was introduced. Compared to 
existing architecture evaluation approaches, the query-based 
static analysis approach does not derive an abstract 
architecture model but works directly on developed artifacts. 
Finally, a software product was shown that implements the 
approach and enables an automatic quality analysis of 
developed web service implementation artifacts regarding 
wide-spread best practices. 

To demonstrate the approach a scenario from automotive 
manufacturing was introduced. In this scenario, a product 
and quality manager is responsible to ensure the quality of 
the resulting architecture. Next, the mapped quality model 
was applied to measure the design quality of services in this 
scenario. The metrics mapped onto web services enable the 
product and quality manager to identify weaknesses in the 
current design and thus give the developers hints about 
possible improvements. In addition, the results can be used 
to deliver reports to the management and the customer. 
Examples for reports are the current quality, the 
characteristic of certain quality attributes, such as the 
coupling or autonomy, the number of open questions, and the 
quality over time. The reports help to prove the high quality 
and to justify investments in additional quality assurance 
projects.  

 

145

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Furthermore, developers can perform quality analyses by 
their own. The metrics reduce the additional effort to 
interpret the textual descriptions. They directly refer to 
concrete elements within the used technologies.  

As part of our research work, we have created a mapping 
for all metrics introduced in [9]. We also implemented this 
quality model as part of the QA82 Analyzer and QA82 SOA 
Compliance Center [33]. Through this, both product and 
quality managers and developers can automatically measure 
their web services regarding the quality model. This further 
increases the efficiency of the quality assurance process and 
makes the entire quality topic transparent. All participants 
are made aware of what quality means and how it can be 
influenced by developed artifacts. Furthermore, all 
participants can directly get an insight into the current design 
quality of developed artifacts. 

For the future, we plan to include further quality 
characteristics both regarding service-oriented architectures 
and related fields. First, we plan to adapt the approach to 
analyze services based on the Representational State 
Transfer (REST) paradigm as it is often applied today. As 
REST does not prescribe certain interface formalization, we 
assume that the adaptation will require using more 
implementation-specific information, such as Java artifacts 
based on JAX-RS. Second, in collaboration with partners we 
work on a quality model in the context of business process 
management (BPM) that enables the determination of quality 
characteristics regarding the functional quality of modeled 
business processes based on the Business Process Model and 
Notation (BPMN) 2.0 [34]. This quality model is expected to 
be linked with the experiences we gained with the quality 
model introduced in this article. The results of this BPM 
quality model will be published as well. Furthermore, it will 
be supported by our quality analysis product. Finally, we aim 
to formalize the described metrics in a technology-
independent but executable way. With languages, such as 
OCL [35] or XQuery [36] it is possible to describe queries 
that refer to a certain technology, such as UML or XML. We 
will examine the applicability of these languages for our 
purposes.  

REFERENCES 

[1] M. Gebhart, “Measuring design quality of service-oriented 
architectures based on web services,” Eighth International Conference 
on Software Engineering Advances (ICSEA 2013), Venice, Italy, 
October 2013, pp. 504-509. 

[2] T. Erl, Service-Oriented Architecture – Concepts, Technology, and 
Design, Pearson Education, 2006. ISBN 0-13-185858-0. 

[3] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9. 

[4] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008. 
ISBN 978-0-13-234482-1. 

[5] T. Erl, Web Service Contract Design & Versioning for SOA, Prentice 
Hall, 2008. ISBN 978-0-13-613517-3. 

[6] W3C, “Web Services Description Language (WSDL)”, Version 1.1, 
2001. 

[7] W3C, “XML Schema Part 0: Primer Second Edition”, 2004. 

[8] Open SOA (OSOA), “Service component architecture (SCA), sca 
assembly model V1.00,” http://osoa.org/download/attachments/35/ 
SCA_AssemblyModel_V100.pdf, 2009. [accessed: January 04, 2011] 

[9] M. Gebhart and S. Abeck, “Metrics for evaluating service designs 
based on soaml,” International Journal on Advances in Software, 
4(1&2), 2011, pp. 61-75. 

[10] W. van den Heuvel, O. Zimmermann, F. Leymann, P. Lago, I. 
Schieferdecker, U. Zdun, and P. Avgeriou, „Software Service 
Engineering: Tenets and Challenges,” 2009.  

[11] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.  
ISBN 978-0-13-613516-6. 

[12] S. Cohen, “Ontology and Taxonomy of Services in a Service-
Oriented Architecture,” Microsoft Architecture Journal, 2007. 

[13] N. Josuttis, SOA in Practice, O'Reilly Media, 2007. ISBN 978-0-59-
652955-0.  

[14] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt, 
“Formalising service-oriented design,” Journal of Software, Volume 
3, February 2008. 

[15] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling 
metrics for predicting maintainability in service-Oriented design,” 
Australian Software Engineering Conference (ASWEC 2007), 2007. 

[16] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, “A metrics suite for 
evaluating flexibility and complexity in service oriented architecture,” 
ICSOC 2008, 2008. 

[17] S. W. Choi and S. D. Kimi, “A quality model for evaluating 
reusability of services in soa,” 10th IEEE Conference on E-Commerce 
Technology and the Fifth Conference on Enterprise Computing, E-
Commerce and E-Services, 2008. 

[18] OMG, “Service oriented architecture modeling language (SoaML) – 
specification for the uml profile and metamodel for services 
(UPMS)”, Version 1.1, 2012. 

[19] OMG, “Unified modeling language (UML), superstructure,” Version 
2.2, 2009.  

[20] S. Johnston, “UML 2.0 profile for software services,” IBM Developer 
Works, http://www.ibm.com/developerworks/rational/library/05/ 
419_soa/, 2005. [accessed: July 11, 2012] 

[21] U. Wahli, L. Ackerman, A. Di Bari, G. Hodgkinson, A. Kesterton, L. 
Olson, and B. Portier, “Building soa solutions using the rational sdp”, 
IBM Redbook, 2007.  

[22] A. Arsanjani, “Service-oriented modeling and architecture – how to 
identify, specify, and realize services for your soa,” IBM Developer 
Works, http://www.ibm.com/developerworks/library/ws-soa-design1, 
2004. [accessed: July 11, 2012] 

[23] J. Amsden, “Modeling with soaml, the service-oriented architecture 
modeling language – part 1 – service identification,” IBM Developer 
Works, http://www.ibm.com/developerworks/rational/library/09/ 
modelingwithsoaml-1/index.html, 2010. [accessed: July 11, 2012] 

[24] M. Gebhart, “Service Identification and Specification with SoaML,” 
in Migrating Legacy Applications: Challenges in Service Oriented 
Architecture and Cloud Computing Environments, Vol. I, A. D. 
Ionita, M. Litoiu, and G. Lewis, Eds. 2012. IGI Global.  
ISBN 978-1-46662488-7. 

[25] M. Gebhart and S. Sejdovic, “Quality-oriented design of software 
services in geographical information systems,” International Journal 
on Advances in Software, 5(3&4), 2012, pp. 293-307. 

[26] M. Gebhart and J. Bouras, “Mapping between service designs based 
on soaml and web service implementation artifacts,” Seventh 
International Conference on Software Engineering Advances (ICSEA 
2012), Lisbon, Portugal, November 2012, pp. 260-266. 

[27] G. C. Murphy, D. Notkin, and K. J. Sullivan, “Software Reflexion 
Models: Bridging the Gap between Design and Implementation,” 
IEEE Trans. Softw. Eng., vol. 27, 2001. 

[28] S. Giesecke, M. Gottschalk, and W. Hasselbring, “The ArchMapper 
Approach to Architectural Conformance Checks: An Eclipse-based 
Tool for Style-oriented Architecture to Code Mappings,” 2012, pp. 
71–80.. 

[29] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in software 
quality,” 1977. 

 

146

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[30] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck, 
“Evaluation of service designs based on soaml,” Fifth International 
Conference on Software Engineering Advances (ICSEA 2010), Nice, 
France, August 2010, pp. 7-13. 

[31] M. Gebhart, S. Sejdovic, and S. Abeck, “Case study for a quality-
oriented service design process,” Sixth International Conference on 
Software Engineering Advances (ICSEA 2011), Barcelona, Spain, 
October 2011, pp. 92-97. 

[32] M. Gebhart and S. Abeck, “Quality-oriented design of services,” 
International Journal on Advances in Software, 4(1&2), 2011, pp. 
144-157. 

[33] Gebhart Quality Analysis (QA) 82, QA82 Architecture Analyzer, 
http://www.qa82.de.  [accessed: July 11, 2012] 

[34] OMG, “Business process model and notation (BPMN)”, Version 2.0 
Beta 1, 2009. 

[35] Object Management Group, “Object constraint language”, Version 
2.0, 2006.  

[36] W3C, “XQuery 1.0: an XML query language (second edition)”, 
Version 1.0, 2010.  

147

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 

Multicast Source Mobility Support for Regenerative Satellite Networks  

Esua Kinyuy Jaff, Prashant Pillai, and Yim Fun Hu 

School of Engineering & Informatics, 

University of Bradford, Bradford, United Kingdom 

ekjaff@student.bradford.ac.uk, p.pillai@bradford.ac.uk, y.f.hu@bradford.ac.uk 

 
Abstract — Satellite communications provides an effective 

solution to the ever increasing demand for mobile and 

ubiquitous communications especially in areas where 

terrestrial communication infrastructure is not present. IP 

multicasting is a bandwidth saving technology, which could 

become an indispensable means of group communication over 

satellites since it can utilise the scarce and expensive satellite 

resources in an efficient way. In Source-Specific Multicast 

(SSM) the data is sent through a multicast tree from the source 

to all the receivers. However, if a source is a mobile node 

moving from one network to another, then special mechanisms 

are required to make sure this multicast tree does not break. 

Until now, while many research efforts have been made to 

provide IP multicast for the mobile nodes, they are mainly 

focused on terrestrial networks. Unfortunately, the terrestrial 

mobile multicast schemes are not directly applicable in a 

satellite environment. This paper proposes a new mechanism 

to support multicast source mobility in SSM based applications 

for a mesh multi-beam satellite network with receivers both 

within the satellite network and in the Internet. In the 

proposed mechanism, the SSM receivers continue to receive 

multicast traffic from the mobile source despite the fact that 

the IP address of the source keeps on changing as it changes its 

point of attachment from one satellite gateway (GW) to 

another. The proposed scheme is evaluated and the results 

compared with the mobile IP home subscription (MIP HS)-

based approach. The results show that the proposed scheme 

outperforms the MIP HS-based approach in terms of signaling 

cost and packet delivery cost. 

Keywords – Gateway Handover, Mobile Multicast Source, 

Multi-beam, Regenerative Satellite,  Signaling Cost. 

I.  INTRODUCTION  

Traditionally, satellites have been usually treated as a 

transparent pipe that carries data between a GW and the 

receivers. Nowadays, the new generation of satellite systems 

are characterised by support for on-board processing 

(switching/routing) and multiple spot beams. Regenerative 

satellites with on-board packet processing can provide full-

mesh, single-hop connectivity between two or more satellite 

terminals/gateways. Multiple spot beams in regenerative 

satellites further enhance the overall satellite capacity with 

the help of frequency reuse within different narrow spot 

beams. These new features enable the satellite to make 

efficient use of its allocated resources and provide cost 

effective network services. This paper is an extension of [1] 

presented at IARIA conference, MOBILITY 2013. 

IP multicasting is a technology in which a single copy of 

IP data is sent to a group of interested recipients. It 

minimises overheads at the sender and bandwidth use within 

the network. This explains why IP multicast is considered as 

an important mechanism for satellite networks, which can 

have the potential to reach many customers over large 

geographical areas.  

In IP multicasting, there may be many sources sending 

data to a single multicast group for example: group voice 

chat. In SSM, a group member of such a multicast group, G 

may request to receive traffic only from one specific source, 

S. Unlike in any source multicast (*, G) [2], where a group 

member might receive unwanted traffic from some sources, 

in SSM, a group member subscribes to specific multicast 

channels (S, G) [2] of interest. This implies SSM saves 

more bandwidth resources than any source multicast. In 

satellite networks, where bandwidth resources are scarce 

and expensive, this could be a very significant and 

compelling factor for SSM. IP mobile multicast over 

satellites can be used to communicate important service 

information like the weather conditions, on-going disaster 

zones and information, route updates, etc., in long haul 

flights, global maritime vessels and continental trains. 

Multicasting this information to all the interested parties 

rather than individually informing them (i.e., unicast) would 

save a lot of satellite bandwidth resources. 

In SSM, a multicast distribution tree is setup with the 

source at the root and receivers as the end leaf node and the 

routers forming the intermediate nodes in the tree. The data 

is then sent from the root with the routers in the network 

replicating the data only when necessary for delivery until a 

copy reaches all intended downstream group members. 

Various issues arise if the receivers or source of the 

multicast group are mobile and move from one network to 

another as this may affect this multicast distribution tree. 

Handover of a mobile multicast receiver from one point of 

attachment to another has a local and single impact on that 

particular receiver only. However, the handover of a mobile 

source may affect the entire multicast group, thereby 

making it a critical issue.  

A mobile multicast source faces two main problems; 

transparency and reverse path forwarding (RPF). In SSM, a 

receiver subscribes to a multicast channel (S, G) [2]. During 

a handover, as the source moves from one network to 

another, its IP address will change. When the source uses 

this new IP address, i.e., care-of address (CoA) [3] as source 

148

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 

address to send traffic, the multicast router in the foreign 

network cannot forward the multicast packets until a 

receiver explicitly subscribes to this new channel (CoA, G). 

This is known as the transparency problem.  

A multicast source-specific tree is associated to source 

location, i.e., the source is always at the root of the source-

specific tree. The RPF check compares the packet’s source 

address against the interface upon which the packet is 

received. During handover, the location of the source will 

change (and consequently its IP address), thus invalidating 

the source-specific tree due to the RPF check test. Hence, 

the RPF problem relates to the fact that the mobile source 

cannot use its home address in the foreign network as the 

source address to send packets as this will result in a failure 

of the RPF mechanism and the ingress filtering [4].  

This paper is based on the Digital Video Broadcasting 

Return Channel Satellite (DVB-RCS/RCS2) system, which 

is an open standard that defines the complete air interface 

specification for two-way satellite broadband scheme. DVB-

RCS/RCS2 is today the only multi-vendor VSAT standard 

[5]. The return link in DVB-RCS/RCS2 is based on a 

multiple-frequency time-division multiple-access (MF-

TDMA) scheme, where the return channel satellite terminals 

(RCSTs) are allocated capacity in slots within a certain time 

and frequency frame. Due to the vendor independence and 

popularity of the DVB-RCS/RCS2 standard, customers with 

DVB-RCS/RCS2 compliant equipment have a wide variety 

of satellite operators and service providers to choose from. 

This flexibility lowers the equipment and operational costs 

[6].  

The organisation of this paper is as follows. In Section 

II, the literature review on existing SSM techniques and 

their applicability to satellite networks are given. Section III 

presents the new network architecture and the further 

extended Multicast Mobility Management Unit (M3U) 

proposed in [1] for source mobility support. Detailed 

description of the operation and processing proposed 

mechanism has been provided. New analytical models have 

been proposed in Section IV, for calculating the signaling 

cost and packet delivery cost in order to evaluate the 

performance of the proposed scheme. Section V presents the 

analysis of the obtained results. Finally, the conclusions are 

presented in Section VI.  

II.  PREVIOUS STUDIES ON SSM 

A few mobile multicast source support techniques for 

SSM have been proposed for terrestrial Internet. These are 

far from being applicable in a satellite scenario. Due to the 

problems of transparency and RPF, remote subscription [3] 

–based approaches cannot be applied to mobile multicast 

sources for SSM. On the other hand, MIP HS-based 

approach [3] (which relies on mobile IP in terrestrial 

networks) can support both mobile receivers and sources 

(including SSM senders) by the use of bi-directional 

tunnelling through home agent (HA) without facing the 

problems of transparency and RPF.  

Following the MIP HS mechanism, bi-directional 

tunnelling between the mobile source under target GW and 

its home GW (serving as HA) [7] could be used to tunnel 

multicast traffic for delivery onto the source-specific tree. 

This is used to maintain the mobile source identity.  If this 

MIP HS-based approach is used in mesh satellite networks, 

the mesh communication concept, i.e., a single hop over the 

satellite will be lost and there would be some RPF issues 

when the home GW tries to deliver the traffic onto the 

source-specific tree over the satellite. Mesh SSM 

communication, where the receivers and mobile source are 

all RCSTs of the same interactive satellite network, will no 

longer be possible since the mobile source has to tunnel 

traffic from its foreign location to its home GW to be 

delivered on to the source-specific tree. 

The authors in [8] used the shared tree approach 

proposed Mobility-aware Rendezvous Points (MRPs), 

which replace the home agents in their role as mobility 

anchors. It is proposed in this approach that the MRP builds 

a Multicast Registration Cache (MRC) for mobile multicast 

sources. This cache is used to map the permanent home 

address (HoA) of the mobile source with its temporary CoA. 

Based on the MRC information, a new Multicast 

Forwarding Table (MFT) format is also proposed, in which 

each multicast source will be referenced by the two 

addresses (HoA and CoA) instead of a unique IP address. 

This solution introduces a new registration method for IP 

mobile multicast source. The mobile source registers only 

once with the MRP by sending a Source Registration (SR) 

message. To send multicast data, the mobile multicast 

source encapsulates its data packets, and then sends them to 

the MRP. Before forwarding the encapsulated packets, the 

MRP checks first whether the multicast packets are coming 

from a registered and trusted mobile multicast source or not. 

If so, it decapsulates these packets, and then sends them 

using the (HoA, G) header to the multicast receivers. When 

the mobile source moves to a new IP subnet within the MRP 

service area, the source's MRP is implicitly notified about 

the CoA change. In case of inter-domain multicasting, if the 

source moves to a new domain, it has to register again with 

the local MRP in that domain. The new MRP notifies 

remote MRPs about the source address change. There is at 

least one MRP per domain. The MRPs rely on triangular 

routing and tunnelling to fulfil their role as mobility anchors 

during intra-domain and inter-domain trees setup. This 

approach also re-introduces rendezvous points, which are 

not native to SSM routing. The introduction of new 

entities/messages for example, the MRP, new registration 

message (of mobile sources to MRPs whenever they move 

into a new domain), MRP Peer-to-peer Source Active (SA) 

[8] and keep-alive messages (required to track the source's 

MRP attachment point changes) during inter-domain 

multicasting, coupled with the modification of the standard 

Multicast Forwarding Table (referenced by the two 

addresses, HoA and CoA instead of a unique IP address) 

make this approach very complicated and not suitable for 

149

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 

satellite networks. Also, large number of signaling messages 

proposed in this mechanism is not good for satellite 

networks as they consume the scarce and expensive satellite 

bandwidth. 

Authors in [9] and [10] introduced Tree Morphing and 

Enhanced Tree Morphing (ETM), respectively, which are 

routing protocol adaptive to SSM source mobility. The 

concept of the source tree extension or elongation as the 

source moves from the previous designated multicast router 

(pDR) to new designated router (nDR) is not applicable in 

satellite scenario because the delivery tree rooted at the 

source in one GW cannot be extended to that same source 

when it moves to a different GW. This makes the 

fundamental design concept of these extensions not 

consistent with the nature of satellite networks. 

SSM source handover notification approach proposed by 

authors in [11] suggested adding a new sub-option in the 

standard IPv6 destination binding option known as SSM 

source handover notification. During handover, the source 

after acquiring new IP address will notify receivers to 

subscribe to the new channel. The problems here are the 

large amount of signaling traffic over satellite air interface 

and the fact that some receivers may be unsynchronized to 

source handovers, leading to severe packet loss. 

In [12], the authors proposed multicast source mobility 

support in proxy mobile IPv6 (PMIPv6) domains for 

terrestrial networks. Based on the specifications in [13], 

multicast data arriving from a downstream interface of an 

Multicast Listener Discovery (MLD) [12] proxy will be 

forwarded to the upstream interface and to all but the 

incoming downstream interfaces that have appropriate 

forwarding states for this group. Thus, multicast streams 

originating from an mobile node (MN) will arrive at the 

corresponding Local Mobility Anchor (LMA) [14] and 

directly at all mobile receivers co-located at the same 

Mobile Access Gateway (MAG) and MLD Proxy instance. 

Serving as the designated multicast router or an additional 

MLD proxy, the LMA forwards the multicast data to the 

Internet, whenever forwarding states are maintained by 

multicast routing. If the LMA is acting as another MLD 

proxy, it will forward the multicast data to its upstream 

interface, and to downstream interfaces with matching 

subscriptions, accordingly. One of the drawbacks here is 

that there are no mechanisms to supress upstream 

forwarding to LMA even when there are no receivers. This 

waste of network resources could pose a serious problem in 

a satellite environment. Triangular routing is also an issue 

here when a mobile receiver and a source, all having 

different LMAs are attached to the same MAG. In such a 

situation, the MAG has to forward traffic upstream to the 

corresponding LMA of the mobile source, which will tunnel 

the traffic to the corresponding LMA of the mobile receiver 

which then tunnels the traffic back to the same MAG for 

delivery to mobile receiver, causing waste of network 

resources in the whole domain. The fact that in proxy 

mobile IPv6 domain, the LMA is the topological anchor 

point for the addresses assigned to mobile nodes within the 

domain (i.e., packets with those addresses as destination are 

routed to the LMA), the role of the LMA and MAG does 

not fit well into a global interactive multi-beam satellite 

network with many Transparent/Regenerative Satellite 

Gateways [15], each having different IP addressing space. 

The authors in [1] proposed a solution consistent with 

the DVB-RCS/RCS2 satellite network specifications that 

supports SSM source mobility within the satellite network. 

The idea of reserving IP addresses for the mobile Return 

Channel Satellite Terminals (mRCSTs) in all foreign 

networks (i.e., under all potential target gateways) is not 

efficient in utilisation of the allocated IP address space. This 

will lead to scalability issues especially with increasing 

number of satellite terminals requiring IP addresses, as the 

IP address space is limited. This paper is an extension of our 

previous proposal in [1] with the following  modifications: 

• No IP addresses are reserved for mobile sources 

(mRCSTs) in foreign networks. 

• The satellite is a regenerative one with on-board 

processing (OBP) at layer 2 of the protocol stack, 

capable of replicating multicast traffic on-board the 

satellite. This further saves the satellite bandwidth 

resources as only one  copy of the multicast traffic will 

be sent to the satellite air interface for all beams with 

interested receivers instead of one for each beam as was 

proposed in [1]. 

• The functioning, location and the type of messages 

issued by the Multicast Mobility Management Unit 

(M3U) proposed here are quite different from those 

proposed in [1]. These changes further help in 

providing an effective support for source mobility.   

III. PROPOSED MULTICAST SOURCE MOBILITY 

MECHANISM FOR SSM IN REGENERATIVE SATELLITE 

NETWORK 

The satellite terminals like the regenerative satellite 

gateways (RSGW), RCSTs and mobile RCSTs are assumed 

to be IP nodes with layer 3 capability. In this satellite 

network, the routing function is organised as a 

‘decentralized router’. In a client/server [16] like 

architecture, part of the routing functions are located in the 

RCSTs/RSGWs/mRCSTs (clients) and the other part of 

them within the Network Control Centre (NCC), i.e., 

routing server. Each time a client needs to route an IP 

packet, it asks the server for the information required to 

route this packet. The routing information sent by the server 

(NCC) is then saved in the client. 

Each time an IP packet comes into the satellite system, 

the ingress RCST/RSGW determines where to send the 

packet, the final target being to get the destination RCST’s 

MAC address. The ingress RCST/RSGW look within its 

routing table to find if the route on the satellite path exist. If 

it does not exist, it issues an ARP towards the NCC, through 

the connection control protocol (C2P) [15] connection 

request message [16]. Since the connection and switching 

150

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 

on-board the satellite is defined here at layer 2 of the 

protocol stack, the knowledge of MAC addresses of the 

RCSTs is mandatory to establish a connection. This means 

that the NCC provides the mechanisms required to associate 

the IP address and MAC address of a RCST/RSGW [16]. 

In the control plane, Internet Group Management 

Protocol (IGMP) messages are exchanged between the NCC 

and the IGMP Proxy contained in the RCSTs. Also, the 

IGMP messages are exchanged between User Terminals and 

IGMP Querier included in the RCSTs as shown in Figure 1. 

IGMPv2 general Query, Specific Group Query, Report and 

Leave messages are exchanged over the satellite air 

interface between the NCC and the 

RCSTs/RSGWs/mRCSTs.  

As illustrated in Figure 1, all satellite entities transmit 

using DVB-RCS and receive using DVB by Satellite (DVB-

S). The two existing satellite transmission standards, DVB-

RCS and DVB-S are combined by the OBP into a single 

regenerative multi-spot satellite system allowing a full 

cross-connectivity between the different up link and down 

link beams. 

A. Network Architecture 

Figure 2 shows the network architecture, where a mobile 

multicast source is located at its home network in beam 1 

and the receivers are in beams 1, 2, 3 and 6. GW_A1, 

GW_A2, GW_A3, GW_A4, GW_A5 and GW_A6 serves 

beams 1, 2, 3, 4, 5 and 6, respectively. The multicast 

receivers in the terrestrial network as shown in Figure 2 are 

served through GW_A1. The mobile source sends out just 

one copy of multicast traffic and the OBP replicates the 

traffic, one for each of the four beams that has interested 

receivers. GW handover (GWH), which involves higher 

layers (i.e., network layer), will take place at the 

overlapping areas between beams. IP multicast source 

mobility support is therefore implemented at GWH. 

B. Source Mobility Support with Multicast Mobility 

Management Unit (M3U) at Gateway Handover. 

In order to develop an effective solution to support 

source mobility, the following general assumptions have 

been made:  

• The regenerative satellite has OBP – switching at layer 

2 to provide on-board connectivity between different 

beams. 

• The NCC will act as the IGMP querier for the satellite 

network in addition to its normal functionalities. 

• The NCC enables the establishment of point-to-

multipoint connection between mobile source (mRCST) 

and all listening RCSTs/RSGWs. 

• All RCSTs function as IGMP Proxy, i.e., IGMP Router 

and Querier on its user interface (interface towards the 

internal LAN) and an IGMP Host on the satellite 

interface. 

• All RCSTs, mRCSTs and RSGWs are mobility-aware 

nodes and can process mobility instructions.  

   

NCC

Satellite A

GW_A1
GW_A2 GW_A4

GW_A6

Internet

Mobile Source

GWH GWH GWH GWH

GWH – Gateway Handover

GWH

Multicast Receiver 2

Multicast Receiver 1

RCST1
RCST2 RCST3 RCST4

Beam 1
Beam 2 Beam 3 Beam 4 Beam 5

Beam 6

GW_A3 GW_A5

 
 

Figure 2. Mobile Source at Home Network (GW_A1) 
 

DVB

-S

DVB

-RCS

GSE

IP

DVB-S
DVB-

RCS

DVB

-S

DVB

-RCS

GSE

IP

10/100 

BT

Ethernet

IGMP 

Host

10/100 

BT

Ethernet

UI

Satellite
OBP - Switching

IGMP 

Querier

IGMP 

Querier

IGMP 

Host

UI

RCST1 (IGMP Proxy) RCST2 (IGMP Proxy)

Data Link Layer 

Switching

 
Figure 1. Mesh IP multicast control plane protocol stack [16] 

 

151

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 

TABLE I. PROPOSED NEW MESSAGES  

 

A new Multicast Mobility Management Unit (M3U) 

responsible for control plane signaling to provide mobility 

support for multicast sources is proposed. This new M3U 

entity located at the NCC is equipped with the following:  

• A database of all mRCSTs, each identified by its 

physical (MAC)  and IP addresses 

• A ‘Message Chamber’ which can issue the new 

proposed signaling messages.  

Three new types of messages shown on Table I have been 

proposed in this paper. It is proposed that any mRCST 

should be able to issue Channel Update Message (CUM) 

after receiving Service Interface Update Message (SIUM) 

from the NCC during GWH. Details of these messages are 

given in Table I.  

When the NCC receives the synchronization (SYNC) 

burst from the mobile source (mRCST) containing the 

handover request, it will retrieve the target beam identity 

from its database and determine whether the beam belongs 

to a different GW. Once the NCC establishes that the target 

beam belongs to a different GW, a  GWH is initiated. The 

NCC will then update its service information (SI) tables 

which include Terminal Burst Time Plan (TBTP), Super-

frame Composition Table (SCT), Frame Composition Table 

(FCT) and Time-slot Composition Table (TCT). The NCC 

will send an SNMP Set-Request message that includes the 

updated SI tables and the routing update information (RUI) 

of the mRCST to the target GW to ensure that the target 

GW gets ready for connection with the mRCST. Upon 

reception of the SNMP Set-Request message, the target GW 

will allocate bandwidth resources and IP address to the 

mRCST according to the new burst time plan sent by the 

NCC. The SNMP Get-Response message is then sent by 

target GW to the NCC. 

Once the NCC receives the SNMP Get-Response 

message from target GW,  the M3U immediately issues the 

Source Handover Message (SHM) to the NCC unit (NCCu), 

requesting the point-to-multipoint link between the source 

and all the listening RCSTs/GWs (from previous tree). 

SHM is internal signaling within the NCC (i.e., between 

M3U and NCCu). Upon reception of SHM, the NCCu will 

make the resources available and then instructs the OBP to 

establish the required connections. This is immediately 

followed by the M3U issuing the SIUM to all RCSTs/GWS 

involved in this particular channel, including the mobile 

source.  The SIUM contains both the mobile source old and 

new IP addresses in the old and new GWs, respectively. The 

SIUM also contains instructions for all listening 

RCSTs/GWs to update source list (add mobile source new 

IP address) in the service interface for requesting IP 

multicast reception [17]. This will create a new channel that 

contains the mobile source new IP address (CoA) under the 

target GW. This action ensures that subsequently, when the 

RCSTs/GWs receive IGMP join Report from downstream 

receivers for this new channel, no IGMP report will be sent 

to the satellite air interface since the channel already exist in 

the RCST/GW multicast routing table. The creation of this 

new channel by the SIUM is possible in satellite networks 

because the NCC knows:  

• The mac and IP address of all active RCSTs/GWs,  

• The newly acquired IP address of the mobile source, 

• All RCSTs/GWs that are members of the channel 

involving the mobile source.  

Therefore, the NCC can enable the establishment of a 

point-to-multipoint connection between the mobile source 

and all the listening RCSTs/GWs directly. This reduces the 

amount of traffic on the satellite air interface, thus saving 

scarce and expensive satellite bandwidth resources. The PID 

of the channel may remain the same. Upon reception of 

SIUM, the mobile source immediately issues CUM, i.e., 

CUM is triggered by reception of SIUM. The CUM is sent 

just like any multicast user traffic by the mobile source 

through source-specific tree to all SSM receivers. 

After 1 round trip delay of issuing SIUM (for mobile 

source to receive SIUM and issue CUM), the NCC issues 

SNMP Set-Request message, which includes the mRCST 

(mobile source) identity and the SI tables to the source GW.  

The source GW then acknowledges the NCC by sending a 

SNMP Get-Response message. Once the SNMP Get- 

Response message is received from source GW, a GWH 

command is issued to the mRCST from NCC in a Mobility 

Message 

Name 
Type Source Destination Content  Purpose 

Service 

Interface 

Update 

Message 

(SIUM) 

Multicast NCC All SSM 

RCSTs/GWs 

Receivers + 

mobile source 

IP addresses of mobile source in both old 

and target GWs. Instructions to update 

source list (add mobile source new IP 

address) in service interface of specified 

channel. 

To avoid each listening RCST/GW from 

sending IGMP Join Report on to the satellite 

air interface after receiving  channel re-

subscription from terrestrial SSM receivers. 

Source 

Handover 

Message 

(SHM) 

Internal 

Signaling 
M3U NCCu A Request to establish point-to-multipoint 

link btw source  & all listening RCSTs/GWs 

(from previous tree) 

To establish new delivery tree to all listening 

RCSTs/GWs without them sending any 

IGMP join report to new channel (CoA, G). 
To reduce tree establishment time. 

Channel 

Update 

Message 

(CUM) 

Multicast Mobile 

source 

All SSM 

Receivers 

IP addresses of mobile source in both old 

and target GWs. 

Instructions  to receivers to update channel 

subscription to new mobile source IP address 

For all SSM end receivers to update their 

channel subscription from (S, G) to CoA, G) 

For Internet receivers to start building the 

new delivery tree to the target GW. 

152

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 

Control Descriptor carried in a Terminal Information 

Message Unicast (TIMu) using the old beam. The source 

GW now updates its route mapping table and released 

resources used by the mRCST. Once the mRCST receives 

the handover command, it synchronizes with the NCC and 

the target GW, retunes itself to the target beam.  

Figure 3 shows the proposed signaling sequence to 

support multicast source mobility for SSM at GWH. This 

signaling sequence contains the proposed new messages 

integrated into the standard GWH signaling sequence as 

described in the DVB-RCS specification in [7]. The NCC 

acting as satellite IGMP querier keeps control of the 

multicast groups and also builds the SSM tree based on the 

on-board connectivity between different beams. 

Periodically, the NCC sends out the Multicast Map Table 

(MMT) [16] to all multicast receivers. The MMT which 

contains the list of IP multicast addresses each associated 

with a specific Program Identifier (PID) enables listening 

RCSTs/GWs to receive multicast traffic from groups which 

they are members of. When the NCC receives an IGMP join 

report for SSM, the M3U checks the source-list to see if 

some sources are mRCSTs. If some sources are identified as 

mRCSTs, the M3U will a keep record of them in its 

database.  

Upon reception of CUM by SSM receivers in the 

Internet, a new SSM delivery tree construction to the target 

GW is triggered as shown in Figure 4 (compared to that in 

Figure 2). Figure 4 shows the mobile source now in beam 2 

after a successful GWH. If the Target GW was not a 

member of the old multicast channel, it will issue an IGMP 

join report to NCC as soon as it gets the updated channel 

subscription request (PIM-SSM Join) from receivers in the 

Internet. The target GW now becomes part of the mesh 

receivers within the satellite network as it assumes the 

responsibility of serving receivers in the Internet. But if the 

target GW was already a member, a multicast reception 

state will simply be created against the interface upon which 

the PIM-SSM join was received.  It should be noted here 

that CUM is delivered through serving GW to the SSM 

receivers in the Internet before the resources used by the 

mobile source in the serving GW are released and also 

before retuning and switching by the mobile source to the 

target GW begins. This is so, because it is only through the 

serving GW (old SSM delivery tree) that CUM can reach all 

the SSM receivers in the Internet. 

When the SSM receivers in the LAN behind the 

listening RCSTs receive the CUM, they will update their 

channel subscription by issuing unsolicited IGMP join 

report towards the RCST. Upon reception of the IGMP join 

report, the RCST (IGMP Proxy) will check its multicast 

routing table to see whether that channel already exist. On 

checking, the RCST will discover the existence of the 

channel in its multicast routing table thanks to the action of 

SIUM as described above. Therefore, this will prevent the 

RCST from issuing IGMP join Report onto the satellite air 

interface, thus saving satellite bandwidth resources.  

  

Mobile Source 

(mRCST) NCC GW_A1 GW_A2Internet

PIM-SSM (a11, G)

Multicast Traffic Multicast Traffic

IGMP (a11, G)

1. SYNC (RL) with HOR

2. SNMP Set-Request: Set SI tables + RUI of mRCST

3. SNMP Set-Response: Set SI tables  after BW allocation + IP address to mRCST
M3U

4.SHM

5. SIUM

6. Multicast Traffic: CUM 6. Multicast 

Traffic: CUM
7. SNMP Set-Request: Set SI 

tables  with mRCST’s Identity 

8. SNMP Set-Response: 

Set SI tables   

10. TIMu ( F/L) received 
in old beam, retuned to 

target beam & switched 

to new link

9. PIM-SSM (a12, G)

11. SI tables (TBTP, 

SCT, FCT, TCT, MMT)  

12. ACQ (RL)

Satellite Communication

13. CMT (FL)

15. MMT

14. IGMP (a12, G)

Multicast Traffic

Multicast Traffic

Terrestrial/wired Communication a11- mobile source IP address under GW_A1

a12- mobile source IP address under GW_A2 RUI- Routing Update Information; BW - Bandwidth  
Figure 3. Signaling sequence at GWH                                             

153

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 

 

 

Is Dest IP addr

+ protocol NO 

=

224.0.0.22 (or 

G addrs) + 

proto no 2

Yes

No

NCC Unit

From OBP  to NCC

Data 

Base

Signalling traffic

Stage 1: IGMP packet  

identification

M3U

Yes

NCC

Is SRC

Mac/IP addrs

= 

that of any

mRCST

SHM

Message

Chamber

No

No

Yes

T
To 

Sat

SIUM

Stage 4: mRCSTs

signalling  detection

IGMP 

IGMP 

IGMP 

SYNC Burst with 

handover 

recommendation? 

Record allocated 

IP addrs of 

mRCST

Yes
Is Dest port 

Number

= 

161 (SNMP)

No

SNMP

SNMP

No

Yes

SYNC Burst

Stage 6: Target 

GW Signalling 

detection

Stage 7: Target GW 

GWH signalling response 

(SNMP) detection

Does any 

mac/IP addrs

in SRC-list

=

mRCST

mac/IP

addrs
Record  mRCSTs

in SRC- list of 

IGMP Report as 

mobile SRCs.

Stage 3: Establishing 

list of active mobile 

multicast Sources

Stage 2: Mobile source 

(mRCST) identification

Signals for SHM & 

SIUM

Stage 8: Get allocated 

IP addrs of mRCST

Get target 

GW 

Mac/IP 

addrs
Is SRC 

Mac/IP addrs

=

Mac/IP

addrs of 

Target GW 

Stage 5: SYNC

Burst detection

Yes

No

SRC – Source; Addrs – Address; Dest – Destination; Proto no – Protocol number
 

Figure 5.  M3U source mobility support processing for SSM during GWH  

 

NCC

Satellite A

GW_A1
GW_A2 GW_A4

GW_A6

Internet

Mobile Source

GWH GWH GWH GWH

GWH – Gateway Handover

GWH

Multicast Receiver 2

Multicast Receiver 1

RCST1
RCST2 RCST3 RCST4

Beam 1
Beam 2 Beam 3 Beam 4 Beam 5

Beam 6

GW_A3 GW_A5

 
Figure 4. Mobile source at foreign network (GW_A2)   

                

C. M3U operation and processing 

Figure 5 shows the processing flowchart of the control    

plane information (signaling traffic) through the M3U. For 

correct signaling to take place, M3U must be able to identify 

the following: 

• An IGMP packet (i.e., an unsolicited IGMP join report) 

in order to add the requesting RCST/GW on the delivery 

tree. 

• Mobile multicast source or receiver (mRCST) and 

differentiate between the two. 

• GWH request and target GW. 

• Target GW signaling (SNMP) to get the mRCST newly 

allocated IP address. 

 

1) IGMP Packet Identification 

When the NCC receives any signaling traffic, the M3U 

checks the IP destination address and the protocol number 

on the IP packet to determine whether it is an IGMP packet. 

If the IP destination address is equal to 224.0.0.1 (for 

IGMPv1&2) or 224.0.0.22 (for IGMPv3) and the protocol 

number is equal to 2, then the IP packet is an IGMP packet 

and is then it is sent to Stage 2 in Figure 5, otherwise, it is 

sent to Stage 4.                                                                                                             

 

154

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 

2) mRCST Identification 
In Stage 2 of Figure 5, the task is to determine whether 

the source-list in the received IGMP packet contains any 

mobile source (mRCST). The M3U  checks the IP addresses 

contained in the source-list against the list of mRCSTs in 

the database to find out whether the requesting RCST/GW 

is requesting to receive multicast traffic from a mobile 

source (mRCST) or not. If source-list contains any 

mRCSTs, then those mRCSTs are mobile multicast sources. 

The mRCSTs contained in source-list of received IGMPv3 

join report are then recorded in Stage 3 as mobile sources 

based on the analysis in Stage 2 given above. Finally, the 

IGMP packet is then forwarded to the NCC (querier). 
 

3) mRCST Signaling Detection 

At Stage 4, the main task is to separate signaling traffic 

coming from any mRCST from those of fixed RCST. To do 

this, the M3U has to check the source mac/IP address of the 

signaling traffic received against the database to establish 

whether it is coming from a mRCST or not. All signaling 

traffic coming from any mRCST is sent to Stage 5 for close 

examination to find out whether they are synchronisation 

(SYNC) burst containing handover recommendation while 

the rest is sent to Stage 6. Once it is confirmed that it is a 

SYNC burst in Stage 5, with handover recommendation, 

then the target GW identity is known and its MAC/IP 

address recorded. Following this process, a table of mRCST 

versus target GW (identified by their MAC/IP addresses) 

can be established for all mRCSTs in the whole interactive 

satellite network. This now prepares the M3U to expect 

GWH signaling response from the target GW. 
 

4) Target GW Response Detection and the mRCST 

allocated IP address recording  
Now, knowing the identity of the target GW (from the 

handover recommendation), signaling traffic from the target 

GW can be tracked within the NCC to find out whether it is 

the response to the  GWH request initiated by the NCC. 

This is very important because earlier knowledge of the 

allocated IP address to the mRCST by the target GW 

contained in this GWH response is very crucial here for 

further signaling.  

Therefore, Stage 6 examines the source MAC/IP address 

of all signaling traffic to see whether it is that of the target 

GW. If it does, then the packet is sent to Stage 7, if not, then 

to NCCu. In Stage 7, the destination port number of the 

packet is checked to find out whether it is equal to that of 

SNMP (i.e., 161), the signaling protocol used in GWH as 

specified in [7]. If this is so, then, the packet is sent to Stage 

8, where the allocated IP address to the mRCST in the target 

beam is extracted and recorded. Once the M3U is aware of 

the mRCST’s IP address in the target beam, it immediately 

issues the SHM to the NCCu, requesting for a point-to-

multipoint connection establishment as explained above. It 

is therefore imperative that the M3U gets the mRCST’s IP 

address in the target beam as soon as possible in order to 

minimise the multicast handover latency during GWH. If 

the destination port is not equal to 161, then, the packet is 

simply sent to the NCCu for normal signaling. The issuing 

of SHM is immediately followed by that of SIUM to all 

mesh SSM receivers including the mobile source as 

explained above. 

The uniqueness about this proposal are: the new re-

subscription mechanism of the satellite receivers and 

gateways to the new multicast channel (CoA, G) after every 

GW handover without the issuing of IGMP join report over 

the satellite air interface, the absence of encapsulation 

(tunnelling) and triangular routing paths throughout the 

system and its compliance with DVB-RCS/S2 

specifications. If all the listening RCSTs/GWs were to 

individually issue IGMP join reports to the satellite air 

interface for re-subscription after GWH, the total number 

would be enormous and will put a lot of strain on the 

satellite bandwidth resources. The proposed solution will 

significantly save satellite bandwidth resources. 

IV. ANALYTICAL MODEL 

Under this section, analytical models for GWH signaling 

cost and packet delivery cost (when mobile source is away 

from home) are developed to evaluate the proposed mobile 

multicast source GWH procedure for SSM. These are then 

compared with MIP HS–based approach (see Section II), 

which appears to require only minimal changes to support 

multicast source mobility for SSM in a satellite 

environment. The other schemes for multicast source 

mobility SSM which are mainly defined for terrestrial 

networks will require major changes to be applicable in 

satellite networks. This explains why the performance 

evaluation of the proposed M3U scheme is compared only 

with that of the MIP HS-based approach.  
 

 

TABLE II.  MESSAGE SIZE AND NUMBER OF HOPS 
 

Notation Description Value 
MSYNC SYNC  message size 12 bytes 
MSNMP SNMP Request/Response + SI tables message sizes 

+ RUI + allocated BW and IP address 
636 bytes 

MTIM Terminal Information Message size 35 bytes 
MSI_t SI tables (TBTP, SCT, FCT, TCT, MMT)  message 

size 
152 bytes 

MACQ Acquisition Burst message size  12 bytes 
MCMT Correction Message Table size  30 bytes 
MMMT Multicast Map Table message size 30 bytes 

MSIUM Service interface update message size 50 bytes 
MSHM Source handover message size 30 bytes 
MCUM Channel update message size 50 bytes 

MPIM_SM PIM-SM message size 64 bytes 
MIGMP IGMP message size 64 bytes 

MDHCP DHCPDISCOVERY/DHCPOFFER/ 

DHCPRQUEST/DHCPACK message size 
300 bytes 

MMIP_Reg MIPv4 Registration Request message size 74  bytes 
MMIP_Rep MIPv4 Registration Reply message size 48 bytes 

MIPv4 Size of IPv4 packet header  20 bytes 

MDATA Multicast data size 120 bytes 

h
2ST
 Number of hops between any 2 satellite terminals 1 

h
GW- INT

 Number of hops between satellite GW and Internet 

nodes through internet  
10 

 

  

155

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 

In this analysis, signaling cost (Csign) and the packet 

delivery cost (CPD) before and after GWH are evaluated. 

Signaling cost is defined as the accumulative signaling 

overhead for supporting mobile multicast source GWH in a 

multi-beam satellite network and is calculated as the product 

of the size of mobility (handover) signaling messages and 

their hop distances [18]. Packet delivery cost (CPD) on the 

other hand is the accumulative traffic overhead incurred in 

delivering a packet along a routing path. CPD is calculated 

by multiplying the data packet size by the hop distance. 

Here, only the packet delivery cost within the satellite 

network (satellite receivers) will be considered before and 

after the GWH for both our scheme and the MIP HS–based 

approach. Table II shows the messages sizes and number of 

hops used for the analysis. These parameters are referenced 

from [1][19][20]. The hop distance between any two 

satellite terminals under different GWs is assumed to be 1. 

This is because each GW has a different IP address space, 

hence a different IP network.  

 

A. Modelling the Proposed M3U scheme 

Figure 6 shows the signaling messages (extracted from 

Figure 3) involved in the proposed M3U scheme for 

multicast source mobility support. It is assumed here that 

the target GW was not yet a member of the multicast 

channel served by the mobile source, so an IGMP join 

report is issued by the target GW to NCC after receiving an 

updated channel subscription request (PIM-SSM Join) from 

receivers in the Internet (see Figures 2 and 4).  It is also 

assumed in Figure 6 that SNMP–Request and SNMP-

Response messages carrying the SI tables, RUI and 

allocated bandwidth resources + IP address have the same 

packet length or size. From Figure 6, the signaling cost per 

GWH for the proposed M3U scheme C )3( UM

sign
is given by: 

 
)3( UM

signC = 

MMTIGMPCMTACQtSITIM

SMPIMCUMSIUMSNMPSYNC

CCCCCC

CCCCC

++++++

++++

−

−4 . (1) 

 

Where each of the terms in (1) represents the cost of each 

signaling message shown in Figure 6.  

 

mRCST NCC GW_A1 GW_A2

SYNC (RL)
SNMP- Request

SNMP- Response

MMT

CMT

ACQ

TIMu

SNMP- Request

SNMP- Response

SI Tables

SIUM

CUM

Terrestrial

Networks

PIM-SSM (a13, G)

IGMP (a12, Join

Figure 6.  Signaling messages when using M3U 

Substituting the cost value (message size × hop distance) for 

each term in (1) and re-arranging implies )3( UM

signC is given 

by: 

 
)3( UM

signC =

)()

4(

__

_2

SMPIMCUMINTGWMMTIGMPCMT

ACQtSITIMCUMSIUMSNMPSYNCST

MMhMMM

MMMMMMMh

+++++

++++++

β

α  . (2)  

 

Where α and β are weighting factors for wireless (satellite) 

and wired links, respectively. They are used to emphasize 

the link stability [18][21]. 

The packet delivery cost )3( UM

PDC  for each multicast 

packet to any receiver within the satellite network (i.e., 

mesh communication) is given by: 

 
)3( UM

PDC = 
TSDATA hM 2α .                 (3) 

 

The packet delivery cost before and after GWH under this 

scheme will remain the same. This is because no extra hop 

will be traversed by the packet after GWH. 

The packet delivery cost per multicast session )3( UM

PDSC  

can be determined using the average session transmission 

rate
Sλ , from the mobile source and the average session 

length in packets 
SE [18][22] . This is calculated as the 

product of
Sλ , 

SE  and )3( UM

PDC (i.e., the packet delivery 

cost for one multicast packet). This implies packet delivery 

cost per multicast session )3( UM

PDSC is given by [18] [22]: 

 
)3( UM

PDSC = 
Sλ SE

)3( UM

PDC .              (4) 

 

B. Modelling of MIP HS-based approach 

The MIP HS or bi-directional tunnelling approach relies 

on mobile IP architectural entities, i.e., HA and mobile node 

(mRCST). When the mobile source moves away from its 

home network at GW_A1 to a foreign network at GWA_2, 

it has to register its care-of address [23] to its HA at home 

network. 

 

mRCST NCC GW_A1 GW_A2

SYNC
SNMP- Request

SNMP- Response

CMT

ACQ

TIMu

SNMP- Request

SNMP- Response

SI Tables

Terrestrial

Networks

DHCPDISCOVER

DHCPOFFER

DHCPREQUEST

DHCPACK

MIPv4 Reg Request

Multicast Traffic

L2H

L3H

MIPv4

Reg MIPv4 Reg Reply

L2H – Layer 2 handover signalling; L3H - Layer 3 handover signalling; MIPv4 Reg – MIPv4 Registration signalling
 

Figure 7. Signaling messages when using MIP HS-based approach 

156

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 

Details of MIP HS-based approach can be found in [3].  

Figure 7 shows the signaling messages involved during 

GWH using MIP HS-based approach. The details of the 

content of Figure 7 can be found in [7][19][23][24] . 

Similarly as in (1) and (2) above, the signaling cost per 

GWH for MIP HS-based approach, )( HS

signC  is given by: 

 

)( HS

signC =  

TpMIPqMIPDHCP

CMTACQtSITIMSNMPSYNC

CCCC

CCCCCC

24

4

ReRe ++++

+++++

−−

− . (5) 

 

Where CT is the cost of tunnelling each IPv4 packet header. 

 

)( HS

signC =
)24

4(

4ReRe

_2

PvIpMIPqMIPDHCPCMT

ACQtSITIMSNMPSYNCST

MMMMM

MMMMMh

+++++

++++

−−

α  .     (6) 

 

The packet delivery cost )(

_

HS

brforePDC for each multicast 

packet to any receiver within the satellite network (i.e., 

mesh communication) before GWH in MIP HS-based 

approach is given by: 

 
)(

_

HS

beforePDC = .2 STDATA hMα      (7) 

 

After GWH, the packet delivery routing path changes as the 

mobile source has to first tunnel the multicast data to its HA 

at home network for delivery into the source-specific tree. 

This implies the multicast data will under a double hop 

communication from the mobile source to reach the 

listening RCSs/RSGWs. Hence, the packet delivery cost 

after GWH )(

_

HS

afterPDC  is given by:  

 
)(

_

HS

afterPDC = )2( 42 IPvDataST MMh +α .    (8) 

 

Similarly as in (4), the packet delivery cost per multicast 

session after GWH for MIP HS-based approach is given by: 

 
)(

_

HS

afterPDC =
Sλ SE )(

_

HS

afterPDC .   (9) 

 

V. NUMERICAL ANALYSIS AND RESULTS 

Assuming here that the satellite beams (coverage area) 

are circular and of identical dimensions, the border crossing 

rate  of the mobile source (mRCST) or in other words, the 

frequency at which GWH is taking place
GWHf  is given by 

[18][22]: 

 

R

V
f GWH

π

2
=    .                       (10) 

 

Where V is the average velocity of the mobile source and R 

is the radius of the circular satellite beam. 

The total signaling cost 
SignTC _

to support the multicast 

source mobility is therefore given by the product of the 

signaling cost per GWH and the frequency of GWH. So, 

from (2) and (10), the total signaling cost for the proposed 

M3U scheme 
SignTC _

is given by: 

 

)3(

_

UM

SignTC = 
R

V

π

2 )3( UM

signC .                (11) 

 

Similarly, from (6) and (10), the total signaling cost for MIP 

HS-based approach is given by: 

 

)(

_

HS

SignTC =
R

V

π

2 )( HS

signC .     (12) 

 

For numerical evaluations, the parameters in Table II 

and the following are used in the analytical models 

presented in Section IV: 
SE = 10, α = 2, β = 1 [18][21].  

 

Proposed M3U

MIP HS

6400

6600

6800

7000

7200

7400

7600

7800

8000

8200

8400

1

S
ig

n
a
ll
in

g
 C

o
s
t 

p
e
r 

G
W

H
 (

b
y
te

s
  

h
o

p
s
)

Different Schemes
 

Figure 8. Comparison of signaling cost at GWH 
 

 

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700 800 900 1000

T
o

ta
l 
S

ig
n

a
ll
in

g
 C

o
s

t 
(b

y
te

s
 h

o
p

s
)

Velocity (Km/h)

R = 5000 Km

Proposed M3U MIP HS

 
 

Figure 9. Variation of total signaling cost with velocity 

157

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 

0

500

1000

1500

2000

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

T
o

a
ta

l 
S

ig
n

a
ll
in

g
 C

o
s
t 

(b
y
te

s
 h

o
p

s
)

Radius (Km)

V = 750 Km/h

Proposed M3U MIP HS

 
 

Figure 10. Variation of total signaling cost with radius 

 

A. Signaling Cost 

Figure 8 shows the signaling cost at GWH for the 

proposed M3U scheme as compared with the MIP HS-based 

approach. These results are obtained by substituting the 

numerical values of the parameters in (2) and (6), 

respectively. From Figure 8, it can be seen that signaling 

cost of the MIP HS-based approach is much higher than that 

in the proposed M3U scheme. The extra signaling cost for 

location update at the HA is one of the major reasons for the 

higher GWH signaling cost in MIP HS-based approach. By 

making use of (11) and (12), the total signaling cost during 

GWHs for the proposed M3U and MIP HS-based schemes, 

respectively, are investigated in Figures 9 and 10. In Figure 

9, the radius of the satellite beam is set at 5000 Km and the 

total signaling cost is measured as the velocity of the 

mRCST (mobile source) is varied from 0 to 1000Km/h. 

Figure 9 reveals that the total signaling cost increases as the 

velocity of the mobile source increases. This is expected, 

since the higher the velocity, the more the frequency of 

GWH (border crossing) and hence, the higher total signaling 

cost.  It can also be deduced from Figure 9 that the total 

signaling cost for MIP HS-based approach is generally 

higher than that for the proposed M3U scheme. These 

results show that in a similar multi-beam satellite network 

providing mobility support, satellite terminals on slow 

moving platforms like the maritime vessels will incur less 

signaling cost (overhead) than those on fast moving 

platforms like long haul flights (aircrafts). 

On the other hand, Figure 10 shows how the total 

signaling cost changes with varying satellite beam radius at 

a fixed mobile source velocity of 750Km/h. As shown in 

Figure 10, the total signaling cost reduces as the radius of 

the satellite beam increases. This is true because the larger 

the satellite beams (radius), the fewer the number of GWHs 

required by the mobile source travelling at a constant 

velocity. But the smaller the satellite beam, the more the 

number of GWHs required for any satellite terminal 

travelling at a constant speed. 

0

1000

2000

3000

4000

5000

6000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
a
c
k

e
t 

D
e

li
v

e
ry

 C
o

s
t 

(b
y
te

s
 h

o
p

s
)

Session Transmission Rate

Proposed M3U MIP HS

 
 

Figure11. Comparison of packet delivery cost 

 

More GWHs implies more signaling cost and vice versa. 

Although the recent trend in satellite beam size is moving 

towards narrow beams instead of big beams, the main 

reasons are the power requirements of the RCST and the 

frequency reuse (to increase capacity). Figure 10 also shows 

that the proposed M3U scheme outperforms the MIP HS-

based approach in total signaling cost against radius of 

satellite beam.  

The results in Figure 10 could be particularly important 

to designers of global multi-beam satellite networks that 

support mobility, as the sizes of the GW beams will have an 

effect on the overall handover overhead. 

B. Packet Delivery  Cost 

The packet delivery cost for both schemes after GWH 

obtained by making use of (4) and (9), are investigated in 

Figure 11. The display in Figure 11 shows that packet 

delivery cost increases as the session transmission rate 

increases. Also, Figure 11 shows that for any particular 

session transmission rate, the packet delivery cost for MIP 

HS-based approach is much higher than that for the 

proposed M3U scheme. This is consistent with the fact that 

in the proposed M3U scheme, there is mesh communication 

with a single hop over the satellite even when the mobile 

source is away from home and also, there is no 

encapsulation (tunnelling) of multicast packet at all in any 

stage. But in MIP HS-based approach, packet delivery has 

to undergo a double hop transmission over satellite (i.e., 

through HA), thus incurring higher packet delivery cost. 

Also, the higher multicast packet delivery cost in MIP HS-

based approach when the mobile source is away from home 

is due to the fact that tunnelling is employed to route 

packets between the mobile source and the HA. The extra IP 

packet header here increases the packet delivery cost. 

From all the results presented in Figures 8, 9, 10 and 11, 

the proposed M3U scheme outperforms the MIP HS-based 

approach.  

158

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 

VI. CONCLUSION AND FUTURE WORK 

Support for IP mobile multicast over bandwidth 

constrained environments like satellites is very important, as 

it efficiently makes use of the available bandwidth resources 

and thus provide cost effective network services. Due to 

transparency and reverse path forwarding problems, the 

handover of a mobile multicast source in SSM from one IP 

network to another will result to the breakage of the 

multicast delivery tree. While some solutions to support 

multicast source mobility in SSM have been proposed for 

the internet, it was seen that these are not very suitable in a 

satellite network.  

This paper proposes a suitable solution for multicast 

source mobility for SSM in a multi-beam satellite network. 

It presents the network architecture and proposes a new 

Multicast Mobility Management Unit (M3U) located at the 

NCC. Also, three new control messages have been proposed 

to provide IP mobility support to the mobile multicast 

source during GWH. The functioning of the M3U and the 

new control messages provide an elegant and effective 

solution for the mobile multicast source transparency and 

RPF problems in SSM.  

Performance evaluation for the proposed M3U scheme 

and the MIP HS-based approach was carried out using 

signaling cost during GWH handover and packet delivery 

cost after GWH. Provided other factors remain constant, the 

results obtained show the following:  

• The total GWH signaling cost is directly proportional to 

the speed of the mobile source, i.e., the higher the speed, 

the higher the total GWH signaling cost and vice versa. 

• The total GWH signaling cost is inversely proportional 

to the radius of the satellite (gateway) beam, i.e., the 

total GWH signaling cost reduces as the radius of the 

satellite beam increases and vice versa. 

• The packet delivery cost is directly proportional to the 

session transmission rate. This means that the packet 

delivery cost increases as the session transmission rate 

increases and reduces as the session transmission rate 

reduces. 

In all scenarios investigated, the results obtained show that 

the proposed M3U scheme outperformed the MIP HS-based 

approach in terms of total GWH signaling cost and packet 

delivery cost when the mobile source is away from home 

network. 

For future work, ways of integrating the proposed M3U 

scheme into PMIPv6-based IP mobility over satellite will be 

examined. This could potentially lead to faster and better 

handover performance compared to the individual M3U or 

PMIPv6 scheme.  

REFERENCES 

[1] E. K. Jaff, P. Pillai, and Y. F. Hu, "Source mobility support 

for source specific multicast in satellite setworks," in 

MOBILITY 2013 : The Third International Conference on 

Mobile Services, Resources, and Users, Lisbon, Portugal, 

2013, pp. 69 - 74. 

[2] H. Holbrook, B. Cain, and B. Haberman, "Using internet 

group management protocol version 3 (IGMPv3) and 

multicast listener discovery protocol version 2 (MLDv2) 

for source-specific multicast," IETF RFC 4604, August 

2006. 

[3] I. Romdhani, M. Kellil, L. Hong-Yon, A. Bouabdallah, and 

H. Bettahar, "IP mobile multicast: challenges and 

solutions," Communications Surveys & Tutorials, IEEE, 

vol. 6, pp. 18-41, First Quarter 2004. 

[4] P. Ferguson and D. Senie, "Network ingress filtering: 

defeating denial of service attacks which employ IP source 

address spoofing," IETF RFC 2827, May 2000. 

[5] "DVB fact sheet- August 2012: return channel satellite," 

DVB Project Fact Sheet, August 2012. 

[6] "SatNet DVB-RCS vs. proprietary VSAT systems," 

Advantech Satellite Networks DVB-RCS, April 2006. 

[7] "Digital video broadcasting (DVB); interaction channel for 

satellite distribution systems; guidelines for the use of EN 

301 790 in mobile scenarios," ETSI TR 102 768, April 

2009. 

[8] I. Romdhani, H. Bettahar, and A. Bouabdallah, 

"Transparent handover for mobile multicast sources," in 

Networking, International Conference on Systems and 

International Conference on Mobile Communications and 

Learning Technologies, 2006. ICN/ICONS/MCL 2006. 

International Conference on, 2006, pp. 145-145. 

[9] T. C. Schmidt and M. Wählisch, "Extending SSM to 

MIPv6—problems, solutions and improvements," in 

selected papers from TERENA Networking Conference, 

Computational Methods in Science and Technology, 

Poznań, 2005, pp. 147-152. 

[10] T. C. Schmidt, M. Wählisch, and M. Wodarz, "Fast 

adaptive routing supporting mobile senders in source 

specific multicast," Telecommunication Systems, Springer, 

vol. 43, pp. 95 – 108, February 2010. 

[11] C. S. Jelger and T. Noel, "Supporting mobile SSM sources 

for IPv6," in Global Telecommunications Conference, 

2002. GLOBECOM '02. IEEE, November 2002, pp. 1693-

1697. 

[12] T. C. Schmidt, S. Gao, H. Zhang, and M.Waehlisch, 

"Mobile multicast sender support in proxy mobile IPv6 

(PMIPv6) domains," IETF, draft-ietf-multimob-pmipv6-

source-03, February 2013. 

[13] B. Fenner, H. He, B. Haberman, and H. Sandick, "Internet 

group management protocol (IGMP)/multicast listener 

discovery (MLD)-based multicast forwarding 

("IGMP/MLD proxying")," IETF RFC 4605, August 2006. 

[14] S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, 

and B. Patil, "Proxy mobile IPv6," IETF RFC 5213, 

August 2008. 

[15] "Satellite earth stations and systems (SES); broadband 

satellite multimedia (BSM); connection control protocol 

(C2P) for DVB-RCS; background information," ETSI TR 

102 603, January 2009. 

[16] "Satellite earth stations and systems (SES); broadband 

satellite multimedia (BSM); regenerative satellite mesh - B 

(RSM-B); DVB-S/DVB-RCS family for regenerative 

satellites; Part 2: satellite link control layer," ETSI TS 102 

429-2, October 2006. 

[17] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. 

Thyagarajan, "Internet group ganagement protocol, version 

3," IETF RFC 3376, October 2002. 

159

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 

[18] L. Jong-Hyouk, T. Ernst, and C. Tai-Myoung, "Cost 

analysis of IP mobility management protocols for 

consumer mobile devices," Consumer Electronics, IEEE 

Transactions on, vol. 56, pp. 1010-1017, 2010. 

[19] "Digital video broadcasting (DVB); transport of MPEG-2 

TS based DVB services over IP based networks," ETSI TS 

102 034 V1.3.1, October 2007. 

[20] X. Jiang and U. Narayanan, "Performance analysis of 

mobility support in IPv4/IPv6 mixed wireless networks," 

Vehicular Technology, IEEE Transactions on, vol. 59, pp. 

962-973, 2010. 

[21] J. H. Lee, T. Ernst, D. J. Deng, and H. C. Chao, "Improved 

PMIPv6 handover procedure for consumer multicast 

traffic," Communications, IET, vol. 5, pp. 2149-2156, 

2011. 

[22] L. Jong-Hyouk, J. M. Bonnin, Y. Ilsun, and C. Tai-

Myoung, "Comparative handover performance analysis of 

IPv6 mobility management protocols," Industrial 

Electronics, IEEE Transactions on, vol. 60, pp. 1077-1088, 

2013. 

[23] C. Perkins, "IP mobility support for IPv4," IETF RFC 

3344, Aug. 2002. 

[24] "Digital video broadcasting (DVB); guidelines for DVB IP 

phase 1 handbook," ETSI TR 102 542, November 2006. 

 

 

 

160

International Journal on Advances in Internet Technology, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/internet_technology/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO, BIOSYSCOM,
BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE,
CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS, ENERGY, COLLA, IMMM, INTELLI,
SMART, DATA ANALYTICS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING, MOBILITY, WEB

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM, BIOINFO,
BIOTECHNO, SOTICS, GLOBAL HEALTH

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE COMPUTATION,
VEHICULAR, INNOV

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD
COMPUTING, COMPUTATION TOOLS, IMMM, MOBILITY, VEHICULAR, DATA ANALYTICS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL, INFOCOMP

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA, COCORA, PESARO, INNOV

issn: 1942-2601


